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ABSTRACT 

In the presented work, we reviewed the protein glycation effect on 

recombinant monoclonal antibodies (MAbs), and demonstrated an in vitro glycation 

model on rhuMAb A was a successful tool to evaluate site-specific glycation. We also 

implemented  this model to study MAb glycation in three aspects: the formation of 

glycation, the change of glycation adducts under thermal stress, and the control of 

glycation adducts stability  by formulation compositions. 

A protein characterization study demonstrated that the in vitro forced 

glycation model generated seven glycated amino acid sites on rhuMAb A. The lysine 

residue K49 was the preferably site, while others sites were at various low levels of 

glycation. Molecular dynamics (MD) analysis suggested that the high abundance of 

lysine 49 glycation observed on rhMAb A may be assisted by a strong electron-

donating environment created by three aspartates, with D30, D31, and D105 near 

K49. 

In the thermal stress stability study, the glycation adduct hydrolysis 

reaction was more pronounced than the AGE formation. It was found that glycation 

adducts hydrolysis continued for four weeks, but AGEs formation plateaued after 

one week. The overall combination of both reactions caused a loss of glycation with 

a first order reaction rate. The structure analysis of final degradation products agreed 

with kinetic observation that reverse of glycation adducts was the main degradation 

pathway of glycated rhuMAb A at 40°C in pH 6.5 phosphate formulation buffer. 

Reverse of glycation adducts on K49 could be catalyst by its adjacent aspartic acids. 



Influencing parameters of  glycation adduct degradation were also 

evaluated. Three formulation composition factors: pH, buffer, and oxidation control 

were compared. The study demonstrated the pH value was the key parameter that 

controls degradation pathways. pH also determined the rate constant of hydrolysis of 

glycated rhuMAb A. Buffer species and oxidation levels did not affect on the 

glycation adduct stability under the studied conditions. In addition, the effect of 

rhuMAb A’s  initial glycation level  was also evaluated.  The study demonstrated that 

higher protein glycation levels slow down the overall hydrolysis rate of glycation 

adduct, presumably by providing a complex electron transferring system on protein. 
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PREFACE 

This thesis was composed in manuscript format for intended 

publications. It contained four chapters: review of glycation on MAbs, 

characterization of an in vitro force glycated model rhuMAb A, degradation of 

glycated rhuMAb A, and the influceing parameter to control degradation of glycated 

rhuMAb  A.   Except the chapter on review of glycation on MAbs, three other chapters 

are intended for publication in journals.Therefore this thesis contained other 

introductory remaks. Currently, these three chapters (manuscripts) are in preparation 

stage prior to submission to journals.
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Chapter 1 

Review of Formation and Characterization of Glycation on  Therapeutic 

Monoclonal Antibodies (MAbs) 

Abstract 

Recent studies have shown that protein glycation reactions can occur to 

recombinant MAbs during cell culture in manufacturing, storage upon shelf life, 

clinical administration and circulation in the human body.  Difference in these process 

conditions can generate structural heterogeneity in MAb glycation. Characterization 

and control of glycation modification has become increasingly important to ensure  

product quality as well as manufacturing process consistency for recombinant MAbs 

in the biopharmaceutical industry. A series of analytical technologies has been 

developed and applied to characterize the structure of glycated MAbs. These 

technologies include: mass spectrometry, affinity chromatography, ion exchange 

chromatography, biological binding activity, and others. Studies of certain MAbs have 

shown that glycation may impair a MAb’s ability to bind antigens (Kennedy, D.M. et 

al.1994),  while, in contrast, studies of others MAbs demonstrated that glycation has 

no effect in binding affinity (Quan, C. et al. 2008). Site specific glycation has also 

been reported recently ( Zhang,B. et al. 2008, Gadgil, H.S. et al. 2010,  Miller, A.K. et 

al. 2011), which has enhanced  research interest in the formation, degradation and 

control of glycated MAbs. In the quality-by-design (QbD) paradigm for manufacturing 

MAbs, the decision to monitor and control glycation for a given MAb would require a 

thorough evaluation process, which is based on the impact of manufacturing 
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parameters on MAb glycation modification and the effect of glycation on MAb’s 

biological function with regards to both safety and efficacy  (Quan, C. et al. 2008).       
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Introduction 

Glycation is a known reaction which occurs between reducing sugars and  

amine groups on  proteins, amino acids, and nucleotides.  Intensive in vivo studies in 

humans have shown that protein glycation is implicated in the pathogenesis of 

multiple chronic diseases. The most common reducing sugar found in vivo is glucose, 

which reacts with N-terminal amino acids or with free amino groups on lysine and 

arginine residues.  This initial reaction between glucose and amine group is often 

referred as a glycation adduct. Further modification of  glycation adducts result in a 

variety of different products known as advanced glycation endproducts (AGEs) 

(Maillard, L.C. 1912). This leads to irreversible modifications on the proteins (Sell, D. 

R. and Monnier, V. M. 1989), which can subsequently cause tissue damage (Valcourt, 

U. et al. 2007). Protein glycation level has been known as a biomarker for diseases. 

For example, individuals with diabetes have higher serum glucose concentration, are 

thought to be more prone to glycation than those in healthy persons. Therefore, the 

extent of glycation of hemoglobin in vivo is a distinctive marker for diabetes 

(Beisswenger, P.J. et al. 2001). 

Glycation occurs in vitro as well. In the past several decades, an increasing 

number of recombinant humanized monoclonal antibodies (MAbs) have been 

developed as therapeutic agents (Figure1-1),  due to their high specificity and affinity 

to therapeutic antigen targets (Figure 1-2).  As a manufactured therapeutic protein, a 

MAb is subjected to many chemical modifications, including glycation throughout the 

manufacturing process. Chemical modifications may result in structural changes, 
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ultimately leading to potential biological function changes such as efficacy, safety and 

clearance rate.  Thus, understanding  glycation formation, degradation and how to 

control these processes on MAbs is important. The following sections summarize 

reported studies about glycation modification on MAbs throughout their life cycle 

including during cell culture, storage, administration in clinics and final circulation in 

the body.   
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Mechanism of Protein Glycation  and Advanced Glycation Reactions 

Glycation, originally described by Maillard (Maillard, L.C. 1912), refers to the 

nonenzymatic reaction between reducing sugars and proteins. This process involves a 

series of steps starting with the reaction between the reducing carbonyl group of a 

carbohydrate and an amino group present on proteins, usually at the epsilon amine on 

lysine residues or at the N-terminus, with initial formation of an aldimine (which is 

known as a Schiff base) (Figure 1-3). This unstable aldimine linkage can then 

rearrange to form a more stable ketoamine (which is known as an Amadori product) 

(Bucola, R. and Cerami, A. 1992).          

            Although the ketoamine linkage is considerably more stable than the aldimine 

linkage, it has been shown to be slowly broken under relatively mild conditions 

(Acharya, A.S. and Sussman, L.G., 1984; Miller, A.K. et al. 2011). There are also 

deglycating enzymes that limit glycation of intracellular proteins (Van Schaftingen, E. 

et al. 2007). The nonenzymatic reverse hydrolysis reaction is straightforward, 

releasing glucose and its C-2 epimer mannose, without much consequence (Zhang, Q. 

et al. 2009). The enzymatic reverse reaction involves phosphorylation of the Amadori 

product, followed by release of 3-deoxyglucosone.  

             Even though reverse of glycation reaction is relatively straightforward, the 

forward reactions are more complex, generating a wide range of reactive carbonyl and 

dicarbonyl compounds. These reactive intermediate carbonyl compounds may react 

with proteins to form stable, irreversible adducts and cross-links, known as AGEs  

(Figure 1-3).  Oxidation and further rearrangement of the ketoamine and aldimine 

products can also generate AGEs.   
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             Studies have shown that the extent of glycation of a protein depends on the 

rate of formation of the Amadori product and the rate of reversal or conversion to 

other products (Bucola, R. and Cerami, A. 1992; Cho, S.J. et al. 2007).   

The study of AGEs is one of the most promising areas of research in chronic 

inflammation diseases today. Although the Maillard reaction, AGEs formation, has 

been known since 1912, it is only in the last 20 years that important works have done 

to elaborate the mechanism of AGEs formation. In 1988, Namiki reported the 

reactivity of different reducing sugars leading to AGEs formation.  It was shown that 

compared with glucoses, aldehydes with short carbon chains (2-3 carbons) react with a 

model peptide, beta-alanine, faster and form AGEs more rapidly. Thus degradation of  

glucose  to smaller reducing sugar may accelerate AGEs formation (Table 1-1, Namiki, 

M. 1988).  In 2004,  Jakus, et al. summarized three major pathways for  AGEs 

formation: the Wolf pathway for reducing sugar initiated AGEs; the Namiki pathway 

for reverse aldose reaction of Schiff base to form AGEs; the Hodge pathway for 

Amadori product dehydration, and oxidation formed AGEs. All three pathways are 

thought to be trigged by oxidation (Jakus, V. et al. 2004). 

  Inhibitors, that prevent AGEs formation, have also been investigated by 

researchers. An AGEs-inhibitor is a molecule that can interrupt the covalent 

crosslinking of proteins and peptides by sugars or sugar derived oxidation products. 

For example, it may contain a nucleophilic amino group that  reacts carbonyl group on 

reducing sugars to compete with epsilon amine groups on lysine residues and other 

primary amines. Carnosine, a dipeptide, β-alanyl-L-histidine, found in long-lived 

tissues, such as brain, at concentrations up to 20 mM in humans, has been regarded as 
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an anti-oxidant and a free radical scavenger. More recently, an anti-glycating potential 

has been discovered whereby carnosine can react with low-molecular-weight 

compounds that bear carbonyl groups (aldehydes and ketones).  Another example can 

be found in the Wolf pathway.  Since the crucial step of AGEs crosslinking depends 

on the presence of transition metals for the formation of glycoxidation products and 

radicals, a family of metal chelators and radical scavengers (especially superoxide 

dismutase mimetics) could be regarded as AGEs-inhibitors. In addition, several 

natural and synthetic compounds (Figure 1-4) have been shown to be inhibitors of 

AGEs-formation in vitro and in vivo (Cameron, N.E. and Cotter, M.A. 1993). 

  In short, the chemical processes and pathways that ultimately lead to AGEs 

formation step by step have yet to be fully clarified. As our knowledge of AGEs 

expands, it is becoming apparent there are many unknown AGEs, while those that 

have been characterized are both complex and heterogeneous, making it  an important 

area of research.  
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Glycation and AGEs in Aging and Diseases   

   There is an increasing amount of evidence that AGEs may play a role in 

Alzheimer's disease (AD), diabetes and aging, as well as other chronic disease 

complications. The presence of AGEs are closely related to hyperglycaemia and the 

patho-biochemistry of AGEs could explain many of the observed changes  in diabetes 

related complications.  

              From biochemical, cell based, and animal studies, it has been demonstrated 

that AGEs accumulate as a function of the level of chronic hyperglycemia. It is 

thought that AGEs accumulation in vivo causes dysfunctional changes in extracellular 

matrix, abnormal receptor-mediated production of cytokines, and altered function of 

intracellular proteins. 

   In the early 80's, Monnier and Cerami (Monnier, V. and Cerami, A. 1981), 

the pioneers of the nonenzymatic glycation theory of aging, proposed that the AGEs-

mediated crosslinking of long-lived proteins contributes to the AGEs-related decline 

in the function of cells and tissues in normal aging (Table 1-2)  (Brownlee, M. et al. 

1992). Recent progress in the study of chronic diseases has confirmed that AGEs play 

a significant role in the evolution of vascular complications in  aging,  diabetes and 

renal failure.  Pathological results showed that chronic inflammation may be triggered 

by endogenous trans-membrane receptor of AGEs ( RAGEs) ( Basta, G. et al. 2002). 

 Among the many factors proposed to be involved in the etiology or 

progression of AD, AGEs are a relatively new and interesting approach to unravel the 

mysteries of the etio-pathogenesis of this multi-factorial disease. Recent studies 



  9 

suggest that AGEs are active promoters of the progression of AD, not only simply a 

secondary epiphenomenon (Shaw, S.M. and Crabbe, M.J. 1994). However, one has to 

be careful not to overestimate AGEs’ role in the disease process as long as only 

circumstantial evidence is presented. Therefore, the specific role of AGEs and which 

particular AGEs are involved in the disease complications needs to be established. The 

possibility of effective therapeutic intervention enhances the importance of detecting 

AGEs. Advancements in measuring extent and type of AGEs using reliable methods 

will help to determine the role that AGEs have in the pathogenesis of many diseases. 
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Overview of Chemistry, Manufacture and Controls of Therapeutic Monoclonal 

Antibodies (MAbs)  

Therapeutic MAbs, like other therapeutic proteins, are enormously complex 

drugs. They are typically produced in mammalian tissue culture cells through recom-

binant DNA technology (Goetze, A.M. et al. 2010). MAbs are a fast growing 

therapeutic modality in the pharmaceutical industry due to their higher specificity, 

lower toxicity, and greater in vivo predictability than small molecule pharmaceuticals 

(Banks, D.D. et al. 2009).  However, unlike small molecule drugs, protein drugs  are 

generally more susceptible to various conformational instabilities which can 

potentially influence immunogenicity and biological activity (Banks, D.D. et al. 2009). 

As of May 2008, there were 15 recombinant MAbs and fusion proteins 

approved in the US for human therapeutic use (Table 1-3), with the majority approval 

for oncology and immunological indications (Zider, A. and Drakeman, D.L. 2010). To 

date, There are over 450 MAb products that are under development across the 

biopharmaceutical industry.  

The manufacturing processes for recombinant MAb drug substance (DS) and 

drug product (DP) are complex. A stable chinese hamster ovarian (CHO) cell line 

contains  recombinant DNA capable of expressing a desired MAb product. Cells are 

cultured and aliquots of cell are frozen in small vials. When production occurs,  

thawed cell line vials are cultured through a series of reactors at different scales 

(milliliter to kiloliter). Eventually, cells are grown in a production bioreactor using 

serum-free modified medium supplemented with glucose and, as appropriate, 

galactose. Cells are separated from the cell culture fluid using centrifugation followed 
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by filtration. The harvested cell culture fluid is purified across multiple column 

chromatography steps, typically  in series which may include for example: a protein A 

affinity column, an ion exchange column, and a hydrophobic interaction column and/ 

or  one more additional ion exchange column or other chromatography column(s). 

Virus inactivation and filtration operations are also designed and executed during the 

downstream processing. The purified MAb product is eventually formulated and filled 

into either drug product vials or pre-filled syringes. Subsequently, the DP is stored 

under recommended storage conditions before being shipped for clinical use. 

Health authority approval for these protein drugs requires chemical and 

biological analyses designed to determine product identity, purity, and potency—

which is not a trivial task for an approximately 1,300-amino-acid, 150-kDa hetero-

dimer structure. The resulting analytical description encompasses the protein sequence, 

size, and charge as well as the degree of heterogeneity associated with each parameter. 

To complete the physiochemical and biological characterization, forms of variants 

need to be identified and their impact on potency needs to be determined. Typical 

recombinant protein modifications include asparagine deamidation, aspartate 

isomerization, methionine oxidation, protein aggregation and fragmentation, and 

protein glycation.  

Control of micro-heterogeneity within defined analytical specifications has 

been used in quality control laboratories to guarantee consistent product quality during 

current good manufacturing process (cGMP)  (Goetze, A.M. et al. 2010). Defining and 

adhering to the appropriate range of specifications ensures drug safety and efficacy to 

patients. 
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Formation of Glycation Products During Cell Culture Step in Manufacturing of 

Therapeutic Monoclonal Antibodies 

Recombinantly produced MAbs are exposed to reducing sugars during 

mammalian cell culture after they are secreted into the cell culture medium that 

contains sugars.  Sugars are present in medium as energy and carbon sources for the 

cells, and as a way to modulate glycosylation. For example, galactose may be added to 

the cell culture medium to control the level of galactosylation (Clark, K.J. et al. 2005). 

In addition, standard process parameters of cell culture such as temperature (~37°C 

physiological condition), pH (~ pH 7.4 physiological conditions), time (10-14 days), 

and reactant (amine and sugar) concentrations, affect both the glycation reaction 

kinetics and extent.  

           Under typical  batch-feed manufacturing conditions for MAbs, the cell culture 

medium is maintained at approximately 10,000-fold molar excess reducing sugar per 

mole protein product for the cell culture duration, indicating that the bimolecular 

glycation reaction kinetics would be pseudo first-order for the protein (Quan, C .  et al. 

2008). However, each MAb molecule has more than 100 primary amines, and the cell 

culture medium also contains significant levels of free amino acids and other 

compounds containing potentially reactive amines, thereby reducing the sugar molar 

excess for the glycation reaction. The protein glycation reaction extent is thought be 

governed mostly by the reactivity of accessible amino groups, although different 

sugars have different reactivity. For example, galactose is 5-fold more reactive than 

glucose (Bunn, H.F. and Higgins, P.J. 1981). In the artificial environment with 

complex chemical components present in cell culture medium and feeding conditions, 
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protein glycation occurrence can be expected, but the reaction kinetics and extent can 

be difficult to predict and control. 

 As the protein sequence differs between MAb molecules, the degree of 

glycation would also be expected to differ, even under similar cell culture conditions. 

Differences in cell culture process length, expressed MAb concentration, glucose feed 

strategy  and the glucose concentration in the medium feeds would also be expected to 

impact glycation levels, making this a difficult problem to understand and control 

(Zhang, B. et al. 2008, Miller, A.K. et al. 2011, Yuk., I.H. et al.  2011).  
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Specificity and Structural Analysis of Glycation Sites on MAbs   

  

  In the past several decades, the primary sites of glycation have been analyzed 

for a number of proteins under a variety of conditions. On some proteins, glycation is 

evenly distributed, while on other proteins, the N-terminus (Holmquist, W.R. and 

Schroeder, W.A. 1964) and  specific lysine residues (Zhang, B. et al. 2008, Gadgil, 

H.S. et al. 2010, Miller, A.K. et al. 2011)  can have a greater degree of modification. 

Glycation distribution difference between studied protein molecules indicates that 

sequence or structure may determine the specificity of glycation reactions. In the past, 

it was thought that the apparent pKa and exposure of the amine attachment site 

determines the degree of Schiff base formation. In addition, the proximity of amino 

acids capable of proton abstraction helps catalyze the formation of the ketoamine, or  

Amadori product (Venkatraman, J. et al. 2001, Zhang, B. et al. 2008). Buffer 

components that can bind near the reaction site and abstract protons from sugars, such 

as phosphate, can also serve as a catalyst to increase the rate of formation of stable 

products (Watkins, N.G. et al. 1987). Thus, the protein amino acid sequence and 

reaction conditions can all affect the site specificity of glycation reactions.   

               A MAb contains many primary amine groups. In addition to four N-terminal 

amino acids, most MAbs have approximately 80 Lys residues, giving MAbs many 

potential sites  for glycation (Lapolla, A. et al. 2000).   

                Historical data has shown that a typical MAb can be modified by glucose 

that results in very low abundances of glycation, with sites distributed over different 

amino acid residues. Often, the abundance of glycation product can be below the 
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detection limit of many analytical methods.  For example, a study by Quan and 

coworkers showed that MAbs produced in a 10 day glucose containing  cell culture 

were approximately 18% glycated overall including both light chains, and both heavy 

chains. The quantification of this MAb’s overall glycation is based on percentage of 

glycated MAb separated from total MAb by  boronate affinity chromatography (Quan, 

C. et al. 2008). Within this 18 % population of glycated MAbs, the glycation 

modification appeared as mono-glycation on 8 lysine residues on half of the molecule 

with low frequency (1–12%) at each of the eight lysine residues. (Quan, C. et al. 2008). 

These glycated species were separated from nonglycated material based on an 

approximately 0.05-pI charge unit difference and appeared as an acidic variant form in 

charge-based assays (Quan, C. et al.  2008). Because of  the disperse locations and low 

abundance of glycation, chromatography methods did not produce good charge- or 

hydrophobicity-based separation to detect glycation modifications, therefore different 

glycation modification could not be detected.  However, mass spectrometry and 

boronate affinity chromatography can be used to detect glycation. Both methods 

coalesce multiple glycation adducts into a single-unit modification, allowing 

separation between glycated and unglycated protein species, and  specific detection on 

large and complex molecules such as MAbs (Zhang, B. et al.  2008, Quan, C. et al. 

2008). 

               In recent years, researchers have reported site specific glycation on MAbs 

(Miller, A.K. et al. 2011, Gadgil, H.S. et al.  2010, Zhang, B. et al.  2008).  For 

example, Zhang’s group published a significant amount of work of a site specific 

glycation on lysine K49 of a particular MAb molecule. The glycation level on this 
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particular lysine K49 residue can be as high as 50% under typical cell culture 

conditions. Intensive studies have been carried out to study the effect of glucose to 

protein ratio and glucose feed strategies on MAb glycation in the hope of  optimizing 

the cell culture condition to control the total glycation level of the MAb  (Yuk, I.H. et 

al. 2011).  This finding contrasts with historical data that have suggested that glycation 

sites are typically located randomly at all accessible lysine residues distributed over 

the entire molecule (Zhang, B. et al. 2008).   

              To date, only a few publications had proposed a mechanism of site specific 

glycation on MAbs. One theory is that site specific glyaiton is due to proton transfer 

with assistance from nearby amino acids. Sometimes,a histidine residue is 

hypothetically involved ( Quan, C. et al. 2008).  In other cases, a aspartic acid residue 

is thought to be involved (Zhang, B. et al. 2008).  However, the exact mechanism of 

site specific glycation on MAbs is till yet to be determined. This uncertainty enhances 

the  interest of study in the formation and control of glycation in MAbs. 
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Glycation in MAbs Drug Product Stability and Administration    

           Protein glycations may occur during formulation, packaging, long term storage, 

or clinical administration steps, where sugars are commonly used as excipients in 

liquid or lyophilized formulations of therapeutic proteins (Chang, B.S. and 

Hershenson, S. 2002). This modification of glycation is one of the primary reasons 

that formulation scientists tend to avoid using reducing sugars (glucose, lactose, 

fructose, maltose) in formulations.         

           Even for non-reducing disaccharides, such as sucrose, there is still a  potential 

to generate  reducing sugars by in situ hydrolysis, resulted in subsequent glycation 

modification.  For example, sucrose can undergo hydrolysis – e.g. at low pH – to 

glucose and fructose. Smales, et al. demonstrated this hydrolysis for sucrose-based 

formulations undergoing viral inactivation at elevated temperatures (Smales, C.M. et 

al. 2000 and 2001). Similarly, glycation in sucrose-based formulations has been 

observed during storage studies (Fischer, S. et al. 2008, Gadgil, H.S. et al. 2007), 

although, at elevated temperatures and acidic pH. These extreme conditions are not 

within typical pharmaceutical formulation conditions, therefore the risk of protein 

glycation induced by sucrose hydrolysis in protein therapeutic is very low during the 

storage shelf life. 

 Finally, for delivering a drug to patients, sugars are often used in IV 

(intravenous) solutions to prevent precipitation of proteins, attain isotonicity of drug  

and provide an energy source for patients. Since some of the sugars commonly used 

for these purposes are reducing sugars (5% dextrose), the spontaneous glycation of 
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MAbs during IV administration cannot be prevented. In a recent study, two MAbs 

were 70% glycated after a 14 day incubation with 5% dextrose at ambient temperature. 

(Fischer, S. et al. 2008). However, under typical clinical conditions, MAbs are only in 

contact with IV solutions for a maximum of 8 hours.  To the best of our knowledge, 

the glycation of MAbs under administration conditions in a clinical setting has not yet 

been reported yet (Vrdoljak, A. et al. 2004).  Nevertheless, it is important to 

understand the glycation  effect on MAbs during IV delivery, as drug compatibility 

with administration route is the final  controllable step for ensuring  the MAb’s  safety 

and efficacy to patient. 
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Impact of MAb Glycation on Its Biological Activities 

         Glycation of MAbs is of special interest due to the possible influence on the 

functionality of antigen binding, Fc effector function,  and  neonatal Fc receptor 

(FcRN)  binding.  

          Antigen Binding 

           Quan, et al. 2008,  studied the effect of glycation on in vitro potency of a MAb, 

where the second most susceptible site to glycation was located within the second 

complementarity-determining region (CDR) on the heavy chain (HC CDR2 K65). The 

glycated and unglycated MAb were separated by and fraction collected from boronate 

affinity chromatography. In vitro biological activity were assayed for each fraction.  

Even though there was glycation at an active binding site, there was little observable 

effect on bioactivity for the glycated boronate fraction, compared to unglycated. The 

glycated MAb showed similar binding activity to a biologically functional ligand. 

Although glycation at the 10% level at this one residue (K65) within one CDR was 

insufficient to affect potency, additional increase in glycation levels may ultimately be 

expected to interfere with the ligand-binding ability of the MAb. Also, the effect of 

glycation modification impact depends on the location of modified lysine, e.g. whether 

it is directly involved in antigen binding (Quan, C. et al. 2008).   

        Researchers are also interested in glycation impact on the stability of antibody-

antigen complex. For example, Kennedy and coworkers reported antibody-antigen 

complex study based on surface plasmon resonance, in 1994.  Although glycated 

MAbs had similar association constant (kass) with their antigen, compared with 

unglycated MAbs,  the glycated MAbs have significantly higher dissociation constant 
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(kdis) with their antigen, indicating that the glycated MAbs dissociate with their 

antigen faster. Therefore, glycation lowered the  affinity ( Kd= kdis/kass) of MAbs to 

their antigens ( Kennedy, D.M. et al. 1994). Because of the different approaches and 

detection techniques used, the results from different studies were not coherent, 

especially regarding the influence of glycation on the ability of MAbs to bind antigens 

and induce the complement cascade.               

 

           Fc effector Function, and FcRN Binding 

           Forced glycation studies using high pH conditions have shown that Fc 

functions of human antibodies, such as protein A binding and complement activation, 

can be impaired by glycation (Dolhofer-Bliesener, R. and Gerbitz, K.D. 1990).                               

However, under physiologic conditions, binding activity of the Fc is less sensitive, 

presumably due to lower levels of glycation. 

 Goetze, et al. 2012 reported glycation of MAbs can result from incubation with 

a reducing sugar during circulation in vivo. The contributions to total glycation from 

the labile aldimine and more stable ketoamine forms were separately monitored via 

the use of selective sodium borohydride reduction. Since the Fab protein sequences are 

versatile, the Fab  susceptibility to glycation, differs between antibodies. A number of 

studies have focused primarily on the conserved Fc regions (Goetze, A.M. et al. 2012). 

An attempt was made to model physiological glycation rates observed using a simple 

in vitro system. The impact of Fc glycation on function was also explored using 

surrogate binding assays that probed the interaction between MAbs and FcγRIIIa, 

neonatal Fc receptor (FcRn) and immobilized protein A (Goetze, A.M. et al. 2012). 
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 Upon injection of a recombinantly produced human therapeutic IgG into 

humans, changes in the glycation levels could be observed as a function of circulation 

time (Goetze, A.M. et al. 2012). Mass changes on the individual MAb polypeptide 

chains as the results of glycation were determined using reversed-phase liquid 

chromatography/mass spectrometry. Changes to the light and heavy chains were low 

but easily detectable at 0.00092 and 0.0021 glucose additions per chain per day, 

respectively. Levels of glycation found on the Fc portion of MAb were, on average, 

0.045 glucose molecules per fragment, after being isolated from healthy subjects. In 

vivo glycation rates can be approximated in vitro by modeling the physiological 

glycation reaction with a simplified incubation containing physiological glucose 

concentrations, pH and temperature, but with a high concentration of a single purified 

MAb. To test the impact of glycation on MAb function, highly glycated IgG1 and 

IgG2 were prepared containing on average 42–49 glucose molecules per MAb. In this 

study, binding to FcγIIIa receptors, neonatal Fc receptor, or protein A was similar or 

identical to the non-glycated MAb controls. Although the modifications were well 

distributed throughout the protein sequence, and at high enough levels to affect the 

elution position by size-exclusion chromatography, no changes in the tested Fc 

functions were observed (Goetze, A.M. et al. 2012). 
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Conclusions 

         Protein glycation reactions can occur to recombinant MAbs during many 

manufacturing process steps such as cell culture and storage, as well as during clinical 

administration to a patient and  circulation in human body. Cell culture process is the 

initial place generating glycated recombinant MAbs. Clinical administration is the  

final  step for controlling MAb glycation before introduction into patients.  

         Glycation modification results in structural heterogeneity in the MAbs. It 

changes MAbs charge, target binding capacities, and degradation rates (Zhang, Q. et 

al. 2009).  However, the site specific glycation mechanism and effect of glycation 

impact on efficacy, safety and stability of MAbs are not well understood.  

           Development of sensitive and specific methods to monitor advanced glycation 

products is important to fully understand and monitor glycation during the 

manufacturing process and clinical administration of MAbs.  Improved and more 

specific assays are also needed to assess the impact of novel protection strategies 

aimed at designing glycation inhibitors for therapeutic applications (Zhang, Q. et al. 

2009). 

In the quality-by-design (QbD) paradigm for manufacturing MAbs, the 

decision to monitor and control glycation for a given MAb would be a thorough 

evaluation process based on the impact of manufacturing parameters on MAb 



  23 

glycation modification and the effect of glycation on MAb’s biological function for 

safety and efficacy  (Quan, C. et al. 2008).       
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Figure 1-1: History of therapeutic monoclonal antibody from concept to FDA 
approval. 

Reference:  Weiner, L.M., Surana, R. and Wang, S.  2010. 
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Figure 1-2: Diagram of structure of an antibody and its bioactivity. 

Reference:  Weiner, L.M., Surana, R. and Wang, S. 2010.  
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Figure 1-3:  Chemistry of glycation reaction and advanced glycation reaction.  
Reference: Munch, G., Thome, J., Foley, P., Schinezel, R., Riederer, P. 1997. 
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Figure 1-4: Chemical structures of the AGE-inhibitors: aminoguanidine, carnosine and 
tenilsetam.  
Reference: Cameron, N.E. and Cotter, M.A. 1993. 
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Sugar Formation of 
Chromophores (Browning) 

Radical Formation 
(Intensity of ESR Spectra) 

Glucose (C-6) 1 ++ 
Fructose (C-6) 0.74 + 
Xylose (C-5) 8.74 ++ 
Methylglyoxal 
(C-3) 

654 Not Determined 

Glyceraldehyde 
(C-3) 

1976 +++ 

Glycolaldehyde 
(C-2) 

2109 ++++ 

Table 1-1: Reactivity of different sugars (with beta-alanine as amino component) in 
the Maillard reaction. 
Reference: Namiki, M. 1988. 
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Failure of Maintenance in Cells or Tissues Major Pathologies 
Neurones Dementias 
Retina, Lens Blindness 
Insulin Metabolism, Signaling Complications of diabetes 
Blood Vessels Cardiovascular Diseases 
Glomeruli Renal Failure 

 
 
 
 
 
 

Table 1-2: Human degenerative diseases with a proposed involvement of AGEs. 
Reference: Brownlee, M., 1992. 
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Trade and non-
proprietary names 

Type Indication 

Amevive (alefacept) Fusion Immunology 
Avastin (bevacizumab) Naked Oncology 
Bexxar (tositumomab) Conjugate Oncology 
Campath (alemtuzumab) Naked Oncology 
Cimzia (certolizumab pegol) Fragment Immunology 
Enbrel (etanercept) Fusion Immunology 
Erbitux (cetuximab) Naked Oncology 

Herceptin (trastuzumab) Naked Oncology 
Humira (adalimumab) Naked Immunology 
Lucentis (ranibizumab) Fragment Ophthalmology 
Mylotarg (gemtuzumab-

ozogamicin) 
Conjugate Oncology 

Orencia (abatacept) Fusion Immunology 
Orthoclone OKT-3 Naked Immunology 
Raptiva (efalizumab) Naked Immunology 
Remicade (infliximab) Naked Immunology 
ReoPro (abciximab) Fragment Cardiovascular 
Rituxan (rituximab) Naked Oncology 
Simulect (basiliximab) Naked Immunology 
Soliris (eculizumab) Naked Immunology 
Synagis (palivizumab) Naked Infectious Disease 
Tysabri (natalizumab) Naked Immunology 
Vectibix (panitumumab) Naked Oncology 
Xolair (omalizumab) Naked Immunology 
Zenapax (daclizumab) Naked Immunology 
Zevalin (ibritumomab 

tiuxetan) 
Conjugate Oncology 

Table 1-3: Monoclonal antibodies and fusion proteins approved in the US as of May 
2008. 
Reference:  Zider, A. and Drakeman, D.L. 2010. 
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Abstract 

              Recently, a site specific glycation on lysine K49 of rhuMAb A was reported 

(Zhang, B. et al. 2008), with a proposed mechanism of spatial proximity effect 

between lysine residue (K49) and nearby aspartate (D31) residue. To elucidate the 

mechanism of site specific glycation on K49 of rhuMAb A, an in vitro forced 

glycation model was employed to generate fully glycated rhuMAb A, a detailed 

analytical characterization on the glycated rhuMAb A was performed. Finally, 

molecular dynamics simulations were used to model the local electrostatic 

environment under solution conditions.  

                   The in vitro forced glycation model showed that seven glycation sites 

were identified on this rhuMAb A, by using a series of analytical technologies such 

as boronate affinity chromatography, ESI-Mass spectrometry and peptide map. 

Among these seven sites, K49 was the primary glycation amino acid residue with 

90% glycated.  The six other sites were at various low levels of glycation.  Molecular 

dynamics (MD) analysis results provided an insight that the high abundance of K49 

glycation observed on rhMAb A may be caused by a strong electron-donating 

environment with three surrounding aspartates: D30, D31, and D105. 
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I. Introduction 

In the past decades, there has been an increasing number of recombinant 

humanized monoclonal antibodies (MAbs) developed as therapeutics due to their 

high specificity and affinity to therapeutic antigen targets. As manufactured proteins,  

MAbs have the potential to be chemically modified during manufacturing process.  

MAbs are typically manufactured via a 10-14 day cell culture process. In this process 

a MAb is produced in Chinese Hamster Ovarian cells (CHO) then secreted outside 

the cell, into the culture medium, which contains glucoses as the cell’s nutritional 

carbon source. This protein-glucose contact results in MAbs glycation (Quan, C. et 

al. 2008,  Zhang, B.  et al. 2008).  

In most MAbs, the glycation level is <15% and widely distributed over the 

entire MAb molecule.  In recent years, researchers have also reported site specific 

glycation on MAbs (Miller, A.K. et al. 2011, Gadgil, H.S. et al.  2010,  Zhang, B. et 

al.  2008).  Zhang’s group, in particular, has published a significant amount of work 

describing a site specific glycation on lysine K49 of a rhuMAb A molecule. The 

glycation level on this particular lysine K49 residue can be as high as 50% under 

typical cell culture conditions. Intensive studies have been carried out to study how 

glucose to protein ratio, and glucose feed strategies can be altered to optimize the 

cell culture condition. The ultimate goal is control the total glycation level of  

rhuMAb A (Yuk, I.H. et al.  2011). 

 In the artificial environment with complex chemical components present in 

cell culture media and feeding conditions, the glycation kinetics and extent on MAbs 

can vary with cell culture conditions (Zhang, B. et al. 2008; Yuk, I.H. et al. 2011). 
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As the protein sequence differs between MAb molecules, the degree of glycation 

would also be different, even under similar conditions. The uncertainty of controlling 

MAbs glycation enhances the interest of study in the mechanism site-specific of 

glycation in MAbs.  

To date, only a few publications have proposed a mechanism of site-specific 

glycation on MAbs. The proposed glycation mechanism suggests that nearby amino 

acids may facilitate proton transfer. Sometimes, a histidine residue is thought to be 

involved (Quan, C. et al. 2008), in other cases an aspartate residue may be involved 

(Zhang, B. et al.  2008).  

With a great amount of mutation work on rhuMAb A, Zhang proposed that 

an adjacent aspartate residue D31 is the local catalyst for site specific glycation in 

rhuMAb A. D31 is spatially located 11 Å to lysine residue K49 based on the crystal 

structure of rhuMAb A.  The mutation of this D31 to other amino acids may reduced 

the glycation level of K49. However, in Zhang’s study, there were several cases 

where K49 lysine was still glycated up to 20% after replacing D31 with different 

amino acids.  

In order to further examine the mechanism of site specific glycaiton on K49 

of this rhuMAb A, we employed an in vitro forced glycation model to generate close 

to 100% glycated rhuMAb A. We also performed comprehensive analytical 

characterization on the glycated rhuMAb A produced using this model system. Then, 

we applied molecular dynamics simulations to determine the local environment of 

the primary modified lysine K49 by mimicking the rhuMAb A in aqueous solution. 
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II. Experimental

II. 1. Materials and Reagents

A regular lot of rhuMAb A (27 mg/mL, PBS buffer, pH 7.4) bulk material 

was obtained from Genentech. Sequencing grade trypsin (TPCK treated) was 

purchased from Promega (Madison, WI), and Peptide: N-glycosidase F (PNGase F) 

from New England BioLabs Inc (Ipswich, MA). N-(2-Hydroxyethyl)piperazine-N¢-

(3-propanesulfonic acid) (EPPS; 99.0%) and dithiothreitol (DTT; ultrapure) were 

obtained from USB Corp. (Cleveland, OH). D-Sorbitol (minimum 98%), R-D-

glucose (ACS reagent), iodoacetic acid (IAA; _99%), and R-cyano-4-

hydroxycinnamic acid (CHCA) were procured from Sigma-Aldrich (St. Louis MO). 

HPLC grade acetonitrile (ACN) and methanol were purchased from Fisher Scientific 

(Fair Lawn, NJ). Water used in all experiments was obtained from a Milli-Q Plus 

purification system (Millipore, Bedford, MA). 

II.2. In Vitro Glycation of rhuMAb A 

The rhuMAb A in PBS buffer, pH 7.4, was further glycated in vitro. rhuMAb 

A was buffer exchanged into glycation buffer with dialysis prepared in 15 ml 

cassette with 10kD membrane. The final in vitro glycation solution contains 

50mg/ml rhuMAb A with 1200 mM D-glucose, in 20 mM sodium phosphate buffer, 

pH 7.4. The in vitro glycation solution was kept in an incubator at 37 °C for 24 hours. 

The in vitro glycation solution was immediately buffer exchanged using a 15 ml 

dialysis cassette with 10kD membrane into phosphate buffer, pH 6.5. The samples 

were then stored at -70°C until analysis. 
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II.3. Boronate Affinity HPLC 

Early stage glycation adducts often can be identified by a boronate affinity 

HPLC method to determine the overall glycation level on a whole protein, using a 

TSK gel boronate 5PW column 7.5x75mm. The mobile phase A was 50mM EPPS, 

10mM Tris, 200mM NaCl, at pH 8.7, and mobile phase B, 500mM sorbitol added 

mobile phase A. The mobile phase flow rate 1 mL/min and the column temperature 

was maintained at 40°C with a UV and fluorescence detector. The gradient for 

HPLC elution required optimization for rhuMAb A. (Zhang, B. et al. 2008) 

II. 4 Enzymatic Digestion of rhuMAb A

Several enzymatic treatments were performed on rhuMAb A samples before 

they were analyzed for reverse phase-HPLC, or mass spectrometric analyses, to 

determine the amino acid sequence and structural integrity of rhuMAb A. 

           PNGase F Treatment.  PNGase F was used to remove the oligosaccharides in 

the Fc portion of a MAb.  The rhuMAb A samples were buffer exchanged into 50 

mM Tris buffer, pH 7.5, using a NAP-5 column. The protein concentration was 

adjusted to 2.5 mg/mL. PNGase F was added in an enzyme-to-substrate ratio of 

1:600 (w/w). The digestion was performed at 37°C overnight (15 h). 

          Tryptic Digestion. Prior to tryptic digestion, rhuMAb was reduced with DTT 

and then alkylated with IAA. Typically, 250 µL of antibody sample (2 mg/mL) was 

mixed with 20 µL of 1 M DTT in 730 µL of 6 M guanidine, 50 mM Tris, pH 8.0. 

The mixture was incubated at 37 °C for 1 h. It was then cooled to room temperature, 

and 50 uL of 1 M (IAA) in 1 M NaOH was added for carboxymethylation. The 
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alkylation reaction was incubated at room temperature in the dark for 15-20 min. The 

residual IAA was quenched by the addition of 10 µL of 1 M DTT. The reduced and 

carboxymethylated rhuMAb A was then buffer exchanged into the digestion buffer, 

which contained 25 mM Tris, 1 mM CaCl2, pH 8.3, using a PD-10 column 

(Sephadex G-25 medium, GE Healthcare). Trypsin was added at an enzyme-to-

substrate ratio of 1:50 (w/w). The solution was mixed briefly and incubated in a 

37°C water bath for 5 h. The digestion was terminated by adding 0.3% (v/v) 

trifluoroacetic acid (TFA) to the solution. The digest was then stored at -70°C until 

analysis. 

II.5. Reverse Phase-HPLC with Electron Spray Ionization/ Mass Spectroscopy 

(RP-HPLC-ESI/MS)  

The molecular masses of the intact, PNGase F-treated, and reduced rhuMAb 

A samples were determined by using a LC/ESI-MS setup coupled with an Agilent 

1090 HPLC system with a PE Sciex API 3000 electrospray ionization triple-

quadrupole mass spectrometer (Applied Biosystems, Foster City, CA). The samples 

were desalted by reverse phase –HPLC (RP-HPLC) using a capillary column (Poros 

R1, 0.33 _ 200 mm) equilibrated at a flow rate of 200 uL/min with 0.2% formic acid 

(solvent A) at a column temperature of 40 °C. Samples were eluted using a linear 

gradient from 25% solvent B (0.2% formic acid in acetonitrile) to 70% solvent B 

over 16 min. The elutant from the RP-HPLC column was directed into the mass 

spectrometer operating in the positive ion mode. For post-reduction analysis, 

samples were incubated in 25 mM DTT for 15 min at 37 °C prior to LC/MS analysis. 
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II.6. Tryptic Peptide Mapping 

The flow through factions (intact unglycated rhuMAb A) and retained factions 

(intact glycated rhuMAb A) on BAC were collected. Both glycated and unglycated 

rhuMAb A fractions were then digested by enzyme trypsin. Peptides profiles of 

tryptic-digested rhuMAb A were analyzed subsequently by an RP-HPLC using a 

Jupitor C18 2.0x250 mm column at 45°C and UV detection at 214nm. The flow rate 

was at 0.25ml/min, in mobile phase A: 0.1% TFA in water and B: 0.09% TFA in 

acetonitrile. The gradient was optimized for this rhuMAb A. By comparing the 

peptide maps of glycated and unglycated rhuMAb A, the distinctive peptide factions 

on glycated rhuMAb A were collected for further characterization by MALDI-TOF 

MS/MS sequencing. 

II.7. Protein Chip Matrix Assisted Laser Desorption Ionization- Time-Of-Flight 

mass spectrometry (MALDI-TOF)  

Isolated tryptic peptides were spotted individually on a SCOUT 384 multi-

probe plate with a CHCA matrix and analyzed in the positive mode using a Bruker 

Ultraflex-I MALDI-TOF-TOF mass spectrometer (Bremen/Leipzig, Germany). 

Selected precursor ions were subjected to collision-induced dissociation with argon 

as the collision gas. LIFT mode was used to analyze all fragment ions in single 

sweep, and data were processed with Flex Analysis software. 
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II.8. Molecular Dynamics (MD) Simulations 

To compare K49’s property with all lysine residues on this rhuMAb A, 

molecular dynamics simulations were performed to analyze the movements of lysine 

residues by calculating their motions in aqueous solution. Based on the IgG1 protein 

framework, a generic model was built which includes common intra-molecule forces 

for a MAb.  rhuMAb A’s particular protein amino acid sequence was applied to this 

model to generate a molecule specific 3D structure in aqueous solution. Lysine’s 

solvent accessible surface area (SASA) was determined by AREAIMOL (CCP4 

supported Program), which is based on a “rolling ball” algorithm (Lee, B., and 

Richards, F.M., 1971). This algorithm uses a sphere of water as a particular radius to 

‘probe’ the surface of the rhuMAb A molecule then calculate the exposure area of a 

particular lysine.    

      Furthermore, molecular dynamics was applied to determine the lysine’s local 

environment via a computer simulation of physical movements of atoms and 

molecules. In a given time, the atoms on this rhuMAb A were allowed to interact 

with and move in the aqueous solution, resulting a view of the motion of the atoms. 

In these simulations we performed explicit water (with 11780 water molecules) 

molecular dynamics (MD) simulations of a set of FAb fragments and calculated 

different properties. Focus was placed on lysine residues to identify the properties of 

lysine residues which might correlate to experimentally observed glycation 

formation propensities in rhuMAb A. This approach is different from the empirical 

methods discussed above, because we calculated dynamic properties of the protein 

that could not be determined from the static structure. 
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           Throughout these simulations, the temperature was kept constant by coupling 

the system to a temperature bath of 300 K using simulation algorithm (Bussi, G., 

Donalido, D., Parrinello, M.,  2007) at pH7.4. Histidines on rhuMAb A were 

unprotonated.  During equilibration, the volume was initially kept constant by 

coupling the system to a pressure bath at 1.0 atm (Bernedsen, H.J.C., Postma, J.P.M. 

et al. 1984). Following equilibration, the simulations were kept at constant pressure.  

Following equilibration, a set of trajectories with 75ns duration was performed. 

Trajectories from MD simulations were then analyzed with various tools available in 

AMBER program suite. (Case, D.A. et al. 2005) 
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III. Results

III.1. Boronate Affinity HPLC 

We determined total glycation level of rhuMAb A by using boronate affinity 

chromatography (BAC).  Boronate affinity chromatography is based on the 

formation of a five- member ring structure between a sugar’s cis-hydroxl groups and 

boronate ion’s negative charge on the column (Figure 2-1). The affinity to sugar 

ensures boronate capture the glycated protein under alkaline condition. After loading 

onto a boronate affinity column, protein samples were eluted with a gradient of a 

competing sugar, sorbitol.  Unglycated proteins were eluted at ~2.4 min, while 

glycated proteins were detected at ~25 min. The elution conditions used here did not 

provide resolution of proteins with different sugar to protein ratios. Therefore, the 

overall glycation level was defined as percent peak area of the retained peak on 

boronate affinity chromatograms.  

From this study result, glycated rhuMAb A from a regular glucose batch feed 

process (batch feed protein to glucose concentration, 1.5g/L titer: 8g/L   glucose feed) 

was 42.0% based on the integration of the retained peak area, as shown in Figure 2-

2a.  This indicates 42% of rhuMAb A contained at least one glucose addition 

modification per protein. In comparison, under forced glycation condition (24 hours 

incubation with 1.2M of glucose in 20mM sodium phosphate, pH 7.4 at 37°C), this 

rhuMAb A was nearly fully glycated, such that 99.3% of the rhuMAb A contained at 

least one glycation modification (Figure 2-2 b). 
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III.2. RP-HPLC-ESI/MS 

Because BAC cannot determine the glucose to protein ratio, Electron Spray 

Ionization/ Mass spectrometry (ESI/MS) was applied to determine the approximate 

numbers of glucose per rhuMAb A on the forced glycated rhuMAb A sample. In 

order to measure the mass, rhuMAb A was reduced, then separated into light chains 

and heavy chains on reverse phase chromatography. The eluted chromatography 

fractions went through an ESI/MS mass analyzer. Molecular mass of the light chains 

and the heavy chains species were determined individually. As shown in Figure 2-3, 

four species with different molecular weights were detected in the mass profile of the 

fully glycated rhuMAb A light chains. They ranged from no glucose to a maximum 

of three glucoses per light chain.  The majority of glycated light chains contained 

only single glycated specie. For glycated heavy chains, as shown in Figure 2-4, three 

different heavy chain glycation species were observed. They ranged from no glucose 

to a maximum of two glucoses addition per heavy chain.  The majority of heavy 

chains were native species containing no glucose modification. It is notable that the 

most abundant glycation was found on the light chain of rhuMAb A.  

III.3. Tryptic Peptide Map 

The next question to be answered was which amino acid sites on the primary 

sequence level were glycated. Identification of the glycated amino acid sites was 

attempted by tryptic peptide mapping. Tryptic peptides were generated by enzymatic 

digestion of rhuMAb A. The digested peptide fragments were separated on RP-

HPLC, resulting in a unique peptide elution profile of each protein faction 
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(unglycated and glycated fractions) from BAC. By comparing peptide-map profile of 

the glycated and unglycated samples, glycated peptide fragments were detected. 

MS/MS analysis was performed on the putative glycated peptide fragments to assign 

the peptide sequence and identify the amino acid site of modification. Table 2-1 

summarizes the glycation level of amino acid sites that were glycated under forced 

glycation condition. There were a total of seven amino acid sites on rhuMAb A that 

had various levels of susceptibility to glycation. It is notable that light chain lysine 

49 (K49) was the primary amino acid site modified by glycation, where 90% of this 

particular residue on rhuMAb A was glycated. The next most glycated site was the 

heavy chain N-terminal, glutamic acid’s alpha amino group, with 5% glycated only. 

All the other sites were glycated at very low levels, less than 5% modified.  This site-

specific result agrees with published work on non-forced glycation of  rhuMAb A by 

Zhang,  et al . ( Zhang, B.  et al . 2008).  

III.4. Understanding The Cause of Site Specific Glycation by Molecular 

Dynamic  (MD) Simulations   

         What special property does K49 have that allows such a high extent of 

modification by glycation? Does it happen to be more solvent accessible, which 

increases the probability of reaction with glucoses? Or is there a special local 

electrostatic environment?  

The solvent accessible surface area (SASA) of each lysine residue was 

determined using AREAIMOL calculation. The summary of average SASA on each 
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lysine residue is shown in Table 2-2. It is notable that K49 was not the most solvent 

accessible lysine residue on rhuMAb A.  

Also, the local environment of glycated lysine residues, especially the 

potential aspartate to lysine pairing effect, was evaluated. There were three major 

results: the average distance between D31 to K49 was 11.8Å, which agrees with 

Zhang’s report.  However, D31 to K49 is not the only spatial adjacent (D:K) pair in 

rhuMAb A. There were five other (D:K) pairs of a distance  ~5.5 Å. Interestingly, 

only two of the five lysine residues were glycated. More importantly, lysine K49 was 

surrounded by three aspartates.  They were light chain D30, D31 and another 

aspartate on heavy chain, D105. D30 and D31 had similar spatial distance to K49. 

However, the D105 was only 5.4 Å to K 49, a much closer spatial distance than D30 

or D31 had (Figure 2-6). These three aspartate residues also had different solvent 

accessible surface areas. As shown in Table 2-3, D30 and D31 had the highest SASA 

value among all aspartate residues that were paired with lysine residues. On the other 

hand, D 105 had the lowest SASA value.  

IV. Discussion

From the characterization study result, in vitro forced glycation can 

successfully produce a nearly 100% glycated rhuMAb A.  The ESI/MS result 

indicated that the forced glycation of  rhuMAb A forms a heterogeneous mixture, 

with different extents of glucose modification.  To understand the complexity of the 

fully glycated rhuMAb A, we calculated the possible glucose to rhuMAb A ratio, 

based on different scenarios of glucose modification on light chains and heavy 
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chains. By combining possible glucose ratio on both heavy chains and both light 

chains, we estimated that the average intact rhuMAb A may contain from one to ten 

glucoses per molecule, with the majority containing at least one glucose on the light 

chain.   

            The forced glycation model of rhuMAb A was also proven to mimic the site 

specific glycation in typical cell culture conditions, meaning the most susceptible 

glycation site is still light chain lysine, K49. Since this forced glycation model 

provides high abundance of glycated rhuMAb A in a much rapid manner than a 10-

14 day cell culture, it becomes a great tool to investigate site specific glyation 

reaction on MAbs and proteins.  

             In the past, researchers had shown that glycation specificity is not governed 

by the pKa of an amine group, rather by the internal micro-environment of a protein. 

Neighboring amino acids can often involve a catalyst effect. Watkins, et al.  first 

reported specificity of glycation on RNase in 1985. They reported that certain lysine 

residues, especially the ones close to the RNase active site, were easy to be glycated. 

On the other hand, the surface lysine residues were relatively inactive.  Watkins also 

proposed that both the Schiff base equilibrium concentration and the rate of Amadori 

rearrangement at lysine residues were important in determining the specificity of 

RNase glycation  (Watkins, N.G. et al. 1985 and 1987). For site specific glycation in 

MAbs, Quan, et al. had observed histidine presence near a lysine residue, and 

proposed that a histidine residue may act as a proton transfer which could help to 

glycate nearby lysines (Quan, C. et al. 2008).  
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              In the case of rhuMAb A glycation specificity, Zhang’s group proposed an 

aspartate catalyst effect in 2008. The proposed mechanism was based on intensive 

mutation work, suggesting that light chain aspartate D31 is the essential catalyst for 

K49 site-specific glycation phenomenon. However, even with mutations of D31 to 

other amino acids, such as threonine,  lysine K49 was still glycated to a relatively 

high level,  ~ 25% compared to ~ 40% before mutation . Since Zhang’s estimation of 

spatial distance of D31 and K49 was based on static crystal structure, it does not 

represent the lysine residue’s activity and movement in a dynamic liquid 

environment.  

           In our study, molecular dynamics was used to evaluate K49’s dynamic 

motions in aqueous solution. Two parameters were calculated 1) solvent accessible 

surface area, and  2) the distance between aspartate residues and lysine residues on 

this rhuMAb A’s Fab region.   

The presented work demonstrated:  Lysine K49 does not exhibit the highest 

solvent accessible surface area (SASA) compared with other lysine residues.  Rather 

K49 is on the lower rank of exposed lysine residues, indicating that site-specific 

glycation on rhuMAb A is not determined by solvent accessibility.  Among five 

lysine residues, which have aspartate spatially close to them, only two lysines (K49 

and K75) were significantly glycated. This indicates that the presence of aspartate 

near by lysines does not necessarily catalyze glycation either. Finally, a total of three 

aspartates are thought to be involved in K49 microenvironment. However, the 

distances and angles between these aspartate residues and  K49 do not favor 

formation of hydrogen bond. D30 and D31 are located 11 Å from K49, which is too 
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far to form hydrogen bonds with K49. D105 is only 5.3 Å from K49, which is still 

too far to form a hydrogen bond. Therefore, it is unlikely that these aspartate residues 

react or bond to lysine K49 directly to promote glycation. Instead, the three aspartate 

residues together are thought to provide a strong electron-donating environment 

around K49 at physiological pH. 

How would this catalysis work? Do the aspartate residues directly react with 

glucose rather than lysine?  We are inspired by knowledge learned from nature, 

especially  the enzymatic mechanism of two enzymes in sugar metabolism: Aldose B 

and Triose phosphate isomerase. Aldose B has an active site involving an aspartate 

residue D33, and a lysine residue K229. These two residues act as mediators to 

shuttle the electron on the carbonyl group and the hydroxyl group on sugar. (Cox, 

T.M. 1994 ; Garrett, R.H and Crisham, C.M., 2010). Triose phosphate isomerase also 

contains a basic glutamate residue E165  and an acidic proton-donating  histidine 

residue H95 to convert the –CHO aldehyde to a –C=O ketone group of sugar (Harris, 

T.K. et al. 1998). These two enzymes both use an electron donating rich residue 

(aspartic acid, glutamic acid) that are negatively charged  (aspartate, glutamate) at 

physiological pH, to help extract a proton from hydroxyl group on sugar. At the 

same time, an acidic proton-donating residue (lysine, histdine) donates a proton to 

sugar’s carbonyl group, resulting in conversion of carbon one's carbonyl group to a 

hydroxyl group.  These reactions are also essential steps for glycation Schiff base 

formation and Amadori rearrangement as well. 

With the knowledge obtained from mechanisms of sugar metabolism 

enzymes, we hypothesize that D30, D31 and D105 work cooperatively around K49 
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to promote K49 glycation in two steps. First, by creating a negatively charged 

microenvironment, D30, D31 may act as a porter to attract glucose and keep glucose 

in the vicinity close to K49. D30 or D31, that has high solvent accessible surface 

area, withdraws the hydrogen from carbon two in glucose. The hydrogen withdraw 

causes carbon two to carry a negative charge and carbon one to carry positive charge. 

At physiological condition pH 7.4, K49 is unprotonated, allowing it to attack the 

carbon one, assisting in the formation of  a Schiff base. Once a Schiff base is formed, 

the extra aspartate D105, which is close to K49, may be involved in further electron 

transfer, by shifting an electron of the C=N double bond on carbon one to the C=O 

double bond on carbon two, to form a ketone. This is assisting the Amadori 

rearrangement. Thus, the high abundance of K49 glycation observed on rhMAb A 

may be a consequence of two sequential steps, catalyzed by neighboring aspartate 

residues   
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V. Conclusions 

The unique site-specific glycation of rhuMAb A makes this rhuMAb A a 

valuable model protein to study IgG structure modification by glycation. Several 

conclusions can be made from this study. 

1) The forced glycation model is successful to analyze glycation modification from the

whole protein level to the primary amino acid level. 

2) The forced glycated rhuMAb A molecule is shown to be a mixture of species with

various levels of glycation with complex structure modification. 

3) Site-specific glycation on K49 is not due to spatial proximity of D31. Instead, a

strong electron-donating environment created by three near by aspartates: D30, D31, 

and D105 may facilitate K49’s specific glycation.  
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Figure 2-1: Schematic illustration on  boronate affinity resin reacts with 
carbohydrate’s cis-diol group.   
a) boronate carries a negative charge under alkaline condition.
b) Cis-diol group forms a five-member ring with boronate by dehydration then
retains on resin. 

Reference from:  Li, A., Pfuller, U., Larsson E.V., Jungvid, H., Galaev, I.Y., 
Mattiasson, B. (2001). Separation of mistletoe lectins based on the degree of 
glycosylation using boronate affinity chromatography. Journal of 
Chromatography A. 925 , 115-121. 
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Figure 2-2:  Boronate affinity chromatograms of  rhuMAb  A. 
a) rhuMAb A from regular batch feed process.
b) Forced glycated with 1M glucose in phosphate buffer pH 7.4 for

24hours at 37°C  in vitro.
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Figure 2-3 : ESI-MS measured the molecular mass of glycated rhuMAb 
light chain. Four molecular weight peaks were detected:  

a) native light chain mass 23286 dalton/mol;
b) one glucose added light chain with mass 23448 dalton/mol;
c) two glucose added  light chain with mass 23610 dalton/mol;
d) three glucoses added light chain with mass 23772 dalton/mol.

a 
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Figure 2-4: ESI-MS measured the molecular mass of glycated rhuMAb A 
heavy chain. 
Three molecular weight peaks were detected:  
a) native heavy chain mass 48790 dalton/mol;
b) one glucose added heavy chain with mass 48952 dalton/mol;
c) two glucoses added heavy chain with mass 49114 dalton/mol.

a 

b 

c 
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Figure 2-5: Graph of spatial distance (between aspartate residues to 
lysine residues) vs. time over 75 nanoseconds by molecular 
dynamics simulations. 
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LC 
K49 

HC 
D105 

LC D30, D31 

Figure 2-6: Illustration of MD simulated locations of K49, D30, 
D31 and D105 on rhuMAb A’s Fab region. 



56 

Table 2-1: Summary of glycation level on primary amino acid sites of  
rhuMAb A’s  light chain and heavy chain. 

Glycation modification extent was measured by tryptic peptide map. 

Modified amino acid 
sites 

Glycated 
(%) 

LC-K49 90.5 

LC-K149 0.9 

HC-K64 0.5 

HC-K75 2.2 

HC-K133 0.5 

HC-E1 
(heavy chain 
 N-terminal) 

4.9 

LC-D1 
(light chain 
N-terminal) 

0.3 
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Amino Acid 
Heavy Chain or 

Light Chain # 

Solvent Accessible 
Surface 

Area 
( Å2) 

Detected 
Glycation 

LYS HC 222 148.572 
LYS LC 169 144.434 
LYS HC 205 127.637 
LYS HC 210 124.482 
LYS LC 145 124.274 
LYS LC 126 121.164 
LYS HC 64 116.242 +/0.5% 
LYS HC 43 114.802 
LYS LC 42 113.749 
LYS HC 75 111.675 +/2.2% 
LYS HC 133 110.161 +/0.5% 
LYS LC 188 109.156 
LYS LC 190 107.675 
LYS HC 214 93.7401 
LYS LC 45 93.4605 
LYS LC 107 92.3458 
LYS LC 183 90.6972 
LYS HC 121 90.5255 
LYS LC 207 85.7253 
LYS LC 103 68.0554 
LYS LC 39 67.3747 
LYS LC 49 63.3898 +  /90.5% 
LYS HC 218 57.2227 
LYS HC 213 50.0781 
LYS LC 149 48.2433 +/0.9% 

Table 2-2: Solvent accessible surface area of 
all the lysine residues on rhuMAb A.   
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Lysine 
Position 

Aspartate 
Position 

Average 
Distance 
 (Å ) 

Detected  
Lysine 
GLycation 

Aspartate 
SASA 

LC K49 LC  D30 11.8 + 70 
LC K49 LC  D31 11.8 + 77 
LC K49 HC D105 5.3 + 33 
LC K188 LC D185 5.3 63 
HC K75 HC D72 5.5 + 44 
HC K218 LC D122 5.5 85 
HC K222 LC D122 5.5 85 

Table 2-3: Summary of lysine to aspartate pairs with average 
spatial distance between lysine and aspartate. 
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Abstract 

An in vitro forced glycation model was applied to evaluate glycation product 

stability, degradation pathway, and the degradation products of glycated rhuMAb A. 

During an accelerated stability study, upon thermal stress at 40°C for four weeks, 

glycated rhuMAb A went through two reactions: hydrolysis of glycation adducts 

(Schiff base and Amadori product) and formation of advanced glycation products. 

While hydrolysis reaction was more pronounced than the AGEs formation. Kinetically, 

it was found that hydrolysis of glycation adduct continued for four weeks, but AGEs 

formation plateaued after one week. The overall combination of both reactions caused 

glycated rhuMAb A to lose affinity to boronate resin, with a first order reaction rate. A 

set of analytical characterization on final degradation products structures was 

performed. The results demonstrated that the unglycated form of rhuMAb A, which 

was generated by hydrolysis of glycation site at K49 is the main final degradation 

products after thermal stress. This observation agreed with kinetic observation that 

reverse hydrolysis of both the Schiff base and Amadori product is the main degradation 

pathway of glycated rhuMAb A at 40°C in pH 6.5 phosphate formulation buffer. The 

reversibility of glycation adduct on K49 may be catalyzed by adjacent aspartic acids. 



63 

I. Introduction 

The common manufacturing process of a MAb involves production in 

mammalian chinese hamster ovarian cells (CHO) by cell culture for 10-14 days. 

During this process a MAb is expressed in CHO and secreted into the cell culture 

medium, which contains glucoses, where the MAb can undergo glycation. Thus the 

purified MAb contains a certain level of glycation (Quan, C. et al. 2008, Zhang, B. et 

al. 2008). Several studies have been performed to understand the cell culture 

conditions that control the total glycation level (Yuk, I.H. et al.  2011). However, 

little knowledge is available regarding impact of glycation on most final purified 

MAbs. In particular, the stability and degradation pathway of glycation adducts under 

pharmaceutical drug product conditions are not well understood. This is due to wide 

distribution of glycation sites on a large protein, low level of glycation on each site, 

and lack of a robust analytical technology capable of quantify glycation level and 

changes.  

              As described in previous study (Chapter 2) , a forced glycation rhuMAb A 

model was developed and shown to be a successful tool to evaluate amino acid 

susceptibility to glycation. Fully glycated rhuMAb A was produced from this 

accelerated in vitro model. This highly glycated product provides an opportunity to 

understand the glycation adduct’s degradation pathways and to perform further 

structural characterization.  

The glycation reaction has multiple steps and produces multiple intermediate 

species. The end-product may differ based on pH and electrostatics of the local 
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environment (Figure 3-1). The initial linkage between a glucose molecule and a 

protein molecule forms a Schiff base. The Schiff base (aldimine) formation is a 

readily reversible reaction by hydrolysis. Schiff base also can rearrange to a more 

stable Amadori (ketoamine) product under high pH (Amadori, W. et al.1931). The 

ketone-containing Amadori product can further react with another free amino group 

in the surrounding environment to form advanced glycation end products, AGEs. 

Researchers have extensively investigated the reactions involved in 

continuous exposure of glycated protein to reducing reagents to mimic the protein’s 

modification in human body under in vivo chronic condition. Studies have 

demonstrated that the formation of AGEs is markedly accelerated with an increased 

availability of reducing sugars (Dutta, U. et al. 2005).  One question that remains 

unanswered is, can AGEs formation be initiated on MAbs under the common 

pharmaceutical storage conditions in the absence of reducing sugars in the 

formulation? 

The forced glycation model for rhuMAb A described in previous study was 

implemented to investigate the stability and degradation pathways of glycated 

rhuMAb A under pharmaceutical storage conditions.  To understand the destiny of 

Schiff base (aldimine) and Amadori product (ketoamine), we focused on glycation 

adduct stability in formulation buffer in the absence of exogenous carbonyl reagents. 

An accelerated stability study of glycated rhuMAb A upon thermal stress was 

performed. The samples were incubated at 40°C for 4 weeks at pH 6.5 in 20 mM 

sodium phosphate. The total level of glycation adduct (% protein glycated) was 

monitored by boronate affinity HPLC (BAC) with UV detection at 280 nm as 
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previously described. In addition, the glycation adduct’s glucose to protein ratio was 

monitored under reduction conditions by LC-ESI/MS. Fluorescence spectroscopy and 

BAC with fluorescence detection were used to monitor the formation of AGEs upon 

thermal stress. The total amount of AGEs was measured via quantification of overall 

polyclonal antibody binding to different AGEs species. Relative intensity of AGEs 

during a thermal stability study was reported.  
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II. Experimental

II. 1. Materials and Reagents

A regular lot of rhuMAb A (27 mg/mL, PBS buffer, pH 7.4) bulk material 

was obtained from Genentech. Trypsin, sequencing grade (TPCK treated), was 

purchased from Promega (Madison, WI), and Peptide:N-glycosidase F (PNGase F) 

from New England BioLabs Inc (Ipswich, MA). N-(2-Hydroxyethyl) piperazine-N¢-

(3-propanesulfonic acid) (EPPS; 99.0%) and dithiothreitol (DTT; ultrapure) were 

obtained from USB Corp. (Cleveland, OH). D-Sorbitol (minimum 98%), R-D-

glucose (ACS reagent), iodoacetic acid (IAA; _99%), and R-cyano-4-

hydroxycinnamic acid (CHCA) were procured from Sigma-Aldrich (St. Louis MO). 

HPLC grade acetonitrile (ACN) and methanol were purchased from Fisher Scientific 

(Fair Lawn, NJ). Water used in all experiments was obtained from a Milli-Q Plus 

purification system (Millipore, Bedford, MA). 

II.2. In Vitro Glycation of rhuMAb and Stability 

The rhuMAb A in PBS buffer, pH 7.4, was further glycated in vitro. rhuMAb 

A was buffer exchanged into incubation buffer with dialysis prepared in a 15 ml 

cassette with 10kD membrane. Final in vitro glycation solution contains 50mg/ml 

rhuMAb A with 1200 mM, D-glucose, in 20 mM sodium phosphate buffer, pH 7.4. 

The in vitro glycation solution was kept in an incubator at 37 °C for 24 h. The 

reaction mixtures were submitted for immediate buffer exchange using a 15 ml 

dialysis cassette with 10kD membrane into phosphate buffer, pH 6.5. After 
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conditioning with trehalose and surfactant, glycated rhuMAb A was formulated as 

20mg/ml in 20mM sodium phosphate with 8% trehalose and 0.04% polysorbate 20. 

          Glycated rhuMAb A was sterile filtered and filled into 2 cc glass vials, with 1 

ml of solution in each vial. The stability study was set up at 40°C for 4 weeks with 

two vial replicates per week. At each time point, samples were pulled then stored at   

-70°C until analysis 

II.3. Boronate Affinity HPLC (BAC) 

Early stage glycation adducts can often be identified by a Boronate HPLC 

method using A TSK gel boronate 5PW column 7.5x75mm. The BAC mobile phase 

A was 50mM EPPS, 10mM Tris, 200mM NaCl, at pH 8.7, and BAC mobile phase B, 

was 500mM sorbitol in mobile phase A. The mobile phase flow rate 1 mL/min and 

the column temperature were maintained at 40°C with both UV and fluorescence 

detecto0sr. The gradient for HPLC elution was optimized for this rhuMAb A. 

II. 4 Enzymatic Digestion of rhuMAb A

Several enzymatic treatments were performed on rhuMAb A samples before 

they were analyzed for reverse phase-HPLC, or mass spectrometric analyses, to 

determine the amino acid sequence and structural integrity of rhuMAb A. 

           PNGase F Treatment.  PNGase F was used to remove the oligosaccharides 

in the Fc portion of a MAb.  The rhuMAb A samples were buffer exchanged into 

50 mM Tris buffer, pH 7.5, using a NAP-5 column. The protein concentration was 
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adjusted to 2.5 mg/mL. PNGase F was added in an enzyme-to-substrate ratio of 

1:600 (w/w). The digestion was performed at 37°C overnight (15 h). 

          Tryptic Digestion. Prior to tryptic digestion, rhuMAb was reduced with DTT 

and then alkylated with IAA. Typically, 250 µL of antibody sample (2 mg/mL) was 

mixed with 20 µL of 1 M DTT in 730 µL of 6 M guanidine, 50 mM Tris, pH 8.0. 

The mixture was incubated at 37 °C for 1 h. It was then cooled to room temperature, 

and 50 uL of 1 M (IAA) in 1 M NaOH was added for carboxymethylation. The 

alkylation reaction was incubated at room temperature in the dark for 15-20 min. 

The residual IAA was quenched by the addition of 10 µL of 1 M DTT. The reduced 

and carboxymethylated rhuMAb A was then buffer exchanged into the digestion 

buffer, which contained 25 mM Tris, 1 mM CaCl2, pH 8.3, using a PD-10 column 

(Sephadex G-25 medium, GE Healthcare). Trypsin was added at an enzyme-to-

substrate ratio of 1:50 (w/w). The solution was mixed briefly and incubated in a 

37°C water bath for 5 h. The digestion was terminated by adding 0.3% (v/v) 

trifluoroacetic acid (TFA) to the solution. The digest was then stored at -70°C until 

analysis. 

II.5. Reverse Phase-HPLC with Electron Spray Ionization/ Mass Spectroscopy 

(RP-HPLC-ESI/MS)  

The molecular masses of the intact, PNGase F-treated, and reduced rhuMAb 

A samples were determined by using a LC/ESI-MS setup.  AnAgilent 1090 HPLC 

system was coupled with a PE Sciex API 3000 electrospray ionization triple-

quadrupole mass spectrometer (Applied Biosystems, Foster City, CA). The samples 
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were desalted by reverse phase –HPLC (RP-HPLC) using a capillary column 

(Poros R1, 0.33 x 200 mm) equilibrated at a flow rate of 200 uL/min with 0.2% 

formic acid (solvent A) at a column temperature of 40°C. Samples were eluted 

using a linear gradient from 25% solvent B (0.2% formic acid in acetonitrile) to 

70% solvent B over 16 min. The elutant from the RP-HPLC column was directed 

into the mass spectrometer operating in the positive ion mode. For post-reduction 

analysis, samples were incubated in 25 mM DTT for 15 min at 37°C prior to 

LC/MS analysis.  

II.6. Tryptic Peptide Mapping 

Peptides profiles of tryptic-digested rhuMAb A were analyzed by an RP-

HPLC using a Jupitor C18 2.0x250 mm column at 45°C and UV detection at 

214nm. The flow rate was 0.25ml/min, in mobile phase A: 0.1% TFA in water and 

B: 0.09% TFA in acetonitrile. The gradient was optimized for rhuMAb A. By 

comparing the peptide maps of time zero and stressed  glycated rhuMAb A, the 

distinctive peptide fractions on degraded glycated rhuMAb A were collected for 

further characterization by MALDI-TOF MS/MS sequencing. 

II.7. Protein Chip Matrix Assisted Laser Desorption Ionization- Time-Of-

Flight mass spectrometry (MALDI-TOF)  

Isolated tryptic peptides were spotted individually on a SCOUT 384 multi-

probe plate with a CHCA matrix and analyzed in the positive mode using a Bruker 

Ultraflex-I MALDI-TOF-TOF mass spectrometer (Bremen/Leipzig, Germany). 

Sele8cted precursor ions were subjected to collision-induced dissociation with 
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argon as the collision gas. LIFT mode was used to analyze all fragment ions in 

single sweep, and data were processed with Flex Analysis software. 

II. 8. Fluorescence Spectroscopy 

Fluorescence emission spectra were measured using a Fluoromax-4 spectro-

fluorometer by Horiba Jobin Yvon ( Edison NJ, USA). The excitation wavelength 

was 350 nm, emission wavelength was 440nm. A circulating water bath set at 25 ± 

1°C controlled the sample cell temperature during the measurements. Both 

spectrometric analyses were performed using cuvettes (12.5 × 12.5 × 36 mm) from 

Fisher Scientific (New Lawn, NJ, U.S.A.).  

II.9. Total AGEs Enzyme-linked Immunosorbent (ELISA) assay 

           AGEs ELISA is an enzyme immunoassay for rapid detection and 

quantification of AGEs-protein adducts. The quantity of AGEs adducts in protein is 

determined by comparing absorbance of protein sample with that of a known AGE-

BSA standard curve.  

          An AGEs-ELISA kit and BSA were purchased from Cell Biolabs.  A layer of 

anti-AGE polyclonal antibody was plated in the 96 well. 100ul of protein samples 

were diluted in serial dilution then adsorbed on to 96-well plate for 1 hour at room 

temperature on an orbital shaker. The AGE protein adducts generated by rhuMAb A 

from thermal stress present in the sample were probed and bound with anti-AGE 

polyclonal antibody. After incubation, buffer three cycles of buffer wash were 

performed with 250 ul phosphate buffered saline (PBS) buffer on each well. Excess 

solution was removed after each wash. 100 ul of Anti-HRP conjugated secondary 
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antibody were added into wells and incubated for 1hour at room temperature on 

orbital shaker, allowing the secondary antibody binds to the  rhuMAb A.  The anti-

AGEs complex plate was wash for five times with 250ul wash buffer. Substrate 

solution was warmed up to room temperature, then 100ul was added  to each well and 

incubated for 10 min on an orbital shaker. The enzymatic reaction was stopped by 

stop solution.  Absorbance of each well was measured on a micro-plate reader using 

450nm as the primary wave length. The AGE protein adduct content in the unknown 

sample was determined by comparing with standard curve of by AGE-BSA standard 

(Cell Biolabs product manual). 

III. Results

III.1. BAC 

The thermally stressed samples exhibited a rapid loss of total glycation level 

over 4 weeks at 40°C, as shown in Figure 3-2. The glycation level dropped from 

98.5% at initial time, to 69.6% after one week, 60.5% after two weeks, and 32.8% 

after four weeks. The decrease of glycation is a linear plot on natural log vs. time, 

indicating this is a first order reaction for glycation loss (Figure 3-3).  

III.2. LC-ESI/MS 

The decrease of glycation can occur because of the Schiff base reversibility, 

that resulting in a loss of glucose or formation of AGE products that alter the cis-

hydroxal structure. Reduced ESI/MS analysis confirmed the glucose loss on both 
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light chains and heavy chains (Figure 3-4). No new mass species were detected on the 

mass spectrometry profile besides known glycated and un-glycated rhuMAb A peaks. 

Most importantly, there was an obvious change on light chain mass spectrometry 

profile.  The glycated light chain intensity decreased after thermal stress, while the 

un-glycated light chain peak intensity increased.  Unglycated rhuMAb A finally 

became the main light chain peak in mass spectrometry profile (Figure 3-4).  This 

indicates most glycated light chains went to the unglycated form, demonstrating the 

reversibility of glycation modification under the thermally stressed condition at pH 

6.5. 

III.3. Fluorescence Spectroscopy and BAC 

While thermal stress reduced the amount of glycation, can it also introduce 

more advanced glycation products? Formation of pentosidine-like AGEs can be 

measured by fluorescence spectroscopy at excitation 350nm/emission 440 nm (Dutta, 

U. et al. 2005). After thermal stress, fluorescence spectroscopy and boronate affinity 

chromatography with fluorescence detection, were utilized to monitor fluorescent 

AGEs.  Fluorescent analysis was performed on bulk property for solution of glycated 

rhuMAb A at 1 mg/ml (Figure 3-5). The result showed a jump of emission intensity 

between initial time zero and one week after thermal stress. After one week the 

relative emission intensity plateaued out. This indicates the formation of pentosidine 

like fluorescent AGEs occurred rapidly and stabilized after one week.  

              Fluorescence traces on BAC showed two peaks with fluorescent signal at 

350/440nm (Figure 3-6). Peak 1, at retention time 2.4 min, overlapped with 
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unglycated rhuMAb A. Peak 2, at retention time 2.7 min, is a new peak formed upon 

thermal stress (Figure 3-6). The intensity of both peaks increased during the thermal 

stress, peak 1 being the major peak. However, the total peak area based on 

fluorescence signal was very low, making it hard to quantify the exact amount of 

AGEs. Figure 3-7 shows the comparison of the UV and fluorescence signals in flow 

through portion on BAC, while the fluorescence signal increased linearly with time, 

the size of the peak at 280nm increased. This was due to the continuous increasing 

amount of rhuMAb A in the flow-through portion. After normalizing the fluorescence 

peak area by the protein amount, the normalized fluorescence signal/protein amount  

is consistent with spectroscopy measurements, the amount of AGEs  detected on 

BAC increase in the first week of thermal stress, then plateaued (Figure 3-8). 

Therefore, BAC with tandem-UV 280nm - fluorescence 350/440nm detection is 

capable of monitoring both glycation level change and AGEs formation.  

III.4. Peptide Mapping  

What are the degradation end-products of the amino acid level after thermal 

stress? The possible degradation products from thermally stressed, glycated rhuMAb 

A were studied using tryptic peptide mapping. By comparing the time zero control to 

thermally stressed samples, several peptide fragments were found after thermal 

degradation, shown in Figures 3-9 and Figure 3-10. Due to the protein fragmentation 

in MS analyzer, pentosidine-like AGEs may have been destroyed; the amino acid 

modification by peptide map MS/MS analysis did not detect or quantify any 

pentosidine-like AGEs. Table 3-1 summarizes the degradation products on each 
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glycated amino acid site.  The MS/MS analysis on these peptides identified two major 

degradation products. One is the non-fluorescent AGE: carboxyl-methyl lysine (CML) 

modified peptides which eluted around 40 min on peptide map (Figure 3-9). The 

other is the unglycated rhuMAb A, which eluted around 79 min (Figure 3-10).  The 

presence of these two products confirms that glycated rhuMAb A underwent both 

pathways: reversal of glycation and formation of advanced glycation endproducts. 

The abundance of unglycated rhuMAb A was greater than that of the CML modified 

rhuMAb A. It is notable that majority of glycation reversal occurred on K49, other 

glycation site appeared to be more stable, maintaining consistent glycation levels after 

thermal stress. 

III.5. Total AGE ELISA  

AGE ELISA is based on binding of a family of polyclonal antibodies against 

AGEs. Total AGEs was measured by using polyclonal antibodies to capture variety of 

different AGEs structures, including fluorescent structures and non-fluorescent 

structures (Figure 3-11). The ELISA result showed an increase of relative intensity of 

AGEs upon thermal stress. This confirmed AGEs formation during the 40°C 

incubation. The increasing trend was similar to fluorescence and BAC results, where 

a rapid AGEs formation was detected in the first week then plateaued (Figure 3-12). 
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IV. Discussion

Degradation pathway of glycated rhuMAb A 

The thermal stability study demonstrated that glycated rhuMAb A can 

undergo two possible parallel reactions (Figure 3-13). The glycated rhuMAb A either 

reverses back to the unglycated rhuMAb A, or moves forward to form AGEs. It is 

important to note that 1) the glycation adduct hydrolysis reaction is more pronounced 

than the AGE formation, and 2) glycation adducts hydrolysis continued for four 

weeks, but AGEs formation plateaued after one week.  What could be the scientific 

rationale behind these observations?   

 Amadori rearrangement is favored at pH greater than pH 7.0, where the C=N 

double bond can shift to a C=O double bond.  At pH 6.5, the rearrangement from 

Schiff base to Amadori product is not at the optimum condition, and the most  of 

early glycation adducts should be in the Schiff base form. Since the Schiff base is  

thermodynamically unstable in liquids at neutral pH, the hydrolysis reaction is 

favored. Thus, the reversal to unglycated amino acid on protein is the predominant 

reaction and it proceeds towards completion. Second, the amount of carbonyl groups 

(C=O group) in Amadori products restrained further reaction to advanced glycation, 

because advanced glycation needs continuous attack of carbonyl group to amine 

group. Without additional free glucose in the formulation, the only carbonyl group 

available to initiate further advanced glycation reaction is the ketone in Amadori 

products or its degradation bi-carbonyl products.  Since amount of precursor Amadori 

product is limited, the amount of ketone carbonyl available for advanced glycation 

reaction is also limited. In addition, the ketone group in the Amadori product is less 
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reactive than the regular aldehyde group in free glucose.  Therefore, under the studied 

pharmaceutical storage condition, the total amount and reactivity of carbonyl groups 

were limited, and the AGEs formation reaction is not the dominant reaction. This is 

why AGEs formation  reached plateau after one week.  

AGEs Structures 

The low level AGE products formed  after thermal stress was confirmed to be 

a mixture. The fluorescent pentosidine-like ring structures and straight chain CML 

structures were both indentified (Figure 3-14). However, due to the limitations of 

analytical methods, it is not possible to quantify the exact amount of fluorescent 

pentosidine-like AGEs, or to further characterize their structures. The straight chain 

CML can be identified and quantified by peptide map with MS/MS analysis. CML 

was less than five percent of the final degraded rhuMAb A.   

Degradation at Modified Sites 

Although we did not study the glycation loss of each site during thermal stress 

kinetically, the glycation reversibility of each site can still be evaluated, based on the 

final glycation level at each site that were summarized in the Table 3-1.   K49 and 

heavy chain N terminal had the highest glycation level initially, but these two sites 

also have the most rapid reversibility of glycation adduct. As we described in Chapter 

2, three aspartic acids catalyze the glycation on K49. Based on catalyst nature of the 

K49 microenvironment, the nearby aspartic acids can also facilitate the reverse 
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reaction: hydrolysis of glycation adducts. The reason for glycation reversal on the 

heavy chain N –terminal is yet to be known.  
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V. Conclusions 

The unique site specific glycation nature of rhuMAb A makes it a great 

candidate to study MAb structure modification by glycation and glycation adduct 

stability. The following conclusions can be drawn from the studied performed: 

1) The forced glycation model is successful to analyze glycation chemical

modification on whole protein levels and primary amino acid levels. 

2) BAC with tandem-UV 280- fluorescence 350/440nm method is a great tool to

monitor both glycation level change and AGEs formation. 

3) Upon thermal stress, the forced glycated rhuMAb A showed a rapid and

continuous hydrolysis reaction, and a slow and limited advanced glycation reaction. 

The overall combination of both reactions caused glycated rhuMAb A to lose affinity 

to boronate resin with a first order reaction rate.  

4) The structure analysis of final degradation products agreed with kinetic

observation that reversibility of Schiff base is the main degradation pathway of 

glycated rhuMAb A at 40°C in pH 6.5 phosphate formulation buffer. 

5) Reversibility of glycation adduct on K49 is catalyzed by its adjacent aspartic acids.
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Figure 3-1: Chemistry of glycation reaction and advanced glycation reaction . 
Reference: 
Munch, G., Thome, J., Foley, P., Schinezel, R., Riederer, P. Advanced glycation 
end products in aging and Alzheimer’s disease   Brain Research Reviews 1997, 
23,134-143. 
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Figure 3-2: Boronate affinity chromatograms showed that glycation level 
dropped during thermal stress on fully glcyated rhuMAb A at 40°C over 
4weeks.  

a) at control t0 rhuMAb A is 98.5% glycated;
b) at 1week 40°C  rhuMAb A is 69.6% glycated;
c) at 2weeks 40°C rhuMAb A is 60.5% glycated;
d) at 4weeks 40°C rhuMAb A is 32.8% glycated.
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Figure 3-3:  Plot fitting of ln[glycated rhuMAb A] vs. time is a linear plot, 
indicating the loss of glycation is a first order reaction. 
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Figure 3-4: ESI-MS mass profile of glycated rhuMAb A after 4weeks at 40°C. 

A: In light chain three molecular mass were observed: native unglycated light 

chain is the main peak. 
a) native light chain mass 23286 dalton/mol;
b) one glucose added light chain with mass 23448 dalton/mol;
c) two glucoses added light chain with mass 23610 dalton/mol.

B: In heavy chain, two molecular mass were observed: native unglycated heavy is 
the main peak. 

a) native heavy chain mass 48791 dalton/mol;
b) one glucose added heavy chain with mass 48953 dalton/mol.
 

Dalton 
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Figure 3-5: Fluorescence intensity vs. time at 40°C.  
In fluorescence spectroscopy, relative intensity at 350/440nm 
increases over time at 40°C  at 1 mg/ml rhMAb A concentration. 
AGEs formation increased the fastest in first week, then plateaued 
out. 
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Figure 3-6:  BAC fluorescence 350/440nm. 

1) Fluorescence signal showed up in flow through portion of BAC.
2) There are two peaks, Peak 1 at 2.5 min overlapped with unglycated rhuMAb
A, Peak 2 at 2.7 min formed upon incubation. 
Intensity of both peaks increases over time upon thermal stress at 40°C. 

Peak 1, Peak 2 
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Figure 3-7: BAC flow-through peak area vs. time at 40°C. 

BAC signal of flow-through portion UV 280 nm for total protein 
amount, fluorescence 350/440 nm for AGEs intensity.  
Fluorescence signal showed an increase with time. Signal increased due 
to formation of AGEs and the increase of total unglycated protein 
amount.
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Figure 3-8: Comparison of BAC fluorescence signal and fluorescence 
spectroscopy signal.  

Two signal responses agreed with each other. 
BAC –UV-Flu is suitable to monitor both glycation and advanced glycation 
level on protein.  
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Figure 3-9: Overlaid chromatograms of tryptic peptide mapping of 
glycated rhuMAb A before (blue trace)  and after (red trace)  thermal 
stress at 40°C for 4weeks. (20min-50 min). 
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Figure 3-10: Overlaid chromatograms of tryptic peptide 
mapping of glycated rhuMAb A  before (blue trace)  and after 
(red trace)  thermal stress at 40°C for 4weeks (50min-85min). 
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Figure 3-11: Illustration of the total AGEs ELISA assay. 
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Figure 3-12: Graphic comparison of total AGEs increase 
upon thermal stress: 
Brown color triangle trace is  T0;  
Blue color circle trace is one week; 
Red color  square  trace is  two weeks; 
Green color  circle trace is four weeks. 
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Figure 3-13: Comparison on degradation rates of glycated rhuMAb A. 

1) AGEs formation represented by fluorescence relative intensity
350/440nm jumped in first week then plateaued out.

2) Loss of affinity to BAC continued over four weeks.
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Figure 3-14: Potential detected AGEs structures. 

Reference: Sell, D. R., Nagaraj, R. H., Grandhee, S. K., Odetti, P., 
Lapolla, A., Fogarty, J. and Monnier, V. M. (1991), Pentosidine: A 
molecular marker for the cumulative damage to proteins in diabetes,  
aging, and uremia. Diabetes /Metabolism Reviews 7: 239–251. 
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Table 3-1: Summary of degradation products detected by peptide 
map. 
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Abstract 

 A forced glycation model on rhuMAb A and boronate affinity 

chromatography technology were applied to evaluate the effect of drug product 

compositions on the degradation of glycation adduct. Three formulation 

composition factors were studied, such as pH, buffer, and oxidation control. 

The results demonstrate that the pH is the key parameter to control degradation 

pathways, as pH also determines the hydrolysis rate constant of glycated 

rhuMAb A. The unique structure of rhuMAb A forms a rich electron donating 

environment around K49. This unique environment determines the pH 

dependence of glycation adduct’s hydrolysis rate. Buffer species and oxidation 

levels do not impact the glycation adduct stability under the studied 

pharmaceutical conditions. In addition, the effect of rhuMAb A’s glycation 

level was also evaluated.  The study demonstrated that higher protein glycation 

levels slow down the overall hydrolysis rate of the glycation adduct, 

presumably by providing a complex electron transferring system on protein. 
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I. Introduction 

In previous studies, it was shown that rhuMAb A can be used as a model to 

study site-specific glycation and glycation adduct degradation pathways. In addition, 

the boronate affinity chromatography (BAC) coupled with UV and fluorescence 

detection is suitable to monitor both glycation level change and AGEs formation.  

Previous protein characterization work and stability study demonstrated that the 

glycation adducts of  rhuMAb A degraded via two pathways, under thermal stress in a 

typical pharmaceutical formulation at pH 6.5. The main reaction was hydrolysis to 

reform unglycated rhuMAb A, while a minor reaction was the formation of AGEs. 

To understand which parameters control the stability of glycation adducts 

(Schiff base or Amadori product) during the final drug product storage, we used 

glycated rhuMAb A as a MAb model and BAC as the analytical tool to investigate the 

effect of four key parameters on glycation adduct stability, in a set of thermal stress 

studies. These parameters included three important factors for formulation 

compositions: pH conditions, buffer species, oxidative conditions.  The final factor, 

relevant to the protein, was the initial glycation level, which is based on rhuMAb A’s 

( the active pharmaceutical ingredient) production process. 
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II. Experimental

II. 1. Materials and Reagents

rhuMAb A lot I (22 mg/mL, PBS buffer, pH 7.4) and lot II (27 mg/mL, PBS 

buffer, pH 7.4) bulk materials were produced using stable recombinant CHO cells 

cultured using in-house using proprietary, serum-free media with and without 

controlled  glucose levels, respectively. D-Sorbitol (minimum 98%), R-D-glucose 

(ACS reagent), iodoacetic acid (IAA; _99%), and R-cyano-4-hydroxycinnamic acid 

(CHCA) were procured from Sigma-Aldrich (St. Louis MO). HPLC grade acetonitrile 

(ACN) and methanol were purchased from Fisher Scientific (Fair Lawn, NJ). Water 

used in all experiments was obtained from a Milli-Q Plus purification system 

(Millipore, Bedford, MA). 

II.2. Stability Study Setup and Parameters 

pH conditions 

Since both formation of Schiff bases and rearrangement of Amadori products 

are pH depended, we investigated the overall effect of pH on the stability of glycated 

rhuMAb A.   Six different pH conditions were tested between pH 4.5 and pH 7.0, 

which is a   typical pH range for protein therapeutics formulations.  One drug product 

lot, containing 36% glycated rhuMAb A, derived from common cell culture was used 

in the pH study. The rhuMAb A drug product was buffer exchanged into six different 

pH conditions, including 20mM sodium acetate buffer at pH 4.5 and 5.0, and 20mM 

histidine/histidine hydrochloride buffer at pH 5.5, 6.0, 6.5, and 7.0.  In all samples, the 

final protein concentration was 0.5mg/ml  with 8% trehalose, and 0.04% polysorbate 

20.
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Buffer species: 

Watkins, et al. had reported that phosphate ions could bind to the active site of 

RNase and serve as a local catalyst for  Amadori rearrangement of lysine residues near 

the RNase’s active site. They established the buffer effect on the kinetics, and 

specificity of glycaiton of RNase. (Watkins, N.G.  et al. 1985 and 1987).  To explore 

the buffer effect on glycated rhuMAb A, we tested its stability in three buffers:  

• phosphate, to test the effect of phosphate ions on stabilizing glycated rhuMAb

A;

• arginine, to test its inhibition effect on AGEs formation;

• histidine as a typical formulation control.

In this study, 99% glycated rhuMAb A was buffer exchanged into three different 

buffers: 20mM histidine hydrochloride, 20mM arginine phosphate and 20mM sodium 

phosphate at pH 6.5.  Final samples contained 20 mg/ml with 8% trehalose and 0.04% 

PS20. 

Control on Oxidative Conditions 

Oxidation involved pathways are the keys for initiating AGEs formation. In 

this study, one drug product lot with 15% glycated rhuMAb A was placed three 

different oxidation conditions:  

• regular drug product vial with air in the head space;

• drug product vial with N2 in the head space;

• drug product vials with phenol added as an oxidation scavenger.
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The overall composition of this drug product lot is of 150mg/ml rhuMAb A in 200mM 

histidine buffer, pH5.8 with 0.02% polysorbate 20. 

Glycation level: 

As previously reported, cell culture conditions impacted the final glycation 

level of rhuMAb A (Yuk, I.H. et al. 2011).  It is unknown if glycation adduct 

hydrolysis under in vitro storage would vary with  initial glycation levels, so  we 

compared hydrolysis of glycated rhuMAb A among three different initial glycation 

levels: 13%, 42% and 99%. Final samples contained 20mg/ml protein in 20mM 

histidine buffer at pH 6.5.   

Stability set up: 

 After samples were prepared under each condition, samples were stressed 

thermally at 40°C for four weeks. After stresses, samples were analyzed to evaluate 

the stability of glycated rhuMAb A. All the collected time points were analyzed with 

boronate affinity chromatography with UV and fluorescence detection 

(BAC/UV/FLuo) assay. Total glycation level and AGEs formation were monitored by 

boronate affinity chromatography. 
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II.3. Boronate Affinity Chromatography (BAC) 

High performance liquid chromatography (HPLC) with solvent delivery 

system were used, where the analyte separation were performed with an Agilent 1100 

series HPLC equipped with a thermostatic auto-sampler. 

Early stage glycation adducts often can be identified by a BAC method using 

A TSK gel boronate 5PW column 7.5x75mm. The mobile phase A was 50mM EPPS, 

10mM Tris, 200mM NaCl, at pH 8.7, and mobile phase B was 500mM sorbitol in 

mobile phase A. The mobile phase flow rate 1 mL/min and the column temperature 

will be maintained at 40°C with UV detector at 280 nm and fluorescence detector at 

350/440nm. The gradient for HPLC elution had been optimized for this rhuMAb A. 

Due to the difficulty for quantification of fluorescence signal, the exact amount of 

fluorescent AGEs cannot be determined, only relative fluorescence intensity is used to 

compare different stability conditions. 

II. 4 Enzymatic Digestion of rhuMAb A

Several enzymatic treatments were performed on rhuMAb A samples before 

they were analyzed for reverse phase-HPLC, or mass spectrometric analyses, to 

determine the amino acid sequence and structural integrity of rhuMAb A. 

           PNGase F Treatment.  PNGase F was used to remove the oligosaccharides in 

the Fc portion of a MAb.  The rhuMAb A samples were buffer exchanged into 50 

mM Tris buffer, pH 7.5, using a NAP-5 column. The protein concentration was 

adjusted to 2.5 mg/mL. PNGase F was added in an enzyme-to-substrate ratio of 

1:600 (w/w). The digestion was performed at 37°C overnight (15 h). 
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          Tryptic Digestion. Prior to tryptic digestion, rhuMAb was reduced with DTT 

and then alkylated with IAA. Typically, 250 µL of antibody sample (2 mg/mL) was 

mixed with 20 µL of 1 M DTT in 730 µL of 6 M guanidine, 50 mM Tris, pH 8.0. 

The mixture was incubated at 37 °C for 1 h. It was then cooled to room temperature, 

and 50 uL of 1 M (IAA) in 1 M NaOH was added for carboxymethylation. The 

alkylation reaction was incubated at room temperature in the dark for 15-20 min. The 

residual IAA was quenched by the addition of 10 µL of 1 M DTT. The reduced and 

carboxymethylated rhuMAb A was then buffer exchanged into the digestion buffer, 

which contained 25 mM Tris, 1 mM CaCl2, pH 8.3, using a PD-10 column 

(Sephadex G-25 medium, GE Healthcare). Trypsin was added at an enzyme-to-

substrate ratio of 1:50 (w/w). The solution was mixed briefly and incubated in a 

37°C water bath for 5 h. The digestion was terminated by adding 0.3% (v/v) 

trifluoroacetic acid (TFA) to the solution. The digest was then stored at -70°C until 

analysis. 

II.5. Tryptic Peptide Mapping 

 Peptides profiles of tryptic-digested rhuMAb A were analyzed subsequently 

by an RP-HPLC using a Jupitor C18 2.0x250 mm column at 45°C and UV detection 

at 214nm. The flow rate was at 0.25ml/min, in mobile phase A: 0.1% TFA in water 

and B: 0.09% TFA in acetonitrile. The gradient was optimized for this rhuMAb A. 

By comparing the peptide maps of time zero and stressed glycated rhuMAb A, the 

distinctive peptide factions on degraded glycated rhuMAb A were collected for 

further characterization by MALDI-TOF MS/MS sequencing. 
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II.6. Protein Chip Matrix Assisted Laser Desorption Ionization- Time-Of-Flight 

mass spectrometry (MALDI-TOF)  

Isolated tryptic peptides were spotted individually on a SCOUT 384 multi-

probe plate with a CHCA matrix and analyzed in the positive mode using a Bruker 

Ultraflex-I MALDI-TOF-TOF mass spectrometer (Bremen/Leipzig, Germany). 

Sele8cted precursor ions were subjected to collision-induced dissociation with argon 

as the collision gas. LIFT mode was used to analyze all fragment ions in single 

sweep, and data were processed with Flex Analysis software. 
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III. Results and Discussion

pH conditions: 

BAC-UV 280nm to measure total glycation level change 

The pH study revealed that glycation adduct stability is greatly dependent on  

pH conditions. By comparing affinity chromatograms of the final time point (40°C 

4weeks) at different pH conditions, we found that as pH increased,  the rhuMAb A  

samples lost the affinity to boronate ligand upon thermal stress (Figure 4-1), indicating 

loss of glycation adduct. The total remaining glycation level is summarized in Table 4-

1. It shows that samples stored at pH 4.5 had the highest remaining glycation level,

32.0% compared to 36% at time zero. From pH 5.5 to 6.0, remaining glycation level 

dropped from 22.0% to 8.7%, while pH 7.0 had the lowest remaining glycation level, 

only 5.6%. 

The graph of glycation level vs. pH, confirms that the remaining glycation 

level is inversely dependent on pH values (Figure 4-2).  More importantly, the graph 

shows a non-linear relationship between pH and remaining glycation level. There were 

three pH responding sections, in which the glycation adduct’s stability responded to 

pH change differently.  From pH 4.5 to 5.5, the glycation adduct level change 

remained fairly mild. After thermal stress, the remaining glycation level differed about 

5% per 0.5 pH unit, which is a modest response to pH change. From pH 5.5 to pH 6.0, 

this region showed the most drastic relation ship between on the remaining glycation 

level and pH. In this narrow pH range, with only 0.5 pH unit increases, the remaining 

glycation level dropped 13.3%.  From pH 6.0 to 7.0, the final glycation level 

decreased rapidly. In this range, the remaining glycation level was less than 8.7 %. 
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However, the difference of  remaining glycation level between  pH 6.0 and pH 7.0 is 

small, only approximately 2% per 0.5 pH unit.  Therefore pH 5.5 to pH 6.0 is the most 

sensitive pH range for glycated rhuMAb stability.  

BAC-Fluorescence 350/440nm to measure AGEs formation 

In contrast to loss of glycation adducts, fluorescence traces on BAC showed 

two peaks with fluorescence signals at 350/440nm, which represent formation of 

AGEs.  Peak 1, at retention time 2.4 min, overlapped with unglycated adducts. Peak 2, 

at retention time 3.6 min, is a new peak formed upon thermal stress.  (Figure 4-3) 

Comparing the fluorescence signals of different pH conditions after thermal 

stress, we found that the intensity of fluorescence signal increased with increasing pH 

(Figure 4-4). It is notable that, at pH 4.5, 5.0, 5.5 and 6.0, only peak 1, the unglycated 

peak was observed.  At pH 6.5 and pH 7.0, both peak 1 and peak 2 were observed.  

This characterization result indicates that a new pentosidine-like AGEs-protein species 

was formed upon thermal stress at higher pH conditions. However, even at pH 6.5 and 

7.0, the majority of fluorescence signal intensity was attributed to peak 1, the 

unglycated rhuMAb A.  AGEs formation demonstrated by peak 2, represented a 

relatively small portion of total fluorescence intensity.  

             Comparing the pH dependence of total glycation level (Figure 4-2) and pH 

dependence of AGE formations  (Figure 4- 4), it is notable that below pH 6.5, the most 

pronounced fluorescent peak  was the hydrolysis product, unglycated rhuMAb A. This 

indicates that at low pH range, pH 4.5 to pH 6.0, the hydrolysis of glycation adducts 

was the main degradation pathway. At higher pH range, pH 6.5 to 7.0, both peak 1 and 
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peak 2 were formed, but the intensity of peak 2 was small compared to peak 1. This 

observation reveals AGE formation plays  a minor role in the degradation pathway for 

rhuMAb A. Overall, the preferred degradation pathways of glycation adducts were 

driven by the pH conditions. 

Determination of  the hydrolysis rate constant 

            We can calculate the rate constant of hydrolysis at different pH conditions 

based on the following two assumptions:  the hydrolysis reaction rate was is much 

greater than AGEs formation rate at all pH conditions; and the hydrolysis reaction was 

a first order reaction,  as we learned in Chapter 3.  

The rate constant k can be derived from this function 

k=ln([A0]/[An])/tn. 

Where, k is the reaction’s rate constant and n is the particular time point, e.g. four 

weeks etc. [A] is the concentration of reactant, [A0] is the initial concentration, [An] is 

the final concentration.  In our study, [A] represents the concentration of glycation 

adducts measured by BAC. 

The half-life of glycation adducts at each condition can be calculated as: 

t 1/2=  ln2/ak 

Where, t 1/2 is the half-life of glycated rhMAb A.  It means at this time point,  the  

concentration of glycation adducts equals to half of the initial concentration of 

glycation adduct. The parameter a is the molar ratio of reactant for glycation adduct. 

In our study, a =1. Table 4-1 summarizes the hydrolysis rate constant at different pH 
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values.  It demonstrates that the lower the pH, the slower glycation adduct hydrolysis. 

Therefore, pH conditions  determine the rate of hydrolysis  of glycation adducts.  

BAC can measure the amount of both Schiff base (aldimine) and Amadori 

product (ketoamine). The total glycation level is the sum of these two species in which 

cis-hydroxyal groups are still attached to  rhuMAb A molecules.   

            Historically, Schiff base is known to be thermally unstable, and to undergo 

reverse reaction easily in aqueous solution. Several studies have reported the 

mechanism of Schiff bases hydrolysis (Figure 4-5). Jenck, et al. reported formation 

and hydrolysis of the Schiff base intermediates such as transitional oxime and semi-

carbozone (Jenck, W.P., et al. 1963). Their study demonstrated a transition of the rate 

limiting step. As pH conditions decreased, rate-determine step changed from Schiff 

base formation/ hydrolysis under neutral to alkaline pH (step 1), to rate-determine 

amine attack / decomposition of carbinol-amine under acidic pH (step 2). They also 

found that the rate of hydrolysis markedly decreased in strong acid, which agrees with 

the results in our study.  Furthermore, Jencks’s group showed that under more acidic 

conditions, a large fraction of Schiff base exists as the conjugate acid. The hydrolysis 

rates decrease with decreasing pH for Schiff bases indicating an electron-donating 

functional group on the molecule. The changes in rate with pH are correlated with the 

conversion of Schiff bases to their conjugate acids.  

We can determine the pKa of glycation adduct of rhuMAb A by plotting % 

glycated rhuMAb A vs. pH, or kobs hydrolysis vs. pH ( Figure 4-6). The plateau area at 

pH 5.75 represents the maximum glycation level change upon pH changes.  pH 5.75 is 

the pKa value of glycation adduct in Schiff base /conjugate acid form (Figure 4-6).  
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The other aspect of glycation adduct stability is the Amadori rearrangement. 

After dehydration, the Amadori rearrangement is favored at alkaline conditions 

(Figure 4-7) at pH >7.0. The Amadori product is considered more stable than the 

Schiff base. However, there are studies (Acharya, A.S. and, et. al., 1984, 1991) that 

have shown the ketoamine linkage between glucose and protein to be reversible. In 

our particular study subject of glycated rhMAb A, the major change in glycation was 

observed on K49, the preferred glycation site. The observed rate of hydrolysis 

decreased with decreasing pH. This pH-dependent hydrolysis indicates the electron 

donor-enriched environment around lysine K49. The catalyst effect of three aspartic 

acid residues surrounding K49 facilitates the formation of the Amadori product  

(ketoamine) on K49. They also promotes K49 Amadori product reverse to Schiff base 

(aldimine), then Schiff base reverse to unglycated rhuMAb A.  

Therefore, between pH 4.5 and 5.5, the attack from nitrogen on the lysine 

amine group to the carbon on carbonyl group of glucose is the rate-limiting step, while 

adding a water to Schiff base to form conjugate acid is favored. The BAC was able to 

detect both Schiff base and its conjugate acid. Since the conjugate acid is stable in 

lower pH conditions (pH <5.5), overall glycation level of rhuMAb A is maintained. At 

slightly higher pH, pH 5.5 to 6.0, around the pKa of the conjugate acid of Schiff base 

(pH 5.75), the amounts of base and conjugate acid were equal.  A big change of Schiff 

base is needed to shift the pH of Schiff base/ conjugated acid system. Thus, we 

observed at pH 5.5 to pH 6.0, there was a significant difference on the remaining 

glycation level. BAC detected glycation adducts were mainly in Schiff base form.  In 

addition to rapid loss of glycation adducts, at pH 6.0 to 7.0, Amadori rearrangement 
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occurred leading to a minor advanced glycation reaction. The BAC detected glycation 

adducts are both Schiff base and Amadori products. Hence, the overall main reaction 

in the studied pH conditions, from pH 4.5 to pH 7.0, is the reverse of glycation adduct 

by Schiff base hydrolysis. 

We can conclude that pH condition controls both the direction and rate of 

Schiff base hydrolysis. Below the pKa of the Schiff base, glycation adducts are 

relatively stable. However, at the pKa and above, Schiff base hydrolysis becomes the 

preferred reaction, with  Amadori rearrangement as a secondary reaction, leading to 

loss of glycation adducts and an increase in prevalence of AGEs. 

Buffer species 

            After 4 weeks of thermal stress at 40°C, no difference on BAC was found 

among three buffer systems: histidine, arginine and phosphate buffers.  Using the 

same approach as described in the previous section, we calculated the degradation rate 

constant in three buffers. The result demonstrated similar rate constants among 

histidine, arginine, and phosphate buffer systems, with 0.10 week-1, 0.11 week-1, and 

0.13 week-1, respectively. This observation indicates that these buffers did not cause 

any difference on the reversibility of glycation adducts (Figure 4-8, Table 4-3). In 

addition, the trends of AGE formation in three buffers detected by BAC were parallel 

at fluorescence 350nm/440nm (Figure 4-9). Peptide mapping results confirmed that 

even at the amino acid level, the degradation products are similar in three buffers  

(Figure 4-10). Glycated rhuMAb A was shown to degrade to wild type rhuMAb A 

(>80%) while a small portion (<10%) degraded to carboxyl-methyl-lysine (CML) 
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(Figure 4-10), The relative proportion of these two degradation products were at 

similar levels in all three buffers after thermals stress at 40ºC for 4 weeks.  

Watkins, et al. has reported the catalysis effect of phosphate buffer on the 

kinetics, and specificity of glycation on RNase (Watkins, N.G. et al. 1985/1987). By 

binding the RNase active site, phosphate ion was localized on RNase, creating a 

negatively charged environment. This increase of electron density helped nearby  

lysine residue to form Amadori product during glycation.  However, based on the 

structure and function of the studied rhuMAb A, there is no phosphate ion binding site 

to keep phosphate ion localized on protein. From the characterization work from 

previous study and published work by Zhang (Zhang, B. et al. 2008), K49 was still the 

primary susceptible site in both phosphate and sodium bicarbonate buffers.    Presence 

of phosphate ion did not catalyze the glycation on this rhuMAb A. From the presented 

stability result in this study, phosphate buffer did not show any effect on glycated 

adduct hydrolysis, either. Thus, we hypothesize that phosphate ions cannot serve as a 

catalyst in the glycation reaction of this rhuMAb A or be involved in the glycation 

adduct hydrolysis without the active site to ensure its localization on rhuMAb A. 

Therefore, phosphate ions did not affect hydrolysis rate of glycated rhuMAb A. 

On the AGE formation, arginine was thought to be able to slow down the 

advanced glycation reaction, by competing with rhuMAb A’s own amine groups, to 

react with any carbonyl group on glycated rhuMAb A. However, in the presented 

study, arginine did not affect AGEs formation on glycated rhuMAb A. One possible 

reason is that advanced glycation reactions were minor at the studied pH condition, pH 

6.5.  
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Oxidation Control: 

The oxidation controlled study showed very similar hydrolysis rate constants 

for all conditions.  Nitrogen (N2) purged vials resulted in the slowest rate constant, at 

0.2%/week; then regular air purged vials at 0.22%/week; followed by phenol, an 

oxidation scavenger, contained vials at 0.23%/week (Figure 4-11 and Table 4-3).   

This indicated the degradation of the glycated rhuMAb A did not slow down at pH 6.5 

in absence of oxidative reagent.  

Initial Glycation Level 

Table 4-4 summarizes the rate constants for all three initial glycation levels. 

The hydrolysis rate dropped from 0.46 to 0.39 week-1 for the glycated rhuMAb A 

species at  13% to 42% respectively. When the   protein was 99% glycated, the 

glycated adduct degradation rate decreased to  only 0.10 week-1,  with a half life of ~ 7 

weeks (Figure 4-12, Table 4-4). From BAC fluorescence signal, the AGEs formation 

was fastest at the high glycation level ( Figure 4-13). 

  Furthermore, analysis of size heterogeneity at different glycation levels was 

done by size exclusion chromatography. The result demonstrated that at higher 

glycation level, more protein aggregates were formed. It is a evidence that protein  to 

protein interaction was more pronounced at higher glycation levels ( Figure 4-14). 

           As previous study showed (Chapter 2), the heavily glycated rhuMAb is a 

mixture with complex structural modifications. With higher total glycation level, not 

only  K49 was glycated to a higher level, but other lysine residues were also modified. 
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Previous studies by Zhang, et al. had shown that rhuMAb A can be glycated to 

different levels.  Table 4-4 summarizes the total glycated levels at each sites detected, 

13% one (one site K49 only); 42%  (6 sites,  K49 level primary) ; 99% (7 sites, K49 

primary about 90% as in chapter 2) (Zhang, B. et al.  2008).  

In the forced glycation model, lysine residues buried inside the protein were 

modified without the strong catalysis effect provided by neighboring aspartic acids. 

Moreover, these glycated lysines were hard to be hydrolyzed (Table 3-1 in Chapter 3). 

These much stable glycation sites may lead to further AGEs formation,  as well as 

protein-protein interaction to provide a complex protein network. Thus, we 

hypothesize that the complexity and heterogeneity of final glycation states contributes 

to a slower overall hydrolysis rate.  The presence of more enduringly glycated sites 

may provide a complex electron –transfer network on rhuMAb A that allows electron 

transferring within the molecule, stabilizing the Schiff base.   
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IV. Conclusions

1) Among the studied formulation parameters, pH  is a key parameter to control

glycation adduct degradation pathways, it also determines the hydrolysis rate

constant of glycated rhuMAb A.

2) The unique structure of rhuMAb A creates a rich electron donating

environment around K49, which determines its site specific glycation and

contributes to the pH dependence of hydrolysis rate.

3) Buffer species and oxidation levels do not affect the glycation adduct stability

under the studied conditions.

4) Initial protein glycation level does affect the overall hydrolysis rate of

glycation adduct on rhuMAb A. This may be related to protein-protein

interaction involving electron transferring system among different glycated

sites.
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Figure 4-1:  Glycation level after 4 weeks at 40°C. 

UV 280nm on boronate affinity chromatography for pH 4.5 to 7.0. 
It showed glycation level was the lowest at pH 7.0 
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Figures 4-2:  pH vs. remaining glycation level. 

The pH dependence on glycated rhuMAb stability at 40°C pH 5.5 – 6.0 
showed to be the most sensitive pH range for glycation change.  
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Figure 4-3:  AGEs formation after 4 weeks at 40°C. 

Fluorescence 350/440nm on boronate affinity chromatography for pH 4.5 
to 7.0. AGEs fluorescence was the highest at pH 7.0. 
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Figure 4-4: Fluorescence peak area at 350/440nm vs. pH.  

It indicates the pH6.5 and pH 7.0 had significant AGEs formation after 4 

weeks at 40°C. 
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Figure 4-5: Illustration of Schiff base formation and hydrolysis. 
At neutral to alkaline conditions, step 1 is the rate limiting step 
At acidc pH, step 2 is the rate limiting step. 

 From reference: E.H.Cordes,  and W. P. Jenck 1963. The Mechanism of 
Hydrolysis of Schiff Base Derived from Aliphatic Amines Journal of 
American chemistry Society, 85 (18) 2843-2848
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Figure 4-6: The pH dependence of glycation adduct hydrolysis.  

Hydrolysis rate decreased with low pH. The pKa of Schiff base 
is around pH 5.75. 
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Figure 4-7: Amadori rearrangement: the C=N shifts to C=O, is 
favored at  high pH. 
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Figure 4-8: Glycation level drop in three buffers. 
It fits into linear plot on ln[ glycated rhuMAb A] vs time, 
indicating, first order reaction rate of rhuMAb A hydrolysis. 
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Figure 4-9: Fluorescence peak area vs. time in three buffers at 
40°C. Total peak area of  fluorescence signal 350/440 nm for 
pentosidine-like AGEs increased over time.
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Figure 4-10:  Comparison of  degradation product of glycated rhuMAb 
A upon thermal stress in three buffers: 20mM histidine, 20mM arginine 
phosphate, 20mM sodium phosphate at pH 6.5.  This bar graph showed  
there are no glycation adduct degradation difference in the three buffer 
systems.  
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Figure 4-11: Comparison of glycated rhuMAb A hydrolysis in three 
oxidation controlled conditions. N2 purged vial showed a slightly 
slower hydrolysis rate. 
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Figure 4-12: Decreased glycation level in three lots with different initial 
glycation levels at pH 6.5.  

The rate of hydrolysis fits a linear regression, indicating a first order 
reaction. At higher glycation level, hydrolysis rate was slower. 
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Figure 4- 13: AGEs formation of glycated rhuMAb A over 4 weeks at 

40°C in three different initial glycation levels.  

Higher glycation level showed faster AGEs formation. 
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Figure 4-14: Comparison of aggregate levels at 40°C of glycated 
rhuMAb A in three different initial glycation levels. Higher glycation 
level had higher initial aggregation level.  
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pH condition rate constant 
k  (week-1) at 
40°C 

remaining 
glycation 
% 

t1/2
(week) 

4.5 0.045 32.0 15.4 
5.0 0.091 25.0 7.6 
5.5 0.13 22.0 5.3 
6.0 0.35 8.7 2.0 
6.5 0.43 6.4 1.6 
7.0 0.51 5.6 1.4 

Table 4-1: Summary of first order rate constant of glycated 
rhuMAb degradation at 40°C in different pH conditions 
(with initial glycation level 36%).  
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Buffer species 
initial 

glycation 
level 

rate constant 
k  (week-1) at 

40°C 

t1/2
(week) 

Histidine 99.3% 0.10 6.9 
Arginine 99.3% 0.11 6.3 

Phosphate 99.3% 0.13 5.3 

Table 4-2: Summary of rate constant of glycated rhuMAb A 
degradation at 40°C in three different buffers ( pH is 
constant at pH 6.5). 
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Drug product condition rate constant 
k (week-1) 

at 40°C 

half life 
t1/2 

(week) 
Fill with regular air in the head 

space 
0.22 3.2 

Fill with N2 in the head space 0.20 3.5 

Phenol added to DP 0.23 3.0 

Table 4-3: Summary of rate constant of glycated rhuMAb A 
degradation at 40     ° C in three different oxidation conditions. 
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Material 
initial 

glycation 
level 

rate constant 
k  (week-1 ) 

at 40°C 

t1/2
(week) 

number of 
detected 

glycation sites 

Lot a 13% 0.46 1.5 1  site     
Lot b 42% 0.39 1.8 6 sites     
Force 

glycated 99% 0.10 6.9 7 sites    

Table 4-4: Summary of rate constant of glycated rhuMAb A 
degradation at 40°C in three different initial glycation levels.All 
samples were in 20mM histidine buffer pH 6.5. 
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