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Dynamic Model for Fatigue Evolution in a
Cracked Beam Subjected to Irregular Loading

Son Hai Nguyen and David Chelidze∗
Department of Mechanical, Industrial and Systems Engineering

University of Rhode Island, Kingston, RI 02881

The coupling of vibration and fatigue crack growth in a
simply supported uniform Euler-Bernoulli beam containing
a single-edge crack is analyzed. The fatigue crack length is
treated as a generalized coordinate in a model for the me-
chanical system. This coupled model accounts for the inter-
action between the beam oscillations and the crack propaga-
tion dynamics. Nonlinear characteristics of the beam motion
are introduced as loading parameters to the fatigue model
to match experimentally observed failure dynamics. The
method of averaging is utilized both as an analytical and nu-
merical tool to: (1) show that, for cyclic loading, our fatigue
model reduces to the Paris’ law, and (2) compare the pre-
dicted fatigue damage accumulation with the experimental
data for chaotic and random loadings. A utility of the fa-
tigue model is demonstrated in estimating fatigue life under
irregular loadings.

1 Introduction
The prediction of fatigue crack growth is a major prob-

lem of engineering practice. Various solutions to this prob-
lem have been proposed and are summarized in Refs. [1, 2].
These approaches vary from continuum damage theories to
linear damage rules. However, the industrial state of the art
relies on the rain-flow counting method and the Palmgren-
Miner rule [3–5], which ignore load interaction effects (e.g.,
crack growth retardation due to overloads [6]). On the other
hand, studies of dynamic behavior of damaged structures [7]
usually assume damage is a constant factor. In fact, the fa-
tigue process is not only driven by environmental factors and
structural dynamics, but it also affects structural dynamics by
altering structural parameters. Recent damage models [8, 9]
describe the behavior of cracks at microscopic scale but they
are not directly applicable in structural health monitoring and
condition based maintenance technologies at macro-scale of
structures. The aim of this paper is to couple the damage
evolution and structural dynamics at macroscopic scale. Us-

∗Address all correspondence to this author. Email: chelidze@uri.edu

ing the proposed model, the fatigue crack propagation can be
predicted from easily measurable structural vibration. Here,
our system of interest is a cracked Euler-Bernoulli beam
which is well studied in literature and our approach is based
on a modification of the one-dimensional model of nonlinear
damage dynamics described in Refs. [10, 11].

Fatigue in materials is a nonlinear process in which the
fatigue life is nonlinearly coupled with load factors [12, 13].
Current fatigue damage models only take into account basic
load statistical quantities such as mean, variance, maximum
and minimum. These simple features do not capture impor-
tant nonlinear characteristics of the applied loads [14, 15]
(e.g., Lyapunov exponent, correlation dimension). In the
next section, loading rate and divergence rate are introduced
as loading parameters to the dynamic model of a cracked
Euler-Bernoulli beam. Then the method of averaging is used
to show our model reduces to Paris’ law for cyclic loadings,
and to determine the model’s free parameters. Finally, the
proposed fatigue model is validated by contrasting its predic-
tions with the experimentally measured fatigue crack growth
in aluminum beams excited by stochastic and chaotic signals
possessing similar spectral and statistical characteristics.

2 Equations of motion for a cracked beam
A simply supported Euler-Bernoulli beam with a crack

is shown in Fig. 1. Let w(x, t) denote the deflection of the
beam at spatial coordinate x and time t. The normalized
crack length φ(t) at x = L/2 represents the current damage
state,

φ =
a
b
, (1)

where a is the crack length, and b is the width of the beam,
0≤ φ≤ 1 (0 for the undamaged state and 1 for fractured). In
this study we assume damage accumulation only reduces the
beam’s bending stiffness [16, 17]. Then the potential and ki-
netic energies are determined by classical beam theory. The
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Fig. 1: Geometry of a simply supported beam with an edge
crack

virtual work done by nonconservative forces can be written
as

δW =

L∫
0

(
F(x, t)δw− cẇδw−Φ(φ, φ̇)δφ

)
dx, (2)

where F(x, t) is the body force per unit length, cẇ is linear
structural damping, and Φ(φ, φ̇)≥ 0 is the generalized force
associated with the damage variable φ, the overdot denotes
differentiation with respect to time t. We expect damage
growth will dissipate energy, therefore, the Φ term is kept
negative. The coupling between structural vibration and fa-
tigue crack growth is constructed through the application of
Hamiltons principle as described in Refs. [10, 11]

mρẅ+
(
Ē Īw′′

)′′
+ cẇ = F(x, t), (3a)

1
2

w′′2
∂Ē Ī
∂φ

+Φ = 0, (3b)

where mρ(x) is the mass per unit length of the beam, Ē Ī =
Ē Ī(x,φ) is the effective stiffness. The prime denote differ-
entiations with respect to x. The partial differential equa-
tions will also have the corresponding boundary conditions
w(0, t) = w′′(0, t) = 0 and w(L, t) = w′′(L, t) = 0.

Eq. (3a) describes the transverse vibration of the beam,
in which the damage accumulation alters the stiffness of the
beam. Eq. (3b) reflects the evolution of the damage φ under
the beam’s vibration and Φ.

3 The Effective Stiffness
In this paper, we consider crack is always open. The

presence of a crack changes the stiffness distribution in the
vicinity of the cracked cross-section. For a rectangular sec-
tion beam the effective stiffness has the following form [16]:

Ē Ī(φ,x) = EI
{

1+
[
(1−φ)−3−1

]
eφ|x−L/2|

}−1
, (4)

where E and I are the elastic modulus and the second mo-
ment of area of the undamaged beam, respectively. At the

cracked cross-section, x = L/2, the beam stiffness becomes

Ē Ī(φ,L/2) = EI(1−φ)3. (5)

4 Damage Growth Rate Law
In Ref [18], we have showed that standard linear damage

Palmgren-Miner law and Rainflow-counting method failed to
estimate damage during fatigue testing under chaotic load-
ing, while being adequate for random loading, which had the
same statistical and spectral properties as chaotic. For deter-
ministic loads, these experiments indicated that fatigue life
depends not only on the number of stress cycles but also on
the divergence rate λ, which measures the average rate of
the expansion and folding process in an attractor. The higher
λ, the faster the crack tip escapes the plastic zone due to an
overload. λ is estimated by the slope of the average trajectory
divergence curve defined in Ref. [18].

The evolution model for φ can be obtained by making
Φ explicitly depend on φ̇ in Eq. (3b). Since this model is
formulated in terms of actual time not cycles, the fatigue life
will depend on the rate or frequency of the applied loads. To
characterize this dependence of Φ on the time rate of irregu-
lar loadings, σ, we introduce the loading rate parameter

Rσ =

√
〈σ̇2〉
〈σ2〉

, (6)

where 〈x〉 means the expectation value of x. For a cyclic
stress σ = ∆σcos(ω t)/2, Rσ = ω.

To account for the nonlinear characteristics of the ap-
plied load and to obtain the correspondence between our
model and Paris’ law, Φ is assumed an explicit function of
Rσ:

Φ(φ, φ̇,Rσ) =
1

η(λ)

f (φ)φ̇p

Rq
σ

. (7)

where p, q are some positive exponents and λ is the diver-
gence rate of the applied load.

At x = L/2, substituting w′′(L/2) =
2σ

bE
and Eq. (5) into

Eq. (3b) yields:

Φ(φ, φ̇,Rσ) =
6I

b2E
(1−φ)2

σ
2 . (8)

Solving Eq. (7) for φ̇, we obtain a crack propagation model:

φ̇ =

[
6η(λ)I

b2E

] 1
p

R
q
p
σ f (φ)−

1
p (1−φ)

2
p σ

2
p . (9)



For the damage model derived above to be valid Eq.
(9) should reduce to with Paris’ law under cyclic load σ =
∆σcos(ω t)/2. In particular, substituting Rσ = ω and λ = 0
into Eq. (9) we get

φ̇ =

[
6η(0)I

b2E

] 1
p

ω
q
p f (φ)−

1
p (1−φ)

2
p ∆σ

2
p
(
cos(ωt)2) 1

p ,

(10)
or

φ̇ =C0ω
q
p f (φ)−

1
p (1−φ)

2
p ∆σ

2
p
(
cos(ωt)2) 1

p , (11)

where all material constants and systems parameters have
been merged into the constant C0. Since a fatigue crack ac-
cumulates slowly (e.g., a crack grows over thousands of load
cycles), we can apply the method of averaging [19] to Eq.
(11) yielding

φ̇≈C0ω
q
p f (φ)−

1
p (1−φ)

2
p ∆σ

2
p

 ω

2π

2π
ω∫

0

(
cos(ωt)2) 1

p dt

 ,

(12)
or

φ̇≈C1ω
q
p f (φ)−

1
p (1−φ)

2
p ∆σ

2
p , (13)

where C1 = C0Id , and Id is the value of the integral inside
the brackets of Eq. (12). Changing to a new time variable
N = ωt/(2π) and letting φ = a/b, Eq. (13) can be rewritten
to get

da
dN
≈C2ω

q
p−1 f (φ)−

1
p (1−φ)

2
p ∆σ

2
p , (14)

where C2 = 2πbC1 is a constant.
On the other hand, Paris’ law under cyclic load is given

by

da
dN

=C(∆KI)
m, (15)

where N is the number of load cycles, C and m are material
constants. ∆KI is the range of the stress intensity factor, and
it can be expressed as KI = σ

√
πaY (φ). Y (φ) a function that

depends on the geometry. Then Eq. (15) becomes

da
dN

=C3

[√
φY (φ)

]m
∆σ

m , (16)

where C3 =C(πb)
m
2 .

Dynamic Shaker Slip Table Back Mass

Front Mass

Slip Table Rail

Central Rail 
for Mass
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Front CylinderBack Cylinder Linear
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Fig. 2: Schematic of the apparatus

Comparing the exponents of ω, ∆σ, and the functions of
φ in Eqs. (14) and (16) yields

q
p
= 1→ q = p , (17)

2
p
= m→ p =

2
m
, (18)

f (φ) =
[√

φY (φ)
1−φ

]−mp

. (19)

Thus, the derived damage model reduces to Paris’ law for
cyclic loads provided the parameters satisfy Eqs. (17)–(19).
In the following experiment, the specimen is made from alu-
minum which has the material constant m ≈ 3 [20]. By set-

ting m = 3, we get q = p = 2
3 , and f (φ) =

[√
φY (φ)

(1−φ)

]−2

.

5 Experimental validation
The fatigue experiments described in Ref. [18] are used

to validate the new fatigue model under irregular, non-cyclic
loadings. The details of the experimental system are given
in Refs. [18, 21], and a schematic of the test rig is shown in
Fig. 2. The masses are kept in contact with the specimen by
two pneumatic cylinders. The main operating principle of
the rig is that inertial forces of masses generated by the elec-
tromagnetic shaker provide dynamic loads to the specimen.
The specimen is a single edge notched beam which is simply
supported by pins on each end.

The specimens are designed to follow the fracture tough-
ness test standard ASTM E1820-08a [22] and their model is
shown in Fig. 3. The specimen is made of 6061 aluminum
bar stock, with dimensions 314.70× 20.32× 6.35 mm, and
the fatigue is initiated by a machined ’V’ notch. In order to



Fig. 3: Model of the specimen. The machined notch is at the
center.
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Fig. 4: Measurements of fatigue crack (a) and beam static
deflection (b).

keep the beam vibration small and the duration of the exper-
iment not too long, the notch is cut to a depth of 7.62 mm by
a blade 0.762 mm thick with a 60◦ V-shaped tip. The initial
crack length was examined under a Stocker and Yale optical
micrometer at 40× magnification. The crack lengths of all
the fatigue tests recorded were measured to be 7.823 mm ±
0.069 mm which yielded the initial damage φ0 = 0.375.

A chaotic signal and its random surrogate [23] are sup-
plied to the shaker providing deterministic and stochastic ex-
citations, respectively. The relative displacement between
the slip table and a beam at x = 40 mm is measured by an
eddy current sensor. The crack growth is monitored using
an Alternating Current Potential Difference (ACPD) crack
growth monitor. Fig. 4 shows the damage evolution (left) and
the beam static deflection (right). It is clear that the propagat-
ing crack gradually reduces the beam stiffness which results
in increased beam deflection.

The eddy current sensor measurements are used as in-
puts into the damage model and its predictions are compared
with the crack length measurements coming from the ACPD
monitor. The beam diagram and applied forces are shown in
Fig. 5. The applied loads can be expressed as

P1 = P−marel ,

P2 =
P+marel

2
,

(20)

where P is the static mean force due to the pressure within
the cylinders, and arel is the relative acceleration between the

m1

m2

arel

arel

P1

P2 P2

L2

L/2

L

Fig. 5: Beam diagram with applied forces

masses and the slip table.
The force F(x, t) in Eq. (3a) becomes

F(x, t) = P1δD(x−L/2)−P2δD(x−L2)−P2δD(x−L+L2) ,
(21)

where δD(x) is the Dirac delta function.
In our setup, two masses are always kept contact with

the beam and they only move back and forth. Therefore, we
consider a single mode motion

w(x, t) = q(t)ψ(x), (22)

where ψ(x) is the mode shape of the beam oscillations [24].
The range of the stress intensity factor ∆KI is obtained

from the principle of superposition [25]:

∆K = m
3
√

πL√
bh2

∆a
(

1
2

√
φY (1)

I +
L2

L

√
φY (2)

I

)
, (23)

where Y (1)
I and Y (2)

I are dimensionless functions [26]

Y (1)
I (φ) = 1.106−1.552φ+7.71φ

2−13.53φ
3 +14.23φ

4 ;
(24)

and

Y (2)
I (φ) = 1.122−1.40φ+7.33φ

2−13.08φ
3 +14.0φ

4 .

(25)

Then, the function f (φ) in Eq. (9) has the following form:

f (φ) =
(

1
2

√
φ

(1−φ)
Y (1)

I +
L2

L

√
φ

(1−φ)
Y (2)

I

)−2

. (26)



Table 1: Estimated divergence rates λ and function A(λ)

#
Chaotic Loading Random Loading

Div. rate λ A(λ) Div. rate λ A(λ)

1 15.3±2.4 29×10−7 32.8 ± 1.4 50×10−7

2 15.0±2.6 30×10−7 32.4 ± 1.4 44×10−7

3 15.3±3.3 32.5×10−7 32.3 ± 1.3 45×10−7

4 15.3±2.7 26.5×10−7 32.3 ± 1.2 42×10−7

5 15.3±3.6 32×10−7 33.0 ± 1.0 47×10−7

Using the relationship w′′(L/2) =
2σ

bE
and Eq. (22), the load-

ing rate Rσ can be determined by the recorded measurements
of w(L0, t) (at L0 = 40 mm):

Rσ =

√
〈σ̇2〉
〈σ2〉

=

√√√√ 〈ẇ2
x=L0
〉

〈w2
x=L0
〉
. (27)

Finally, the damage growth rate in Eq. (9) can be written as

φ̇ = A(λ)
(

1
2

√
φF(b)

I +
L2

L

√
φF(c)

I

)3

Rσ〈w3
x=L0
〉 , (28)

where A(λ) =
[

6EIψ′′(L/2)2

ψ(L0)2 η(λ)

]3/2

depends on material

properties, geometry of the beam, the mode shape ψ, and the
divergence rate λ.

In the following, the measurements of the displacement
of the beam are used to advance and validate our model. In
each test, the time series w(L0, t) are recorded at a 1 kHz
sampling rate, and are split into small data records, where
each record contains 10,000 points. The estimated diver-
gence rates are shown in Table 1. It is assumed that the
changes in the damage variable over one data record (i.e.,
over a 10 s time span) are negligible due to its slow-time na-
ture. The method of averaging is applied to simulate Eq. (28)
by integrating over one data record. Thus, the fast time func-
tion w(L0, t)3 is replaced by its moving average 〈w(L0, t)3〉t .

In Eq. (28), the function A(λ) is unknown. However,
the experiments are programmed to stop when the maximum
stress is higher than the material yield strength (φ f ≈ 0.6).
Using this condition and the initial damage φ0 = 0.375, the
value of A is adjusted so that the simulated final damage≈ φ f
as shown in Table 1. Thus, the focus here is on overall evo-
lution trajectory and not on the initial and final trajectory
points that were matched. The resulting damage trajectories

from numerical simulations of Eq. (28) and the correspond-
ing ACPD signals are normalized and shown in Fig. 6.

The experiment in Ref. [18] showed that the larger λ of
the applied load results in the higher crack growth rate. Es-
pecially when the system grows unbounded, λ is expected
to be a large number, and the failure of the system should
happen immediately. Similar to the divergence rates λ, the
matched values of A(λ), as shown in Table 1, are compara-
ble for each individual loading type but distinct for different
loading types. Therefore, A is assumed to be an exponential
function of λ:

A(λ) = αeβλ , (29)

where α and β are constants. To determine the values of
α and β, three fatigue tests under a periodic load (λ = 0)
were conducted and A(0) was estimated. Then applying the
exponential curve fitting yields α = 20×10−7 and β = 0.02
(see Fig. 7).

6 Predicting Time to Failure
The ultimate goal of all fatigue crack propagation mod-

els is to predict the fatigue life of a system. If the applied
load is known, our model can simulate the fatigue crack evo-
lution in time and predict failure. However, it is not practical
to monitor the response of a system for the whole fatigue
life. The failure of a system should be estimated from the
estimated future loading profile, which is usually assumed to
remain similar to the one in the beginning of the fatigue life.

Here, our model described by Eq. (28) is used to es-
timate the time to failure (TTF) of the specimen assuming
that the loading factors will remain the same as initially ob-
served. In particular, the future loading rate Rσ, divergence
rate λ, and 〈w3

x=L0
〉 are determined from the first 200,000

points (≈ 3 minutes of the fatigue life) of the displacement
time series of the specimen at location x = 40 mm. Then the
TTF is calculated by integrating Eq. (28) from φ = 0.375 to
φ = 0.6. Table 2 shows the estimated TTF for ten fatigue
tests used in the previous section.

7 Discussion
The small differences between the real crack and simu-

lated crack evolutions in Fig. 6 can be explained by the in-
herent variations/indeterminicity in the initial condition. In
all tests reported here, we assume the initial damage to be the
same, φ0 = 0.375. However, the actual initial cracks in each
test are different due to notch fabrication tolerances and ma-
terial irregularities effecting the microstructure of the beam.
It is difficult, if not impossible, to accurately determine the
size of the initial crack. In addition, in Eq. (28), environmen-
tal factors (e.g., temperature, humidity) are neglected in the
analysis.
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Fig. 8: Dependence of Rσ〈w3
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For the fatigue life prediction, the difference between
the TTF and the estimated TTF is mainly caused by the
changes in the estimated load parameters. The growing
crack changes not only the system parameters but also the
applied load to the specimen. Fig. 8 shows how the val-

Table 2: True and estimated Times to Failure

Chaotic Loading Random Loading

True TTF Est. TTF Error True TTF Est. TTF Error

(hrs:min) (hrs:min) (hrs:min) (hrs:min)

1:44 1:53 8% 0:53 1:10 32%

1:50 2:21 28% 1:07 1:06 0%

1:46 2:01 14% 0:44 0:55 25%

1:42 1:43 0% 0:52 1:00 15%

1:13 1:41 35% 0:45 0:54 20%

ues of Rσ〈w3
x=L0
〉 change in time. Fig. 8(a) corresponds to

Random-5 and Chaotic-5 tests which have high estimated
TTF errors as well as high variability in the loading fac-
tors. While Fig. 8(b) corresponds to Random-2 and Chaotic-
4 which have zero estimated TTF errors as well as low vari-
ability in loading factors.

In this paper, Paris’ law is used as a special case to val-
idate the fatigue model. Therefore, this model is only valid
in Paris regime which requires long cracks and ignores the
threshold limit, load ratio effects as well as effect of speci-
men thickness.

8 Conclusion
A new dynamic model of fatigue evolution was pre-

sented. Using the loading rate and divergence rate as load-
ing parameters, the model can describe fatigue damage evo-
lution under arbitrary loading, and also captures the inter-
action between the fatigue damage and structural dynamics.
For cyclic loadings, our model reduced to Paris’ law through



the averaging method. The crack evolution was numerically
simulated using the experimental measurements of structural
vibration as input. The damage model predictions closely
followed the actual, experimentally measured, crack growth
trajectories in both chaotically and randomly forced tests.
Then, the TTFs were estimated from the initial short-time
response of the system and assuming the loading character-
istics stayed the same as tests progressed. The initial results
have shown that the proposed model can be used for estimat-
ing fatigue life, and the models simulation can accurately
track actual crack growth if the nonlinear loading factors can
be estimated and provided as input.
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