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Fermi-Dirac functions [tsl42]

fn(z) ≡
1

Γ(n)

∫

∞

0

dx xn−1

z−1ex + 1
, 0 ≤ z < ∞

Series expansion:

fn(z) =

∞
∑

l=1

(−1)l−1
zl

ln
, 0 ≤ z ≤ 1.

Special cases:

f0(z) =
z

1 + z
, f1(z) = ln(1 + z), f∞(z) = z.

Recurrence relation:
zf ′

n(z) = fn−1(z), n ≥ 1.

Asymptotic expansion for z ≫ 1:

fn(z) =
(ln z)n

Γ(n + 1)

[

1 +
∑

k=2,4,...

2n(n − 1) · · · (n − k + 1)

(

1 −
1

2k−1

)

ζ(k)

(ln z)k

]

=
(ln z)n

Γ(n + 1)

[

1 + n(n − 1)
π2

6
(ln z)−2

+ n(n − 1)(n − 3)
7π4

360
(ln z)−4 + . . .

]
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Ideal Fermi-Dirac gas:

equation of state and internal energy [tln69]

Conversion of sums into integrals by means of density of energy levels:

D(ǫ) =
gV

Γ(D/2)

( m

2π~2

)

D/2

ǫD/2−1, V = LD.

Fundamental thermodynamic relations for FD gas:

pV

kBT
=

∑

k

ln
(

1 + ze−βǫk

)

=

∫

∞

0

dǫ D(ǫ) ln
(

1 + ze−βǫ
)

=
gV

λD

T

fD/2+1(z),

N =
∑

k

1

z−1eβǫk + 1
=

∫

∞

0

dǫ
D(ǫ)

z−1eβǫ + 1
=

gV

λD

T

fD/2(z),

U =
∑

k

ǫk

z−1eβǫk + 1
=

∫

∞

0

dǫ
D(ǫ)ǫ

z−1eβǫ + 1
=

D

2
kBT

gV

λD

T

fD/2+1(z).

Note: The range of fugacity has no upper limit: 0 ≤ z ≤ ∞. The chemical
potential µ is unrestricted. The factor g is included to account for any
existing level degeneracy due to internal degrees of freedom (e.g. spin) of the
fermions.

Equation of state (with fugacity z in the role of parameter):

pV

N kBT
=

fD/2+1(z)

fD/2(z)
.
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Ideal Fermi-Dirac gas: chemical potential [tsl43]

Fugacity z from x = fD/2(z), where

x =
λD

T

v
, v

.
=

gV

N
, λT =

√

h2

2πmkBT
.

Chemical potential [tex117]:
µ

kBTv
=

T

Tv
ln z,

T

Tv
= [fD/2(z)]−2/D.
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v2/D
, Λ

.
=

h2

2πm
.

For a complete list of reference values see [tln71].

Fermi energy: lim
T→0

µ = ǫF = kBTF .

Fermi temperature:
TF

Tv

= [Γ(D/2 + 1)]2/D D≫1

 

D

2e
.



[tex117] FD gas in D dimensions: chemical potential I

(a) Start from the fundamental thermodynamic relation N = (gV/λDT )fD/2(z) for the ideal Fermi-
Dirac gas in D dimensions and use the reference temperature kBTv = Λ/v2/D, v .= gV/N , Λ .=
h2/2πm to derive the following parametric expression for the dependence on temperature T of the
chemical potential µ:

µ

kBTv
=

T

Tv
ln z,

T

Tv
= [fD/2(z)]−2/D.

(b) Derive the following expression for the Fermi energy εF and the Fermi temperature TF :

lim
T→0

µ(T )
kBTv

=
εF
kBTv

=
TF

Tv
= [Γ(D/2 + 1)]2/D

.

(c) Show that this result includes the familiar result, εF = (h2/2m)(3N/4πgV )2/3 for D = 3.

Solution:



[tex118] FD gas in D dimensions: chemical potential II

Start from the results derived in [tex117] to infer the following expressions for the fugacity z and
the chemical potential µ at T � TF :

ln z ∼ TF

T
,

µ

kBTF
∼ 1− π2

12
(D − 2)

(
T

TF

)2

.

Solution:



Ideal Fermi-Dirac gas:

average level occupancy [tsl44]

Average occupancy of 1-particle state at energy ǫ if system (with fixed N , V )
is at temperature T :

〈nǫ〉 =
1

eβ(ǫ−µ)+1
with µ(T ) from [tex117].
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Ideal Fermi-Dirac gas: isochores I [tsl46]

Reference values for temperature and pressure:

kBTv =
Λ

v2/D
, pv =

kBTv

v
; Λ

.
=

h2

2πm
, v

.
=

gV

N
.

TF

Tv

=
pF

pv

=

[

Γ

(

D

2
+ 1

)]2/D
D≫1

 

D

2e
.

Isochore:

p

pF

=
T

TF

fD/2+1(z)

fD/2(z)
,

T

TF

=

[

Γ

(

D

2
+ 1

)

fD/2(z)

]

−2/D

.

Low-temperature limit [tex119]:

lim
T→0

p

pF

=

(

D

2
+ 1

)

−1

.

High-temperature asymptotic regime [tex119]:

pV

N kBTF

∼
T

TF

[

1 +

[

2D/2+1Γ

(

D

2
+ 1

)]

−1 (

TF

T

)

D/2
]

.

The excess pressure relative to the Maxwell-Boltzmann line may be called a
manifestation of statistical interaction pressure.
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[tex119] FD gas in D dimensions: statistical interaction pressure

Consider the isochore of an ideal Fermi-Dirac gas in D dimensions, as given by the parametric
relation

p

pv
=

T

Tv

fD/2+1(z)
fD/2(z)

,
T

Tv
=

[
fD/2(z)

]−2/D
.

where kBTv = Λ/v2/D, pv = kBT/v, Λ .= h2/2πm, v .= gV/N . The upward deviation of this
result from the Maxwell-Boltzmann result, p/pv = T/Tv, is a manifestation of repulsive statistical
interaction between fermions. (a) Calculate the high-T asymptotic dependence of p/pv on T/Tv

including the leading correction to MB behavior. (b) Calculate the low-T limit of p/pv. (c)
Calculate the low-T limit of p/pF , where TF = Tv[Γ(D/2 + 1)]2/D is the Fermi temperature and
pF = kBTF /v the associated reference pressure. (d) Compare the differently scaled statistical
interaction pressures p/pv and p/pF at T = 0 in the limit D →∞.

Solution:



Ideal Fermi-Dirac gas: isotherms [tln70]

Reference values for reduced volume v
.
= gV/N and pressure p:

vT = λD

T , pT = gkBT/λD

T .

Parametric expression for isotherm:

p

pT

= fD/2+1(z),
v

vT

= [fD/2(z)]−1.

Isotherm at low density [tex120]:

pv = const, v ≫ vT .

Isotherm at high density [tex120]:

pv(D+2)/D = const, v ≪ vT .
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[tex120] FD gas in D dimensions: isotherm and adiabate

(a) Show that the isotherm of an ideal Fermi-Dirac gas in D dimensions is described by the
parametric relation

p

pT
= fD/2+1(z),

v

vT
= [fD/2(z)]−1,

where vT = λDT and pT = gkBT/λ
D
T are convenient reference values and v = gV/N is the reduced

volume. (b) Show that the adiabate is described by the relation pv(D+2)/D = const for all values of
v/v0. (c) Show that the relation for the isotherm approaches Boyle’s law, pv = const, for v � vT

and that it approaches the adiabate, pv(D+2)/D = const, for v � vT .

Solution:



[tex102] FD gas in D dimensions: ground-state energy

Given are the following expressions for the average number of particles, the average energy, the
average occupation number at T = 0, and the density of states for an ideal Fermi-Dirac gas in D
dimensions:

N =
∑

k

〈nk〉, U =
∑

k

〈nk〉εk, 〈nk〉 = Θ(εF − εk), D(ε) =
gV

Γ(D/2)

(
2πm
h2

)D/2

εD/2−1.

Derive from these expressions the following results for the dependence of the ground-state energy
per particle, U0/N , on the Fermi energy εF and for the dependence of the ground-state energy
density U0/V on the particle density N/V :

U0

N
=

D
D + 2

εF ,
U0

V
∝
(
N
V

)(D+2)/D

.

Solution:



Ideal Fermi-Dirac gas: heat capacity [tsl45]

Internal energy:

U =
D

2
N kBT

fD/2+1(z)

fD/2(z)
.

Heat capacity [use zg′

n(z) = gn−1(z) for n ≥ 1]:

CV

N kB

=

(

D

2
+

D2

4

)

fD/2+1(z)

fD/2(z)
−

D2

4

f ′

D/2+1
(z)

f ′

D/2
(z)

.

Low-temperature asymptotic behavior:

CV

N kB

∼ D
π2

6

T

TF

.

High-temperature asymptotic behavior:

CV

N kB

∼
D

2

[

1 −
D/2 − 1

2D/2−1Γ(D/2)

(

TF

T

)

D/2
]

.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3

C
V
/N

k
B

T/TF

D = 1

D = 2

D = 3



[tex100] FD gas in D dimensions: heat capacity at high temperature

The internal energy of the ideal Fermi-Dirac gas in D dimensions is given by the expression,

U = NkBT
D
2
fD/2+1(z)
fD/2(z)

.

(a) Use this result to derive the following expression for the heat capacity CV = (∂U/∂T )VN :

CV

NkB
=

(
D
2

+
D2

4

)
fD/2+1(z)
fD/2(z)

− D
2

4

f ′D/2+1(z)

f ′D/2(z)
.

Use the derivative ∂/∂T of the result fD/2(z) = NλDT /gV with V = LD to calculate any occurrence
of (∂z/∂T )VN in the derivation. Use the recursion relation zf ′n(z) = fn−1(z) for n ≥ 1 to further
simplify the results pertaining to D ≥ 2. (b) Infer from this result the leading correction to the
Maxwell-Boltzmann result, CV = (D/2)NkB , at high temperature.

Solution:



[tex101] FD gas in D dimensions: heat capacity at low temperature

Use the results of [tex118] and [tex100] to determine the low-temperature asymptotic behavior,

CV

NkB
∼ D π2

6
T

TF
,

of the heat capacity of the ideal Fermi-Dirac gas in D dimensions.

Solution:



Ideal Fermi-Dirac gas: isochores II [tln73]

Reference values for temperature and pressure:

kBTv =
Λ

v2/D
, pv =

kBTv

v
; Λ

.
=

h2

2πm
, v

.
=

gV

N
.

Noncommuting limits z → ∞, D → ∞:

• z < ∞, D → ∞:

p

pv

=
T

Tv

fD/2+1(z)

fD/2(z)

D→∞

−→
T

Tv

(ideal MB gas).

• D → ∞, z → ∞ with D/2 = r ln z, r ≥ 0:

p

pv

=
fD/2+1(z)

[fD/2(z)]1+2/D

D≫1

 

e−1

1 + 2/D
,

T

Tv

=
[

fD/2(z)
]

−2/D D≫1
 

D

2

e−1

ln z
(pure Fermi sea).
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Ideal FD gas: phase diagram in D → ∞ [tln74]

Equation of state:

pv =

{

kBT, T > Tc (ideal MB gas)
kBTc, T < Tc (pure Fermi sea)

Transition temperature:

kBTc =
Λ

e
, Λ

.
=

h2

2πm
.
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[tex121] Stable white dwarf

Consider a burnt-out white dwarf star. For simplicity we assume that it consists of equal numbers
N of electrons, protons, and neutrons. The electrons form a fully degenerate, nonrelativistic Fermi
gas that prevents the star from collapsing into a neutron star or a black hole.
(a) Under the assumption that the kinetic energy is predominantly due to the electrons and that
the potential energy is predominantly gravitational in nature, show that the total energy of the
star depends on N and R (radius) as follows:

E = Ekin + Epot =
3~2

10me

(
9π
4

)2/3
N5/3

R2
− 12

5
m2

nG
N2

R
,

where me,mn are the electron and neutron masses, and G is the universal gravitational constant.
(b) Using a star of solar mass, m� ' 1.99×1030kg, find the radius Rwd in units of the solar radius,
R� ' 6.96× 108m.

Solution:



[tex122] Unstable white dwarf

Consider a burnt-out white dwarf star of the same composition as described in [tex121] but with
N so large that most of the electrons are ultrarelativistic, ε ' cp = ~kc, in the fully degenerate
state.
(a) Under similar assumptions as in [tex121] show that the expression of the total energy now reads

E = Ekin + Epot =
~c
3π

(
9π
4

)4/3
N4/3

R
− 12

5
m2

nG
N2

R
,

where c is the speed of light.
(b) Find the critical mass in units of the solar mass, mc/m�, beyond which this star is unstable
and thus prone to a gravitational collapse into a neutron star or a black hole.

Solution:
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