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Linearly Damped Harmonic Oscillator [mln6]

Equation of motion: mẍ = −kx− γẋ ⇒ ẍ+ 2βẋ+ ω2
0x = 0.

Damping parameter: β ≡ γ/2m; characteristic frequency: ω0 =
√
k/m.

Ansatz: x(t) = ert ⇒ (r2 + 2βr + ω2
0)ert = 0 ⇒ r± = −β ±

√
β2 − ω2

0.

Overdamped motion: Ω1 ≡
√
β2 − ω2

0 > 0

Linearly independent solutions: er+t, er−t.

General solution: x(t) =
(
A+e

Ω1t + A−e
−Ω1t

)
e−βt.

Initial conditions: A+ = (ẋ0 − r−x0)/2Ω1, A− = (r+x0 − ẋ0)/2Ω1.

Critically damped motion:
√
ω2

0 − β2 = 0, r = −β

Linearly independent solutions: ert, tert.

General solution: x(t) = (A0 + A1t)e
−βt.

Initial conditions: A0 = x0, A1 = ẋ0 + βx0.

Underdamped motion: ω1 ≡
√
ω2

0 − β2 > 0

Linearly independent solutions: er+t, er−t.

General solution: x(t) = (A cosω1t+B sinω1t) e
−βt = D cos(ω1t− δ)e−βt.

D =
√
A2 +B2, δ = arctan(B/A).

Initial conditions: A = x0, B = (ẋ0 + βx0)/ω1.

The dissipative force, −γẋ, effectively represents a coupling of one low-
frequency oscillator to many high-frequency oscillators.



[mex150] Harmonic oscillator with friction

The equation of motion of a harmonic oscillator with Coulomb damping (friction) has the form

ẍ+ α sgn(ẋ) + ω2
0x = 0,

where ω2
0 = k/m is the angular frequency of the undamped oscillator and sgn(ẋ) denotes the sign

(±) of the instantaneous velocity.
(a) Show that the solution for nπ ≤ ω0t ≤ (n + 1)π, n = 0, 1, 2, . . . and x(0) = A0 + β, ẋ(0) = 0
has the form x(t) = An cos(ω0t) + (−1)nβ. Find the constant β, the maximum value of n, and the
amplitudes An.
(b) For the case α = 1cm/s2, ω0 = 1rad/s, and x(0) = 9cm, find the time it takes the system to
come to a halt and the total distance traveled. Plot the phase portrait in the (x, ẋ/ω0)-plane for
this particular case.

Solution:



[mex261] Harmonic oscillator with attenuation

The equation of motion of a harmonic oscillator with attenuation is written in the form

ẍ+ αm sgn(ẋ)|ẋ|m + ω2
0x = 0,

where ω2
0 = k/m is the angular frequency of the undamped oscillator and sgn(ẋ) denotes the sign

(±) of the instantaneous velocity. Here we consider the three cases of Coulomb damping (m = 0),
linear damping (m = 1), and quadratic damping (m = 2). Use ω0 = 1 throughout.
Employ the Mathematica options of NDSolve and ParametricPlot to numerically solve the equation
of motion for all three cases and to plot x versus ẋ for initial conditions x(0) = 9 and ẋ(0) = 0.
Vary the attenuation parameter αm in each case and watch out for qualitative changes in the
phase-plane trajectory. Present a collection of neat graphs that emphasize the differences between
the three cases as well as the differences between parameter regimes for one or the other case.
Describe the different types of trajectories.

Solution:



Driven Harmonic Oscillator I [mln28]

Equation of motion: mẍ = −kx−γẋ+F0 cosωt ⇒ ẍ+2βẋ+ω2
0x = A cosωt.

Parameters: β
.
= γ/2m, ω0

.
=
√
k/m, A

.
= F0/m.

General solution: x(t) = xc(t) + xp(t).

• xc(t): general solution of homogen. eq. (transients) ⇒ [mln6].

• xp(t): particular solution of inhomogen. eq. (steady state)⇒ [mex180].

Steady-state oscillation: xp(t) = D cos(ωt− δ)

• amplitude: D(ω) =
A√

(ω2
0 − ω2)2 + 4ω2β2

,

• phase angle: δ(ω) = arctan
2ωβ

ω2
0 − ω2

.

Maximum amplitude realized at
dD(ω)

dω

∣∣∣∣
ωR

= 0.

Amplitude resonance frequency: ωR =
√
ω2
0 − 2β2 if 2β2 < ω2

0.

Average energy: 〈E(ω)〉 = 〈T (ω)〉+ 〈V (ω)〉 =
1

4
mA2 ω2 + ω2

0

(ω2
0 − ω2)2 + 4ω2β2

.

〈E(ω)〉, 〈T (ω)〉, 〈V (ω)〉 are resonant at different frequencies ⇒ [mex181].

Average power input: 〈P (ω)〉 .= 〈F0 cosωt · ẋ(t)〉 ⇒ [mex182].

Quality factor: ⇒ [mex183]

• driven oscillator: Q
.
= 2π

average energy stored

maximum energy input per period
,

• damped oscillator: Q
.
= 2π

energy stored

energy loss per period
.

For β � ω0 the width at half maximum of the power resonance curve is
∆ω ' 2β. Therefore, the quality factor is Q ' ω0/∆ω.



[mex180] Driven harmonic oscillator: steady state solution

Consider the driven harmonic oscillator, mẍ = −kx− γẋ+ F0 cosωt. Show that the steady-state
solution has the form

x(t) = D cos(ωt− δ), D =
A√

(ω2
0 − ω2)2 + 4ω2β2

, δ(ω) = arctan
2ωβ

ω2
0 − ω2

,

where we have used the parameters β
.
= γ/2m, ω0

.
=

√
k/m, A

.
= F0/m..

Solution:



[mex181] Driven harmonic oscillator: kinetic and potential energy

Consider the driven harmonic oscillator, mẍ = −kx− γẋ+F0 cosωt, in a steady-state motion. (a)
Calculate the average kinetic energy 〈T (ω)〉, the average potential energy 〈V (ω)〉, and the average
total energy 〈E(ω)〉 = 〈T (ω)〉+ 〈V (ω)〉. Use the parameters β

.
= γ/2m, ω0

.
=

√
k/m, A

.
= F0/m..

(b) Each quantity assumes its maximum value at a different resonant frequency: ωT , ωV , ωE .
Determine each resonant frequency.

Solution:



[mex182] Driven harmonic oscillator: power input

Consider the driven harmonic oscillator, mẍ = −kx− γẋ+F0 cosωt, in a steady-state motion. (a)
Calculate the average power input, 〈P (ω)〉 .= 〈F0 cosωt·ẋ(t)〉. Use the parameters β

.
= γ/2m, ω0

.
=√

k/m, A
.
= F0/m. (b) Find the resonant frequency ωP and the maximum (averaged) power input

Pmax = 〈P (ωP )〉 .

Solution:



[mex183] Quality factor of damped harmonic oscillator

(a) Consider the driven harmonic oscillator, mẍ = −kx− γẋ+F0 cosωt, in a steady-state motion.
Use the parameters β

.
= γ/2m, ω0

.
=

√
k/m, A

.
= F0/m. In [mex182] we have calculated the

maximum (averaged) power input, Pmax = 〈P (ωP )〉, and in [mex181] we have calculated the
average energy 〈E(ω)〉 stored in the oscillator. Determine the quality factor of the driven oscillator
defined as Q = 2π〈E(ωP )〉/〈P (ωP )〉τ with τ = 2π/ωP . Show that to leading or der in β/ω0 the
quality factor is equal to the amplitude ratio at resonance and at zero frequency: Q = D(ωR)/D(0).
(b) Consider the harmonic oscillator, mẍ = −kx − γẋ, with weak damping (β/ω0 � 1) and no
driving force. Determine the quality factor Q of the damped oscillator defined as 2π times the
ratio of the instantaneous energy stored, E(t), and the energy loss per period, τ |dE/dt|. Evaluate
the result to leading order in β/ω0

Solution:



[mex262] Driven harmonic oscillator: runaway resonance

Consider the driven harmonic oscillator with no damping, mẍ = −kx+F0 cosωt. Take the general
solution off resonance, ω 6= ω0 =

√
k/m, and perform the limit ω → ω0 to show that the (runaway)

solution at resonance with initial condition x(0) = B cosβ, ẋ(0) = −ω0B sinβ has the form

x(t) = B cos(ω0t+ β) +
F0t

2mω0
sin(ω0t).

Solution:



Driven Harmonic Oscillator II [mln29]

Equation of motion: ẍ+ 2βẋ+ ω2
0x = A(t).

Parameters: β
.
= γ/2m, ω0

.
=
√
k/m, A(t)

.
= F (t)/m.

Periodic driving force: F (t+ τ) = F (t).

Fourier series: A(t) =
1

2
a0 +

∞∑
n=1

[an cosnωt+ bn sinnωt] , ω =
2π

τ
.

Fourier coefficients: an =
2

τ

∫ τ

0

dtA(t) cosnωt, bn =
2

τ

∫ τ

0

dtA(t) sinnωt.

Linear response of system to periodic driving force:

x(t) =
a0

2ω2
0

+
∞∑
n=1

d(ωn) [an cos(ωnt+ δn) + bn sin(ωnt+ δn)] ,

ωn =
2πn

τ
, d(ωn) =

1√
(ω2

0 − ω2
n)2 + 4ω2

nβ
2
, δn = arctan

(
2ωnβ

ω2
0 − ω2

n

)
.

Aperiodic driving force: F (t) = mA(t) with

∫ +∞

−∞
dt |A(t)| <∞.

Fourier transform: x̃(ω) =

∫ +∞

−∞
dt eiωtx(t), Ã(ω) =

∫ +∞

−∞
dt eiωtA(t).

Inverse transform: x(t) =

∫ +∞

−∞

dω

2π
e−iωtx̃(ω), A(t) =

∫ +∞

−∞

dω

2π
e−iωtÃ(ω).

Fourier transformed equation of motion is algebraic (not differential):

ẍ+ 2βẋ+ ω2
0x = A(t) ⇒ − ω2x̃(ω)− 2iβωx̃(ω) + ω2

0x̃(ω) = Ã(ω).

Linear response of system to aperiodic driving force:

x̃(ω) =
Ã(ω)

ω2
0 − ω2 − 2iβω

⇒ x(t) =

∫ +∞

−∞

dω

2π
e−iωtx̃(ω).



[mex184] Fourier coefficients of a sawtooth driving force

Find the Fourier coefficients an, bn of a periodic sawtooth driving force F (t) = mA(t) in two
renditions with different symmetries. (a) A(t) = at/τ, |t| < τ/2; (b) A(t) = at/τ, 0 < t < τ .

A(t)

t

t

ττ

a

(b)(a)A(t)

Solution:



[mex185] Fourier coefficients of periodic sequence of rectangular pulses

(a) Find the Fourier coefficients an, bn of a periodic driving force F (t) = mA(t) in the shape of
a sequence of rectangular pulses as shown. (b) Each pulse has an area c = uv. Find the Fourier
coefficients in the limit u → ∞, v → 0 at fixed c.

v

u

t

τ

A(t)

Solution:



Driven Harmonic Oscillator III [mln107]

No damping and arbitrary driving force.

Equation of motion: mẍ+ ω2
0x = F (t),

Complex variable: ξ(t)
.
= ẋ(t) + ıω0x(t) ⇒ ξ̇(t)− ıω0ξ(t) = F (t)/m.

Ansatz: ξ(t) = B(t)eıω0t ⇒ Ḃ(t) =
1

m
F (t)e−ıω0t.

Solution: x(t) =
1

ω0

=[ξ(t)], ξ(t) = eıω0t

[
1

m

∫ t

0

dt′F (t′)e−ıω0t′ + ξ0

]
.

Instantaneous energy at time t or total energy absorbed at time t if oscillator
is initially at equilibrium (x0 = ẋ0 = 0):

E(t) =
1

2
mẋ2 +

1

2
mω2

0x
2 =

1

2
m|ξ(t)|2 =

1

2m

∣∣∣∣∫ t

0

dt′F (t′)e−ıω0t′
∣∣∣∣2 .

Constant force switched on: F (t) = F0Θ(t).

x(t) =
F0

mω2
0

(
1− cosω0t

)
, E(t) =

F 2
0

mω2
0

(
1− cosω0t

)
.

Force performs positive and negative work in alternation.

Fading force switched on: F (t) = F0e
−αtΘ(t).

x(t) =
F0

m(ω2
0 − α2)

[
e−αt − cosω0t+

α

ω0

sinω0t

]
.

E(t) =
F 2
0

2m(ω2
0 + α2)

[
1 + e−2αt − 2e−αt cosω0t

]
.

Constant force switched on and then off: F (t) = F0Θ(t)Θ(T − t).

x(t) =
F0

mω2
0

[
cosω0(t− T )− cosω0t

]
(t ≥ T ).

E(t) =
2F 2

0

mω2
0

sin2 ω0T

2
= const (t ≥ T ).



[mex263] Driven harmonic oscillator with Coulomb damping

The harmonic oscillator with Coulomb damping and harmonic driving force is described by the
equation of motion,

ẍ+ α sgn(ẋ) + ω2
0x = A cos(ωt), (1)

where ω2
0 = k/m, α = µ/m, A = F0/m. The function sgn(ẋ) denotes the sign (±) of the

instantaneous velocity. The oscillator has mass m and the spring has stiffness k. The coefficient of
kinetic (and static) friction is µ. The natural angular frequency of oscillation is ω0. The harmonic
driving force has amplitude F0 and angular frequency ω. In this project we consider an oscillator
at resonance (ω = ω0 = 1) launched from x(0) = 0 with initial velocity ẋ(0) = v0 > 0.
(a) Use the DSolve option of Mathematica to determine the analytic solutions of (1) with the
given initial conditions, valid over a time interval with ẋ > 0. Check whether the solution that
Mathematica gives you can be further simplified by hand. Use the ParametricPlot option of
Mathematica to plot this solution in the phase plane, i.e. x versus ẋ. Use A = 1, v0 = 9 and
various values of α (all in SI units).
(b) Use the NDSolve and ParametricPlot options of Mathematica to generate and plot data for
the solution of (1) over a larger time interval. Use again A = 1, v0 = 9 and various values of α.
Tune α to a value that yields a periodic trajectory.
(c) Investigate the stability of the periodic trajectory thus found numerically. Is it a limit cycle?
Vary the initial conditions and check whether the periodic trajectory attracts or repels nearby
trajectories.

Solution:



Small Oscillations [mln43]

Consider undamped small-amplitude motion about a stable equilibrium.

Lagrangian: L(q1, . . . , qn, q̇1, . . . , q̇n) =
1

2

∑
ij

mij q̇iq̇j −
1

2

∑
ij

kijqiqj.

Mass coefficients: mij =
3N∑
k=1

mk

(
∂xk

∂qi

)
0

(
∂xk

∂qj

)
0

.

Stiffness coefficients: kij =

(
∂2V

∂qi∂qj

)
0

.

Lagrange equations are linear:
n∑

j=1

mij q̈j +
n∑

j=1

kijqj = 0, i = 1, . . . , n.

The matrices {mij} and {kij} are symmetric.

Ansatz for solution: qj(t) = Aj cos(ωt + φ), j = 1, . . . , n.

⇒
n∑

j=1

(kij − ω2mij)Aj cos(ωt + φ) = 0, i = 1, . . . , n.

Linear homogeneous equations:

n∑
j=1

(kij − ω2mij)Aj = 0, i = 1, . . . , n. (1)

Characteristic equation (nth-order polynomial in ω2):

∣∣∣∣∣∣∣
(k11 − ω2m11) · · · (k1n − ω2m1n)

...
...

(kn1 − ω2mn1) · · · (knn − ω2mnn)

∣∣∣∣∣∣∣ = 0.

The n roots ω2
1, . . . , ω

2
n of the characteristic equation are the eigenvalues

associated with n natural modes of vibration (normal modes).

The normal mode with angular frequency ωk is specified by a set of ampli-
tudes A

(k)
1 , . . . , A

(k)
n . The amplitude ratios for this normal mode are deter-

mined from Eqs. (1):

n∑
j=1

(kij − ω2
kmij)A

(k)
j = 0, i = 1, . . . , n.



Transformation to Principal Axes [mln30]

Solving the equations
n∑

j=1

(kij − ω2
rmij)Ajr = 0, i, r = 1, . . . , n

for the amplitudes Ajr of the n normal modes amounts to finding an or-
thogonal matrix A, which diagonalizes the symmetric matrices m and k
simultaneously:

AT ·m ·A = 1
.
=


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1

 ,

AT · k ·A = Ω2 .
=


ω2

1 0 · · · 0
0 ω2

2 · · · 0
...

. . .
...

0 0 · · · ω2
n

 ,

Normal coordinates: Qj =
n∑

i=1

Aijqi.

Lagrangian: L =
1

2

∑
ij

(mij q̇iq̇j − kijqiqj) =
1

2

n∑
r=1

(
Q̇2

r − ω2
rQ

2
r

)
.

Lagrange equations:
n∑

j=1

(mij q̈j + kijqj) = 0, i = 1, . . . , n (coupled).

Lagrange equations: Q̈r + ω2
rQr = 0, r = 1, . . . , n (decoupled).

Applications:

• Blocks and springs in series [mex123]

• Small oscillations of the double pendulum [mex124]

• Two coupled oscillators [mex186]



Elastic Chain [mln48]

Consider the elastic chain consisting of n blocks and n + 1 springs as shown.

m
kk k

m

qq

k
m

q

k

21 n

Equations of motion: mq̈j + k(2qj − qj−1 − qj+1) = 0, j = 1, . . . , n.

Boundary conditions: q0(t) = qn+1(t) = 0.

Ansatz for solution: qj(t) = C sin(αj) cos(ωt + φ), j = 1, . . . , n.

Check boundary condition: sin[(n + 1)α] = 0 ⇒ α =
πr

n + 1
, r = 1, . . . , n.

Check eqs. of motion:

[

−mω2 + 2k

(

1 − cos
πr

n + 1

)]

C sin(αj) = 0.

Normal mode frequencies: ωr = 2

√

k

m
sin

πr

2(n + 1)
, r = 1, . . . , n.

Normal mode amplitudes: Ajr = sin

(

πr

n + 1
j

)

, j, r = 1, . . . , n.

General solution: superposition of normal modes

qj(t) =
n

∑

r=1

Cr sin

(

πr

n + 1
j

)

cos(ωrt + φr)

=

n
∑

r=1

sin

(

πr

n + 1
j

)

[dr cos ωrt + er sin ωrt] ,

with

dr =
2

n + 1

n
∑

r=1

qj(0) sin

(

πr

n + 1
j

)

,

er =
2

n + 1

1

ωr

n
∑

r=1

q̇j(0) sin

(

πr

n + 1
j

)

.



[mex123] Blocks and springs in series

Consider a system of two blocks of mass m attached by springs of stiffness k to each other and to
a rigid wall. The blocks can slide without friction along the x-axis. When the springs are relaxed,
the blocks are at the positions x1 = a and x2 = 2a. (a) Find the Lagrangian L(q1, q2, q̇1, q̇2) for the
system, where q1, q2 are the displacements of the two blocks from their equilibrium positions. (b)
Find the angular frequencies ω1, ω2 of the two normal modes by solving the characteristic equation.

(c) Find the amplitude ratios A
(k)
1 /A

(k)
2 , k = 1, 2 for the two normal modes.

m

2aa

x

k k
m

Solution:



[mex186] Two coupled oscillators

Consider a system of two blocks of mass m attached by springs of stiffness k to rigid walls on
two sides and by a spring of stiffness kc to each other. The blocks can slide back and forth
without friction. (a) Find the Lagrangian L(q1, q2, q̇1, q̇2). (b) Write the equations of motion for
q1, q2. (c) Find the normal mode frequencies ω1, ω2 by solving the characteristic equation. (d)
Rewrite the Lagrangian in the form L = 1

2

∑
ij [mij q̇iq̇j +kijqiqj ]. Then find the orthogonal matrix

Aij which diagonalizes the symmetric matrices mij and kij simultaneously:
∑

lmAT
ilmlmAmj =

δij ,
∑

lmAT
ilklmAmj = ωiδij . (e) Find the normal mode coordinates Qj =

∑
iAijqi.

k k

m

qq

m

k

1 2

c

Solution:



[mex187] Three coupled oscillators

Consider the elastic chain consisting of three blocks and four springs as shown. (a) Show that the
equations of motion for the generalized coordinates qj can be brought into the form

mq̈j + k(2qj − qj−1 − qj+1) = 0, j = 1, 2, 3

with boundary conditions q0(t) = q4(t) = 0. (b) Use the ansatz qj(t) = Aj cos(ωt) and find the
three normal-mode frequencies ωr, r = 1, 2, 3. (c) Find the normal coordinates Qj =

∑
i Aijqi, j =

1, 2, 3. (d) Illustrate each normal mode Qj modes by plotting qi(0) versus i.

m

qq q

m

k

m

kk k

2 31

Solution:



[mex114] What is the physical nature of these modes?

Three beads of mass m each are constrained to slide without friction along parallel wires. The beads
are connected to each other by rubber bands of negligible mass which are stretched considerably
(L � L0). (a) Describe the physical nature of the modes specified by the generalized coordinates
q1, q2, q3, where

x1 = q1 + q2 +
1

2
q3, x2 = q1 − q3, x3 = q1 − q2 +

1

2
q3.

Give a quantitative description of the motion that ensues if the system is initially at rest with only

one the generalized coordinates diplaced infinitesimally: (b) 0 < q
(0)
1 � L, q

(0)
2 = q

(0)
3 = 0, (c)

0 < q
(0)
2 � L, q

(0)
1 = q

(0)
3 = 0, (d) 0 < q

(0)
3 � L, q

(0)
1 = q

(0)
2 = 0.

3

L L

x1

x2

x

Solution:



[mex124] Small oscillations of the double pendulum

Consider a plane double pendulum consisting of two equal point massesm and two rods of negligible
mass and equal lengths `. The Lagrangian L(φ1, φ2, φ̇1, φ̇2) of this system is known from [mex20].
(a) Expand L(φ1, φ2, φ̇1, φ̇2) to quadratic order in the dynamical variables and derive the Lagrange
equations from it. They describe the small oscillations about the stable equilibrium position. (b)
Find the angular frequencies ω1, ω2 of the two normal modes by solving the characteristic equation.

(c) Find the amplitude ratios A
(k)
1 /A

(k)
2 , k = 1, 2 for the two normal modes.

l

m

φ
1

φ
2

m

l

Solution:
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