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Heat capacity estimators for random series path-integral methods
by finite-difference schemes

Cristian Predescu,® Dubravko Sabo, and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

(Received 31 July 2003; accepted 18 September 2003

Previous heat capacity estimators used in path integral simulations either have large variances that
grow to infinity with the number of path variables or require the evaluation of first- and
second-order derivatives of the potential. In the present paper, we show that the evaluation of the
total energy by the T-method estimator and of the heat capacity by the TT-method estimator can be
implemented by a finite difference scheme in a stable fashion. As such, the variances of the resulting
estimators are finite and the evaluation of the estimators requires the potential function only. By
comparison with the task of computing the partition function, the evaluation of the estimators
requiresk+1 times more calls to the potential, whekeis the order of the difference scheme
employed. Quantum Monte Carlo simulations for the N\#uster demonstrate that a second order
central-difference scheme should suffice for most application0@3 American Institute of
Physics. [DOI: 10.1063/1.1625366

I. INTRODUCTION confined, e.g., a free particle. Therefore, the variance of the
T-method estimator is lower than that of the virial estimator
Itis said that path integral methods transform a quantunbecause the classical part of the energy is explicitly intro-
equilibrium problem into a classical one by judicious use ofduced as a constant and is not obtained from the virial theo-
dimensionality: Yet, the computation of the average rem. In a recent study of the ghh, cluster at the temperature
energy ' or the heat capacity'® of a quantum canonical of 6 K, 2 difficulties associated with the virial estimator for
ensemble reveals that the quantum-classical analogy is fagw-temperature systeth5°were not observed to appear for
from being trivial, even if distinguishable particles are as-the T-method estimator introduced by Predescu and Doll.
sumed. One observes an increase in the computational timgych differences between the estimators are even more sig-
not only with the number of path variables considered, buhificant for the heat capacity estimators and will be revealed
also with the dimensionality of the system. This is so be-in the present paper by comparing the statistical errors for the
cause estimators of finite variance usually involve first- orpredescu and Doll-type estimators with those for the double
second-order derivatives of the potential. The number ofjrial estimatort®
such derivatives scales linearly or quadratically with the |y order to avoid any confusion with earlier estimators,
number of degrees of freedom of the system. For exampleye mention that in the present article by T-method and
numerical studies of even moderately large quantum clusteny_method estimators, we understand the respective energy
are severely hindered by this substantial increase in the numgstimators introduced by Predescu and Doll in Ref. 14. By
ber of quantities that must be evaluatéd. TT-method and TH-method estimators, we understand the
Recently, Predescu and Ddllhave observed that a heat capacity estimators that are obtained from the corre-
simple rescaling of the Brownian bridge entering thegponding energy estimators by temperature differentiation.
Feynman—Kac formufd™° produces path-integral tech- The T-method estimator is closely related and similar in
niques for which the dependence with the temperature of thgyym to the centroid virial estimat§rt316 There are, how-
path distributions is buried into the potential part of thegyer, two differences. First, the T-method estimator involves
imaginary-time action. A formal differentiation of the loga- fjctyations of the Brownian bridge relative to one arbitrary
rithm of the partition function leads to a special form of the yoint. The centroid virial estimator involves similar fluctua-
thermodynamic estimatdif-method estimatorthat does not  ions put s relative to the path centroid. It can be shown that
have the variance difficulties assomat.ed with the Barker esqa ratio between the average square fluctuations of the
timator for large numbers of path variabfeSEven though  Brownian bridge relative to some preferential point and to
the resulting T-method estimator closely resembles the virigj,o path centroid is 3! Thus, the two estimators have similar
estimators;**3it does not rely on the virial theorem to re- panavior with the nature of the quantum system, the tem-
cover the kinetic energy. For instance, this T-.method eStimaperature, and the Monte Carlo sampling method, though the
tor produces correct results even for potentials that are NQteniroid virial estimator may exhibit a slightly lower vari-

ance.
¥Electronic mail: cristian_predescu@brown.edu A second and more important difference, which consti-
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tutes the starting point of the present development, is the faend

that the T-method estimator is a veritable thermodynamic 2 q27(p) d42(8)]?
estimator, in the sense that it is obtained by temperature dif- (CV>TT= kB: B (2'8 _[ B (B ] )
ferentiation of the quantum partition functighowever, as p Z(p) dB Z(p) dp ’

discussed in a previous paragraph, one needs to utilize r%spectively. The partition function of the system is obtained

special form for the Feynman—Kaq fo'rmu'la, With. th? M- 55 the integral over the configuration space of the diagonal
perature dependence of the path distribution buried into thaensity matrix

potentia). The temperature differentiation can be imple-

mented numerically by a finite-difference scheme and leads

to numerically stable algorithms that do not require deriva- Z2(p)= fde(X;'B)dX' )

tives of the potential. This observation proves to be ex- . ) o

tremely important for heat capacity calculations because for- !N the path-integral approach, the density matrix is

mal temperature differentiation leads to expression€valuated with the help of the Feynman—Kac formula. We

involving all first- and second-order derivatives of the poten-SPlit the present section into two parts. In the first part, we

tial. By numerical temperature differentiation, one obtains arphall discuss the random series implementation of the

important speed-up in the evaluation of the above-mentioneff€ynman—Kac formula and introduce some relevant nota-

thermodynamic properties, especially for large dimensionafion- In the second part, we deduce the formal expression of

systems or for complicated potentials. the TT—method heat_capacn.y_esnrnator and discuss its nu-
In this article, we also propose an analytical heat Capacmencal_ |mplementa.1t.|on by f|n|te-d|ffere_nce schemes. Then,

ity estimator that involves the first derivatives of the poten-We derive the modified TT-method estimator, the analytical

tial only. This is obtained from the analytical form of the €XPression of which involves first-order derivatives of the

TT-method estimator by an integration by parts suggested bjotential only.

PredeSCU and DO” in the derivation Of theil’ SpeciaIA_ Random series path integra| techniques

H-method energy estimatdt.The two estimators, called in o i

this paper the TT-method estimator and the modified TT- In the random Series |mp!ementat|on 9f the.Feynman—

method estimator, respectively, may have slightly different<ac formula,.the densny matrix of a one-dimensional quan-

variances. As discussed in the previous paragraph, the firlfM System is obtained as followsLet {\(n)}=1 be a

one is to be implemented by finite difference, whereas for th&YStem of functions on the intervid, 1] that, together with

second one we shall use exact analytical formulas. the constant function(7) =1, make up an orthonormal ba-
The relative merits of the new heat capacity estimator$'S INL°0.1]. Define

will be demonstrated for the Ngcluster. For this example, t

we provide a comparison of the statistical errors of the new Ak(t):f A(u)du.

estimators with those of the double virial estimator utilized 0

by Neirotti, Freeman, and Dol We shall also clarify a Let  denote the space of infinite sequences

number of issues raised in the Neirotti, Freeman, and Dol (a,,a,,...) and let

study of this neon cluster. The numerical simulation pre- .

sented serves to demonstrate the power of the path integral

approach utilized as well as to provide essentially exact nu- dp[a:kll d(ay) 4

merical data necessary for comparison in the development of

quantum approximations that can be employed for larger oPe the probability measure oft such that the coordinate

more complicated systens. mapsa—ay are independent identically distributédi.d.)

variables with distribution probability,

1
Il. THERMODYNAMIC ENERGY AND HEAT du(a)= _e*aizlzda_i . (5)
CAPACITY ESTIMATORS N2

In this section, we derive the formal expressions for theThen, the Feynman—Kac formula re&tias
heat capacity of ad-dimensional canonical quantum me-

chapical system made up of Qistinguishable p_articles. The p(x,x’i.ﬁ) :f dP[a]ex —,Bflv X, (U)
particles have massém,;; 1<i<d} and move in the po- Pip(XX";:B)  Ja 0
tential V(x). The vectorx, the transpose of which ig"

=(Xq,...,Xq), denotes the position of the particles in the

configuration spac&Y. The canonical system is character- +0-k21 A K(U)
ized by inverse temperatuyg=1/(kgT). Its average energy
and heat capacity can be obtained by temperature differe
tiation of the partition functiorZ(B), producing the formu-
las

du] , (6)

yvherex(u) =x+(x' —x)u ando = (#2B/my) Y. The quan-
tity psp(X,X";B) represents the density matrix for a similar
free particle. The series,

©

_L 948 ®  BY@=3 adu),

T—_ —
©=" 705 ~dp =
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represents a stochastic process equal in distribution to a stahough the problem of maximizing the order of convergence
dard Brownian bridge. is still far from a final resolution, several schemes in the

For ad-dimensional system, the Feynman—Kac formulalarger class of reweighted techniques were proven to have
is obtained by employing an independent random series fozubic or quartic asymptotic convergerfée? The construc-
each additional degree of freedom. As such, we consider thgon of the functions?’\n,k and of associated quadrature
space)? made up of all sequences=(a,,a,...) of vectors  schemes for the computation of the path averages appearing
in Eq. (9) have been discussed elsewh&f&> For the nu-

aik . e )
N merical examples presented in this article, we use a so-called
a=\| - b Levy—Ciesielski reweighted path integral method having
Ad.k quartic convergenc¥. To a large extent, the analytical ex-
and denote the lineof aby a;=(a; 0,a;,...). Onthespace pressions of the functiond , (u) and the nature of the
Q¢ we define the probability measure quadrature schemes are not important for the present devel-
d opment. For more information, the reader is advised to con-
dP[a]= H dP[a], 7) sult the cited references.
i=1 To simplify notation, we introduce several auxiliary
with quantities B ,(8), U,(x,x',&8), and X,(x,x',&8), de-
. fined by the expressions
dPa]=1I1 du(a - we
k-1 Bln@= 2, adknuu), (10

Under this probability measure, the coordinate maps

—a;  are i.i.d. standard normal variables. We also consider o 1

the vector o'=(0y,....04) oOf components o; Un(x,x’,a;ﬂ)=f V[ (u)+ 0By ,(a)]du, 1Y
=(h%BImg;)Y? and letx,(u)=x+(x'—x)u be a straight °

line connecting the points andx’. Then, the Feynman—Kac and

formula reads as . -
Xn(X,X",8 B) = psp(X,X"; B)eXd — BUp(X, X’ ,a:B)],(lz)

p(X.X";B) !
— 7= | dPlalexp =B | V|x(u)
pip(X X))  Jod 0 respectively. The similar relations for the full Feynman—Kac
oc formula are denoted byBl(@), U.(xx',&B), and
+o> aA(u) du}, (8)  X«(x,X',aB), respectively. With the new notation, E(p)
k=1 becomes
where -
ool )= | dPEIX, (X T) 19
18k Q
T ) whereas the Feynman—Kac formula reads as
0¢8d k
The series p(X,X';IB)Zf dd Pla]X.(x,x",a;8). (14
Q
BY%@)= >, aAyu) In this paper, we make the convention thatis dropped
k=1

wheneverx=x'. In order to arrive at the definition of the
is equal in distribution to @-dimensional Brownian bridge €nergy and the heat capacity estimators, it is convenient to
(a vector-valued stochastic process whose components aiféroduce the quantities
independent one-dimensional Brownian bridges

In practical applications, one cannot work with the full R,(X,2 B3, €)= Xn(x—a_ﬂe)
random series implementation of the Feynman—Kac formula. Xn(x,88)
Instead, one considers finite-dimensional approximations to = Y%ex] — BeU (X, Be)
Eq. (8), the simplest of which have the general form oo
) +BUnXaB)] (15
M:J' dp[a_lex —ﬂflv X(U)
pip(X.X";8)  Jad 0 r and
antp _ Xe(X,8; Be€)
~ R.(X,&B,6)= 0———=—
to 3 akow|dul, © X&5)= X ap

i ) . =e Y%exd — BeU..(x,a; B€)
whereq and p are some fixed integers. The functios

are chosen so that to maximize the rate of convergence, +BU.(x,a8)], (16)

pn(X,X"; B)—p(X,xX"; B). respectively. We have
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B dZ(pB)
Z(p) dp
d
fRdde(ldd P[EJXOO(X!EB) & ROO(XIEIBl 6)
— e=1
T 1o0x] a0 PLaIX. (%@ B) 0
and
B> d?Z(B)
Z(B) dp?
d2
f]RddeQdd P[a_l Xw(xvaﬂ) @ Rw(xvaﬂl E)
— e=1
JredX[ qad P[a]X(X,a;B)
(18)

The quantities above can be evaluated by Monte Carlo inte-

gration as the limin—oo of the sequences

B dZ,(B)
Zy(B) dB

d
I]Rddxfﬂdd P[EJXH(X,E,B) & Rn(X,E;B, 6)
e=1

- TS adPaxaas L9

and

B &z
zZ?p)  dp?

d2
[ radx[ gad PLA]X(X,3 B) gz Ra(X,3 B, €)

e=1
Jradx [ ged P[a]Xn(x,a; 8) ’
(20)

respectively.

Predescu et al.

useful for highly quantum systems or for pathological sys-
tems, as, for instance, a particle in a box. However, for
smooth enough potentials, the alternatives that are analyzed
in the following section may prove to be superior.

B. Expressions of the heat capacity estimators

In this section, we shall put the relevant quantities enter-
ing the expression of the heat capacity estimator in a form
that is exact in the high-temperature limit or in the limit that
the physical system is classical. For this purpose, we assume
that expp—BV(X) ] has second-order Sobolev derivatives as a
function of x. In the second part of the present section, we
shall derive a special analytical expression for the heat ca-
pacity estimator that employs the first-order derivatives of
the potential, only. This modified heat capacity estimator
gives results identical to the first one, but it may have a
slightly different variance.

By explicit computation, one argues that

d_ d _
&Rn(x,a,ﬂ,e) 621__§_Bun(xvarﬂ)
d =
_B&Un(x,a,ﬂf) . (21)
and
d2 d 2
Rn(xva;ﬁné) = _Rn(x1aﬁa€) :|
Ez e=1 de e=1
d _d
+ E—Z,B&Un(x,a,ﬂe) .
d? _
~BgzUnx.aBe) - (22)

In the finite-difference scheme that is advocated in this .
paper, the derivatives againstappearing in Eqs(19) and  The first and second derivatives of the functidp(x,a; Be)
(20) may be evaluated numerically by a finite difference.around the point=1 can be evaluated by finite difference,
Such an approach is expected to be much faster than tif$ shown in the preceding section. However, we notice that
analytical evaluation of the derivatives, especially for largein the limit that the physical system behaves classically,
dimensional systems or systems with complicated potential$/n(X,8;8€)~V(x) and the derivatives against vanish.

Though higher-order central-difference schemes can be enMoreOVer, in this limit any finite-difference scheme pI‘OduceS
ployed, a second-order scheme produces the exact classical results. It is therefore apparent that the

utilization of the derivatives of the functiond ,(x,a;B¢)
instead of the derivatives &,(x,a; 3,€) has certain numeri-
cal advantages, increasing the range of acceptable values for
the discretization stepg.

We now proceed and compute the analytical expression
of the derivatives of the functiob ,(x,a; B¢). We have

~(2€0) '[Rn(x,& B,1+ &)
e=1

d vy
&Rn(x,a,ﬁ,e)

- Rn(X,EB,l_ EO)]
and
d2
FRn(X!Eﬁyf)

~ €5 “[Rn(X,3 8,1+ &) d
e=1 &Un(x,i;ﬁe)
—2R,(x,&8,1)

e=1

0,i
+Rn(X,§;B,1— 60)], XBu,n(ajduy (23

with error of orde|O(e§). Such a direct approach may prove where
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_ an+p enough physical systems or for complicated potentials for
Bﬁz'n(éj = 2 ai,k}“\n,k(u). which the derivatives are not readily available, the finite dif-
k=1 ference scheme will enjoy a significant computational advan-

One also computes tage. Parenthetically, EQR4) shows that the TT-method heat

2
@Un(X,a;,BE)

capacity estimator is similar in form to the double virial heat
capacity estimatdr or to the centroid double virial heat ca-

=1 pacity estimatot® However, it has the distinctive feature
19 N (characteristic of the Barker estimatptkat it can be imple-
= Zz O'if aiV[X+UBS,n(55]Bg',in(55dU mented by a finite-difference scheme, yet it maintains to a
i=1 0 good degree the low variance of the centroid double virial
1 9 . estimator.
+2> Uigjf f9i,jV[X+¢TBS,n(55] For strongly quantum s_ystems, as for in;tance I(?w—
4iT=1 0 temperature hydrogen or helium clusters, there is sometimes
0; 0, the need to validate the convergence of the path integral
X BY(@BYL(@du. (24) 9 ’ g

methods by employing the agreement between the T-method
The expression given by E(R4) is not computationally and the H-method energy estimatéfsAs shown by Pre-
very convenient because it requires the evaluatiomd(@  descu and Dolt? the H-method estimator can be put into the
+1)/2 path averages for as many different second-order deforce—force correlation” form by a simple integration by

rivatives, parts. This form requires the first-order derivatives of the
1 . . potential only. In such cases, given that the first-order deriva-
fo J; V[x+aB (@ 1By (@BY (@ du. tives of the potential are computed anyway, it would be ad-

vantageous if we could evaluate the heat capacity as a func-
It is for this reason that we advocate the use of a finite diftional of these derivatives only. This can actually be done
ference scheme instead of the analytical formulas. For largéagain by integration by pantss follows. Observe that

— 1 . .
;e AToVIx o8 (@l f VDX oBL (@B (@B (@ du

_ 1 ) ) 1
= | dx eﬂfélewBS,n(aﬂduB[ f aiV[x+oBSvn(a]BS"'H(EBBS"JH(ESdu]{ f ajV[x+aBS,n@]du}. (25)
R 0 0

Therefore, Eq(24) can be replaced for the purpose of evaluating the heat capacity by
2

d d
_ 1 1 : B
JoUnxape)| =- Zi; o | GV[x+ 0B (@1BY (@du+ —”221 010

e=1

X

J G VIx+ 0B (@ 1BY(@ BS;L@du}
0

JolajV[x+ oBSvn(Ej]du}. (26)

We utilize the sign of equivalence in the relation above to =13 neon atoms using a special path integral technique in-
warn the reader that the equality implied by EB6) does troduced in Ref. 24 and having quartic asymptotic conver-
not hold in the strict sense. Rather, it means that the expresgence with respect to the number of path variables. The nu-
sion to the right of the sigee produces estimates identical to merical implementation of this method is similar to the

the ones obtained by employing E(@4), though it may | evy—Ciesielski reweighted method utilized in Ref. 20 and
exhibit a different variance. The resulting heat capacity estiyi|| not be reviewed here.

mator will be called the modified TT-method estimator and Quantum studies of small Lennard-Jones neon clusters
will be denoted by(Cy)j"" henceforth. Equatio26) still  (y =7) by ground-staf8?® or finite-temperature
involves d” path averages to be computbshich may be-  ,o4,,429.30 have revealed that the quantum effects are im-

come prohibitive fqr large dme_qsmnal systombut this ortant, leading to large zero-point energies. By comparison,
time the averages involve quantities that are computed anyg-

. o tudies of larger clusters are relatively scant. ThesNkister
way. Expensive calls to the second-order derivatives of the . . o
. ) is interesting because it is the smallest Lennard-Jones cluster
potential are avoided.

that presents an effective classical melting péaitabout 10

. ANUMERICAL EXAMPLE K), marking a transition from a rigid to a liquid-like phase.
We shall test the merits of the two heat capacity estimaThe pronounced quantum effects have been found to lower

tors discussed in the previous paragraph on a clustét,of the transition temperature by about 1%¢* However, quan-
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tum heat capacities reported in literature and computed bifor each stream, the basic Monte Carlo steps consist in
path integral method3®! or semiclassical techniqu@sare  moves of the physical coordinate of an individual particle

not sufficiently accurate due to large statistical or systematitogether with the first one-quarter of the associated path vari-
errors. To demonstrate the advantage of the new estimatorables or of the last three quarters of the path variables for the
we propose to compute the heat capacity of thesMRister  respective particle. Equatiof27) of Ref. 24, as specialized
over the range of temperatures 4—14 K, with a statisticafor the short-time approximation constructed in Sec. IV B of
error (defined in the present article as two times the standarthe same reference, shows that the first one-quarter of the
deviation smaller than kg. Such relatively accurate data path variables are associated with Schauder functions,
are necessary for the development of approximate methodghereas the last three quarters are special functions designed
that can be employed for larger or more complicatedto maximize the asymptotic rate of convergence of the path
systemg? They also constitute a realistic test bed for presenintegral method employed. Given the analytical differences
and future path integral techniques. For comparison purbetween the Schauder and the special functions, one expects
poses, the best known data computed by the double virighat the optimal maximal displacements for the path vari-
estimator have a statistical error of aboukdOn the low-  ables associated with functions from the two categories are
temperature regiotr. different. We mention that a poor sampling of the path vari-

The total potential energy of the hecluster is given by  ables associated with the special functions might ruin the

quartic asymptotic convergence of the path integral method
Np No employed. For this reason, we attempt to update the path

Vtot:iz<j VLJ(rii)Jr;l Vel(ri), (27 variables associated with the Schauder functions and with
the special functions separately. The physical coordirate
updated together with the Schauder functions. Distinct ac-
ceptance ratios are computed for the two steps. The maximal
displacements are adjusted in the equilibration phase of the
computation so that each of the acceptance ratios eventually
, (28) lies between 40% and 60%.

The basic computational unit is thmass defined as the
minimal set of Monte Carlo attempts over all variables in the
system. Thus, a pass consists of 3= 26 basic steps. Each
)20 Monte Carlo attempt is accepted or rejected according to the

where V| y(rj;) is the pair interaction of the Lennard-Jones

potential,
( ULJ) 12_

andV(r;) is the confining potential,

6
(N
Vi(rij) =4e€ —)

|ri_Rcm|

V(r) = GLJ(T (29)  Metropolis logic?®** One defines &lockas a computational
C

unit made up of 40000 passes. The length of the blocks is
large enough to ensure independence between the block av-
The values of the Lennard-Jones parametgssande ; used  grages of various quantities computed. This independence
are 2.749 A and 35.6 K, respective/iThe mass of the Ne  has heen checked with statistical tests, as described in Ref.
atom was set tany=20.0, the rounded atomic mass of the 59 As opposed to the computation performed in Ref. 20, the
most abundant isotop&c, is the coordinate of the center of qrrelation between block averages of different streams has
mass of the cluster and is given by not been tested for independence. The explanation is that
these block averages are correlated by the parallel tempering
algorithm. However, we have tried to minimize this correla-
tion by employing separate random number generators for
each streams. These random number generators are obtained
Finally, R,= 20y, is the confining radius. The role of the With the help of the Dynamic Creator pack4g® and pro-
confining potentialV(r;) is to prevent atoms from perma- duce highly independent streams of random numbers, as
nently leaving the cluster since the cluster in vacuum at angléemonstrated by the statistical tests performed in Ref. 20.
finite temperature is metastable with respect to evaporation. A swap between streams of neighboring temperatures
The optimal choice of the paramet®&;, for the con- has been attempted every 25 passes, and it has been accepted
straining potential has been discussed in recent WoilkR, ~ Or rejected according to the parallel tempering logic’
is taken to be too small, the properties of the system becom®ny given stream attempts a swap with the neighboring
sensitive to its choice, whereas large valueRptan result  streams of lower and higher temperatures in succession. Be-
in problems attaining an ergodic simulation. To facilitate cause of this swapping strategy, the streams of minimum and
comparisons, in the current worR, has been chosen to be maximum temperatures are involved in swaps every 50
identical to that used in Ref. 15. steps, only. The intervd#,14] has been divided in 40 equal
subintervals demarked by 41 intermediate temperatures.
Thus, the lowest temperature stream has run at a temperature
The sampling strategy utilized in the present paper iof 4—(14—4)/40=3.75 K. The efficiency of the parallel
similar to the one employed in Ref. 20, except for the use ofempering algorithm depends strongly on how much the dis-
parallel temperintf~3°to cope with possible ergodicity prob- tributions for neighboring temperatures overlap. In classical
lems. We have utilized a number of 42 parallel streams, eackimulations, the width of the overlap is inversely propor-
running a replica of the system at a different temperaturetional to the difference between inverse neighboring tem-

M3

Rem= ri. (30

N
=1

1
Np

A. Sampling strategy
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peratures. It appears then that the optimal division of the 100
interval [4,14] involves equally spaced inverse temperature
subintervals. While not the optimal one, our choice of equal 804 -
temperature subintervals has the advantage that it provides a
smoother heat capacity curve. We have monitored the accep- &, 60
tance ratios for all 42 streams and found values larger than /\:
60% for all simulations performed. Thus, the overlap be- iV 10]
tween neighboring temperatures is more than adequate.
As previously mentioned, besides the acceptance ratios
of swaps, we have also monitored individual acceptance ra- 201
tios for the Metropolis sampling at each temperature. We
have ensured that these acceptance ratios are between 40% 0% p z 5
and 60% by automatically adjusting the values of the maxi- T

mal displacements for the path varliables n th.e eqU|I|.brat|oq:|G. 1. Heat capacitieén units ofkg) computed with the TT-method esti-
phase of the computation. Numerical experimentation halshator as a function of (in Kelvin) for several values of. The error bars

showed that in order to achieve a statistical error of less thanwo times the standard deviatipare comparable to the thickness of the

1kg for heat capacities, it suffices to set the length of the dat&rawing lines and are not plotted.

accumulation phase to 100 blocks, for a total of 4 million

passes per temperature. The equilibration phase has consisted

of 20 blocks. We have therefore employed a number of data

accumulation passes per temperature equal to the one u#s such, the mean square deviation for the quantity of inter-

lized by Neirotti, Freeman, and Doll. This facilitates a directest is given by the variance of the quantity

comparison between the two heat capacities estimators intro-

duced in the preceding section and the double virial estima-

tor.

s Ch;-gzsdﬁggegzzoge?t:@@ Ze_nlts “\?\?e t::]i:t?gs t?::terce;?f variance that can be evaluated with tfagain biasedesti-

) : . mator,

puter experimentation has shown that the numerical accuracy

of the finite difference schemes is at least 1000 times smaller n

than the statistical error for all simulations performed and for 1 2

a large range ofe,. Good values fore, are any inverse Nn(n—1)i{=1

powers of two between 28 and 2°8. )
We conclude this section by commenting on the evalua- if(yn rVn)(Yi_Vn)} _ (31)

tion of the errors involved in the determination of heat ca- ay

pacities. As opposed to energy estimators, heat capacity es- ) .
timators are biased. This is apparent from E). In a  [ne error bars reported in the present work represent twice

general setting, let us denote MyandY; the block averages the square root of the above expression. For the heat capacity

of two quantitiesX andY and let us define problem,f(x,y) =x—y? and the quantitieX; andY; repre-
sent block averages of the second-order and the first-order

n 10 derivatives of the functiorlR,(x,a;3,€) around the poink
2 X; and Vn: 52 Y. =1 [see Egs(2), (19), and(20)].
=1 =1

d — 4 —
A OOOMXat 1OV

J —
&f(xnaYn)(xi_xn)

Xn=

S|

] . . ) . B. Numerical results
Given a continuously differentiable functidiix,y), we have _ )
A graph of the heat capacity computed with the TT-

method estimator as a function of temperature is found in
Fig. 1 for each number of path variables employed. The sole
o o ) exception is an additional run performed with a number of
almost surely, but unles§(x,y) is linear in its variables, N=127 path variables, which produces results virtually in-
f(Xn,Yn) is a biased estimator df((X),(Y)). In the limit  distinguishabldi.e., the differences are smaller than the error
that the variable,, and Y, have small fluctuations around barg from theN= 63 results. Therefore, the remainder of the
their expected values, the following approximation holds: simulations have been performed usiNg=63 path vari-
ables. Table I in the Appendix contains the values obtained in
XV 2 the N=127 simulation forT=4,5,..,14 aswell as the asso-
(L% Vo) = H(OO VDT ciated error bars. We believe such values are useful both in

F(Xn, Yn)— F((X),(Y)),

d — the design of approximate quantum methods and as a nu-
“<[5f(<x>’<Y>)(Xn_<X>) merical test for present and future path integral methods.
The modified TT-method estimator produces results
similar to the direct TT-method estimator. As shown in Fig.
2, the curves for the two estimators are virtually indistin-

+%f(<X>,<Y>><Vn—<Y>>} >
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401 0.0
207 FIG. 3. Error bargin units of kg) for classical heat capacitigsTT) and
guantum heat capacities by the TT-method estim@®m) and the modified
0 0 7 z 0 TT-method estimatofgmTT) as functions ofT (given in Kelvin). Also

T plotted (solid line) is the absolute value of the differenderr=(Cy) ;"
—(CV)QTT between the heat capacity values computed with the help of the
FIG. 2. Classical heat capacitiésTT) and quantum heat capacities by the TT-method and modified TT-method estimators.
TT-method estimato(qTT) and the modified TT-method estimat@mTT)
as functions of temperature. On this scale, the curves for the last two quan-
tities overlap. The heat capacities are given in unitkgf whereas the
temperature is given in Kelvin. The number of path variables employed for
the quantum results id=63. The error bargtwo times the standard devia- E H E H
tion) are comparable to the thickness of the drawing lines and are not TH 2< >Bi+1_< >ﬁi71
plotted. (Culg = kel —5——5— (32)
1 1=

has produced the curve in Fig. 4, figure that also plots the
guishable. Figure 2 also contains the classical heat capacifyT-method heat capacity estimator, for comparison. The
as a function of temperature. As apparent from Fig. 3, theagreement between the two curves is surprisingly good. In
modified TT-method estimator has a larger variance in thdact, the maximum difference between the two curves is
low-temperature region than the TT-method estimatorabout 1.%g, a value that is comparable to the error bars
Though they seem to diverge to infinity &s-0, the error achieved in the present simulations.
bars of both quantum estimators are comparable to the error We say that the agreement is surprisingly good because
bars of the classical estimator for the range of temperatureseveral factors concur against such an agreement. First, nu-
investigated. In the low-temperature range, the error bars americal differentiation of Monte Carlo data is, in general, a
about ten times smaller than those reported by Neirotti, Freddifficult task, unless the data at different temperatures are
man, and Dolf® for the double virial estimator. Taking into strongly correlated so that the resulting curve is smooth. In
consideration that the same number of Monte Carlo pointshis regard, the parallel tempering technique is of great help
has been employed, the TT-method estimator is over 10Because it brings the necessary correlation into the simula-
times more efficient than the double virial estimator. Wetion. From the quality of the numerical differentiation, we
mention that the improvement has little to do with the pathestimate that the correlation is substantial. For instance, if the
integral technique that has been utilized. Provided thatuns at different arbitrarily close temperatures are indepen-
enough path variables are considered, the variance of thdent, the resulting curves fail to be continuous. If the corre-
estimators is independent of the path integral technique. Allation is of the type appearing in a Brownian motion, the
least in one other instance, such a significant improvement iresulting curves are continuous but not differentiable. In or-
the efficiency of a path integral technique has been eventwder for the curves to be differentiable, the correlation must be
ally attributed to a superior estimattr-! even stronger. Though such a strong correlation has been

As emphasized in Ref. 20, the agreement between thpreviously reported? we are not aware of any mathematical

T-method and the H-method energy estimators constitutes asr numerical analysis attempting to quantify the strength of
important test for the convergence of the path integral meththe parallel tempering correlation between averages at differ-
ods. The heat capacity analog is represented by the agreent temperatures. In the light of the application just pre-
ment between the TT-method and the TH-method estimatorsented, we believe such an analysis would be well justified.
The latter estimator is obtained by temperature differentia- Second, the temperature step in the numerical differen-
tion of the H-method energy estimator. The temperature diftiation is significantly larger than the step we have employed
ferentiation can be performed by finite difference in a wayfor the TT-method estimator. Fortunately, the quantum ef-
similar to the present implementation of the TT-method estifects are strong and the dependence of the ensemble energy
mator. However, the evaluation of the H-method estimatowith the temperature is smooth. As a consequence, the accu-
requires knowledge of the first-order derivatives of the po+acy of the finite-difference scheme is comparable to the sta-
tential. Since these derivatives have been computed anywadigtical errors.
in the modified TT-method estimator simulation, we have A third factor that could prevent an agreement between
also evaluated the H-method energy estimator in the respethe TT-method and the TH-method heat capacity estimators
tive simulation. A temperature differentiation with the help is the lack of convergence of the path integral method em-
of the formula ployed. The agreement provides additional evidence lkhat
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100 : : . gquantum canonical system, namely, average energy and heat
--------- qTT capacity, can be performed in a fast and reliable fashion
201 L without calls to first or second derivatives of the potential.
TTeTH This can be accomplished by a finite-difference scheme ap-
60, / \ i plied to the T-method energy estimator and TT-method heat
/\: / \ capacity estimator, respectively. The derivation of these esti-
iV | \ mators is rather trivial, consisting of simple temperature dif-
401 / ~1 ferentiations of the partition function. As emphasized in the
// Introduction, the key observation is that the Feynman—Kac
204 r formula and its finite-dimensional approximations must be
S/
~ written in a form with the temperature dependence of the
0 : , : paths buried into the potential. Such a transformation is pos-
o4 8B ible for all path i | techni d it should i
T sible for all path integral techniques and it should constitute

the starting point for the derivation of various energy and
FIG. 4. Quantum heat capacities in unitskgfby the TT-method estimator QKeagt Capacity estimators.

(qTT) and by the TH-method estimat@gTH), respectively. The temperature . . .
is given in Kelvin. On this scale, the two curves overlap almost perfectly. We have also pI’Op_O_SEd an analytlcal_heat capacity _eStI'
The maximum difference between corresponding values on the curves ig1ator, called the modified T-method estimator, that might
about 1.5g. prove useful whenever the first derivatives of the potential
are available. However, this estimator has a slightly worse
behavior at low temperature than the direct TT-method esti-
=63 path variables are sufficient for the range of temperatur@q""torb""nd may t;ehqune e(;(pe.nswe lf_or Iarfgi—dlmenzmnafl sysf-]
studied and for the path integral technique utilized. tems because of the quadratic scaling of the number of pat

Yet a fourth reason for disagreement is poor Momeintegrals that must be computed with the dimensionality of

Carlo sampling. Energy estimators are unbiased estimatorg?e system. For example, in the case of thegttuster, the

as opposed to heat capacity estimators, which are biased. &ggi/e b?sed onhthe rEOdlfleg hea_tl_c._apamrt]y efs_U_magq;f has been
a consequence, energy estimators and heat capacity estin?f’0 Slower than the code utilizing the finite-difference

tors generally have different sensitivities to the quality of theScheme. . : . .
sampling, with the latter ones being more sensitive to quasi- The heat capacity estimators utilized in the present paper

ergodicity problems. This may result in disagreement penave favorable variances when compared to the double virial

tween the heat capacities computed with the help of estimaeStimators. This has been clearly demonstrated for a

tors and the ones computed by using energy differences nnard-Jones realization of e a realistic physical sys-
the type given by Eq(32). tem that is representative of many other applications. To the

We conclude this section by noticing that the high- authors’ knowledge, the heat capacities results obtained for

temperature part of the quantum heat capacity plotted in FigI.he Nas cluster are the most accurate to date.

2 does not coincide with the results reported in Ref. 15. The
cause of this difference is the fact that Neirotti, Freeman, and
Doll have mistakenly utilized a confining potential with a ACKNOWLEDGMENTS
radius R;=40; instead of 2r ;, the value they have re-
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APPENDIX: TABLE OF HEAT CAPACITIES

TABLE |. Heat capacities and error bars of the ;Neluster as functions of temperature. A numberNof

=127 path variables have been utilized. The error bars are two times the standard deviation. The temperature
is measured in Kelvin, whereas the heat capacities are given in urlts.ofhe heat capacity pick value, as
obtained by maximizing a cubic spline interpolation function of the computed data, is#7@.8%kg and is

attained at the temperature feq—=8.97 K.

T 4 5 6 7 8 9

(Cv)s 8.26+0.80 11.8%0.52 18.14-0.44 29.3¢-0.56 54.74-0.86 74.45-0.54
T 10 11 12 13 14
(Cv)g 61.70-0.51 48.870.36 43.05:0.30 40.780.23 40.0%0.27
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