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Heat capacity estimators for random series path-integral methods
by finite-difference schemes

Cristian Predescu,a) Dubravko Sabo, and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 31 July 2003; accepted 18 September 2003!

Previous heat capacity estimators used in path integral simulations either have large variances that
grow to infinity with the number of path variables or require the evaluation of first- and
second-order derivatives of the potential. In the present paper, we show that the evaluation of the
total energy by the T-method estimator and of the heat capacity by the TT-method estimator can be
implemented by a finite difference scheme in a stable fashion. As such, the variances of the resulting
estimators are finite and the evaluation of the estimators requires the potential function only. By
comparison with the task of computing the partition function, the evaluation of the estimators
requiresk11 times more calls to the potential, wherek is the order of the difference scheme
employed. Quantum Monte Carlo simulations for the Ne13 cluster demonstrate that a second order
central-difference scheme should suffice for most applications. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1625366#

I. INTRODUCTION

It is said that path integral methods transform a quantum
equilibrium problem into a classical one by judicious use of
dimensionality.1 Yet, the computation of the average
energy2–14 or the heat capacity15,16 of a quantum canonical
ensemble reveals that the quantum-classical analogy is far
from being trivial, even if distinguishable particles are as-
sumed. One observes an increase in the computational time,
not only with the number of path variables considered, but
also with the dimensionality of the system. This is so be-
cause estimators of finite variance usually involve first- or
second-order derivatives of the potential. The number of
such derivatives scales linearly or quadratically with the
number of degrees of freedom of the system. For example,
numerical studies of even moderately large quantum clusters
are severely hindered by this substantial increase in the num-
ber of quantities that must be evaluated.15

Recently, Predescu and Doll14 have observed that a
simple rescaling of the Brownian bridge entering the
Feynman–Kac formula17–19 produces path-integral tech-
niques for which the dependence with the temperature of the
path distributions is buried into the potential part of the
imaginary-time action. A formal differentiation of the loga-
rithm of the partition function leads to a special form of the
thermodynamic estimator~T-method estimator! that does not
have the variance difficulties associated with the Barker es-
timator for large numbers of path variables.2,3 Even though
the resulting T-method estimator closely resembles the virial
estimators,3,12,13 it does not rely on the virial theorem to re-
cover the kinetic energy. For instance, this T-method estima-
tor produces correct results even for potentials that are not

confined, e.g., a free particle. Therefore, the variance of the
T-method estimator is lower than that of the virial estimator
because the classical part of the energy is explicitly intro-
duced as a constant and is not obtained from the virial theo-
rem. In a recent study of the (H2)22 cluster at the temperature
of 6 K,20 difficulties associated with the virial estimator for
low-temperature systems4,7,9 were not observed to appear for
the T-method estimator introduced by Predescu and Doll.
Such differences between the estimators are even more sig-
nificant for the heat capacity estimators and will be revealed
in the present paper by comparing the statistical errors for the
Predescu and Doll-type estimators with those for the double
virial estimator.15

In order to avoid any confusion with earlier estimators,
we mention that in the present article by T-method and
H-method estimators, we understand the respective energy
estimators introduced by Predescu and Doll in Ref. 14. By
TT-method and TH-method estimators, we understand the
heat capacity estimators that are obtained from the corre-
sponding energy estimators by temperature differentiation.

The T-method estimator is closely related and similar in
form to the centroid virial estimator.6,13,16 There are, how-
ever, two differences. First, the T-method estimator involves
fluctuations of the Brownian bridge relative to one arbitrary
point. The centroid virial estimator involves similar fluctua-
tions but is relative to the path centroid. It can be shown that
the ratio between the average square fluctuations of the
Brownian bridge relative to some preferential point and to
the path centroid is 2.21 Thus, the two estimators have similar
behavior with the nature of the quantum system, the tem-
perature, and the Monte Carlo sampling method, though the
centroid virial estimator may exhibit a slightly lower vari-
ance.

A second and more important difference, which consti-a!Electronic mail: cristian_predescu@brown.edu
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tutes the starting point of the present development, is the fact
that the T-method estimator is a veritable thermodynamic
estimator, in the sense that it is obtained by temperature dif-
ferentiation of the quantum partition function~however, as
discussed in a previous paragraph, one needs to utilize a
special form for the Feynman–Kac formula, with the tem-
perature dependence of the path distribution buried into the
potential!. The temperature differentiation can be imple-
mented numerically by a finite-difference scheme and leads
to numerically stable algorithms that do not require deriva-
tives of the potential. This observation proves to be ex-
tremely important for heat capacity calculations because for-
mal temperature differentiation leads to expressions
involving all first- and second-order derivatives of the poten-
tial. By numerical temperature differentiation, one obtains an
important speed-up in the evaluation of the above-mentioned
thermodynamic properties, especially for large dimensional
systems or for complicated potentials.

In this article, we also propose an analytical heat capac-
ity estimator that involves the first derivatives of the poten-
tial only. This is obtained from the analytical form of the
TT-method estimator by an integration by parts suggested by
Predescu and Doll in the derivation of their special
H-method energy estimator.14 The two estimators, called in
this paper the TT-method estimator and the modified TT-
method estimator, respectively, may have slightly different
variances. As discussed in the previous paragraph, the first
one is to be implemented by finite difference, whereas for the
second one we shall use exact analytical formulas.

The relative merits of the new heat capacity estimators
will be demonstrated for the Ne13 cluster. For this example,
we provide a comparison of the statistical errors of the new
estimators with those of the double virial estimator utilized
by Neirotti, Freeman, and Doll.15 We shall also clarify a
number of issues raised in the Neirotti, Freeman, and Doll
study of this neon cluster. The numerical simulation pre-
sented serves to demonstrate the power of the path integral
approach utilized as well as to provide essentially exact nu-
merical data necessary for comparison in the development of
quantum approximations that can be employed for larger or
more complicated systems.22

II. THERMODYNAMIC ENERGY AND HEAT
CAPACITY ESTIMATORS

In this section, we derive the formal expressions for the
heat capacity of ad-dimensional canonical quantum me-
chanical system made up of distinguishable particles. The
particles have masses$m0,i ; 1< i<d% and move in the po-
tential V(x). The vectorx, the transpose of which isxT

5(x1 ,...,xd), denotes the position of the particles in the
configuration spaceRd. The canonical system is character-
ized by inverse temperatureb51/(kBT). Its average energy
and heat capacity can be obtained by temperature differen-
tiation of the partition functionZ(b), producing the formu-
las

^E&b
T52

1

Z~b!

dZ~b!

db
~1!

and

^CV&b
TT5kBH b2

Z~b!

d2Z~b!

db2 2F b

Z~b!

dZ~b!

db G2J , ~2!

respectively. The partition function of the system is obtained
as the integral over the configuration space of the diagonal
density matrix,

Z~b!5E
Rd

r~x;b!dx. ~3!

In the path-integral approach, the density matrix is
evaluated with the help of the Feynman–Kac formula. We
split the present section into two parts. In the first part, we
shall discuss the random series implementation of the
Feynman–Kac formula and introduce some relevant nota-
tion. In the second part, we deduce the formal expression of
the TT-method heat capacity estimator and discuss its nu-
merical implementation by finite-difference schemes. Then,
we derive the modified TT-method estimator, the analytical
expression of which involves first-order derivatives of the
potential only.

A. Random series path integral techniques

In the random series implementation of the Feynman–
Kac formula, the density matrix of a one-dimensional quan-
tum system is obtained as follows.14 Let $lk(t)%k>1 be a
system of functions on the interval@0,1# that, together with
the constant functionl0(t)51, make up an orthonormal ba-
sis in L2@0,1#. Define

Lk~ t !5E
0

t

lk~u!du.

Let V denote the space of infinite sequencesā
[(a1 ,a2 ,...) and let

dP@ ā#5)
k51

`

dm~ak! ~4!

be the probability measure onV such that the coordinate
maps ā→ak are independent identically distributed~i.i.d.!
variables with distribution probability,

dm~ai !5
1

A2p
e2ai

2/2 dai . ~5!

Then, the Feynman–Kac formula reads14 as

r~x,x8;b!

r f p~x,x8;b!
5E

V
dP@ ā#expH 2bE

0

1

VFxr~u!

1s(
k51

`

akLk~u!GduJ , ~6!

wherexr(u)5x1(x82x)u ands5(\2b/m0)1/2. The quan-
tity r f p(x,x8;b) represents the density matrix for a similar
free particle. The series,

Bu
0~ ā!5 (

k51

`

akLk~u!,
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represents a stochastic process equal in distribution to a stan-
dard Brownian bridge.

For ad-dimensional system, the Feynman–Kac formula
is obtained by employing an independent random series for
each additional degree of freedom. As such, we consider the
spaceVd made up of all sequencesā[(a1 ,a2 ,...) of vectors

ak5S a1,k

]

ad,k

D ,

and denote the linei of ā by āi5(ai ,0 ,ai ,1 ,...). On thespace
Vd, we define the probability measure

dP@ ā#5)
i 51

d

dP@ āi #, ~7!

with

dP@ āi #5)
k51

`

dm~ai ,k!.

Under this probability measure, the coordinate mapsā
→ai ,k are i.i.d. standard normal variables. We also consider
the vector sT5(s1 ,...,sd) of components s i

5(\2b/m0,i)
1/2 and let xr(u)5x1(x82x)u be a straight

line connecting the pointsx andx8. Then, the Feynman–Kac
formula reads as

r~x,x8;b!

r f p~x,x8;b!
5E

Vd
dP@ ā#expH 2bE

0

1

VFxr~u!

1s(
k51

`

akLk~u!GduJ , ~8!

where

sak5S s1a1,k

]

sdad,k

D .

The series

Bu
0~ ā!5 (

k51

`

akLk~u!

is equal in distribution to ad-dimensional Brownian bridge
~a vector-valued stochastic process whose components are
independent one-dimensional Brownian bridges!.

In practical applications, one cannot work with the full
random series implementation of the Feynman–Kac formula.
Instead, one considers finite-dimensional approximations to
Eq. ~8!, the simplest of which have the general form

rn~x,x8;b!

r f p~x,x8;b!
5E

Vd
dP@ ā#expH 2bE

0

1

VFxr~u!

1s (
k51

qn1p

akL̃n,k~u!GduJ , ~9!

whereq and p are some fixed integers. The functionsL̃n,k

are chosen so that to maximize the rate of convergence,

rn~x,x8;b!→r~x,x8;b!.

Though the problem of maximizing the order of convergence
is still far from a final resolution, several schemes in the
larger class of reweighted techniques were proven to have
cubic or quartic asymptotic convergence.23,24 The construc-
tion of the functionsL̃n,k and of associated quadrature
schemes for the computation of the path averages appearing
in Eq. ~9! have been discussed elsewhere.23–25 For the nu-
merical examples presented in this article, we use a so-called
Lévy–Ciesielski reweighted path integral method having
quartic convergence.24 To a large extent, the analytical ex-
pressions of the functionsL̃n,k(u) and the nature of the
quadrature schemes are not important for the present devel-
opment. For more information, the reader is advised to con-
sult the cited references.

To simplify notation, we introduce several auxiliary
quantities Bu,n

0 (ā), Un(x,x8,ā;b), and Xn(x,x8,ā;b), de-
fined by the expressions

Bu,n
0 ~ ā!5 (

k51

qn1p

akL̃n,k~u!, ~10!

Un~x,x8,ā;b!5E
0

1

V@xr~u!1sBu,n
0 ~ ā!#du, ~11!

and

Xn~x,x8,ā;b!5r f p~x,x8;b!exp@2bUn~x,x8,ā;b!#,
~12!

respectively. The similar relations for the full Feynman–Kac
formula are denoted byBu

0(ā), U`(x,x8,ā;b), and
X`(x,x8,ā;b), respectively. With the new notation, Eq.~9!
becomes

rn~x,x8;b!5E
Vd

dP@ ā#Xn~x,x8,ā;b!, ~13!

whereas the Feynman–Kac formula reads as

r~x,x8;b!5E
Vd

dP@ ā#X`~x,x8,ā;b!. ~14!

In this paper, we make the convention thatx8 is dropped
wheneverx5x8. In order to arrive at the definition of the
energy and the heat capacity estimators, it is convenient to
introduce the quantities

Rn~x,ā;b,e!5
Xn~x,ā;be!

Xn~x,ā;b!

5e2d/2exp@2beUn~x,ā;be!

1bUn~x,ā;b!# ~15!

and

R`~x,ā;b,e!5
X`~x,ā;be!

X`~x,ā;b!

5e2d/2exp@2beU`~x,ā;be!

1bU`~x,ā;b!#, ~16!

respectively. We have
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b

Z~b!

dZ~b!

db

5

*Rddx*VddP@ ā#X`~x,ā;b!
d

de
R`~x,ā;b,e!U

e51

*Rddx*VddP@ ā#X`~x,ā;b!
~17!

and

b2

Z~b!

d2Z~b!

db2

5

*Rddx*VddP@ ā#X`~x,ā;b!
d2

de2 R`~x,ā;b,e!U
e51

*Rddx*VddP@ ā#X`~x,ā;b!
.

~18!

The quantities above can be evaluated by Monte Carlo inte-
gration as the limitn→` of the sequences

b

Zn~b!

dZn~b!

db

5

*Rddx*VddP@ ā#Xn~x,ā;b!
d

de
Rn~x,ā;b,e!U

e51

*Rddx*VddP@ ā#Xn~x,ā;b!
~19!

and

b2

Zn
RW~b!

d2Zn
RW~b!

db2

5

*Rddx*VddP@ ā#Xn~x,ā;b!
d2

de2 Rn~x,ā;b,e!U
e51

*Rddx*VddP@ ā#Xn~x,ā;b!
,

~20!

respectively.
In the finite-difference scheme that is advocated in this

paper, the derivatives againste appearing in Eqs.~19! and
~20! may be evaluated numerically by a finite difference.
Such an approach is expected to be much faster than the
analytical evaluation of the derivatives, especially for large
dimensional systems or systems with complicated potentials.
Though higher-order central-difference schemes can be em-
ployed, a second-order scheme produces

d

de
Rn~x,ā;b,e!U

e51

'~2e0!21@Rn~x,ā;b,11e0!

2Rn~x,ā;b,12e0!#

and

d2

de2 Rn~x,ā;b,e!U
e51

'e0
22@Rn~x,ā;b,11e0!

22Rn~x,ā;b,1!

1Rn~x,ā;b,12e0!#,

with error of orderO(e0
2). Such a direct approach may prove

useful for highly quantum systems or for pathological sys-
tems, as, for instance, a particle in a box. However, for
smooth enough potentials, the alternatives that are analyzed
in the following section may prove to be superior.

B. Expressions of the heat capacity estimators

In this section, we shall put the relevant quantities enter-
ing the expression of the heat capacity estimator in a form
that is exact in the high-temperature limit or in the limit that
the physical system is classical. For this purpose, we assume
that exp@2bV(x)# has second-order Sobolev derivatives as a
function of x. In the second part of the present section, we
shall derive a special analytical expression for the heat ca-
pacity estimator that employs the first-order derivatives of
the potential, only. This modified heat capacity estimator
gives results identical to the first one, but it may have a
slightly different variance.

By explicit computation, one argues that

d

de
Rn~x,ā;b,e!U

e51

52
d

2
2bUn~x,ā;b!

2b
d

de
Un~x,ā;be!U

e51

~21!

and

d2

de2 Rn~x,ā;b,e!U
e51

5F d

de
Rn~x,ā;b,e!U

e51
G2

1
d

2
22b

d

de
Un~x,ā;be!U

e51

2b
d2

de2 Un~x,ā;be!U
e51

. ~22!

The first and second derivatives of the functionUn(x,ā;be)
around the pointe51 can be evaluated by finite difference,
as shown in the preceding section. However, we notice that
in the limit that the physical system behaves classically,
Un(x,ā;be)'V(x) and the derivatives againste vanish.
Moreover, in this limit any finite-difference scheme produces
the exact classical results. It is therefore apparent that the
utilization of the derivatives of the functionsUn(x,ā;be)
instead of the derivatives ofRn(x,ā;b,e) has certain numeri-
cal advantages, increasing the range of acceptable values for
the discretization stepe0 .

We now proceed and compute the analytical expression
of the derivatives of the functionUn(x,ā;be). We have

d

de
Un~x,ā;be!U

e51

5
1

2 (
i 51

d

s iE
0

1

] iV@x1sBu,n
0 ~ ā!#

3Bu,n
0,i ~ ā!du, ~23!

where
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Bu,n
0,i ~ ā!5 (

k51

qn1p

ai ,kL̃n,k~u!.

One also computes

d2

de2 Un~x,ā;be!U
e51

52
1

4 (
i 51

d

s iE
0

1

] iV@x1sBu,n
0 ~ ā!#Bu,n

0,i ~ ā!du

1
1

4 (
i , j 51

d

s is jE
0

1

] i , jV@x1sBu,n
0 ~ ā!#

3Bu,n
0,i ~ ā!Bu,n

0,j ~ ā!du. ~24!

The expression given by Eq.~24! is not computationally
very convenient because it requires the evaluation ofd(d
11)/2 path averages for as many different second-order de-
rivatives,

E
0

1

] i , jV@x1sBu,n
0 ~ ā!#Bu,n

0,i ~ ā!Bu,n
0,j ~ ā!du.

It is for this reason that we advocate the use of a finite dif-
ference scheme instead of the analytical formulas. For large

enough physical systems or for complicated potentials for
which the derivatives are not readily available, the finite dif-
ference scheme will enjoy a significant computational advan-
tage. Parenthetically, Eq.~24! shows that the TT-method heat
capacity estimator is similar in form to the double virial heat
capacity estimator15 or to the centroid double virial heat ca-
pacity estimator.16 However, it has the distinctive feature
~characteristic of the Barker estimators! that it can be imple-
mented by a finite-difference scheme, yet it maintains to a
good degree the low variance of the centroid double virial
estimator.

For strongly quantum systems, as for instance low-
temperature hydrogen or helium clusters, there is sometimes
the need to validate the convergence of the path integral
methods by employing the agreement between the T-method
and the H-method energy estimators.20 As shown by Pre-
descu and Doll,14 the H-method estimator can be put into the
‘‘force–force correlation’’ form by a simple integration by
parts. This form requires the first-order derivatives of the
potential only. In such cases, given that the first-order deriva-
tives of the potential are computed anyway, it would be ad-
vantageous if we could evaluate the heat capacity as a func-
tional of these derivatives only. This can actually be done
~again by integration by parts! as follows. Observe that

E
R
dxj e2b*0

1V[x1sBu,n
0 (ā)]duE

0

1

] i , jV@x1sBu,n
0 ~ ā!#Bu,n

0,i ~ ā!Bu,n
0,j ~ ā!du

5E
R
dxj e2b*0

1V[x1sBu,n
0 (ā)]dubH E

0

1

] iV@x1sBu,n
0 ~ ā!#Bu,n

0,i ~ ā!Bu,n
0,j ~ ā!duJ H E

0

1

] jV@x1sBu,n
0 ~ ā!#duJ . ~25!

Therefore, Eq.~24! can be replaced for the purpose of evaluating the heat capacity by

d2

de2 Un~x,ā;be!U
e51

[2
1

4 (
i 51

d

s i3E
0

1

] iV@x1sBu,n
0 ~ ā!#Bu,n

0,i ~ ā!du1
b

4 (
i , j 51

d

s is j

3H E
0

1

] iV@x1sBu,n
0 ~ ā!#Bu,n

0,i ~ ā!Bu,n
0,j ~ ā!duJ H E

0

1

] jV@x1sBu,n
0 ~ ā!#duJ . ~26!

We utilize the sign of equivalence[ in the relation above to
warn the reader that the equality implied by Eq.~26! does
not hold in the strict sense. Rather, it means that the expres-
sion to the right of the sign[ produces estimates identical to
the ones obtained by employing Eq.~24!, though it may
exhibit a different variance. The resulting heat capacity esti-
mator will be called the modified TT-method estimator and
will be denoted bŷ CV&b

mTT henceforth. Equation~26! still
involves d2 path averages to be computed~which may be-
come prohibitive for large dimensional systems!, but this
time the averages involve quantities that are computed any-
way. Expensive calls to the second-order derivatives of the
potential are avoided.

III. A NUMERICAL EXAMPLE

We shall test the merits of the two heat capacity estima-
tors discussed in the previous paragraph on a cluster ofNp

513 neon atoms using a special path integral technique in-
troduced in Ref. 24 and having quartic asymptotic conver-
gence with respect to the number of path variables. The nu-
merical implementation of this method is similar to the
Lévy–Ciesielski reweighted method utilized in Ref. 20 and
will not be reviewed here.

Quantum studies of small Lennard-Jones neon clusters
(Np<7) by ground-state26–28 or finite-temperature
methods29,30 have revealed that the quantum effects are im-
portant, leading to large zero-point energies. By comparison,
studies of larger clusters are relatively scant. The Ne13 cluster
is interesting because it is the smallest Lennard-Jones cluster
that presents an effective classical melting point~at about 10
K!, marking a transition from a rigid to a liquid-like phase.
The pronounced quantum effects have been found to lower
the transition temperature by about 1 K.15,31 However, quan-

12123J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 Heat capacity estimators



tum heat capacities reported in literature and computed by
path integral methods15,31 or semiclassical techniques22 are
not sufficiently accurate due to large statistical or systematic
errors. To demonstrate the advantage of the new estimators,
we propose to compute the heat capacity of the Ne13 cluster
over the range of temperatures 4–14 K, with a statistical
error ~defined in the present article as two times the standard
deviation! smaller than 1kB . Such relatively accurate data
are necessary for the development of approximate methods
that can be employed for larger or more complicated
systems.22 They also constitute a realistic test bed for present
and future path integral techniques. For comparison pur-
poses, the best known data computed by the double virial
estimator have a statistical error of about 10kB in the low-
temperature region.15

The total potential energy of the Ne13 cluster is given by

Vtot5(
i , j

Np

VLJ~r i j !1(
i 51

Np

Vc~r i!, ~27!

whereVLJ(r i j ) is the pair interaction of the Lennard-Jones
potential,

VLJ~r i j !54eLJF S sLJ

r i j
D 12

2S sLJ

r i j
D 6G , ~28!

andVc(r i) is the confining potential,

Vc~r i!5eLJS ur i2Rcmu
Rc

D 20

. ~29!

The values of the Lennard-Jones parameterssLJ andeLJ used
are 2.749 Å and 35.6 K, respectively.15 The mass of the Ne
atom was set tom0520.0, the rounded atomic mass of the
most abundant isotope.Rcm is the coordinate of the center of
mass of the cluster and is given by

Rcm5
1

Np
(
i 51

Np

r i . ~30!

Finally, Rc52sLJ is the confining radius. The role of the
confining potentialVc(r i) is to prevent atoms from perma-
nently leaving the cluster since the cluster in vacuum at any
finite temperature is metastable with respect to evaporation.

The optimal choice of the parameterRc for the con-
straining potential has been discussed in recent work.32 If Rc

is taken to be too small, the properties of the system become
sensitive to its choice, whereas large values ofRc can result
in problems attaining an ergodic simulation. To facilitate
comparisons, in the current work,Rc has been chosen to be
identical to that used in Ref. 15.

A. Sampling strategy

The sampling strategy utilized in the present paper is
similar to the one employed in Ref. 20, except for the use of
parallel tempering33–39to cope with possible ergodicity prob-
lems. We have utilized a number of 42 parallel streams, each
running a replica of the system at a different temperature.

For each stream, the basic Monte Carlo steps consist in
moves of the physical coordinatexi of an individual particle
together with the first one-quarter of the associated path vari-
ables or of the last three quarters of the path variables for the
respective particle. Equation~27! of Ref. 24, as specialized
for the short-time approximation constructed in Sec. IV B of
the same reference, shows that the first one-quarter of the
path variables are associated with Schauder functions,
whereas the last three quarters are special functions designed
to maximize the asymptotic rate of convergence of the path
integral method employed. Given the analytical differences
between the Schauder and the special functions, one expects
that the optimal maximal displacements for the path vari-
ables associated with functions from the two categories are
different. We mention that a poor sampling of the path vari-
ables associated with the special functions might ruin the
quartic asymptotic convergence of the path integral method
employed. For this reason, we attempt to update the path
variables associated with the Schauder functions and with
the special functions separately. The physical coordinatexi is
updated together with the Schauder functions. Distinct ac-
ceptance ratios are computed for the two steps. The maximal
displacements are adjusted in the equilibration phase of the
computation so that each of the acceptance ratios eventually
lies between 40% and 60%.

The basic computational unit is thepass, defined as the
minimal set of Monte Carlo attempts over all variables in the
system. Thus, a pass consists of 2313526 basic steps. Each
Monte Carlo attempt is accepted or rejected according to the
Metropolis logic.40,41One defines ablockas a computational
unit made up of 40 000 passes. The length of the blocks is
large enough to ensure independence between the block av-
erages of various quantities computed. This independence
has been checked with statistical tests, as described in Ref.
20. As opposed to the computation performed in Ref. 20, the
correlation between block averages of different streams has
not been tested for independence. The explanation is that
these block averages are correlated by the parallel tempering
algorithm. However, we have tried to minimize this correla-
tion by employing separate random number generators for
each streams. These random number generators are obtained
with the help of the Dynamic Creator package42,43 and pro-
duce highly independent streams of random numbers, as
demonstrated by the statistical tests performed in Ref. 20.

A swap between streams of neighboring temperatures
has been attempted every 25 passes, and it has been accepted
or rejected according to the parallel tempering logic.33–39

Any given stream attempts a swap with the neighboring
streams of lower and higher temperatures in succession. Be-
cause of this swapping strategy, the streams of minimum and
maximum temperatures are involved in swaps every 50
steps, only. The interval@4,14# has been divided in 40 equal
subintervals demarked by 41 intermediate temperatures.
Thus, the lowest temperature stream has run at a temperature
of 42(1424)/4053.75 K. The efficiency of the parallel
tempering algorithm depends strongly on how much the dis-
tributions for neighboring temperatures overlap. In classical
simulations, the width of the overlap is inversely propor-
tional to the difference between inverse neighboring tem-
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peratures. It appears then that the optimal division of the
interval @4,14# involves equally spaced inverse temperature
subintervals. While not the optimal one, our choice of equal
temperature subintervals has the advantage that it provides a
smoother heat capacity curve. We have monitored the accep-
tance ratios for all 42 streams and found values larger than
60% for all simulations performed. Thus, the overlap be-
tween neighboring temperatures is more than adequate.

As previously mentioned, besides the acceptance ratios
of swaps, we have also monitored individual acceptance ra-
tios for the Metropolis sampling at each temperature. We
have ensured that these acceptance ratios are between 40%
and 60% by automatically adjusting the values of the maxi-
mal displacements for the path variables in the equilibration
phase of the computation. Numerical experimentation has
showed that in order to achieve a statistical error of less than
1kB for heat capacities, it suffices to set the length of the data
accumulation phase to 100 blocks, for a total of 4 million
passes per temperature. The equilibration phase has consisted
of 20 blocks. We have therefore employed a number of data
accumulation passes per temperature equal to the one uti-
lized by Neirotti, Freeman, and Doll. This facilitates a direct
comparison between the two heat capacities estimators intro-
duced in the preceding section and the double virial estima-
tor.

The discretization stepe0 entering the finite difference
schemes has been set toe052212. We mention that com-
puter experimentation has shown that the numerical accuracy
of the finite difference schemes is at least 1000 times smaller
than the statistical error for all simulations performed and for
a large range ofe0 . Good values fore0 are any inverse
powers of two between 2218 and 228.

We conclude this section by commenting on the evalua-
tion of the errors involved in the determination of heat ca-
pacities. As opposed to energy estimators, heat capacity es-
timators are biased. This is apparent from Eq.~2!. In a
general setting, let us denote byXi andYi the block averages
of two quantitiesX andY and let us define

X̄n5
1

n (
i 51

n

Xi and Ȳn5
1

n (
i 51

n

Yi .

Given a continuously differentiable functionf (x,y), we have

f ~X̄n ,Ȳn!→ f ~^X&,^Y&!,

almost surely, but unlessf (x,y) is linear in its variables,
f (X̄n ,Ȳn) is a biased estimator off (^X&,^Y&). In the limit
that the variablesX̄n and Ȳn have small fluctuations around
their expected values, the following approximation holds:

^@ f ~X̄n ,Ȳn!2 f ~^X&,^Y&!#2&

' K F ]

]x
f ~^X&,^Y&!~X̄n2^X&!

1
]

]y
f ~^X&,^Y&!~Ȳn2^Y&!G2L .

As such, the mean square deviation for the quantity of inter-
est is given by the variance of the quantity

]

]x
f ~^X&,^Y&!X̄n1

]

]y
f ~^X&,^Y&!Ȳn ,

variance that can be evaluated with the~again biased! esti-
mator,

1

n~n21! (i 51

n F ]

]x
f ~X̄n ,Ȳn!~Xi2X̄n!

1
]

]y
f ~X̄n ,Ȳn!~Yi2Ȳn!G2

. ~31!

The error bars reported in the present work represent twice
the square root of the above expression. For the heat capacity
problem, f (x,y)5x2y2 and the quantitiesXi andYi repre-
sent block averages of the second-order and the first-order
derivatives of the functionRn(x,ā;b,e) around the pointe
51 @see Eqs.~2!, ~19!, and~20!#.

B. Numerical results

A graph of the heat capacity computed with the TT-
method estimator as a function of temperature is found in
Fig. 1 for each number of path variables employed. The sole
exception is an additional run performed with a number of
N5127 path variables, which produces results virtually in-
distinguishable~i.e., the differences are smaller than the error
bars! from theN563 results. Therefore, the remainder of the
simulations have been performed usingN563 path vari-
ables. Table I in the Appendix contains the values obtained in
the N5127 simulation forT54,5,...,14 aswell as the asso-
ciated error bars. We believe such values are useful both in
the design of approximate quantum methods and as a nu-
merical test for present and future path integral methods.

The modified TT-method estimator produces results
similar to the direct TT-method estimator. As shown in Fig.
2, the curves for the two estimators are virtually indistin-

FIG. 1. Heat capacities~in units of kB) computed with the TT-method esti-
mator as a function ofT ~in Kelvin! for several values ofN. The error bars
~two times the standard deviation! are comparable to the thickness of the
drawing lines and are not plotted.
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guishable. Figure 2 also contains the classical heat capacity
as a function of temperature. As apparent from Fig. 3, the
modified TT-method estimator has a larger variance in the
low-temperature region than the TT-method estimator.
Though they seem to diverge to infinity asT→0, the error
bars of both quantum estimators are comparable to the error
bars of the classical estimator for the range of temperatures
investigated. In the low-temperature range, the error bars are
about ten times smaller than those reported by Neirotti, Free-
man, and Doll15 for the double virial estimator. Taking into
consideration that the same number of Monte Carlo points
has been employed, the TT-method estimator is over 100
times more efficient than the double virial estimator. We
mention that the improvement has little to do with the path
integral technique that has been utilized. Provided that
enough path variables are considered, the variance of the
estimators is independent of the path integral technique. At
least in one other instance, such a significant improvement in
the efficiency of a path integral technique has been eventu-
ally attributed to a superior estimator.10,11

As emphasized in Ref. 20, the agreement between the
T-method and the H-method energy estimators constitutes an
important test for the convergence of the path integral meth-
ods. The heat capacity analog is represented by the agree-
ment between the TT-method and the TH-method estimators.
The latter estimator is obtained by temperature differentia-
tion of the H-method energy estimator. The temperature dif-
ferentiation can be performed by finite difference in a way
similar to the present implementation of the TT-method esti-
mator. However, the evaluation of the H-method estimator
requires knowledge of the first-order derivatives of the po-
tential. Since these derivatives have been computed anyway
in the modified TT-method estimator simulation, we have
also evaluated the H-method energy estimator in the respec-
tive simulation. A temperature differentiation with the help
of the formula

^CV&b i

TH52kBb i
2
^E&b i 11

H 2^E&b i 21

H

b i 112b i 21
, ~32!

has produced the curve in Fig. 4, figure that also plots the
TT-method heat capacity estimator, for comparison. The
agreement between the two curves is surprisingly good. In
fact, the maximum difference between the two curves is
about 1.5kB , a value that is comparable to the error bars
achieved in the present simulations.

We say that the agreement is surprisingly good because
several factors concur against such an agreement. First, nu-
merical differentiation of Monte Carlo data is, in general, a
difficult task, unless the data at different temperatures are
strongly correlated so that the resulting curve is smooth. In
this regard, the parallel tempering technique is of great help
because it brings the necessary correlation into the simula-
tion. From the quality of the numerical differentiation, we
estimate that the correlation is substantial. For instance, if the
runs at different arbitrarily close temperatures are indepen-
dent, the resulting curves fail to be continuous. If the corre-
lation is of the type appearing in a Brownian motion, the
resulting curves are continuous but not differentiable. In or-
der for the curves to be differentiable, the correlation must be
even stronger. Though such a strong correlation has been
previously reported,44 we are not aware of any mathematical
or numerical analysis attempting to quantify the strength of
the parallel tempering correlation between averages at differ-
ent temperatures. In the light of the application just pre-
sented, we believe such an analysis would be well justified.

Second, the temperature step in the numerical differen-
tiation is significantly larger than the step we have employed
for the TT-method estimator. Fortunately, the quantum ef-
fects are strong and the dependence of the ensemble energy
with the temperature is smooth. As a consequence, the accu-
racy of the finite-difference scheme is comparable to the sta-
tistical errors.

A third factor that could prevent an agreement between
the TT-method and the TH-method heat capacity estimators
is the lack of convergence of the path integral method em-
ployed. The agreement provides additional evidence thatN

FIG. 2. Classical heat capacities~cTT! and quantum heat capacities by the
TT-method estimator~qTT! and the modified TT-method estimator~qmTT!
as functions of temperature. On this scale, the curves for the last two quan-
tities overlap. The heat capacities are given in units ofkB , whereas the
temperature is given in Kelvin. The number of path variables employed for
the quantum results isN563. The error bars~two times the standard devia-
tion! are comparable to the thickness of the drawing lines and are not
plotted.

FIG. 3. Error bars~in units of kB) for classical heat capacities~cTT! and
quantum heat capacities by the TT-method estimator~qTT! and the modified
TT-method estimator~qmTT! as functions ofT ~given in Kelvin!. Also
plotted ~solid line! is the absolute value of the differenceDTT5^CV&b

TT

2^CV&b
mTT between the heat capacity values computed with the help of the

TT-method and modified TT-method estimators.
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563 path variables are sufficient for the range of temperature
studied and for the path integral technique utilized.

Yet a fourth reason for disagreement is poor Monte
Carlo sampling. Energy estimators are unbiased estimators,
as opposed to heat capacity estimators, which are biased. As
a consequence, energy estimators and heat capacity estima-
tors generally have different sensitivities to the quality of the
sampling, with the latter ones being more sensitive to quasi-
ergodicity problems. This may result in disagreement be-
tween the heat capacities computed with the help of estima-
tors and the ones computed by using energy differences of
the type given by Eq.~32!.

We conclude this section by noticing that the high-
temperature part of the quantum heat capacity plotted in Fig.
2 does not coincide with the results reported in Ref. 15. The
cause of this difference is the fact that Neirotti, Freeman, and
Doll have mistakenly utilized a confining potential with a
radius Rc54sLJ instead of 2sLJ , the value they have re-
ported.

IV. SUMMARY AND CONCLUSIONS

The main result of the present paper is the finding that
the evaluation of the main thermodynamic properties of a

quantum canonical system, namely, average energy and heat
capacity, can be performed in a fast and reliable fashion
without calls to first or second derivatives of the potential.
This can be accomplished by a finite-difference scheme ap-
plied to the T-method energy estimator and TT-method heat
capacity estimator, respectively. The derivation of these esti-
mators is rather trivial, consisting of simple temperature dif-
ferentiations of the partition function. As emphasized in the
Introduction, the key observation is that the Feynman–Kac
formula and its finite-dimensional approximations must be
written in a form with the temperature dependence of the
paths buried into the potential. Such a transformation is pos-
sible for all path integral techniques and it should constitute
the starting point for the derivation of various energy and
heat capacity estimators.

We have also proposed an analytical heat capacity esti-
mator, called the modified T-method estimator, that might
prove useful whenever the first derivatives of the potential
are available. However, this estimator has a slightly worse
behavior at low temperature than the direct TT-method esti-
mator and may be quite expensive for large-dimensional sys-
tems because of the quadratic scaling of the number of path
integrals that must be computed with the dimensionality of
the system. For example, in the case of the Ne13 cluster, the
code based on the modified heat capacity estimator has been
50% slower than the code utilizing the finite-difference
scheme.

The heat capacity estimators utilized in the present paper
have favorable variances when compared to the double virial
estimators. This has been clearly demonstrated for a
Lennard-Jones realization of Ne13, a realistic physical sys-
tem that is representative of many other applications. To the
authors’ knowledge, the heat capacities results obtained for
the Ne13 cluster are the most accurate to date.

ACKNOWLEDGMENTS

The authors acknowledge support from the National Sci-
ence Foundation through Awards No. CHE-0095053 and No.
CHE-0131114. They also wish to thank the Center for Ad-
vanced Scientific Computing and Visualization~TCASCV!
at Brown University for valuable assistance with respect to
the numerical simulations described in the present paper.

APPENDIX: TABLE OF HEAT CAPACITIES

FIG. 4. Quantum heat capacities in units ofkB by the TT-method estimator
~qTT! and by the TH-method estimator~qTH!, respectively. The temperature
is given in Kelvin. On this scale, the two curves overlap almost perfectly.
The maximum difference between corresponding values on the curves is
about 1.5kB .

TABLE I. Heat capacities and error bars of the Ne13 cluster as functions of temperature. A number ofN
5127 path variables have been utilized. The error bars are two times the standard deviation. The temperature
is measured in Kelvin, whereas the heat capacities are given in units ofkB . The heat capacity pick value, as
obtained by maximizing a cubic spline interpolation function of the computed data, is 74.4760.54kB and is
attained at the temperature ofTpeak58.97 K.

T 4 5 6 7 8 9

^CV&b 8.2660.80 11.8160.52 18.1460.44 29.3060.56 54.7460.86 74.4560.54
T 10 11 12 13 14

^CV&b 61.7060.51 48.8760.36 43.0560.30 40.7860.23 40.0960.27
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