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PHY204 Lecture 13 [rln13]

Capacitor Circuit (1)
Find the equivalent capacitances of the two capacitor networks.
All capacitors have a capacitance of 1µF.

(a)

(b)

C1

C 2 C
3

C4

C
5

C 6
tsl114

Reading electric circuits is a skill, like reading music. It takes practice to
become proficient. In this course, we just take a few elementary steps toward
acquiring the skill of reading circuits.

It is important that we recognize devices, any devices, that are connected in
parallel or in series. Here we practice this skill for capacitors. We can then
employ with confidence the rules established in the previous lecture for series
and parallel connections.

We have learned that when two or more capacitors are connected in parallel
or in series we can simplify the circuit by replacing a series connection or a
parallel connection by a single capacitor with equivalent capacitance.

By this method it is possible to reduce some capacitor circuits to a single
capacitor. Doing that is a bit like solving a Sudoku. The principal value of
such exercises is the practice of reading circuits.

(a) We recognize that the two 1µF capacitors on the lower branch are in
series. We can replace them by a 1

2
µF capacitor, which then is in parallel

with the 1µF capacitor in the upper branch. We can replace them by a 3
2
µF

equivalent capacitor.

(b) We recognize the two 1µF capacitors on the right to be in parallel. We re-
place them by a 2µF capacitor, which then is in series with the 1µF capacitor
on the left, yielding a 2

3
µF equivalent capacitance.
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Capacitor Circuit (3)

Connect the three capacitors in such a way that the equivalent capacitance is Ceq = 4µF. Draw the circuit
diagram.

4 Fµ

2µF 2µF 3µF

tsl116

There are six different ways of connecting three capacitors between two ter-
minals if two have the same capacitance. They can all be reduced to a single
capacitor in one or two steps.

(a)

(
1

2µF
+

1

2µF
+

1

3µF

)−1

=
3

4
µF (three in series)

(b) 2µF + 2µF + 3µF = 7µF (three in parallel)

(c)

(
1

2µF
+

1

2µF + 3µF

)−1

=
10

7
µF (two in parallel, in series with third)

(d)

(
1

3µF
+

1

2µF + 2µF

)−1

=
12

7
µF (two in parallel, in series with third)

(e)

(
1

2µF
+

1

3µF

)−1

+ 2µF =
16

5
µF (two in series, in parallel with third)

(f)

(
1

2µF
+

1

2µF

)−1

+ 3µF = 4µF (two in series, in parallel with third)
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Capacitor Circuit (5)

Find the equivalent capacitances of the following circuits.

F

Fµ

µ3

1µF

1µF

Fµ3

2µF

1µF

1µF

2

(a)

(b)

tsl118

(a) This circuits can be reduced to a single capacitor in three steps. There
is only one way to do it.

First we recognize that the two 1µF capacitors are in parallel. We replace
them by a 2µF capacitor, which then is in series with the other 2µF. This
series connection can be replaced by a 1µF capacitor, which then is in parallel
with the 3µF. This parallel connection yields a 4µF equivalent capacitance.

(b) This circuit is harder to read. An experienced practitioner recognizes at
once that it is the same circuit as the one above.

The functionality of a circuit remains unchanged if wires are stretched or
bent or if devices and junctions are moved along wires. The only prohibition
is that devices must not be moved across junctions.

If we bend a few wires and move the junction that leads to the terminal on the
right past the junction at the bottom, we readily recognize the equivalence
with the other circuit.

Not all capacitor circuits can be reduced to a single capacitor by this method
of sequential simplification. There are circuits where none of the capacitors
are in parallel or in series. This does not mean that there is no equivalent
capacitance. There is. However, finding it requires a different method of
analyis. We will analyze one such case near the end of this lecture.
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Capacitor Circuit (9)

The circuit of capacitors connected to a battery is at equilibrium.

(a) Find the equivalent capacitance Ceq.
(b) Find the total energy U stored in the circuit (excluding the battery).
(c) Find the the charge Q3 on capacitor C3.
(d) Find the voltage V2 across capacitor C2.

12V
Fµ= 43

C Fµ= 62
C

C1
= 3µ F

tsl335

Analyzing capacitor circuits at equilibrium is not all about equivalent capac-
itances. Of interest are the charges on individual capacitors, the voltages
across them, and the energies stored on them, when the circuit is connected
to a power source (battery). In the following we discuss a few simple appli-
cations ending with a more complex one.

(a) We recognize that capacitors C1 and C2 are in series. We replace them
by C12, which then is in parallel with C3.

C12 =

(
1

C1

+
1

C2

)−1

= 2µF, Ceq = C12 + C3 = 6µF.

(b) Here we take advantage of the concept of equivalence. The equivalent
capacitor is connected to a 12V battery:

U =
1

2
Ceq(12V)2 = 432µJ.

(c) The voltage across capacitor C3 is that supplied by the battery.

Q3 = C3(12V) = 48µC.

(d) Capacitor C12 is in parallel to C3 as used earlier. The voltage across
it is also 12V. The charge on it: Q12 = C12(12V) = 24µC. C12 is a series
combination of C1 and C2. Both have the same charge on it: Q1 = Q2 =
Q12 = 24µC. The voltage cross C2 then is V2 = Q2/C2 = 4V.
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Intermediate Exam II: Problem #1 (Spring ’05)
The circuit of capacitors connected to a battery is at equilibrium.

(a) Find the equivalent capacitance Ceq.
(b) Find the voltage V3 across capacitor C3.
(c) Find the the charge Q2 on capacitor C2.

8V Fµ= 22CFµC1

Fµ= 33C

= 1

Solution:

(a) C12 = C1 + C2 = 3µF, Ceq =

(
1

C12
+

1
C3

)−1

= 1.5µF.

(b) Q3 = Q12 = Qeq = Ceq(8V) = 12µC

⇒ V3 =
Q3

C3
=

12µC
3µF

= 4V.

(c) Q2 = V2C2 = 8µC.

tsl336

This circuit looks similar to the one on the previous page. But watch out.
Moving one capacitor from right to left across a junction produces an entirely
different circuit.

(a) We recognize that capacitors C1 and C2 are in parallel. We replace them
by C12, which then is in series with C3.

(b) The parallel combination of C12 and the capacitor C3 are in series and
thus acquire the same charge, equal to the charge on Ceq, which has 8V
across. Once we know the charge Q3, the voltage V3 follows directly.

(c) The voltages across the parallel combination C12 and the capacitor C3

must add up to the 8V provided by the battery. We know V3 = 4V. Therefore,
given that C1 and C2 are in parallel, we have V12 = V1 = V2 = 4V. The charge
Q2 then follows directly.
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Unit Exam II: Problem #1 (Spring ’07)

Consider the configuration of two point charges as shown.

(a) Find the energy U3 stored on capacitor C3.
(b) Find the voltage V4 across capacitor C4.
(c) Find the voltage V2 across capacitor C2.
(d) Find the charge Q1 on capacitor C1.

6V

C3 = 3µ F

Fµ= 54C

Fµ= 22CFµ= 21C

Solution:

(a) U3 =
1
2
(3µF)(6V)2 = 54µJ.

(b) V4 = 6V.

(c) V2 =
1
2

6V = 3V.

(d) Q1 = (2µF)(3V) = 6µC.

tsl362

The only challenge in this circuit is to read it properly. There is little calcu-
lation involved in answering the questions.

We recognize that the voltages across capacitors 3 and 4 are 6V, equal to the
voltage supplied by the battery, to which they are connected in parallel.

Capacitors 1 and 2 are in series. Hence they carry the same charge, Q1 = Q2.
Since they have equal capacitance, C1 = C2, they also have equal voltage
across, V1 = V2.

We also see that voltage across the series combination is equal to the voltage
supplied by the battery: V1 +V2 = 6V. We thus conclude that V1 = V2 = 3V.

The rest is straightforward. The results are on the slide.
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Unit Exam II: Problem #1 (Spring ’08)
The circuit of capacitors is at equilibrium.
(a) Find the charge Q1 on capacitor 1 and the charge Q2 on capacitor 2.
(b) Find the voltage V1 across capacitor 1 and the voltage V2 across capacitor 2.
(c) Find the charge Q3 and the energy U3 on capacitor 3.

12V

C 3 = 5µF

C2C1 = 6µ F = 12µ F

Solution:

(a) C12 =

(
1

6µF
+

1
12µF

)−1

= 4µF,

Q1 = Q2 = Q12 = (4µF)(12V) = 48µC.

(b) V1 =
Q1

C1
=

48µC
6µF

= 8V,

V2 =
Q2

C2
=

48µC
12µF

= 4V.

(c) Q3 = (5µF)(12V) = 60µC,

U3 =
1
2
(5µF)(12V)2 = 360µJ.

tsl377

The circuit on this page looks simpler, at first glance, than the one on the pre-
vious page. However, there is one complication that requires some thought.

The two capacitors in series do not have the same capacitance. Each still
carries the same charge, which is the charge on the equivalent of the series
combination with capacitance C12.

Once we have the charges Q1 = Q2, it is straightforward to calculate the
voltages V1 and V2. The two voltages must add up to the 12V supplied by
the battery. They do.

All other questions are elementary. The answers are on the slide.

There are plenty of additional exercises involving simple capacitor circuits
among the previous unit-2 exam slides.
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Capacitor Circuit (8)
In the circuit shown find the charges Q1, Q2, Q3, Q4 on each capacitor and the voltages V1, V2, V3, V4 across
each capacitor

(a) when the switch S is open,
(b) when the switch S is closed.

C  = 3
3

µF

F
4

µC  = 22
µF C  = 4

C  = 1
1

µF

S

V = 12V
tsl122

This application is more complex. It is a showcase for the full analysis of any
capacitor circuit that is reducible sequentially as we have practiced earlier.

With the switch S open we find the equivalent capacitance in two steps: we
first reduce two series connections, then one parallel connection:

C13 =

(
1

C1

+
1

C3

)−1

=
3

4
µF, C24 =

(
1

C2

+
1

C4

)−1

=
4

3
µF,

Ceq = C13 + C24 =
25

12
µF.

Next we calculate voltage and charge for capacitors C13 and C24:

V13 = V24 = 12V, Q13 = V13C13 = 9µC, Q24 = V24C24 = 16µC.

Recalling that C13 and C24 are both series combinations, we infer the indi-
vidual charges and then the individual voltages:

Q1 = Q3 = Q13 = 9µC, Q2 = Q4 = Q24 = 16µC,

V1 =
Q1

C1

= 9V, V3 =
Q3

C3

= 3V, V2 =
Q2

C2

= 8V, V4 =
Q4

C4

= 4V.

A consistency check requires that V1 + V3 = V2 + V4 =12V, which comes out
as it should.
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Capacitor Circuit (8)
In the circuit shown find the charges Q1, Q2, Q3, Q4 on each capacitor and the voltages V1, V2, V3, V4 across
each capacitor

(a) when the switch S is open,
(b) when the switch S is closed.

C  = 3
3

µF

F
4

µC  = 22
µF C  = 4

C  = 1
1

µF

S

V = 12V
tsl122

With the switch S closed we again find the equivalent capacitance in two
steps: we first reduce two parallel connections, then one series connection:

C12 = C1 + C2 = 3µF, C34 = C3 + C4 = 7µF,

Ceq =

(
1

C12

+
1

C34

)−1

=
21

10
µF.

Capacitors in series acquire the same charge when charged up:

Q12 = Q34 = Ceq(12V) =
126

5
µC.

These results determine the voltages across each parallel combinaton:

V12 =
Q12

C12

=
42

5
V, V34 =

Q34

C34

=
18

5
V.

A consistency check requires that V12 + V34 =12V, which pans out. The
voltage across each parallel combination is the voltage across each capacitor
of the combination:

V1 = V2 = V12 =
42

5
V, V3 = V4 = V34 =

18

5
V.

The charges on all individual capacitors then follow directly:

Q1 = V1C1 =
42

5
µC, Q2 = V2C2 =

84

5
µC,

Q3 = V3C3 =
54

5
µC, Q4 = V4C4 =

72

5
µC.
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More Complex Capacitor Circuit

No two capacitors are in parallel or in series.
Solution requires different strategy:

• zero charge on each conductor
(here color coded),

• zero voltage around any closed loop.

Specifications: C1, . . . , C5, V.
Five equations for unknowns Q1, . . . , Q5:

• Q1 + Q2 − Q4 − Q5 = 0

• Q3 + Q4 − Q1 = 0

• Q5

C5
+

Q3

C3
− Q4

C4
= 0

• Q2

C2
− Q1

C1
− Q3

C3
= 0

• V − Q1

C1
− Q4

C4
= 0

Equivalent capacitance: Ceq =
Q1 + Q2

V

C

C
1

C
4

C
5

C
3

2

−

V

+

+

+

+

− −

−

+

−

(a) Cm = 1pF, m = 1, . . . , 5 and V = 1V:

Ceq = 1pF, Q3 = 0,

Q1 = Q2 = Q4 = Q5 =
1
2

pC.

(b) Cm = m pF, m = 1, . . . , 5 and V = 1V:

Ceq =
159
71

pF, Q1 =
55
71

pC, Q2 =
104
71

pC,

Q3 = − 9
71

pC, Q4 =
64
71

pC, Q5 =
95
71

pC.

tsl511

We conclude this lecture with a capacitor circuit that cannot be analyzed by
sequential reduction of units that are either series or parallel combinations.
The method we use here looks ahead to techniques we shall employ for the
analysis of resistor circuits later.

We wish to know the charge on each capacitor for a given set of capacitances
and a given voltage supplied by the power source.

The circuit consists of three conductors (color coded black, red, and blue).
Each conductor carries zero net charge. When the circuit is connected to the
battery, charge moves within each conductor, but no charge is added to or
removed from any of them.

The first two of the five equations for the five unknowns, state that there is
no net charge on the black and red conductors. A third equation, stating
that the net charge on the blue conductor is zero as well, is redundant.

The remaining three equations state that the sum of potential differences
across devices around a loop must vanish. The voltage across a capacitor is
Q/C. Across the battery it is V .

The third equation uses the square loop on the right. Starting in the bottom
right corner and going clockwise we go up +Q5/C5, then up again +Q3/C3,
then down −Q4/C4 to arrive at the point of origin.

The fourth equation uses the square loop on the left. The fifth equation uses
the loop that goes around the circuit the long way.
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More Complex Capacitor Circuit

No two capacitors are in parallel or in series.
Solution requires different strategy:

• zero charge on each conductor
(here color coded),

• zero voltage around any closed loop.

Specifications: C1, . . . , C5, V.
Five equations for unknowns Q1, . . . , Q5:

• Q1 + Q2 − Q4 − Q5 = 0

• Q3 + Q4 − Q1 = 0

• Q5

C5
+

Q3

C3
− Q4

C4
= 0

• Q2

C2
− Q1

C1
− Q3

C3
= 0

• V − Q1

C1
− Q4

C4
= 0

Equivalent capacitance: Ceq =
Q1 + Q2

V

C

C
1

C
4

C
5

C
3

2

−

V

+

+

+

+

− −

−

+

−

(a) Cm = 1pF, m = 1, . . . , 5 and V = 1V:

Ceq = 1pF, Q3 = 0,

Q1 = Q2 = Q4 = Q5 =
1
2

pC.

(b) Cm = m pF, m = 1, . . . , 5 and V = 1V:

Ceq =
159
71

pF, Q1 =
55
71

pC, Q2 =
104
71

pC,

Q3 = − 9
71

pC, Q4 =
64
71

pC, Q5 =
95
71

pC.

tsl511

The five linear equations are readily solved for arbitrary specifications. The
general solutions are too lengthy to be reproduced here. The slide gives the
solutions for two sets of specifications.

How do we find the equivalent capacitance in this case? We use the definition
of capacitance, C = Q/V and consider the circuit to be a single capacitor in
a black box with two wires sticking out left and right.

The voltage applied is that supplied by the power source, namely V . The
charge that goes into the box through the wire on the left is the sum of the
charges that go onto capacitors 1 and 2. The same charge but with opposite
sign flows through the wire on the right onto the capacitors 3 and 4. Hence
we have

Ceq =
Q1 +Q2

V
=
Q3 +Q4

V
.

The slide states the numerical value of Ceq for the two sets of circuit specifi-
cations.
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Capacitor Circuit (6)

(a) Name two capacitors from the circuit on the left that are connected in series.
(b) Name two capacitors from the circuit on the right that are connected in parallel.

C2

C
1

C
4

C
3

C
5

C
6

C
1

C
2

C3
C

4

tsl119

This is the quiz for lecture 13.

There is only one pair of capacitors that qualify as answer to either question.
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