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Abstract

A refinement procedure for the reduced models of structural dynamic systems is presented in this article. The refinement procedure is
to ‘‘tune” the parameters of a reduced model, which could be obtained from any traditional model reduction scheme, into an improved
reduced model. Upon the completion of the refinement, the improved reduced model matches the dynamic characteristics – the chosen
structural frequencies and their mode shapes – of the full order model. Mathematically, the procedure to implement the model refinement
technique is an application of the recently developed cross-model cross-mode (CMCM) method for model updating. A numerical example
of reducing a 5-DOF (degree-of-freedom) classical mass-spring (or shear-building) model into a 3-DOF generalized mass-spring model is
demonstrated in this article.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

Finite element models of structures need to have many
degrees of freedom to represent the geometrical detail of
complex structures. For various reasons, engineers often
want to simplify the complicated structural models prior
to performing necessary tasks. Usually, carrying out an
appropriate model reduction scheme allows one to create
a lower order model that represents the dynamics of the
full-order model in the considered loading/parameter con-
ditions. In dealing with the limitations imposed by the
available computing power, historical model reduction
schemes, including static condensation [1], dynamic con-
densation [2], sub-structuring (component synthesis) [3],
etc. were developed to gain computational efficiency in
structural analysis. In particular, those model reduction
schemes were performed prior to the eigen analysis, thus
an expensive eigen analysis for the full-order model could

be avoided. Nowadays, as the computing power increases
enormously, performing model reduction to gain computa-
tional efficiency has become less necessary.

However, applying model reduction schemes remains very
popular in the area of modal testing [4,5]. The main reason of
this popularity is not due to any concern of computational effi-
ciency, rather the necessity of compatible models. In modal
testing, an obvious incompatibility lies in the difference in the
order (the number of degrees of freedom) of the models derived
respectively from tests (measured models) and theoretical anal-
ysis (analytical models). Usually the measured models – sub-
stantiated by measured degrees of freedom (DOFs) – are of
relatively small order, while the analytical models – generally
established via a finite-element procedure – are one or more
order of magnitude larger. When comparisons are to be made
between a measured model and its theoretical counterpart, this
order incompatibility presents obstacles to meaningful inter-
pretation. Therefore, there is a need to bring them both to the
same order, which can be achieved by reducing the analytical
model. Maintaining the essential eigen-properties of the full-
order model unchanged for the reduced model is desired, how-
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ever, most traditional model reduction schemes can only
achieve the goal approximately. In other words, traditional
reduction schemes could only yield the eigen-properties of the
reduced model approximating to those of the full-order model
[4,5].

This article presents a refinement procedure for the
reduced models. Implementing the refinement procedure
is to tune the reduced model, obtained from one of the tra-
ditional model reduction schemes, into an improved
reduced model (simply called improved model hereafter)
that can maintain the equality of the selected modal prop-
erties of the full-order model. Mathematically, the pro-
posed model refinement technique is similar to a model
updating approach. By updating the chosen coefficients
of the reduced model, one finds proper mass and stiffness
matrices of the improved model, so that the mode shapes
and frequencies of the improved model can agree with
those of the full-order model. The mathematical kernel of
the proposed model refinement technique is the cross-model

cross-mode (CMCM) method [6], which is so named
because it involves solving a set of linear simultaneous
equations where each equation is formulated based on
the product terms from two same/different modes associ-
ated with the reduced and improved models, respectively.
In brief, the proposed refinement technique forms simulta-
neous linear equations in a matrix form, with the unknown
vector being the correction factors which are used to cor-
rect the selected stiffness and/or mass sub-matrices.

The numerical example demonstrated in this paper is to
reduce, then refine, a 5-DOF classical mass-spring model
into a 3-DOF generalized mass-spring model, in which
the initial model reduction is carried out by using the static
condensation (Guyan reduction) technique.

2. Preliminaries

Most structural dynamic system modeling is performed
with the finite-element (FE) method. The model consists of
mass and stiffness matrices, which are required in an eigen
analysis. The undamped free vibration of a structural
dynamic system can be described by the second order dif-
ferential equation as [7,8]:

M€xþ Kx ¼ 0 ð1Þ
in which M and K are the mass and stiffness matrices,
respectively, and x is the displacement vector. The eigen
solution of this system consists of the eigenvalue matrix
K, which is a diagonal matrix of the squared natural fre-
quencies, and the eigenvector matrix U.

2.1. Guyan reduction

The most widely adopted model reduction scheme is the
static reduction introduced by Guyan [1]. This technique
partitions the mass and stiffness matrices, and the displace-
ment vector, in Eq. (1) into a set of master and slave

degrees of freedom:

Mm Mms

M sm M s

� �
€xm

€xs

� �
þ

Km Kms

K sm K s

� �
xm

xs

� �
¼

0

0

� �
ð2Þ

The subscripts m and s relate to the master and slave coor-
dinates, respectively. Neglecting the inertia terms for the
second set of equations may be used to eliminate the slave
degrees of freedom. It leads to

xm

xs

� �
¼ TGxm ð3Þ

where

TG ¼
I

�K�1
s K sm

� �
ð4Þ

is the Guyan transformation matrix. The reduced mass and
stiffness matrices are then given by

MG ¼ TT
GMTG ð5Þ

and

KG ¼ TT
GKTG ð6Þ

where MG and KG denote the reduced mass and stiffness
matrices associated with the Guyan reduction scheme.

3. Model refinement

Throughout this paper, to distinguish symbols for vari-
ous models, the superscript ‘‘0” is used for the reduced
model, superscript ‘‘�” for the improved model, and with-
out a superscript for the full-order model. For instance,
M 0, M� and M represent the mass matrix of the reduced
model, improved model, and full-order model, respectively.
As the full-order model is usually formed by a finite-ele-
ment procedure, the reduced model is obtained from the
full-order model via a traditional model reduction scheme,
and the improved model is tuned from the reduced model
through the refinement technique presented below.

The undamped free vibration of the improved model can
be described by the second order differential equation as

M�€x� þ K�x� ¼ 0 ð7Þ
where x� is the displacement vector of the improved model,
and should be corresponding to the master coordinates of
the full model, i.e. x� ¼ xm. The model refinement is in
an attempt to have the mode shapes of the improved model
match with those of the master coordinates of the full-or-
der model, i.e., attempting to make U� ¼ ðUÞm in which
the subscript ‘‘m” indicates the master coordinates only.
In addition, the corresponding modal frequencies of the
full-order and improved models must be matched as well.

In the following derivation for the model refinement
procedure, it is assumed that M and K have been formu-
lated, thus one can perform the eigen analysis to get the
corresponding mode shapes Uj and modal frequencies xj,
j ¼ 1; � � � ;Ns, in which Ns is the number of modes for the
full-order model. Furthermore, the stiffness K 0 and mass
M 0 matrices of the reduced model have been obtained using
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one of the traditional model reduction methods, and the
corresponding mode shapes U0i and modal frequencies x0i,
i ¼ 1; � � � ;Nt, where Nt is the number of modes for the
reduced model, can be computed accordingly. The specific
task of the proposed refinement procedure is to refine the
stiffness and mass matrices from K 0 and M0 to K� and
M� as several U�j and x�j associated with K� and M� must
match well with several ðUjÞm and xj.

In the proposed refinement method, the stiffness matrix
K� of the improved model is a correction of K 0 via

K� ¼ K 0 þ
XNK

n¼1

anK0n ð8Þ

where any individual K 0n is a pre-selected stiffness sub-ma-
trix of the reduced model, NK is the number of stiffness cor-
rection terms, and an are unknown stiffness correction
factors to be determined. Likewise, one writes the corre-
sponding expression for the mass matrix M� as

M� ¼M 0 þ
XNM

n¼1

bnM0
n ð9Þ

in which the individual M 0
n is a pre-selected mass sub-ma-

trix of the reduced model, NM is the number of correction
coefficients for the mass matrix, and bn are mass correction
coefficients to be determined.

For the ith eigenvalue k0i and eigenvector U0i associated
with K0 and M0, one has

K 0U0i ¼ k0iM
0U0i ð10Þ

Similarly, for the jth eigenvalue k�j and eigenvector U�j asso-
ciated with K� and M�, one writes

K�U�j ¼ k�j M�U�j ð11Þ

In the following development, the mode shapes of the im-
proved model should equal to those of master coordinates
of the full-order model. Also, the corresponding modal fre-
quencies of the full-order and improved models must be
equal as well. One must treat k�j and U�j to be known quan-
tities available from the full-order model, that is k�j ¼ kj

and U�j ¼ ðUjÞm.
Denoting superscript ‘‘T” as the transpose operator, and

premultiplying Eq. (11) by ðU0iÞ
T yields

ðU0iÞ
T
K�U�j ¼ k�j ðU0iÞ

T
M�U�j ð12Þ

Substituting Eqs. (8) and (9) into the above equation leads to

Kyij þ
XNK

n¼1

anKyn;ij ¼ k�j M y
ij þ

XNM

n¼1

bnM y
n;ij

 !
ð13Þ

where Kyij¼ðU0iÞ
T
KU�j , Kyn;ij¼ðU0iÞ

T
KnU

�
j , M y

ij¼ðU0iÞ
T

MU�j ,
and M y

n;ij¼ðU0iÞ
T
MnU

�
j . For clarity, symbols with super-

script ‘‘y” throughout this paper are ‘‘cross” terms calcu-
lated from both reduced and improved models. Using a
new index m to replace ij and rearranging Eq. (13) yields

XNK

n¼1

anKyn;m þ
XNM

n¼1

bnð�k�j M y
n;mÞ ¼ f ym ð14Þ

where f ym ¼ k�j M y
m � Kym. When N i modes are taken from the

reduced model, and Nj modes are taken from the full-order
model, totally N m ¼ Ni � N j equations can be formed from
Eq. (14). Those equations are named the cross-model cross-

mode (CMCM) equations in view of the fact that they are
formed by crossing over two models, reduced and im-
proved models, also crossing over various modes. Express-
ing Eq. (14) in a matrix form, one has

K yaþM yb ¼ f y ð15Þ

in which K y and My are N m-by-NK and N m-by-N M matrix,
respectively; a and b are column vectors of size NK and N M ;
and fy is a column vector of size N m. Furthermore, one can
rewrite Eq. (15) as

Gyc ¼ f y ð16Þ

where

Gy ¼ ½K y M y �; and c ¼
a

b

� �
:

Analytically, one can solve c in Eq. (16) by a standard
inverse operation, c ¼ Gy

�1
fy, if Gy is a non-singular square

matrix. For a non-square matrix Gy where the number of
equations does not equal the number of unknowns, the
equivalent operator is the pseudo-inverse. If Gy has more
rows than columns, an over-determined case where there
are more equations than unknowns the pseudo-inverse is
defined as

Gy
] ¼ ðGyTGyÞ�1

Gy
T ð17Þ

for nonsingular ðGyTGyÞ. The resulting solution, c ¼ Gy
]
fy

is optimal in a least-squares sense.

4. Numerical example

A numerical example is given below to illustrate the pro-
cedure of applying the proposed model refinement tech-
nique. The full-order model is a 5-DOF mass-spring
system shown in Fig. 1(a). Mathematically, a mass-spring
model is equivalent to a shear building model [8], to a
lumped-mass finite-element model of a rod in longitudinal
vibration, to a set of point masses vibrating transversely on
a taut string, and to a finite-difference or finite-element
approximation to a Sturm–Liouville problem [9].

The full-order model is taken to have [m1; � � � ;m5] equal
to [3.5, 3.5, 2.5, 2.0, 1.5] � 103 Kg, and [k1; � � � ; k5] all equal
to 3� 107 N/m. The displacements of the 5-DOF full-order
model are denoted by xi; i ¼ 1; � � � ; 5. In this example,
assuming the response data are measured at the first, third
and fifth coordinates, thus the master coordinates are taken
at x1; x3 and x5. Following Eqs. (5) and (6), one can obtain
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the reduced mass and stiffness matrices based on the Guyan
reduction scheme as

MG ¼
4375 875 0

875 3875 500

0 500 2000

2
64

3
75 kg; KG ¼

45 �15 0

�15 30 �15

0 �15 15

2
64

3
75� 106 N=m

The above mass and stiffness matrices mathematically sug-
gest a 3-DOF generalized mass-spring model shown in
Fig. 1(b), in which no coupling terms are present between
x�1 and x�3. The resulting frequencies of this reduced model
and the modal assurance criterion (MAC) values between
the reduced and full-order models are shown in Table 1,
where the MAC value between modes Ui and Uj has been
defined as

MACðUi;UjÞ ¼
jUi �Ujj
jUijjUjj

ð18Þ

in which ‘‘�” represents the inner product operator, and jUij
denotes the length (norm) of Ui. The value of the MAC is
always between 0 and 1, and a value of 1 indicates that the
two modes have the same shape. From Table 1, one can
observe that the Guyan reduction can only approximate
the modal properties of the full system. The error for the
first frequency is small (33.96 rad/s for full order model
and 33.58 rad/s for Guyan reduction model), but the errors
for the second and third frequencies/mode shapes (higher
order modes) are relatively large (for example, 95.78 rad/s
versus 88.98 rad/s for the second frequency, and the
MAC value for the third mode degrading to 0.9844). Basi-

cally, results shown at Table 1 are in agreement with the
conventional wisdom that the lower modes of a Guyan re-
duced model are more accurate whereas the higher modes
can be more severe in error [5].

Applying the proposed model refinement technique, one
starts numerically with K 0 ¼ KG and M 0 ¼MG. For scaling
purpose, a reference value associated with either stiffness or
mass must be preset. Without losing generality, the (1,1)
element of M� is chosen to be the same as that of M 0.
The remaining issues include: (i) how to select the sub-
matrices K 0n and M 0

n? and (ii) how many K 0n and M 0
n

required?
The number of K 0n and M 0

n terms to be included is
mainly depending on the number of modes intended to
be matched. While it is always desired to let the improved
model match the modal properties of the full-order model
as much as possible, there is a theoretical limitation
because only a finite number of correction terms are
involved. One analytical way to know how many modes
could be matched is via counting the number of modal
coefficients to be fitted and the number of correction terms
adopted. From the one-to-one mapping principle, it is real-
ized that matching each additional modal coefficient must
have an extra correction term available. In order to match
N modes of the improved model with those of the full-
order model, one must include total 3N terms for K 0n and
M 0

n, in which ‘‘3” is for the reason that each mode of a
3-DOF system needs 3 independent quantities to character-
ize the mode—one quantity for the frequency and two
independent quantities for the mode shape. In the present
example, 9 correction terms are needed when all 3 modes
are to be fitted.

Apparently, K 0n and M 0
n both must be symmetric in

order to maintain the symmetry of K� and M�. An obvi-
ous, but not the unique, way to choose K 0n is the sub-matrix
associated with each independent parameter of the stiffness
matrix of the reduced model

K 01¼ 106

45 0 0

0 0 0

0 0 0

2
64

3
75N=m; K 02¼ 106

0 0 0

0 30 0

0 0 0

2
64

3
75N=m;

K 03¼ 106

0 0 0

0 0 0

0 0 15

2
64

3
75N=m; K 04¼ 106

0 �15 0

�15 0 0

0 0 0

2
64

3
75N=m;

K 05¼ 106

0 0 0

0 0 �15

0 �15 0

2
64

3
75N=m

Likewise, M 0
n could be associated with each parameter of

the mass matrix of the reduced model, except the (1,1) en-
try which has been preset to be unchanged. There are 4
possible terms:

Table 1
Frequencies and MAC (modal assurance criterion) values for reduced and
improved models

Mode
number

Full order
model

Reduced model
(Guyan reduction)

Improved model

n xn(rad/s) x0n (rad/s) MAC x�n (rad/s) MAC

1 33.58 33.96 1.0000 33.58 1.0000
2 88.98 95.78 0.9967 88.98 1.0000
3 140.92 142.80 0.9844 140.92 1.0000

Fig. 1. (a) a 5-DOF mass-spring system, and (b) a 3-DOF generalized
mass-spring system.
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M 0
1 ¼

0 0 0

0 3875 0

0 0 0

2
64

3
75kg; M 0

2 ¼
0 0 0

0 0 0

0 0 2000

2
64

3
75kg;

M 0
3 ¼

0 875 0

875 0 0

0 0 0

2
64

3
75kg; M 0

4 ¼
0 0 0

0 0 500

0 500 0

2
64

3
75kg

In applying the CMCM method, all 3 modes of the
reduced model and the first three modes chosen from the
the full-order model are employed to form 9 equations.
Because 9 unknowns are to be solved in 9 CMCM equa-
tions, it can be solved by a standard inverse operation.
The resulting M� and K� are:

M� ¼
4375 2105:5 0

2105:5 6135 736:2

0 736:2 2315

2
64

3
75kg;

K� ¼
39:07 �11:33 0

�11:33 32:46 �15:53

0 �15:53 15:97

2
64

3
75� 106 N=m

Performing the numerical eigen analysis based on the
above M� and K�, one finds that the resulting modal fre-
quencies and mode shapes match perfectly with those of
both lower mode (1st mode) and higher mode (2nd and
3rd modes) of the 5-DOF model (see Table 1).

5. Concluding remarks

As traditional model reduction schemes intend to create
lower order models that represent the dynamics of the full-
order model in the considered loading/parameter condi-
tions, normally the obtained reduced models can only
approximate the dynamic properties of the full-order
model. The model refinement procedure introduced in this

article is to fine-tune the reduced model, so that the result-
ing improved model can equal its modal properties to those
of the full-order model. The traditional Guyan reduction
scheme was performed in the numerical example to reduce
a 5-DOF (degree-of-freedom) classical mass-spring model
into a 3-DOF generalized mass-spring model. After apply-
ing the proposed model refinement procedure to the 3-
DOF generalized mass-spring model, the improved model
could match its 3 modes perfectly with the first 3 modes
of the 5-DOF classical mass-spring model.
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