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Abstract

Given a set F of graphs, a graph G is F-free if G does not contain any member of F as an
induced subgraph. A set F is degree-sequence-forcing (DSF) if, for each graph G in the class
C of F-free graphs, every realization of the degree sequence of G is also in C. A DSF set is
minimal if no proper subset is also DSF. In this paper, we present new properties of minimal
DSF sets, including that every graph is in a minimal DSF set and that there are only finitely
many DSF sets of cardinality k. Using these properties and a computer search, we characterize
the minimal DSF triples.

Keywords: degree-sequence-forcing set; forbidden subgraphs; degree sequence characterization;
2-switch
AMS Subject Classification: 05C75 (05C07)

1 Introduction

Given a collection F of graphs, a graph G is F-free if G contains no induced subgraph isomorphic
to an element of F , and the elements of F are forbidden subgraphs for the class of F-free graphs.
Recently interest has developed in determining which small sets of induced subgraphs can be
forbidden to produce graphs having special properties, such as 3-colorability [23], traceability [14],
k-connected Hamiltonian [6], or the containment of a Hamiltonian cycle [8], 2-factor [1], or perfect
matching [11, 12, 20, 21].

In this paper we investigate for which collections F of graphs the F-free graphs are characterized
by their degree sequences. The degree sequence d(G) of a graph G is the list (d1, d2, . . . , dn) of
its vertex degrees, written in non-increasing order, and any graph having degree sequence d is
a realization of d. A graph class C has a degree sequence characterization if it is possible to
determine whether or not a graph G is in C given only the degree sequence of G. Degree sequence
characterizations of interesting graph classes are rare but valuable, as they may lead to efficient
recognition algorithms.

In [4] the authors and M. Kumbhat studied the question of classifying graph classes with both
forbidden subgraph and degree sequence characterizations. They defined a collection F of graphs
to be degree-sequence-forcing (or DSF ) if whenever any realization of a degree sequence d is F-free,

∗Research partially supported by Faculty Research Committee, Black Hills State University.
†Supported in part by National Science Foundation grant DMS-0914815.
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paw 4-pan co-4-pan house

Figure 1: Small named graphs.

every other realization of d is F-free as well. In addition to several fundamental properties of DSF
sets, the paper [4] also contains a characterization of the DSF sets with at most two graphs.

A DSF set F is minimal if no proper subset of F is also DSF. In this paper, we present new
properties of minimal DSF sets. We show that these sets are both plentiful and rare: every graph
belongs to a minimal DSF set (Theorem 2.12), but there are finitely many minimal DSF sets with
k graphs for any positive integer k (Theorem 2.6). We also give a new characterization of all
(including non-minimal) DSF sets (Theorem 2.13).

The properties of minimal DSF sets give us an algorithmic framework to search for minimal
DSF triples. We perform a computer search for all such triples as described in Section 3, and from
this search obtain a complete list of all minimal DSF triples (Theorem 3.13). In [5] the authors
and M. Kumbhat characterize the non-minimal DSF triples; thus Theorem 3.13 completes the
characterization of all DSF triples.

The study of DSF sets is motivated by several well-known classes of graphs. The sets {K2}
and {2K1} are the forbidden sets for the edgeless and the complete graphs, respectively, which
have trivial degree sequence characterizations. More interesting, {2K2, C4, P4}, {2K2, C4, C5}, and
{2K2, C4} are sets of forbidden induced subgraphs for the threshold graphs [7], split graphs [10], and
pseudo-split graphs [17], respectively; each of these classes has a degree sequence characterization
([15], [16, 26, 28], [17]). Matroidal and matrogenic graphs also have characterizations in terms of
both degree sequences and forbidden subgraphs [9, 18, 22, 27].

This paper is organized as follows. Section 2 presents the new properties of minimal DSF sets,
while Section 3 presents additional properties and develops the computer algorithm for searching
for minimal DSF triples. The last two subsections of Section 3 contain the results of the computer
search. Finally, we conclude with several open questions about DSF sets in Section 4.

2 Minimal DSF sets

In this section we establish fundamental properties of minimal DSF sets. We show that every graph
belongs to a minimal DSF set, and we determine bounds on the numbers and sizes of these sets
and the graphs they contain.

We begin with some definitions. Let V (G) and E(G) denote the vertex and edge sets, respec-
tively, of a graph G. The order of G is defined as |V (G)|. For W ⊆ V (G), we use G[W ] to denote
the induced subgraph of G with vertex set W . The complement of a graph G is denoted by G.
We write the disjoint union of graphs G and H as G + H, and we indicate the disjoint union of
m copies of G by mG. We use Kn, Pn, and Cn, respectively, to denote the complete graph, path,
and cycle on n vertices, and we use Km,n to denote the complete bipartite graph with partite sets
of sizes m and n. The paw is the complement of P3 + K1. The 4-pan is the graph obtained by
adding a pendant vertex to a 4-cycle; the co-4-pan is the complement of the 4-pan. The house is
the complement of P5. We illustrate these named graphs in Figure 1.

Given vertices a, b, c, d in a graph G with ab, cd ∈ E(G) and ad, bc /∈ E(G), a 2-switch is the
operation of deleting edges ab and cd from G and adding edges ad and bc. As shown by Fulkerson,
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Hoffman, and McAndrew [13], two graphs have the same degree sequence if and only if one can be
obtained from the other via a sequence of 2-switches.

To show that a set F of graphs is not DSF, it suffices to produce two graphs H and H ′ having
the same degree sequence in which H contains an element of F as an induced subgraph while H ′

is F-free. We call such a pair (H,H ′) an F-breaking pair. In deciding whether a set F is DSF, one
does not have to look far for F-breaking pairs, if they exist.

Lemma 2.1. If F is a set of graphs that is not DSF, then there exists an F-breaking pair (H,H ′)
such that H and H ′ each have at most |V (G)| + 2 vertices, where G is a graph in F having the
most vertices.

Proof. Since F is not DSF, by definition there exists an F-breaking pair (J, J ′) of graphs. Since
J and J ′ have the same degree sequence, there exists a sequence J = J0, . . . , Jk = J ′ of graphs
in which Ji is obtained via a 2-switch on Ji−1 for i ∈ {1, . . . , k}. Define ` to be the largest index
such that J` induces an element G of F , so that (J`, J`+1) is an F-breaking pair. Let V denote the
vertex set of an induced copy of G in J`, and let W denote the set of four vertices involved in the
2-switch transforming J` into J`+1. Since G is not induced on V in J`+1, the 2-switch performed
must add an edge to or delete an edge from J`[V ]; hence |W ∩V | ≥ 2 and |V ∪W | ≤ |V |+ 2. Thus
(J`[V ∪W ], J`+1[V ∪W ]) is an F-breaking pair on at most |V (G)|+ 2 vertices. Taking G to be a
graph in F with the most vertices yields the result.

Given a finite set F of graphs, Lemma 2.1 implies that determining if F is a DSF set can be
done in finite time, as there are only a finite number of pairs (H,H ′) to check for F-breaking pairs.

When we restrict our attention to minimal DSF sets, Lemma 2.1 imposes restrictions on “gaps”
in the sizes of vertex sets.

Lemma 2.2. Let F = {F1, . . . , Fk}, where the graphs in F are indexed in order of the sizes of
their vertex sets, from smallest to largest. If F is a minimal DSF set, then |V (Fi+1)| − |V (Fi)| ≤ 2
for all i ∈ {1, . . . , k − 1}.

Proof. Let F be a minimal DSF set with elements indexed as described. For any i ∈ {1, . . . , k−1},
let G be the set {F1, . . . , Fi}. Since F is minimal, G is not DSF. By Lemma 2.1 there exists a
G-breaking pair (H,H ′) such that |V (H ′)| ≤ |V (Fi)|+ 2. Since F is DSF, H ′ induces Fj for some
j > i. Thus

|V (Fi+1)| − |V (Fi)| ≤ |V (Fj)| − |V (Fi)| ≤ |V (H ′)| − |V (Fi)| ≤ 2,

as claimed.

A similar result applies to the sizes of edge sets.

Lemma 2.3. Let F = {F ′1, . . . , F ′k}, where the graphs in F are indexed in order of the sizes of their
edge sets, from smallest to largest. If F is a minimal DSF set, then |E(F ′i+1)| ≤ max{|E(F ′j)| +
2|V (F ′j)| : j ≤ i} for all i ∈ {1, . . . , k − 1}.

Proof. Let F be a minimal DSF set with elements indexed as described. For any i ∈ {1, . . . , k−1},
let G′ be the set {F ′1, . . . , F ′i}. Since F is minimal, G′ is not DSF. As in the proof of Lemma 2.1
(in the discussion of J`[V ∪W ] and J`+1[V ∪W ]), there exists a G′-breaking pair (H,H ′) such that
every vertex of H not belonging to a chosen induced copy of some F ′j in G′ belongs to one of the
edges involved in the 2-switch that changes H into H ′. There are at most two such vertices, and
these vertices are contained in all edges of H that do not belong to the chosen copy of F ′j . Thus
H contains at most |E(F ′j)| + 2|V (F ′j)| edges (any vertex not in the copy of F ′j is involved in the

3



2-switch changing H into H ′ and hence is not a dominating vertex in H). The graph H ′ has the
same number of edges as H, and since F is DSF, H ′ induces F ′` for some ` > i. It follows that

|E(F ′i+1)| ≤ |E(F ′`)| ≤ |E(H ′)| ≤ |E(F ′j)|+ 2|V (F ′j)|,

which completes the proof.

The previous result and induction yield the following.

Corollary 2.4. Let F = {F ′1, . . . , F ′k}, where the graphs in F are indexed in order of the sizes of
their edge sets, from smallest to largest. If F is a minimal DSF set, then |E(F ′i+1)| ≤ |E(F ′1)| +
2
∑i

j=1 |V (F ′j)| for all i ∈ {2, . . . , k}.

Thus minimal DSF sets with few elements contain graphs that do not differ greatly in the
numbers of vertices and edges they contain. We now show that small minimal DSF sets must
therefore contain small graphs. We first recall a result from [4].

Theorem 2.5 ([4]). Every DSF set must contain a forest in which each component is a star, as
well as the complement of a forest of stars.

Theorem 2.6. If F is a minimal DSF set of k graphs, then the number of vertices in any element
of F is at most

4k − 3

2
+

√
8k2 + 2k − 31

4
;

hence there are finitely many minimal DSF k-sets.

Proof. Let F be a minimal DSF set of k graphs, and denote the graphs of F both by {F1, . . . , Fk}
and by {F ′1, . . . , F ′k}, where the graphs are indexed in ascending order of the sizes of their vertex
sets and edge sets, respectively. Let n1 = |V (F1)|. As a consequence of Lemma 2.2, we observe
that |V (Fk)| ≤ n1 + 2(k − 1). Corollary 2.4 and Lemma 2.2 imply that

|E(F ′k)| − |E(F ′1)| ≤ 2

k−1∑
i=1

|V (F ′i )|

≤ 2
k∑

i=2

|V (Fi)|

≤ 2
k∑

i=2

(n1 + 2(i− 1))

= 2(k − 1)n1 + 2k2 − 2k. (1)

We now find a lower bound on the difference in the number of edges between any two graphs in
the set F . By Theorem 2.5, some element Fs of F is a forest of stars, while some element Fc of
F is the complement of a forest of stars. The complement of a forest with n vertices has at least
n(n− 1)/2− (n− 1) = (n− 2)(n− 1)/2 edges, so we find

|E(F ′k)| − |E(F ′1)| ≥ |E(Fc)| − |E(Fs)|

≥ (n1 − 2)(n1 − 1)

2
− (|V (Fk)| − 1)

≥ (n1 − 2)(n1 − 1)

2
− (n1 + 2(k − 1)− 1).
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Combining this inequality and the one in (1), we have

(n1 − 2)(n1 − 1)

2
− (n1 + 2(k − 1)− 1) ≤ 2(k − 1)n1 + 2k2 − 2k,

which reduces to

n1 ≤ 2k +
1

2
+

√
8k2 + 2k − 31

4
. (2)

Since |V (Fk)| ≤ n1 + 2(k − 1), the result follows.

We will use the following bounds for minimal DSF triples when we search for them in Section 3.

Corollary 2.7. Suppose F = {F1, F2, F3}, where the Fi are indexed in order of the sizes of their
vertex sets, from smallest to largest. If F is a minimal DSF triple, then |V (F1)| ≤ 14, |V (F2)| ≤ 16,
and |V (F3)| ≤ 18.

Proof. Substituting k = 3 in (2) yields |V (F1)| ≤ 14; the other statements follow from Lemma 2.2.

The bound in Theorem 2.6 does not appear to be tight. Consider the theorem in [4] character-
izing the DSF sets of order at most 2.

Theorem 2.8 ([4]). A set F of at most two graphs is DSF if and only if it is one of the following:

(1) a set containing one of K1, K2, or 2K1;

(2) one of {P3,K3}, {P3,K3 +K1}, {P3,K3 +K2}, {P3, 2K2}, {P3,K2 +K1}, {K2 +K1, 3K1},
{K2 +K1,K1,3}, {K2 +K1,K2,3}, {K2 +K1, C4}, {K3, 3K1}, or {2K2, C4}.

When k = 1 or k = 2, Theorem 2.6 states that the largest graph in a minimal DSF singleton or
pair has at most four or at most eleven vertices, respectively. Theorem 2.8 shows that the largest
graph in any DSF singleton has two vertices, and the largest graph in any minimal DSF pair has
five vertices. Furthermore, Theorem 2.8 and, as we shall see shortly, Theorem 3.13 show that most
known minimal DSF sets do not vary as widely in the orders of their elements as Lemma 2.2 allows
them to, suggesting that a better bound may be possible.

We remark that Lemmas 2.2 and 2.3 and Theorem 2.6 highlight a major difference between
minimal and non-minimal DSF sets. While the numbers, orders, and edge set sizes of graphs in a
minimal DSF set satisfy fairly stringent relationships, Theorem 2.8(1) and results in [5] show that
this is not necessarily true for non-minimal DSF sets. For example, {2K2, C4,Kn} is a non-minimal
DSF triple for any n ≥ 1. If F and F∗ are DSF and F properly contains F∗, then the graphs
of F \ F∗ can differ from the graphs in F∗ in terms of the sizes of their vertex and edge sets by
arbitrarily much.

Although Theorem 2.6 states that there are finitely many minimal DSF sets of a given size,
there are infinitely many minimal DSF sets: the set Gn of all graphs on n vertices is clearly DSF and
must contain a finite minimal DSF subset. Thus Theorem 2.6 also implies that there are arbitrarily
large finite DSF sets.

We next show that every finite graph belongs to a minimal DSF set. We will use the following
definition.

Definition 2.9. Let G be a set of graphs in which no element is induced in another. Consider the
set R = R(G) of all graphs sharing a degree sequence with some graph that induces an element of
G, and let D(G) be the minimal elements of R in the induced subgraph order. When G contains a
single graph G, we write R(G) and D(G) for convenience.
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As a first example, suppose that G = {K3}. The set R contains both P5 and K2 + K3, since
these two graphs have the same degree sequence and K2 +K3 contains K3 as an induced subgraph.
The set D(K3) does not contain K2 +K3, since R also contains K3. (Note that by definition D(G)
always contains G as a subset.) However, D(K3) does contain P5; we show this below as we fully
determine D(K3).

Example 2.10. We show that D(K3) = {K3, P5, 4-pan,K2,3,K2 +C4,K2 +C5, P3 +P4, 3P3}. Let
T denote the set on the right-hand side. Using the notation of Definition 2.9, we see that each
of the graphs of T belongs to R, since one may easily construct a K3-inducing graph having the
same degree sequence. Moreover, no proper induced subgraph of any graph in T belongs to R.
Furthermore, no graph in T is induced in any other graph in T . Hence T ⊆ D(K3).

Suppose that G contains no element of T as an induced subgraph. We show that the degree
sequence of G has no K3-inducing realizations; in other words, the set T contains D(K3). We
begin by supposing that G induces a cycle. Such a cycle must have length 4 or 5, since G is
{K3, P5}-free. Since G is {K2 + C4,K2 + C5}-free, the component of G containing the cycle is
the only nontrivial component. If the cycle is a 4-cycle, then the component contains no other
vertices, since otherwise some vertex on the cycle would have to be adjacent to a cycle vertex, and
G is {K3, 4-pan,K2,3}-free. Likewise, if the cycle is a 5-cycle, then the component has no other
vertices, since G is {K3, P5, 4-pan}-free. Thus if G induces a cycle, it has the form Ck + nK1,
where k ∈ {4, 5}. In this case G is the unique realization of its degree sequence; hence d(G) has no
K3-inducing realizations.

If G induces no cycle, then G is a forest. Since G is P5-free, each component has diameter
at most 3. Suppose that G has component with diameter 3. Since G is P3 + P4-free, every other
component of G is P3-free and hence complete; since G is a forest we conclude that G is the disjoint
union of a diameter-3 tree (often called a “double star”) with some number of components with
orders 1 or 2.

Suppose instead that G only has components with diameters at most 2; in this case, G is a
disjoint union of stars. Since G is 3P3-free, G has at most two components with order greater than
2. We conclude that G has the form K1,a +K1,b +mK2 + nK1 or is a proper induced subgraph of
such a graph.

Note now that any 2-switch on the union of a double star with components of orders 1 or 2
either preserves the isomorphism class or changes it to a graph having at most two P3-inducing
star components and all other components having order 1 or 2. Any 2-switch on a graph of this
latter type either preserves the isomorphism class or changes it to a double star plus components
or orders 1 or 2. Thus in every case the degree sequence of G has no K3-inducing realization.

The set D(G) is closely tied to DSF sets containing G. If F is a DSF set containing G as a
subset, then every element of D(G) must induce at least one element of F . Furthermore, D(G) is
minimal among DSF sets containing G:

Lemma 2.11. The set D(G) is DSF, and no proper subset of D(G) that contains G is DSF.

Proof. Let H and H ′ be two graphs with the same degree sequence, and suppose that H induces
an element F of D(G). By definition, F has the same degree sequence as a graph F ′ that induces
an element of G. There exists a sequence of 2-switches that changes F into F ′; applying these
2-switches to the induced copy of F in H changes H into a graph H ′′. Since H ′ has the same
degree sequence as H ′′ and H ′′ induces F ′, by definition H ′ induces an element of D(G). Hence no
D(G)-breaking pair exists; thus D(G) is DSF.

Suppose now that D′ is a proper subset of D(G) that contains G and is DSF. Let F be a graph
in D(G) \ D′. Note that F is D′-free, by the assumption of minimality under induced subgraph

6



containment in the definition of D(G). However, by definition F has the same degree sequence as
a graph F ′ that induces an element of G. Since D′ contains G, we see that (F ′, F ) is a D′-breaking
pair, a contradiction.

Theorem 2.12. Every graph belongs to a minimal DSF set.

Proof. Let G be an arbitrary graph, and let G be the set of all graphs having the same degree
sequence as G. By Lemma 2.11, D(G) is a DSF set, and any proper subset that is DSF must
omit an element of G. Suppose that D′ is a proper subset of D(G) that is DSF and omits a graph
F in G. In order to prevent a D′-breaking pair, D′ cannot contain any element of G. However,
consider an element H of D′ with minimum order. Because H belongs to D(G), it has the same
degree sequence as a graph H ′ that induces an element of G. As such, H ′ does not belong to D(G)
(and hence H ′ /∈ D′), since by definition no element of D(G) contains another element of D(G) as
an induced subgraph. Nor does any proper induced subgraph of H ′ belongs to D′, since H was
assumed to have minimum order in D′. Thus (H,H ′) is a D′-breaking pair, a contradiction. Hence
no proper subset of D(G) omitting an element of G can be DSF, and D(G) is therefore a minimal
DSF set.

We conclude this section by using the sets D(G) to give a new characterization of DSF sets.

Theorem 2.13. Let F be a set of graphs in which no element is induced in another. The following
are equivalent:

1. F is DSF.

2. For each element G of F , every element of D(G) contains an element of F as an induced
subgraph.

3. D(F) = F .

Proof. 1.⇒ 2. Let G be an element of F . By definition, every element of D(G) other than G itself
forms a G-breaking pair with some G-inducing element of R(G), so since F is DSF, every element
of D(G) contains an element of F as an induced subgraph.

2.⇒ 3. As F ⊆ D(F), we need only show that D(F) ⊆ F . Suppose H ∈ D(F). By definition,
H has the same degree sequence as some graph H ′ that induces a graph G of F . No proper
induced subgraph of H has this property, so by definition, H ∈ D(G). By assumption, H contains
an element of F as an induced subgraph. Since H is in D(F), no proper induced subgraph of H is
an element of F , so in fact H is an element of F .

3.⇒ 1. Let (H,H ′) be an F-breaking pair. By definition of D(F), H ′ must induce an element
of D(F), but since D(F) = F , H ′ induces an element of F and hence (H,H ′) is not an F-breaking
pair. Since no F-breaking pair exists, F is DSF.

3 Minimal DSF triples

We now use properties of minimal DSF sets to determine all minimal DSF triples. By Corollary 2.7,
this is a finite problem: only triples of graphs with at most 18 vertices need be considered. However,
examining all such triples is infeasible, since there are approximately 1.79×1030 graphs on 18 vertices
(see [19]). In this section we present a practical algorithm that identifies these sets by ruling out
all non-suitable triples. We present the complete list of minimal DSF triples in Theorem 3.13.

Suppose that F = {F1, F2, F3} is a minimal DSF triple. By Theorem 2.5, every DSF set must
contain a graph that is a forest of stars and a graph (possibly the same graph) that is a complement

7



of a forest of stars. Additionally, we show here that every DSF set must also contain a complete
bipartite graph and a disjoint union of cliques where at most one clique has more than two vertices,
as well as complements from these two families.

We construct potential minimal DSF triples F by ensuring that each of the six graph classes
above is satisfied by one of the graphs in F . Very small graphs can be in several of the graph
classes at once, so we first handle the case where one graph of F has at most three vertices. For
the remaining case, we may assume that each graph of F has at least four vertices. As there are six
classes that must be represented in each DSF triple, some graph in the triple must be a member
of more than one class, giving additional restrictions. Potential triples that violate the vertex and
edge bounds of Lemma 2.2 or Corollary 2.7 are then eliminated, and the remaining triples are then
examined with a brute force search for F-breaking pairs. Triples for which no F-breaking pairs are
found are then DSF sets.

3.1 Graph classes appearing in every DSF set

In [4] the authors and M. Kumbhat showed that every DSF set must contain a representative from
certain graph classes. As we recalled in Theorem 2.5, one of these graph classes is the class of
forests of stars. The following lemma then implies that every DSF set must also then contain the
complement of a forest of stars.

Lemma 3.1 ([4]). Given any collection F of graphs, let Fc denote the collection of graphs which
are complements of those in F . Then F is DSF if and only if Fc is DSF.

We here extend the list of graph classes from which every DSF set must have a representative.
In [4] we see that every DSF set contains a disjoint union of cliques; this is strengthened in the
following theorem.

Theorem 3.2. Every DSF set contains a complete bipartite graph and a disjoint union of cliques
with at most one clique with more than two vertices. Moreover, every DSF set must also contain
a disjoint union of at most two complete graphs and a complete multipartite graph where at most
one partite set has order greater than two.

Proof. Let F be a DSF set, and let F be any graph of F . Let m be the number of edges in the
complement F . We form a graph H by starting with the disjoint union of F and the complete
multipartite graph M having m partite sets of size 2. We bijectively assign each partite set {a, b} in
M to a pair {c, d} of nonadjacent vertices in F and add the edges ac and bd to H. In the resulting
graph, each vertex belonging to F now has degree |V (F )| − 1, and every vertex of M has degree
|V (M)| − 1. The degree sequence of H thus matches that of K|V (F )| + K|V (M)|, which we denote
by H ′. Since F is DSF, (H,H ′) cannot be an F-breaking pair, so F contains a graph induced by
H ′. Thus F contains a disjoint union of at most two complete graphs.

Applying a similar construction again to F , but with M an edgeless graph with 2m vertices
instead, we construct an F -inducing graph H having the same degree sequence as H ′ = K|V (F )| +
mK2; hence F must also contain a disjoint union of complete graphs where at most one component
has order greater than two.

Finally, by Lemma 3.1 the set Fc is also DSF and hence must contain disjoint unions of complete
graphs of both of the types described. The set F contains the complements of these graphs and
hence a complete bipartite graph and a complete multipartite graph where at most one partite set
has order greater than two.
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Note that such results were proved in [4] in the framework of monotone parameters. This
framework also works for the previous result, where edit distance (the number of edges that must
be added or removed to change the graph into, for instance, a complete bipartite graph) is the
monotone parameter. We have presented a direct proof here for simplicity.

3.2 Minimal DSF triples containing a small graph

We first handle the cases where a minimal DSF triple contains a graph with at most three vertices.

Lemma 3.3. (a) No minimal DSF triple contains a graph having order 1 or 2.

(b) No minimal DSF triple contains P3 or K1 +K2.

Proof. By Theorem 2.8, any graph of order 1 or 2 comprises a DSF set; hence a DSF triple
containing such a graph cannot be minimal. Let F be a DSF set containing P3. Since (P5,K3+K2)
is not an F-breaking pair, F must contain an induced subgraph G of K3 + K2. However, no
matter what G is, {P3, G} appears in Theorem 2.8, so F cannot be a minimal DSF triple. By
Theorem 2.8(1), the complement of a minimal DSF triple containing K1 +K2 would be a minimal
DSF triple containing P3, so no such triple exists.

We now characterize the minimal DSF triples containing K3 or 3K1.

Lemma 3.4. If F is a minimal DSF triple containing K3, then F is one of {K3, P3 +K1,K1,3},
{K3, P3 +K1, C4}, {K3, P3 +K1,K2,3}, and {K3, 2K2,K1,3}.

Proof. Let F = {K3, F,G}, and suppose that F is a minimal DSF set. Since K3 forms a DSF pair
with 3K1, it follows from Lemma 3.3 that |F2|, |F3| ≥ 4. By Example 2.10, in order to prevent
F-breaking pairs, each element of {P5, 4-pan,K2,3,K2 +C4,K2 +C5, P3 +P4, 3P3} must induce an
element of F . Thus, P5 must induce either F or G; without loss of generality we may assume that
P5 induces F . Since K2,3 induces F or G, but P5 and K2,3 have no common induced subgraphs
with at least four vertices, we conclude that K2,3 induces G. Similarly, since K2,3 and 3P3 have no
common induced subgraphs with at least four vertices, 3P3 must induce F . Thus F is a graph on
at least four vertices induced in P5 and 3P3; the only such graphs are P3 +K1 and 2K2.

If F = P3 + K1, then by letting G vary over induced subgraphs of K2,3 with at least four
vertices, we obtain the following as possibilities for F : {K3, P3 + K1,K1,3}, {K3, P3 + K1, C4},
{K3, P3 +K1,K2,3}.

If F = 2K2, then G must be an induced subgraph of both K2,3 and the 4-pan graph; thus G is
K1,3 or C4. Since {2K2, C4} is a DSF pair, however, the only possibility for a minimal DSF triple
in this case is {K3, 2K2,K1,3}.

Corollary 3.5. If F is a minimal DSF triple containing 3K1, then F is one of {3K1, paw,K1+K3},
{3K1, paw, 2K2}, {3K1, paw,K2 +K3}, and {3K1, C4,K1 +K3}.

As we shall see in Section 3.5, the sets in Lemma 3.4 and Corollary 3.5 are indeed minimal DSF
triples.

3.3 Minimal DSF triples of large graphs

We now search for minimal DSF triples F = {F1, F2, F3} where each graph has at least four vertices.
Our search algorithm consists of two phases: in the first phase, we construct a list of candidate
triples that satisfy the six necessary graph classes. In the second phase, we then check each of those
triples to determine if it is a minimal DSF triple.
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Table 1: Lists the pairwise intersections of the graph classes, considering only graphs with at least
four vertices.

First class Second Graphs in the intersection

Ka1,a2 ∈ B, a1 ≤ a2

Bc none
K a1 = 0, a2 ≥ 4
Kc a1 ≤ 2
S a1 ≤ 1
Sc a1 = a2 = 2

Kb1 +Kb2 ∈ Bc, b1 ≤ b2

K b1 ≤ 2
Kc b1 = 0, b2 ≥ 4
S b1 = b2 = 2
Sc b1 ≤ 1

Kc3 + c2K2 + c1K1 ∈ K, c3 = 0 or c3 ≥ 3
Kc (c3 = c2 = 0) or (c2 = c1 = 0)
S c3 = 0
Sc c1 ≤ 1 and c2 = 0

c3K1 ∨ (c2K2) ∨Kc1 ∈ Kc, c3 = 0 or c3 ≥ 3
S c1 ≤ 1 and c2 = 0
Sc c3 = 0

S Sc none

3.3.1 Phase I: constructing potential triples

By Theorems 2.5 and 3.2, a minimal DSF triple F must contain a representative from each of the
following graph classes:

B = {complete bipartite graphs};
K = {disjoint unions of cliques, at most one with more than two vertices};
S = {forests of stars}.

Let Bc, Kc, and Sc denote the sets of complements of graphs in these respective classes. Theorems 2.5
and 3.2, also imply that F also contains a representative from Bc, Kc, and Sc. Note that graphs in
Bc are disjoint unions of at most two complete graphs, and graphs in Kc are complete multipartite
graphs.

As F only contains three graphs, a graph in F must lie in the intersection of more than one
of the six graph classes. In Table 1, we describe the pairwise intersections of these families, listing
only graphs with at least four vertices. The first two columns of each row show which families are
involved in the intersection. The first column shows a typical element of the first set, indicating the
notation used for describing a graph of the class. The third column shows the restrictions imposed
on these parameters by membership in the second graph class.

Note that the intersection of B and Bc is empty for graphs with at least four vertices. Addition-
ally, complete bipartite graphs and their complements are parametrized by only two values. Thus,
for our minimal DSF triple F , we choose F1 ∈ B and F2 ∈ Bc. The specific choices of F1 and F2

may also be in K, Kc, S, and Sc. The graph classes that F1 and F2 do not satisfy constrain the
choice of F3.

It is possible that F1 and F2 by themselves satisfy all six graphs classes, thus placing no con-
straints on F3. The following lemma describes the graphs F1 and F2 when this occurs.
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Lemma 3.6. Let F1 = Ka1,a2 ∈ B and F2 = Kb1 +Kb2 ∈ Bc, where a1 ≤ a2 and b1 ≤ b2 and both
graphs have at least four vertices. The set {F1, F2} contains an element from each of K, Kc, S, and
Sc if and only if both a1 and b1 are at most 1 or a1 = a2 = b1 = b2 = 2.

Proof. From Table 1 we see that if a1 and b1 are both at most 1, then F1 ∈ B ∩ Kc ∩ S and
F2 ∈ Bc ∩K ∩ Sc. If a1 = a2 = b1 = b2, then F1 ∈ B ∩Kc ∩ Sc and F2 ∈ Bc ∩K ∩ S.

Conversely, suppose that {F1, F2} contains an element from each of the four listed classes. The
intersection of S and Sc contains no graph with four or more vertices. Hence, F1 belongs to one of
S or Sc, and F2 belongs to the other. If F1 ∈ S and F2 ∈ Sc, then a1 ≤ 1 and b1 ≤ 1, as listed in
Table 1. If instead F1 ∈ Sc and F2 ∈ S, then a1 = a2 = 2 and b1 = b2 = 2.

Note that in the last case, {F1, F2} is {C4, 2K2}, which is itself a DSF pair and hence is contained
in no minimal DSF triple. Thus, if a1 ≤ 1 and b1 ≤ 1, then there is no constraint from the graph
classes on the choice of F3. The following lemmas handle these cases.

Lemma 3.7. Suppose that F1 = Ka1,a2 and F2 = Kb1 + Kb2. If a2 ≥ 4 and F2 and F3 each have
at least 4 vertices, then {K0,a2 , F2, F3} is not a DSF set. By considering complements, if b2 ≥ 4
and F1 and F3 each have at least 4 vertices, then {F1,Kb2 , F3} is not a DSF set.

Proof. Suppose to the contrary that {K0,a2 , F2, F3} is a minimal DSF set, and let F2 = Kb1 +Kb2

as in the hypothesis. Consider the following K0,a2-breaking pairs:

H1 = P5 + (a2 − 3)K1 ⇒ H ′1 = K2 +K3 + (a2 − 3)K1

H2 = K2,3 + (a2 − 3)K1 ⇒ H ′2 = house + (a2 − 3)K1

H3 = 2P3 + (a2 − 4)K1 ⇒ H ′3 = P2 + P4 + (a2 − 4)K1

Since F = {K0,a2 , F2, F3} is DSF, for each i ∈ {1, 2, 3}, the graph H ′i induces F2 or F3.
We first note that F2 cannot be induced in H ′2 or H ′3. Indeed, F2 is a disjoint union of at most

two complete graphs, and the unique such induced subgraphs of H ′2 and H ′3 are K1 +K3 and 2K2,
respectively. Suppose F2 is one of these graphs. Since (co-4-pan, 4-pan) is a {K0,a2 , F2}-breaking
pair, F3 must be induced in the 4-pan. Let H4 and H ′4 be the two realizations of (4, 4, 3, 3, 2, 2)
shown in Figure 2. The pair (H4, H

′
4) is also {K0,a2 , F2}-breaking, so F3 is induced in H ′4; thus

F3 is C4 or K1,3. However, in every case this yields a contradiction: {K0,a2 , 2K2,K1,3} contains
no element of Sc; {K0,a2 , 2K2, C4} properly contains {2K2, C4}, a DSF set; and (K2 +K3, P5) is a
breaking pair for both {K0,a2 ,K1 +K3, C4} and {K0,a2 ,K1 +K3,K1,3}.

Thus F3 is induced in both H ′2 and H ′3. This forces F3 to be an induced subgraph of P4 + (a2−
3)K1.

We now claim that F3 is induced in H ′1. Suppose this is not the case. Then F2 is induced in
H ′1 and must be either K1 + K3 or K2 + K3 (we know that F2 6= 2K2, since F2 is not induced in
H ′3). In either case, (K2 +K3, P5) is a {K0,a2 , F2}-breaking pair, so F3 is induced in P5. Since F3

is also induced in P4 + (a2 − 3)K1, we find that F3 is P4 or P3 + K1. This is a contradiction if
F2 = K2+K3, since {K0,a2 ,K2+K3, F3} contains no element of Sc. Furthermore, the pair (H4, H

′
4)

in Figure 2 is {K0,a2 ,K1 +K3, F3}-breaking whether F3 is P4 or P3 +K1.
Hence F3 is induced in H ′1; since it is also induced in P4 +(a2−3)K1, we find that F3 is induced

in K2 + (a2 − 2)K1. The classes Bc and Sc both contain neither K0,a2 nor F3; thus, F2 belongs to
Bc∩Sc. As noted in Table 1, this implies that b1 ≤ 1. Let H5 = K2 +Kb2 , and let H ′5 be the graph
obtained by deleting an edge uv from Kb2 and attaching a pendant vertex to each of u and v, as
shown in Figure 2. Since α(H ′5) < 4 and ω(H ′5) < b2, the pair (H5, H

′
5) is {K0,a2 , F2}-breaking.

Thus F3 is induced in H ′5. Since F3 has at least 4 vertices, this implies that F3 = K2 + 2K1 and
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H4 H′
4

Kb2−2

H′
5

H6 H′
6

Figure 2: Graphs from Lemmas 3.7 and 3.8.

H7 H′
7

Figure 3: Graphs from Lemma 3.8.

b2 ≥ 4. Let H6 and H ′6 be the graphs with degree sequence (3, 3, 3, 2, 2, 1) shown in Figure 2.
Since H6 induces K2 + 2K1 but H ′6 does not, and α(H ′6) < 4 and ω(H ′6) < b2, the pair (H6, H

′
6) is

{F1, F2, F3}-breaking, yielding a contradiction.

Lemma 3.8. If a2 ≥ 3 and b2 ≥ 3 and F3 has at least 4 vertices, then {K1,a2 ,K1 +Kb2 , F3} is not
a DSF set.

Proof. Since {K1,a2 ,K1 +Kb2 , F3} is a minimal DSF set if and only if {K1,b2 ,K1 +Ka2 , F3} is, for
convenience we assume that 3 ≤ b2 ≤ a2 and that {K1,a2 ,K1 +Kb2 , F3} is DSF.

Consider the K1 +Kb2-breaking pairs (Kb2 +
(
b2
2

)
K2, b2K1,b2−1) and (K2 +Kb2 , H

′
5), where H ′5

is illustrated in Figure 2. Since the maximum degree of the second graph in both pairs is b2 − 1
and b2 ≤ a2, the graph K1,a2 is induced in neither of these second graphs. Thus, F3 is induced
in both b2K1,b2−1 and H ′5. Since b2K1,b2−1 is triangle-free, F3 is a triangle-free induced subgraph
of H ′5, which implies that F3 is an induced subgraph of P5. Since b2K1,b2−1 contains no paths of
length 3, each component of F3 has diameter at most 2, and thus F3 is either 2K2 or P3 +K1.

Note that in either case (K2,3, house) is a {K1,3,K1 + K3, F3}-breaking pair, so a2 ≥ 4. If
F3 = 2K2, we then have a contradiction, for (co-4-pan, 4-pan) is {K1,a2 ,K1 +Kb2 , 2K2}-breaking.

Thus F3 = P3 +K1. If b2 = 3, then the pair (H4, H
′
4) in Figure 2 is {K1,a2 ,K1 +Kb2 , P3 +K1}-

breaking, a contradiction. For b2 ≥ 4, consider the pair (H7, H
′
7) illustrated in Figure 3, where H7

is formed by taking two nonadjacent vertices and attaching both to every vertex of P3 + K1, and
H ′7 is formed by adding three edges to K2 + K4 as shown. Since α(H ′7) < 3, it is easy to see that
(H7, H

′
7) is a {K1,a2 ,K1 +Kb2 , P3 +K1}-breaking pair, a contradiction.

Algorithm 3.9 presents the first phase of the algorithm in pseudocode. The output is a list of
candidate triples F that satisfy each of the six graph classes, as well as the bounds of Lemma 2.2
and Corollary 2.7, but that are not ruled out by Lemmas 3.7 and 3.8.

Algorithm 3.9. Algorithm for Phase I for finding candidate triples.

1: for each F1 = Ka1,a2 ∈ B, where 1 ≤ a1 ≤ a2 and 4 ≤ a1 + a2 ≤ 18 do
2: We may assume that 1 ≤ a1 by Lemma 3.7.
3: Set n1 ← a1 + a2
4: for each F2 = Kb1 +Kb2 ∈ Bc, where 1 ≤ b1 ≤ b2 and 4 ≤ b1 + b2 ≤ 18 do
5: We may assume that 1 ≤ b1 by Lemma 3.7.
6: Set n2 ← b1 + b2
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7: Based on F1 and F2 we can eliminate some cases.
8: if (a1 ≤ 1 and b1 ≤ 1) or (a1 = a2 = b1 = b2 = 2) then
9: By Lemma 3.6, F1 and F2 already satisfy all six classes. Lemmas 3.7 and 3.8 show that

no choices for F3 result in DSF sets, and hence there is no need to check any graphs for
F3.

10: continue with the next choice for F2

11: else if neither S nor Sc is satisfied by F1 or F2 then
12: No one graph with at least 4 vertices can satisfy both S and Sc, so there is no valid choice

for F3.
13: continue with the next choice for F2

14: end if

15: for n3 = 4 to 18 do
16: We will choose an F3 with n3 vertices.
17: if n1, n2, n3 do not satisfy Lemma 2.2 then
18: continue with the next choice for F3

19: end if

20: We choose F3 to satisfy one of the classes not satisfied by F1 or F2.
21: if F1, F2 /∈ K then
22: for each F3 = Kc3 + c2K2 + c1K1 ∈ K, c3 = 0 or c3 ≥ 3, and c1 + c2 + c3 = n3 do
23: if F1, F2, F3 do not satisfy Lemma 2.3 or Corollary 2.7 on number of edges then
24: continue with the next choice for F3

25: end if
26: if F1, F2, F3 satisfy all six classes then
27: add {F1, F2, F3} to the list of candidate triples
28: end if
29: end for (choosing F3 ∈ K)

30: else if F1, F2 /∈ Kc then
31: for each F3 is the complement of Kc3 + c2K2 + c1K1 ∈ K, c3 = 0 or c3 ≥ 3, and

c1 + c2 + c3 = n3 do
32: if F1, F2, F3 do not satisfy Lemma 2.3 on number of edges then
33: continue with the next choice for F3

34: end if
35: if F1, F2, F3 satisfy all six classes then
36: add {F1, F2, F3} to the list of candidate triples
37: end if
38: end for (choosing F3 ∈ Kc)

39: else if F1, F2 /∈ S then
40: We choose F3 to be a forest of stars. Note that this requires generating all partitions

of n3.
41: for each F3 ∈ S that is a forest of stars on n3 vertices do
42: if F1, F2, F3 do not satisfy Lemma 2.3 on number of edges then
43: continue with the next choice for F3

44: end if
45: if F1, F2, F3 satisfy all six classes then
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46: add {F1, F2, F3} to the list of candidate triples
47: end if
48: end for (choosing F3 ∈ S)

49: else if F1, F2 /∈ Sc then
50: We choose F3 to be a complement of a forest of stars. Note that this requires generating

all partitions of n3.
51: for each F3 ∈ Sc that is a complement of a forest of stars on n3 vertices do
52: if F1, F2, F3 do not satisfy Lemma 2.3 on number of edges then
53: continue with the next choice for F3

54: end if
55: if F1, F2, F3 satisfy all six classes then
56: add {F1, F2, F3} to the list of candidate triples
57: end if
58: end for (choosing F3 ∈ Sc)

59: end if (which class F3 should be chosen from)
60: end for (choosing n3)
61: end for (choosing F2)
62: end for (choosing F1)

3.3.2 Phase II: testing potential triples

In the second phase of the algorithm, we test each candidate triple F generated by Phase I to
determine if it is indeed a DSF set. Algorithm 3.10 describes the second phase in pseudocode.
First, we check that no graph in F is an induced subgraph of another graph in F . Second, we
check whether F contains {2K2, C4}, as a minimal DSF triple cannot contain this DSF pair. Third,
we do a brute force search for an F-breaking pair; this search is constrained to graphs with at most
two more vertices by Lemma 2.1. If no F-breaking pair is found, then F is a minimal DSF triple.

Algorithm 3.10. Algorithm for Phase II for testing each candidate triple.

1: for each candidate triple F = {F1, F2, F3} do
2: if one of the graphs of F is induced in another then
3: F is not a minimal DSF triple.
4: continue with next choice of F
5: else if F contains {2K2, C4} then
6: F is not a minimal DSF triple.
7: continue with next choice of F
8: end if

9: for each Fi ∈ F do
10: for each graph H formed from Fi by adding one or two vertices and some set of edges

incident to the new vertices do
11: Note that Fi is induced in H.
12: for each graph H ′ formed from H by performing a two switch involving the new vertices

do
13: if H ′ does not induce any member of F then
14: report (H,H ′) as an F-breaking pair
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R R S S

Figure 4: The graphs R, R, S, and S from Theorem 3.12.

15: end if
16: end for (choosing H ′)
17: end for (choosing H)
18: end for (choosing Fi)
19: if no breaking pair is found for F then
20: report F as a minimal DSF triple
21: end if
22: end for (for each candidate triple)

3.4 Implementation

The search algorithm was implemented in the mathematical software Sage [25]. The run time
was about 6.5 minutes on a Fedora 14 Linux computer with an Intel Core i5 3.60GHz processor.
The Sage code and output is available at the first author’s webpage [3]. Phase I generated 3058
candidate triples, and the two triples {K3 +K1, C4, P3 +K1} and {K1,3, 2K2,paw} were the only
DSF sets found by Phase II. About 95% of the total time is spent in Phase II searching for
breaking pairs. Though some breaking pairs found in Phase II occur for several candidate triples,
246 distinct breaking pairs were used. This suggests that there is no short way to rule out the
non-DSF candidate triples, thereby eliminating the use of the computer program.

3.5 Results

The computer search completely determines all minimal DSF triples containing graphs with at
least four vertices. To prove that the candidate triples with small graphs from Lemma 3.4 and
Corollary 3.5 are in fact DSF sets, we use the concept of unigraphs, though we could also run
Phase II on these triples. A unigraph is a graph that is the unique realization, up to isomorphism,
of its degree sequence. The authors and M. Kumbhat noted the following in [4].

Observation 3.11 ([4]). Given a set F of graphs, if every F-free graph is a unigraph, then F is
DSF.

In [2] the first author established a criterion for recognizing such sets F . The graphs R, R, S,
and S are shown in Figure 4. The join of two graphs is indicated with the symbol ∨.

Theorem 3.12 ([2]). The F-free graphs are all unigraphs if and only if every element of

{P5, house,K2 +K3,K2,3, 4-pan, co-4-pan, 2P3, (K2 +K1) ∨ (K2 +K1),

K2 + P4, 2K1 ∨ P4,K2 + C4, 2K1 ∨ 2K2, R,R, S, S}

induces an element of F .

Combining our theoretical results and the output of the computer search, we obtain the full list
of minimal DSF triples.
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Theorem 3.13. Following is the complete list of minimal DSF triples:

{K3,K1,3, 2K2}, {3K1,K1 +K3, C4},
{K3,K1,3, P3 +K1}, {3K1,K1 +K3, paw},
{K3,K2,3, P3 +K1}, {3K1,K2 +K3, paw},
{K3, C4, P3 +K1}, {3K1, 2K2, paw},
{K3 +K1, C4, P3 +K1}, {K1,3, 2K2,paw}.

Proof. From the output of Phases I and II of the computer search, the only minimal DSF sets
containing graphs with at least four vertices are {K3 + K1, C4, P3 + K1} and {K1,3, 2K2, paw}.
Note that Phase II provides a proof that these two triples are in fact DSF sets and ensures that
they are minimal.

By Lemma 3.4 and Corollary 3.5, the triples listed above are the only sets containing a graph
with fewer than four vertices that can be DSF. To show that each of these triples is DSF, it suffices
to note that the condition in Theorem 3.12 holds. Observe that none of these triples contain a DSF
singleton or pair from Theorem 2.8 and hence all are minimal DSF triples.

4 Open questions

Using the results of Section 2 on minimal DSF sets, we have generated the list of all minimal DSF
triples in Theorem 3.13. A similar approach, again using an exhaustive search algorithm, could be
used to find all minimal DSF sets with k elements for any fixed k. However, because of practical
limits on computational power, new ideas will be necessary to deal with k much larger than 3.
These ideas might result from a deeper understanding of DSF sets in general, and minimal DSF
sets in particular. We describe some questions here.

In Section 2, we showed that every DSF set has to contain a graph from each of several hereditary
families. This leads to our first question.

Question 1. What other hereditary families must be represented by elements in every DSF set?

It appears possible that even a complete answer to this question would not suffice to characterize
minimal DSF sets. The authors have shown, for instance, that not only must a DSF set contain a
forest of stars, but this forest must appear among the elements having smallest maximum degree.

Question 2. What relationships must hold between an element of a (minimal) DSF set and the
set as a whole?

One answer to this question was given in Theorem 2.13, where DSF sets were characterized
in terms of the sets D(G) corresponding to their elements. However, as shown in Example 2.10,
determining a set D(G) is not a trivial matter, so necessary conditions such as the result on forests
of stars above are in some cases preferable. Such results might be used productively in algorithms
similar to Algorithm 3.9 to rule out candidate DSF sets.

Examining Theorems 2.8 and 3.13, it is interesting to note that of the minimal DSF sets
with three or fewer elements, all but {2K2, C4} satisfy the hypothesis of Observation 3.11, that
is, forbidding the subgraphs in these sets produces a class of graphs containing only unigraphs.
Indeed, Observation 3.11 has thus far been the most useful of the few known sufficient conditions
for DSF sets. However, in light of Theorem 3.12, “unigraph-generating” DSF sets are relatively
quite few; no minimal DSF set containing a graph with at least seven vertices can be the set of
forbidden subgraphs for a hereditary family of unigraphs. This leads to another question.
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Question 3. What properties are shared by (minimal) DSF sets F for which “most” F-free graphs
are not unigraphs?

And more generally, given the number of necessary conditions we have found for DSF sets, we
ask for results of the opposite type.

Question 4. What easily tested conditions are sufficient to ensure that a set is DSF?

Finally, we conclude with questions on finiteness. We showed in Section 2 that each graph
belongs to a minimal DSF set, and Theorem 2.6 ties the number of graphs in such a set to the size
of graphs in the set. It follows that there must be arbitrarily large minimal DSF sets. However, all
examples the authors are aware of at present are finite. Must it be so?

Question 5. Does there exist an infinite minimal DSF set?

In particular, the proof of Theorem 2.12 showed that for any graph G, the set D(G) is a minimal
DSF set. What if we restricted our attention to these sets?

Question 6. For any graph G, must D(G) be a finite set?
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