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ANTIMICROBIAL PEPTIDES FOR USE IN OYSTER AQUACULTURE: EFFECT ON

PATHOGENS, COMMENSALS, AND EUKARYOTIC EXPRESSION SYSTEMS

TARQUIN DORRINGTON1 AND MARTA GOMEZ-CHIARRI2*
1Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882;
2Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, 23 Woodward
Hall, Kingston, Rhode Island 02881

ABSTRACT Two antimicrobial peptides (AMPs) of marine origin, tachyplesin from the Japanese horseshoe crab, Tachypleus

tridentatus, and pleurocidin-amide from the winter flounder, Pseudopleuronectes americanus, were tested for their potential

effectiveness in disease treatment in oyster aquaculture. Tachyplesin had a greater antimicrobial effect than pleurocidin-amide

against a range of gram-positive and gram-negative bacteria, with minimum inhibitor concentrations in the range of 0.625 to 5 mg
mL–1. Tachyplesin (50 mg mL–1) was also more effective than pleurocidin-amide (250 mg mL–1) against the oyster protozoan

parasitePerkinsus marinus, reducing its viability to 9% versus 22% in vitro. Both peptides were unaffected by variations in pH and

salinity that would be encountered in marine culture conditions. Candidate algal and yeast for expression and feed-based delivery

of recombinant AMPs were largely unaffected by tachyplesin and pleurocidin at concentrations that inhibited bacterial growth

but were sensitive to concentrations that reduced the viability of P. marinus. Several proteases, including those of oyster

and parasitic origin, decreased AMP activity, but tachyplesin was affected to a much lesser degree than pleurocidin-amide.

Coincubation of homogenates from oyster digestive tissues with tachyplesin and pleurocidin-amide was found to reduce the

abundance of colony forming units in the tissue. Tachyplesin was more effective against gram-negative bacteria present in oyster

tissues, whereas pleurocidin-amide was more effective against gram-positive bacteria. Tachyplesin was considered a better

candidate than pleurocidin-amide for feed-based delivery applications in oyster aquaculture.

KEY WORDS: antimicrobial peptide, disease treatment, oyster, pleurocidin, Perkinsus marinus, tachyplesin

INTRODUCTION

The expansion of the molluscan bivalve aquaculture indus-

try is constrained by disease causing pathogens, and contami-
nation by human pathogenic bacteria, with corresponding risks
to the bivalve and the consumer. The most significant diseases

of adult bivalves are caused by protozoan parasites in the phyla
Perkinsozoa, Haplosporidia, and Paramyxea (Berthe et al.
2004, Burreson & Ford 2004, Carnegie & Cochennec-Laureau

2004, Villalba et al. 2004). Pathogenic bacteria, including
several Vibrio species, can cause severe losses in hatcheries
(Paillard et al. 2004). Moreover, contamination of raw shellfish
with Vibrio vulnificus and V. parahemolyticus is a problem for

the human consumer, causing illness and possibly fatal gastro-
enteritis and septicemia, particularly among immunocompro-
mised humans (Gulig et al. 2005, Yeung & Boor 2004).

Treatment of disease outbreaks in shellfish hatcheries usu-
ally involves antibiotic use. However, this practice is highly
regulated because of concerns that antibiotic residues are left in

consumable meat, and that overuse can lead to the development
of resistant bacteria (Chinabut & Puttinaowarat 2005). Over the
past two decades there has been a concerted effort to isolate and

characterize antimicrobial peptides (AMPs) as an alternative to
antibiotics (Mookherjee &Hancock 2007, Pereira 2006), as well
as for the creation of disease-resistant strains of fish through
transgenesis (Buchanan et al. 2001, Morvan et al. 1994,

Sarmasik et al. 2002). These peptides are a major component
of innate immune systems, and are found in many tissues and
cell types in numerous species, including mammals, insects, fish,

and amphibians. Their mechanisms of action and structures are
varied, but they all kill microorganisms rapidly (Pereira 2006).

More than 1,000 AMPs of eukaryotic origin have been
characterized to date, and the number is rapidly growing (Fjell
et al. 2007, Wang & Wang 2004). A number of these peptides

have been isolated from marine organisms, including oysters
(Tincu & Taylor 2004, Gueguen et al. 2005, Seo et al. 2005,
Gonzalez et al. 2007). Pleurocidin is found in the mucous-
secretory cells of the skin, intestine, and gills of the winter

flounder, Pseudopleuronectes americanus Walbaum (Douglas
et al. 2003). It is one of the best characterized marine peptides in
the a-helical class, and has been shown to have a broad activity

against gram-positive and gram-negative bacteria (Cole et al.
1997, Cole et al. 2000). The best characterized b-sheet peptides
of marine origin are the tachyplesins. Tachyplesin I is a 17-

residue peptide from the Japanese horseshoe crab, Tachypleus
tridentatus Leach (Nakamura et al. 1988). It is reported to
inhibit gram-positive and gram-negative bacteria, and fungi

(Miyata et al. 1989). Tachyplesin has also been shown to
inactivate a virus (Murakami et al. 1991) and reduce the
viability of Perkinsus marinus (Morvan et al. 1997).

Antimicrobial peptides of marine origin could potentially be

used for the control of pathogens in aquaculture. Pleurocidin
and tachyplesin have no hemolytic or cytotoxic effect on oyster
or human cells at concentrations toxic to bacteria (Morvan et al.

1997, Burrowes et al. 2004). Moreover, because of the gene-
encoded nature of AMPs, they could be produced inexpensively
using well-characterized expression systems. If properly devel-

oped, these expression systems could not only be constructed to
produce antimicrobial peptides but also could be used to direct
the peptide to the site of application (most commonly the

bivalve gut and gills) using a feed-based delivery strategy. Yeast
expression systems have the advantage of being able to express
peptides of eukaryotic origin with the correct posttranslational
modifications (Ingham & Moore 2007). In addition, yeast is

already used in the aquaculture industry as a probiotic and feed*Corresponding author. E-mail: gomezchi@uri.edu
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for Artemia species (Patra & Mohamed 2003), as a growth
promoter in finfish (Lara-Flores et al. 2003), and as a immu-

nostimulant (Vici et al. 2000). It is our hypothesis that these
two characteristics can be combined to produce a yeast strain
capable of producing an antimicrobial peptide that could be
delivered to shellfish to prevent and treat infectious diseases,

or provide a useful system for facilitating research on disease
mechanisms. This technology could eventually be applied to the
production of peptide-secreting microalgae, more suitable than

yeast cells as feeds for shellfish aquaculture.
We investigated the potential of two marine antimicrobial

peptides, tachyplesin and pleurocidin, in the development of a

system for the feed-based delivery of recombinant peptides for
oyster aquaculture. These two peptides were selected because
of their differing structures, known low toxicity to bivalve
and human cells, and their potency and spectrum of activity in

marine environments (Burrowes et al. 2004, Cole et al. 1997,
Morvan et al. 1997). We report that the candidate peptides are
effective against marine pathogens, yet nontoxic to candidate

organisms that could be used to express recombinant proteins,
at salinity, pH, and protease conditions likely to be encoun-
tered in oyster culture conditions. In addition we determined

if oysters feed on candidate organisms used for recombi-
nant expression. The effect of these peptides on the naturally
occurring bacterial flora of oysters was also investigated, to

determine the potential effect on oyster commensals and
symbionts.

MATERIALS AND METHODS

Oyster Parasites

A Perkinsus marinus stock culture (Charlestown Pond, RI)
(Reece et al. 2001) was obtained from D. Bushek (Haskin

Shellfish Research Laboratory, Point Norris, NJ). The parasite
was cultured at 28�C in sterile Dulbecco’s Modified Eagle:
Ham’s F-12 medium (DME/Ham’s F-12) (Sigma) in seawater
(Instant Ocean, 10&) supplemented with 17.9 mM sodium

bicarbonate, 65 mM HEPES, 100 U mL–1 of penicillin, 100 mg
mL–1 streptomycin, and 2% (v/v) fetal bovine serum (Anderson
& Beaven 2001).

Bacterial Strains

Test bacterial organisms from –70�C frozen stocks were

streaked on appropriate agar plates 24 h prior to the antimi-
crobial assays. Escherichia coli ZK4 and D31 were grown on
Luria Bertani (LB) at 37�C. Pseudomonas atlantica (ATCC

19,262), Photobacterium damselae damselae (Genbank
DQ005203), Vibrio harveyi DN01 (Gauger et al. 2006), V.
vulnificus LA624 FDA/GC5L, V. parahemolyticus DAL1094
FDA/GC5L (courtesy of K. LaValley, Spinney Creek Shellfish,

ME), andV. anguillarumM93Sm (Denkin &Nelson 1999) were
grown on LB supplemented with 10 g L–1 of NaCl (LB20) plates
at 28�C. A gram-positive Bacillus sp., isolated from the mucus

of infected flounder (DQ005191, Gauger et al. 2006), was
cultured on sheep’s blood agar plates at 19�C.

Yeast and Micro Algal Candidates for Expression Systems

The yeasts Saccharomyces cerevisiae (INVSc1, Invitrogen)
and Pichia pastoris (X-33 wild type, Invitrogen) were grown on

Yeast Peptone Dextrose agar (YPD) at 28�C. The microalgae
Chlamydomonas reinhardtii and Chlamydomonas pulsatilla

(kindly provided by R. Sayre, Ohio State University, Colum-
bus, OH) were grown initially on Tris-acetate-phosphate (TAP)
agar plates (Tris, TAP salts, phosphate solution, Hunter trace
elements, glacial acetic acid, yeast extract) (Gorman & Levine

1965), then in liquid TAP medium (without yeast extract) at
19�C. The diatom Skeletonema costatum (kindly provided by
G. J. Smith, Moss Landing Laboratory, CA) was cultured on

Marine Agar (MA) plates at 19�C.

Antimicrobial Peptides

Tachyplesin I (KWCaFRVCbYRGICbYRRCaR-NH2,
where superscript letters define the disulfide-connected cysteine
residues) was obtained from Bachem Bioscience. Pleurocidin-

amide (GWGSFFKKAAHVGKHVGKAALTHYL-NH2)
was custom synthesized by Mimotopes (http://www.mimotopes.
com). Antimicrobial peptides were resuspended in double

distilled water (ddH2O) to 10 mg mL–1 and stored at 4�C. Pep-
tides were checked for correct sequence and structure by mass
spectrometry and high performance liquid chromatography.

Antimicrobial Assays

Antimicrobial assays were carried out following the guide-
lines of the National Committee for Clinical Laboratory Stand-
ards (NCCLS) modified for marine pathogens (Dalsgaard
2001). For assays testing antimicrobial activity against bacterial

strains, Cation SupplementedMueller-Hinton Broth (CSMHB)
was prepared by supplementing MHB (Difco) with Mg2+ and
Ca2+ to final concentrations of 20 mg L–1 and 10 mg L–1

respectively. For halophilic strains, such as marine vibrios,
sterile 5 M sodium chloride (NaCl) solution was added to bring
the NaCl concentration to 1.5%. For those experiments

involving the testing of AMPs at various salinities, NaCl con-
centration was adjusted to 0%, 1.5%, 2.0%, 2.5%, and 3.0%
(equivalent to 0& to 30& seawater salinities). YPD media
without supplements was used for those experiments involving

S. cerevisiae and P. pastoris. TAP medium was used for the
Chlamydomonas spp. and S. costatum. For testing of the effect
of pH on AMP activity, media were adjusted to one of three

different pH levels (6.0, 7.0, or 8.0).
Bacteria from stocks were grown overnight on the appro-

priate solid media and at the indicated temperature. Three to

five colonies of each test organism were aseptically taken from
culture plates and suspended in 1 mL of 0.9% sterile saline by
vortexing. Bacterial concentration was determined by measur-

ing optical density (OD) at 650 nm on a microplate reader
(Molecular Devices Spectra MAX 340). Bacterial concentra-
tion in colony forming units (CFU) mL–1 was calculated using
previously determined calibration curves showing the relation-

ship between CFU mL–1 and OD650 for each organism. Bac-
terial solutions were adjusted to an inoculum concentration of
104 CFU mL–1 in various culture media. Microalgae and yeast

were counted using a hemocytometer and adjusted to 104 cells
mL–1 of media.

Antimicrobial peptides were diluted in the appropriate

media and 1:2 dilution series of each (100 ml per well) were
prepared in duplicate columns in a 96-well plate with U-shape
wells (Becton Dickinson), followed by the addition of 100 ml of
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the inoculum suspension containing 104 CFU mL–1 of the test
organism. Final concentrations of the AMP in the wells ranged

from 0.15 to 5 mg mL–1 for bacterial strains, from 0.62 to 20 mg
mL–1 for yeast andmost micro algal strains, and from 1.25 to 50
mg mL–1 for S. costatum. In addition, each plate had a negative
control (100 mL of 0.5M NaOH + 100 mL inoculum), a positive

control (100 mLmedia + 100 mL inoculum), and a blank sterility
control (200 mL of media). All procedures were carried out
in sterile conditions, and plates were incubated in a humidified

chamber at the appropriate temperature for growth. Turbidity
(OD650) was examined at 24 h after addition of inoculum, using
a microplate reader. Minimum inhibitory concentration (MIC)

was defined as the lowest concentration for which there was no
growth apparent to the unaided eye. For Chlamydomonas spp.,
readings were carried out after 120 h, because of the slow
growing nature of these microalgae.

Effect of Antimicrobial Peptides on Perkinsus marinus Viability

A tetrazolium-based colorimetric assay was used to deter-

mine effects of antimicrobial peptides on P. marinus viability
(Dungan & Hamilton 1995). This colorimetric method deter-
mines the number of viable cells by measuring levels of the

compound 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethony-
phenol)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) that are
reduced by nicotinamide adenine dinucleotide (NADH) in

metabolically active cells. Cells from an exponentially growing
culture of P. marinuswere collected by centrifugation at 3 500g
for 15 min at room temperature, resuspended in low-nutrient

medium (0.13 DME/Ham’s F-12 medium w/10& sterile
artificial seawater (SASW), without phenol red), counted using
a hemocytometer under the microscope, and diluted to a final
concentration of 4 3 106 cells mL–1 in low nutrient medium.

Peptide dilution series (1:2) were made in the low nutrient
medium and 50 mL of each dilution were added to duplicate
wells. Fifty microliters of P. marinus cells were added to each

well and the plate incubated for 3 h at 28�C to allow cell killing
to occur. Final concentrations of the peptide in this mix ranged
from 0.36 to 50 mg mL–1 for tachyplesin and from 3.12 to 200 mg
mL–1 for pleurocidin-amide. After incubation, 100 mL of full-
strength DME/Ham’s F-12 medium without phenol red was
added, and the plate was incubated for 48 h at 28�C to allow
proliferation of cells. Ten microliters of CellTiter 96 AQueous

One Solution (Promega) were added to every well, and the plate
incubated for 1–4 h before reading absorbances at 490 nm on a
microplate reader. Viability estimates were calculated based on

controls without peptide (media only).

Effect of Proteases on Antimicrobial Peptide

Activity Against V. anguillarum

Stock solutions of trypsin, pepsin, chymotrypsin (Sigma),

and elastase from Pseudomonas aeruginosa (Elastin Products
Company, Inc.) were serially diluted (1:2) in CSMHB to give
final testing concentrations of protease in the wells ranging from

62.5 to 0.1 UmL–1 for trypsin and pepsin, 40 to 1.25 UmL–1 for
chymotrypsin, and 2 to 0.01 U mL–1 for elastase. In addition to
these commercially available proteases, extracellular proteins

(ECP) of P. marinus were tested to see if proteases from this
parasite could potentially inhibit AMP activity. The ECP,
prepared from spent media of Perkinsus P-1 cultures, was

kindly provided by C. Earnhart (Virginia Institute of Marine
Sciences, VA, USA) (Earnhart et al. 2004). We also tested the

effect of proteases present in the cell-free hemolymph (plasma)
of eastern oysters, Crassostrea virginica, on antimicrobial
activity. Oyster hemolymph from Block Island oysters (RI,
USA) was obtained by cardiac puncture, centrifuged at

3 1,500g for 15 min at 4�C to remove the cells, and the plasma
was concentrated using Microcon YM-50 centrifugal filter
devices (Millipore), with the $50 kD retentate fraction used

for testing. Protein concentration in oyster plasma orP. marinus
ECP was determined, using the Bradford protein assay (Bio-
Rad) and bovine plasma albumin as a standard (0–1.0 mg

mL–1). Total protease activity in oyster plasma and P. marinus
ECP was measured by incubation with azocasein (Windle &
Kelleher 1997). Azocasein (ICN Biomedicals) was dissolved
in Tris-HCl (50 mM, pH 8.0) containing 0.04% (w/v) sodium

azide to a final concentration of 5 mg mL–1. One hundred mL of
serial dilutions of ECP or oyster plasma sample were incubated
with 100 mL of azocasein for 1 h at 37�C. The reaction was

terminated by the addition of 400 mL of 10% (w/v) trichloro-
acetic acid (Fisher Scientific). Precipitated protein was removed
by centrifugation (314,000g for 4 min), and the resulting

supernatant transferred to a tube containing 700 mL of 525 mM
sodium hydroxide (Fisher Scientific). Absorbance was mea-
sured at 450 nm using a microplate reader (Molecular Devices).

Negative controls consisted of heat inactivated plasma samples
(10 min at 100�C). Results are expressed as units (U) of protease
activity with 1 U of activity corresponding to a change from
control of 1.0 optical unit of absorbance at 450 nm. The

P. marinus ECP fraction had a protein concentration of 0.5
mg mL–1, with a protease activity of 10 U mg–1 of protein.
Perkinsus marinus ECP was diluted in media (1:5 dilutions)

to final testing concentrations, after additions of AMP solution
ranging from 0.0008–0.25 U mL–1 protease activity. Con-
centrated oyster protease contained 760 mg mL–1 protein

and 2.6 U mL–1 protease activity, final testing concentrations
ranged from 0.08–0.5 U mL–1. One hundred mL of 23 MIC
for pleurocidin-amide (5 mg mL–1) or tachyplesin (2.5 mg mL–1)
were added to each well, and plates were incubated for 24 h

at 28�C. Protease inhibitor cocktail for general use (Sigma),
or 50 mM EDTA for inhibition of oyster metalloproteinases
(Muñoz et al. 2003), were added to selected wells as negative

controls.

Feeding Experiments

Eastern oysters fromMain Street Fish Shop (Wakefield, RI)
were placed in 20 L tanks supplied with running, 2 mm-filtered

andUV-sterilized seawater, and slowly brought up to 20�C over
a 2-wk period. Water salinity and temperature ranged from
25& to 30& and 20�C to 25�C, and oysters were fed with
Instant Algae (Reed Mariculture). We evaluated oyster feeding

rates on Tetraselmis sp. (Reed Mariculture), C. reinhardtii, C.
pulsatilla, andP. pastoris, using the method of Rice et al. (1994).
Individual oysters were placed in 2-L containers with 1 L of

aerated filtered seawater. A fixed concentration of algae
(approximately 60,000 cells mL–1, Rice et al. 1994), or yeast
(equivalent turbidity at OD650) was added to each container,

mixed well, and 3 3 1 mL samples were collected to estimate
the starting cell concentration using a hemocytometer. Tripli-
cate, 1-mL samples were taken every 20min over a period of 2 h,
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and cell numbers counted. Throughout the entire experiment,
oysters were checked visually to confirm that feeding was

occurring by observing shells opening and the production of
feces and pseudofeces. Rates of cell clearance were calculated
using the equation:

F ¼ V ½lnðCo=CtÞ=t�;

where F is the filtration rate in mL min–1, V is the volume of the
experimental container inmL, ln(Co/Ct) is the natural log of the

cell concentration at time zero divided by the concentration at
time t, and t is the time in minutes (Coughlan 1969). Data were
statistically analyzed with Sigma-Stat (SPSS), using Kruskal-

Wallis ANOVA on ranks, and Dunn pairwise comparisons, to
compare rates of cell clearance.

Effect of Antimicrobial Peptide Activity on Bacteria

in Oyster Digestive Tissue

Six oysters were obtained fromNarragansett Bay (RI, USA)
during the summer months. Samples of digestive tissues from
each oyster were removed using aseptic techniques, pooled,
homogenized, and diluted 1:5 in SASW. Serial dilutions of

homogenate (no dilution, 1:10, and 1:100) were mixed with
either tachyplesin, pleurocidin-amide (final peptide concentra-
tion of 20 mg mL–1), or SASW (negative control) and incubated

at 19�C for 3 h. Treated homogenate samples (20 mL) were
plated on peptone seawater agar, sheep’s blood agar, and
Thiosulfate Citrate Bile Sucrose Agar (TCBS, Difco) plates

and incubated for 96 h at 19�C. The number of bacterial
colonies in each plate was counted and colonies were observed
for colony and bacterial morphology (color, shape of colony,
shape of bacterial cells, swarming behavior, and areas of

hemolysis of sheep red blood cells or yellow halos on TCBS).
A representative sample from each colony type was picked
and suspended in Lyse-n-go (Pierce Scientific) for identification

using sequencing of the 16S rDNA (Gauger et al. 2006). A
fragment of the 16S rRNA of each bacterial clone was amplified
using universal 16S primers pA and pH (Bruce et al. 1992) on a

MJResearch PTC-100 thermocycler using the PCRMasterMix
(Eppendorf). PCR products were run on a 1.5% Tris Acetate
EDTA (TAE) agarose gel at 100 V for 30 min. Bands visible at

;1,500 bp were cut and gel-purified, using the QIAquick gel
extraction kit (Qiagen). Purified DNA from 33 products was
sequenced on a Beckman Coulter CEQ 8000 sequencer at URI’s
Genomics Center. Sequences were identified by similarity with

sequences in the NCBI and the 16S ribosomal DNA genetic
databases (RDP II, Ribosomal Database Project) (Cole et al.
2007) using a basic local alignment search tool (BLAST)

(Altschul et al. 1990).

RESULTS

Antimicrobial Assays

The antimicrobial activities of tachyplesin and pleurocidin–
amide on a variety of marine pathogens and candidate eukary-

otic organisms for recombinant expression are shown in Table 1.
Tachyplesin proved to be more effective than pleurocidin-
amide against gram-negative bacteria and the gram-positive

Bacillus spp. Pleurocidin had no effect on either V. vulnificus or
V. parahemolyticus at the concentrations tested. These two
bacterial strains showed higher resistance to the action of the

AMPs than any of the bacteria tested. Both potential yeast for
AMP recombinant expression were resistant to the candidate
antimicrobial peptides at the highest concentration tested (20 mg
mL–1). The microalgae C. reinhardtii showed higher suscepti-
bility to these two AMPs, comparable to the most susceptible
bacteria tested in this study. Pleurocidin-amide had no effect on

C. pulsatilla and tachyplesin had no effect on S. costatum at the
concentrations tested. Neither salinity nor pH had an effect on
the MIC of tachyplesin; a slight decrease in pleurocidin’s MIC
was observed at a salinity of 30& (Table 2).

TABLE 1.

Activity spectrum of tachyplesin and pleurocidin-amide against
selected bacteria and potential eukaryotic organisms for

recombinant expression using the 96 well microdilution assay.

Results are reported as the range of minimum inhibitory
concentrations (MIC) from at least 2 assays. Each

concentration was tested in triplicate. NT$ not tested.

MIC (mg mL
–1
)

Pleurocidin-amide Tachyplesin

Gram-positive bacteria

Bacillus spp. 2.5–5.0 1.25

Gram-negative bacteria

Escherichia coli ZK4 5.0 1.25–2.5

E. coli D31 1.25–2.5 1.25

Vibrio anguillarum 0.63–2.5 0.625–1.25

V. harveyi 2.5 0.625–1.25

V. vulnificus >5.0 2.5

V. parahemolyticus >5.0 1.25–5.0

Pseudomonas atlantica 1.25 0.45

P. damselae damselae 2.5 2.5

Yeast

Saccharomyces cerevisiae >20 >20

Pichia pastoris >20 >20

Microalgae

Chlamydomonas pulsatilla >5.0 NT

C. reinhardtii 1.25 0.63–1.25

Skeletonema costatum NT >50

TABLE 2.

Activity of antimicrobial peptides against Vibrio anguillarum at
various pH and NaCl concentrations. Results are reported as the

range of minimum inhibitory concentration (MIC) from at least

2 assays. Each concentration or pH was tested in triplicate.

MIC mg mL–1

Pleurocidin-amide Tachyplesin

Salinity (& NaCl)

15 2.5 1.25

20 2.5 1.25

25 2.5 1.25

30 2.5 2.5

pH

6.0 5 1.25–2.5

7.0 2.5–5 1.25–2.5

8.0 5 2.5
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Effect of Antimicrobial Peptides on Perkinsus marinus Viability

Both peptides significantly reduced P. marinus viability at

concentrations higher than 50 mg mL–1 (Fig. 1). Tachyplesin
showed a greater effect than pleurocidin-amide on the viability
of P. marinus. The viability of P. marinus was reduced to 9%
with 50 mgmL–1 of tachyplesin, and to approximately 50%with

50 mg mL–1 of pleurocidin-amide. The viability of P. marinus
was reduced to only 22% with concentrations of pleurocidin as
high as 250 mg mL–1.

Effect of Proteases on Antimicrobial Activity

The aspartic protease pepsin (up to 62.5 U mL–1) had no

effect on the antimicrobial activity of either tachyplesin or
pleurocidin against V. anguillarum (Table 3). The serine pro-
teases trypsin and chymotrypsin abrogated the inhibitory

activity of tachyplesin and pleurocidin-amide at concentrations
as low as 1 and 0.5 U mL–1 respectively. Concentrated oyster
plasma and P. marinus extracellular protein (both containing
protease activity), and P. aeruginosa elastase, all had no effect

on the activity of tachyplesin at the concentrations tested.
Pleurocidin-amide was sensitive to both elastase and oyster
plasma, and very sensitive to the effects of P. marinus ECP.

The addition of protease inhibitors negated the effects of all
proteases on the antimicrobial activity of the peptides (not
shown) with identical MIC ranges.

Feeding Experiments

Clearance rate experiments were conducted to show that

oysters could feed on several candidate organisms that could be
used as systems to produce recombinant AMPs. The mean
clearance rate of microalgal and yeast strains by experimental
oysters ranged from 12.3–33.6 mL min–1 (Table 4). No signif-

icant differences in clearance rate were observed for Tetraselmis
sp. (average of 12 mm in size), C. reinhardtii (10 mm), or C.
pulsatilla (10 mm). Clearance rates (mLmin–1) were significantly

lower for the yeast P. pastoris than for the algae Tetraselmis sp.
and C. pulsatilla. The clearance rate, as expressed in cells min–1

was significantly higher for P. pastoris, the organism with the

smallest cells (average of 5 mm in size).

Effect of Antimicrobial Peptide Activity on Bacteria

in Oyster Tissue Homogenate

An average of 43 ± 6 bacterial colonies (CFU) were observed
on the 6 plates seeded with oyster tissue homogenate treated

with SASW. Incubation of the oyster homogenate (1.23 mg
mL–1 of protein) with pleurocidin-amide and tachyplesin
significantly reduced the number of CFU in oyster tissue, with
an average of 4 ± 1 and 7 ± 2 colonies detected in either the

pleurocidin-amide or the tachyplesin-treated homogenates (a
reduction in bacterial abundance after treatment with AMP
ranging from 82% to 94%). All but 2 of the representative

bacterial colonies present on plates incubated with the AMPs
were putatively identified based on their 16S rDNA sequences,
as well as 15 of the 17 representative colonies from the 43

colonies that grew on control plates (Table 5, GenBank
accession numbers DQ978244 to DQ978271). Control oyster
homogenates plates showed a mix of gram-negative and gram-

positive bacteria. The bacteria that grew in the presence of
pleurocidin-amide were all identified as gram-negative bacteria,
the majority of which were vibrios. Conversely, those that grew

Figure 1. Effect of tachyplesin and pleurocidin-amide on the viability

of Perkinsus marinus. Final concentrations of the peptides ranged from

0.36 to 50 mg mL–1 for tachyplesin and from 3.12 to 200 mg mL–1 for

pleurocidin-amide. Peptides were coincubated with 2 3 106 cells mL–1

P. marinus and viability at 48 h was measured and calculated using a

commercial tetrazolium assay.

TABLE 3.

Amount of protease required to inhibit the antimicrobial
activity of pleurocidin-amide (2.5 mg mL–1) or tachyplesin

(1.25 mg mL–1) against Vibrio anguillarum. Proteases and

peptides were coincubated for 30 min and antimicrobial activity
was evaluated at 24 h. Results are reported as the range of

protease concentration from at least 2 assays. Each

concentration was tested in triplicate.

Protease Concentration (U mL
–1
)

Pleurocidin-amide Tachyplesin

Pepsin 62.5 62.5

Trypsin 0.5–1.0 1.0–2.0

Chymotrypsin 0.3–0.6 1.3

Elastase 0.12 >2.00

Oyster plasma 0.07 >0.50

Perkinsus marinus ECP 0.0008 >0.25

ECP, extracellular proteins.

TABLE 4.

Clearance by oysters of algae and candidate eukaryotic organisms

for recombinant expression of AMPs. Oysters in individual
glass beakers were fed a fixed concentration of yeast or algae and

the concentration of cells measured in the water at fixed time

points. n$ number of oysters used in experiment.

Mean Clearance Rate % Standard

Deviation

(mL min
–1
) (million cells min

–1
)

Tetraselmis sp. (n ¼ 6) 33.6 ± 12.1a 2.08 ± 0.71

Chlamydomonas reinhardtii

(n ¼ 12) 29.1 ± 26.4 1.87 ± 1.18d

C. pulsatilla (n ¼ 12) 31.6 ± 19.8b 0.89 ± 0.32c

Pichia pastoris (n ¼ 12) 12.3 ± 5.2a,b 10.04 ± 2.86c, d

a,b,c,d Same letter indicates statistical significance (P < 0.05) using

Kruskal-Wallis ANOVA on ranks, and Dunn’s pairwise comparisons.

AMPs, antimicrobial peptides.
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after coincubation of oyster tissue with tachyplesin were mainly
gram-positive. Five of the representative isolates could not be
identified because of lack of amplification, or the inability to

obtain sequences of adequate quality.

DISCUSSION

Candidate peptides for feed-based delivery to aquaculture
species should be effective in the challenging environment of
marine culture, and the digestive system of the target host. We

show here that tachyplesin is more suitable than pleurocidin-
amide as a candidate for use in a feed-based delivery system
for shellfish aquaculture. Tachyplesin was more effective than

pleurocidin-amide in inhibiting the growth of a variety of
bacteria commonly found in marine environments, and per-
formed well at the range of pH and salinities expected in marine
culture conditions and the oyster tissues (Langdon & Newell

1996). Tachyplesin was also more resistant to the effects of
proteases from the parasite P. marinus and some of those more
commonly found in the digestive systems of finfish and shellfish

(Garcia-Carreno et al. 2003, Srivastava et al. 2002). Finally,
several of the potential candidates for eukaryotic expression
systems we have tested, such as P. pastoris, are more resistant

to the action of tachyplesin than bacteria, and could in theory
produce enough AMPs to be effective in the treatment of
common bacterial infections (Ingham & Moore 2007).

In general, the levels of antimicrobial activity of tachyplesin

and pleurocidin-amide against a variety of bacterial strains
and specieswere similar to thosepreviously reported in the litera-
ture (Iwanaga et al. 1994a, Jia et al. 2000, Miyata et al. 1989,

Morvan et al. 1997). Interestingly, the activity of pleurocidin-
amide against V. parahemolyticus and V. vulnificus was found

to be greater than the maximum concentration tested
(5 mg mL–1). The MIC for native pleurocidin against V. para-

hemolyticus has been shown to be as high as 187 mg mL–1,
indicating resistance of these bacteria to the action of some
antimicrobial peptides (Burrowes et al. 2004). These observa-
tions indicate that pleurocidin would not be effective in oyster

depuration.
Our results showed that tachyplesin and pleurocidin-amide

were effective in reducing the viability of Perkinsus marinus,

a pathogen commonly found in adult eastern oysters in the
Atlantic and Gulf of Mexico coasts of the United States during
the warm months (Villalba et al. 2004), but only at AMP

concentrations that inhibited the growth of some of the
potential eukaryotic systems considered for the feed-based
delivery of recombinant antimicrobials to oysters. Tachyplesin,
which has been shown to have antimycotic properties (Iwanaga

et al. 1994b), was more effective than pleurocidin-amide. This is
consistent with the fact that P. marinus is extremely sensitive
to antimycotics, whereas highly resistant to antibacterials

(Dungan & Hamilton 1995). The only published evidence of
tachyplesin having an effect against P. marinus showed a
comparable reduction of viability at concentrations higher than

the ones shown in our research (38% viability when treated with
500 mg mL–1 [Morvan et al. 1997] versus 9% viability at 50 mg
mL–1 in our study). Differences in these results may be because

of the sensitivity of the method used to determine parasite
viability. Whereas Morvan et al. (1997) used microscopic
examination and a dye-exclusion assay to determine cell
viability, we used a tetrazolium-based enzymatic assay that

measures metabolic activity, after allowing surviving P. marinus
cells to propagate for 48 h postexposure. This method is, in
general, more reliable than turbidity assays and counting

methods because P. marinus cells have heterogeneous sizes
and aggregate easily. Polyphemusin, an antimicrobial peptide
from the horseshoe crab Limulus polyphemus with strong

similarity to tachyplesin, was shown to have an MIC of only
12 mg mL–1 for P. marinus (Pierce et al. 1997).

Proteases are considered a significant impediment to the
use of antimicrobial peptides in vivo (Andreu & Rivas 1998).

Although proteases are needed for AMP activation by cleaving
the inactive precursor signal peptide, they also cause degrada-
tion of the mature active form (Shinnar et al. 2003). The high

content in basic residues of AMPs favors degradation by the
trypsin-like proteases (Andreu & Rivas 1998), as observed in
our experiments. It is important to characterize the effect of

relevant proteases on peptide activity prior to application,
particularly because the virulence of many pathogenic strains
is related to the level of the proteases that they produce.

Perkinsus marinus secretes proteases that degrade host proteins
and may damage the gut epithelium and basement membranes
of oysters (Garreis et al. 1996, La Peyre et al. 1996). Therefore,
any candidate peptide for treatment and depuration of adult

eastern oysters should be tested for its ability to maintain
antimicrobial activity in the presence of this protozoan parasite.
We were able to show that tachyplesin retained its potency in

the presence of concentrated P. marinus extracellular products
(ECP), but pleurocidin was inactivated at relatively low levels of
protease activity. The sensitivity of pleurocidin-amide to the

action ofP. marinusECPmay be because of the structure of this
peptide, which contains two groups of consecutive alanines at
Ala9-Ala10 and Ala19-Ala20. It has been shown that P. marinus

TABLE 5.

Effect of AMPs on abundance and composition of the culturable
bacterial community in homogenates of oyster digestive tissue.

Values are total number of colonies per oyster tissue sample (24.6

mg of protein). Bacterial isolates were identified by 16S rDNA
sequencing. All sequence similarities from ribosomal database

(RDPII) >98%. Genbank sequence accession numbers

DQ978244 to DQ978271.

Control Pleurocidin Tachyplesin

Gram-positive bacteria

Bacillus pumilus 3 — 1

Bacillus sp. — — 1

Staphylococcus epidermis 5 — —

S. hemolyticus/hominus 1 — 3

Gram-negative bacteria — — —

Enhydrobacter sp. — — 1

Microbacterium sp. 1 — —

Photobacterium damselae

damselae — 3 1

Pseudoalteromonas sp. 1 — —

Vibrio sp. TD29, TD35 2 — —

Vibrio sp. TD25 1 — —

Vibrio sp. TD15 — 1 —

Vibrio sp. TD16, TD20 — 2 —

Vibrio sp. TD9 — 1 —

Not identified 3 1 1

AMPs, antimicrobial peptides.
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serine protease was effective in digesting a C. virginica 35 kDa
plasma protein, which consisted of many alanine residues

(Oliver et al. 1999). The serine protease elastase is also more
efficient at hydrolyzing peptide substrates with consecutive
alanine residues (Kraut 1977). Consistent with this fact, elastase
from P. aeruginosa degraded the microbicidal activity of

pleurocidin-amide, but not tachyplesin. The relative resistance
of tachyplesin to the action of proteases is more likely because
of secondary structure where the formation of a hairpin loop

(via disulfide bonds) protects the peptide sequence from pro-
teolysis. Several other peptides show modifications that
decrease the effect of proteases. For example, mammalian

cathelicidins are resistant to serine proteases by virtue of the
presence of proline, a cyclic residue that blocks protease action,
in their sequences. The same peptides from hagfish have
bromination of tryptophan, which makes them poor substrates

for degradation (Shinnar et al. 2003).
We have also shown that tachyplesin and pleurocidin-amide

are able to effectively reduce bacterial loads in homogenates

of oyster digestive tissue. Differences in the composition of the
bacterial community remaining after treatment with either
pleurocidin (primarily gram-negatives) or tachyplesin (primar-

ily gram-positives) suggest differences in the mechanism of
action of these peptides, which seem to selectively act on
different bacterial communities, although it is difficult to

confidently conclude this, based on the low number of colonies.
These differences in the in vivo selectivity of tachyplesin and
pleurocidin-amide could be exploited to target particular
pathogens without affecting some of the beneficial bacterial

species indigenous to the oyster gut. For example, the fact that
tachyplesin selectively eliminates more gram-negative than
gram-positive bacteria could be advantageous in aquaculture

applications, because many of the probiotics that are used
are gram-positive and many pathogens are gram-negative
(Chinabut & Puttinaowarat 2005).

We have also evaluated the suitability of several candidate
eukaryotic organisms that could be used in the expression and
feed-based delivery of recombinant AMPs. The advantages of
yeast as a system for recombinant expression include the

availability of plasmid DNA vectors and tools for inducible
and constitutive expression, the ability of yeast to correctly fold
and process proteins (Romanos et al. 1992), and its use as a food

source in aquaculture (Lara-Flores et al. 2003, Patra &
Mohamed 2003). In our experiments, the yeast P. pastoris and
S. cerevisiae were not affected by tachyplesin or pleurocidin-

amide at concentrations lower than 20 mgmL–1, a concentration

that significantly (but not completely) reduced bacterial loads in
homogeneates of oyster digestive tissue. However, it has pre-

viously been reported that tachyplesin’s IC50 against P. pastoris
is 0.1 mg mL–1 (Iwanaga 2002), and pleurocidin’s MIC is 9 mg
mL–1 (Burrowes et al. 2004). These levels of susceptibility to
antimicrobial action would preclude the use of yeasts and

Chlamydomonas spp. as systems for expression of active anti-
microbial peptides, as well as the use of a feed-based delivery
system for treatment of parasitic infections. Furthermore,

significant differences in mean clearance rates were observed
between Tetraselmis sp., a common algae used in oyster
aquaculture, and P. pastoris, which may be indicative of differ-

ences in the feeding behavior of oysters that could impact the
success of P. pastoris as a delivery system. Oysters seem to
actively distinguish and sort nutritious from nonnutritious
particles (Ward & Shumway 2004). In our experiments adult

oysters were able to filter P. pastoris from the water; however,
we do not know if contents of those cells were actively digested
and assimilated.

In summary, the antimicrobial peptide tachyplesin was
shown to be a more suitable candidate than pleurocidin-amide
for feed-based delivery to oysters. A feed-based delivery system

of antimicrobial peptides would be a valuable tool in investi-
gating the role of peptides on oyster immunity. Our data also
suggests that a feed-based delivery of recombinant tachyplesin

could be developed to effectively and economically treat
bacterial infections in oyster hatcheries. Although yeasts seem
to be the best candidates so far as systems for a feed-based
delivery system of antimicrobials to oysters, more research

needs to be conducted to determine levels of resistance to
antimicrobial action and suitability as feeds for larval, seed,
and adult oysters. Further experiments should also evaluate

alternative expression systems, such as diatoms (Dunahay et al.
1997). Furthermore, the development of such systems for
commercial applications in hatcheries should take into consid-

eration, and minimize, the risk of these genetically modified
organisms to the bivalve host, the human consumer, and the
environment.
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