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Bose—Einstein functions .

1 00 n—1 o0
gn(Z)E—/ I N2 g<a<t
0

Special cases:

=1
gl =C(m) = 3"
=1
Special values:
2 7r4 76
1 2) = — 4) = — 6) = —.
Recurrence relation:
29 (2) = gn_1(2), n>1.
Singularity at z = 1 for non-integer n:
@=r-ma+3> e, az-ms
In L] ’ '
—0
25
912 94 9372
2 -
[¢}]
. 15}
N
= 9s5/2
()]
1 -
05
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1



Ideal Bose-Einstein gas:
equation of state and internal energy (.«

Conversion of sums into integrals by means of density of energy levels [tex113]:

\%4 ( m )73/2 (D21

D) =172 a2 v=LP

)

Fundamental thermodynamic relations for BE gas:

v

pV e = Be
]@—T:—;ln(l—ze s ):—/O de D(€)In (1 — ze 'B):EQD/2+1(Z),

1 > D(e) Vv
N—Zk:m—/; dEm—EgD/Q(Z), Z<1,

B €k Y D(e)e D \%
U= Zk: B — 1 /0 de b —1 EkBT@gD/z—H(Z)-

Warning: The range of fugacity is limited to the interval 0 < z < 1. At
z = 1, the expression for /' must be amended by an additive term z/(1—2z) to
account for the possibility of a macroscopic population of the lowest energy
level (at € = 0). This amendment is only necessary for dimensionalities
D > 2, i.e. for the cases with lim. .o D(e) = 0.

Equation of state (with fugacity z in the role of parameter):

pV  gpjari(2)

= , z2<1.
N]{ZBT gp/g(z)
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[tex113] BE gas in D dimensions I: fundamental relations

From the expressions for the grand potential and the density of energy levels of an ideal Bose-
Einstein gas in D dimensions and confined to a box of volume V = LP with rigid walls,

—Be % m D/2 o
QT V,p) = kBTZln(l —ze P ), D(e) = W (271-h2) D/2-1
k

derive the fundamental thermodynamic relations at fugacity z < 1 in terms of the Bose-Einstein
functions g, (z) and the thermal wavelength Ay = \/h?/2rmkgT as follows:

v

ooV 1% D
e p— U = 7kBT7Dg'D/2+1(Z)'
2 "7

kT = EQD/%A(Z% N = Egp/z(z)v

Solution:



Reference Values for 7', V/N, and p wm

The reference values introduced here are based on

(i) thermal wavelength: Ap =/ — J A A
1 ermal wave eng . T = Qka»BT — k:BT’ = 27Tm

(i) MB equation of state: pv = kgT, v=V/N.

The reference values for kg7, v, and p in isochoric, isothermal, and isobaric
processes are

A A

kaTU = W Pv = m ('U = COnSt.)
A \D/2 b\ D/2H

v = (kB—T) pr=A (%) (T' = const.)

2/(D+2) A
kgT, = A (£> vy = <— (p = const.)

D/(D+2)
A P )

These reference values are useful for bosons and fermions.

Universal curves for isochores, isotherms, and isobars:

e p/p, versus T/T, at v = const.
e p/pr versus v/vr at T = const.

e v/u, versus 1/1, at p = const.

For fermions we will introduce alternative reference values based on the chem-
ical potential (Fermi energy).



Bose-Einstein condensation .

Particles in the gas phase and in the Bose-Einstein condensate (BEC):

V z
N = )\—ngD/z(z) + 11— Nyas + Npgc.
T - Z

Consider process at v = const.
Onset of macroscopic population of the lowest energy level begins when the
fugacity locks in to the value z = 1:
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Ideal Bose-Einstein gas: isochores .

Isochore at T' > T, [tex114]:

p 9D/2+1(Z) T [gD/Z(Z)] —2/D .

Do [gD/2(Z)] 2/D+1" Tv

Isochore at T' < T, (also valid asymptotically for T' < T, in D < 2):

L (%)MH ¢(D/2 +1).

Critical temperature:

Tc —-2/D
7 = KD2P =
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High-temperature asymptotic behavior:
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[tex114] BE gas in D dimensions II: isochore

(a) From the fundamental thermodynamic relations for the Bose-Einstein gas in D dimensions (see
[tln67]), derive the following parametric expression for the isochore at T' > T:

p gp/211(2) T [ —2/D
—= — = [9p/2(2)] ;
Pv [9@/2(2)] e T

where kT, = Av=2/P and p, = Av=2/PH! with A = h?/27m are convenient reference values.
(b) Calculate the leading correction to the Maxwell-Boltzmann result at high temperature. (c)
Calculate the exact dependence of p/p, on T/T, at T < T, in D > 2. Show that this result also
holds asymptotically for T' < T, in dimensions D =1 and D = 2.

Solution:



[tex115] BE gas in D dimensions III: isotherm and isobar

(a) From the fundamental thermodynamic relations for the Bose-Einstein gas in D > 2 dimensions
(see [tIn67]), derive the following expressions for the isotherm at v > v. and the isobar at T < T,:

p v -
— = 9D/2+1(Z), — = [gD/Q(Z)] 1;
pr G

D/(D+2
v _ [gD/Q‘*‘l(Z)] [ L = [QD 2 1(2)]72/(1”2)
Up gp/2(2) ’ Ty /2
where vy = (A/kgT)P/2, pr = A(kpT/N)P/**1, kpT, = A(p/N)?/ P+ v, = (A/p)P/(P+2) with
A = h2/27m are convenient reference values for temperature and pressure and reduced volume. (b)
Calculate the leading correction to the Maxwell-Boltzmann result for the isotherm at low density

and for the isobar at high temperature.

Solution:



Ideal Bose-Einstein gas: isotherms ..

For D > 2 we must again distinguish two regimes. At v > v, all bosons are
in the gas phase. At v < v., a BEC is present. Only the bosons in the gas
phase contribute to the pressure.

Isotherm at v > v, = A\2/((D/2):

p% = gp/2+1(2), % = [gpp2(2)] .
Isotherm at v < v,
2612 D=1
O T
1 D=0
Critical (reduced) volume:
0 D=1
:j_; B K(D/Q)]_l - 8.383 g z g
1 D = o0

P/PT

VAT



Ideal Bose-Einstein gas: isobars ..

A phase transition at T, > 0 takes place in all dimensions D > 1. However,
the existence of a BEC requires v. > 0, which is realized only for D > 2.

Isobar at T' > T,:

D/(D
v [QD/2+1(Z)} /(P2 —2/(D+2)
Up = g'D/Q(Z) ’ = [gD/2+1(Z)j| :
Critical point:
0 D=1
v [K@/2+ 17" ] o D=2
Uy ((D/2) ~) 038 D=3
1 D=x
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Ideal Bose-Einstein gas: phase diagram .-
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1: Transition at T'> 0 and v =0
3: Transition at 7" > 0 and v > 0.
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Ideal Bose-Einstein gas: heat capacity ..

Internal energy:

Dgpjas1(z) T
ST T>T.,
7(] = 2 gD/Z(Z) Tv’ D/2+1 -
=3 .
NksT, 5¢(D/2+1) <?) , T<T.

Heat capacity at T > T, [use zg,,(z) = gn_1(2) for n > 1]:

Cv _ <2 D_2> gpj2+1(2) _ D_29/D/2+1(Z)
Nk’B 2 4 gp/g(z) 4 g’,D/Q(Z) '

Heat capacity at T' < T.:

Cy (D D? D T\?? (D D\ ¢(2+1) [T\
Nk (5*?) ‘ (5“) (ﬁ) B (5*?) @) (i) |

High-temperature asymptotic behavior:
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[tex97] BE gas in D dimensions I'V: heat capacity at high temperature

The internal energy of the ideal Bose-Einstein gas in D dimensions and at 7" > T, is given by the
following expression:
D z
U= NkpT = 977/27“().
2 gpja(2)

Use this result to derive the following expression for the heat capacity Cy = (OU /9T )y nr:

Cy (D 172) gps2+1(2)  D? 9p/2+1(2)

Nks — \2 " 4 ) gpp(z) 4 gpp(2)

Use the derivative /0T of the result gp/2(z) = NAR/V with V = LP to calculate any occurrence
of (0z/0T)v n in the derivation. Use the recursion relation zg) (z) = gn—1(z) for n > 1 to further
simplify the results pertaining to D > 2.

Solution:



[tex116] BE gas in D dimensions V: heat capacity at low temperature

The internal energy of the ideal Bose-Einstein gas in D > 2 dimensions and at T' < T is given by
the following expression:

U D 7\ D/2H+1
oz, ~ 7P+ 0 (77)

(a) Use this result to derive the following expression for the heat capacity Cy = (QU/IT )y

Cy (D D2> ¢(2+1) (T)D/2
e Y i L B e 7
Nkg 2 4 ¢ (5) T,

where T, = T,[¢(D/2)]~%/P is the critical temperature and kpT, = A/v*P with v = V/A and
A = h?/2mm a convenient reference temperature. (b) Show that the heat capacity is continuous
at T =T, if D < 4 and discontinuous if D > 4. Find the discontinuity ACy /N'kp as a function of
D for D > 4. (c) Infer from the result of [tex97] the leading singularity of Cy /Nkp at T/T, < 1
for D =1 and D = 2. Then show that these singularitues are consistent with the expression for
Cv /Nkp obtained here in part (a) provided we substitute (T, /T,.)P/? = ((D/2).

Solution:



[tex128] BE gas in D dimensions VI: isothermal compressibility

(a) Show that the isothermal compressibility, kK = —(1/V)(0V/Ip)rar, of the ideal BE gas in D
dimensions at T > T, is

.‘/D/z(z) v 1
gD/2(Z)9'D/2+1(2)’ vr gp/a(z)’

PrkT =

where v = V/N, vp = (AkgT)P/?, pr = kgT/vr, A = h?/27m, and g,(z) are BE functions.
Use zg,,(2) = gn-1(z) for n > 1 to simplify the results in D > 2. (b) Sketch prrr versus v/vp
for v > 0in D =1 and for v > v, in D = 3, where v./vy = [((D/2)]~! marks the onset of BEC.
(¢) Determine the nature of the singularity of k7 as v/vpr — 0 in D = 1,2. Determine the critical
compressibility prkr at v = v, in D = 3, 5.

Solution:



[tex129] BE gas in D dimensions VII: isobaric expansivity

To derive the parametric expression of the isobaric expansivity of the ideal BE gas at T' > T,

T,
Tyoy, = TP

-5 - = [QD/2+1(Z)]D/2+1
gD/2(Z)g£)/2+1(Z) 2|’ T

2

b

(D 1> 9p/241(2)9p2(2)  D| T,

where kgT, = A(p/A)* P2 A = h?/27rm, and g,(z) are BE functions, establish first the
general thermodynamic relation o, = k7(0p/0T), with v = V/N, the BE-specific relation
Cy = N(D/2)v(dp/dT),, and the results for Cy and kr calculated in [tex97] and [tex128].

Solution:



[tex130] BE gas in D dimensions VIII: speed of sound

(a) Start from the relation ¢ = (prg)~ /2 for the speed of sound as established in [tex18], where
p = m/v is the mass density and kg the adiabatic compressibility. Use general thermodynamic re-
lations between response functions to derive the following expression for ¢ in terms of dimensionless
quantities:

mc® _ (v/vr) 14 (T/T,)? (v/vr)(Tpop)?
kgT — (prkr) (prer)(Cv /NE) |’

where vy, pr, T, are defined in [tIn71]. (b) Use the expressions derived in [tex129] for v, in [tex128]
for kp, and in [tex97] for Cy to derive the result

ch gD/2+1(Z) 2
= 5 == 1 + -
kpT | 9p/2(2) 7 D

(c) Relate the T-dependence of mc? to that of the isochore for v = const and to that of the isobar
for p = const.

Solution:



[tex98] Ultrarelativistic Bose—Einstein gas

Consider a Bose-Einstein gas with ultrarelativistic one-particle energy e, = chk = c¢p in the
grandcanonical ensemble at temperature 7" and chemical potential y = 0.

(a) Show that the one-particle density of states is D(e) = (4nV/h3c3)e2.

(b) Calculate the pressure p(T), the internal energy U(T, V'), and the average number of particles
in excited states N (T, V).

(c) Show that the heat capacity is Cy /kp = [167°/15h3c3|V (kpT)3.

Solution:



Blackbody radiation e

Electromagnetic radiation inside cavity in thermal equilibrium at tempera-
ture 7. Grandcanonical ensemble of photons (¢ = hiw = cp, p = hk, spin
s =1, bosonic, purely transverse).

€% with g = 2 independent polarizations.

4
Density of states: D(e) =g h73T 3
c

1
efe —1°

Number of photons with energies between € and € + de:

Average occupation number: (n.)pg =

StVer 1

dN(E) = <nE>BED(€)d€ = Wm

de.

Spectral density inside cavity: [use dN(€) = Vdn(w) and € = Aw:

dn(w) _ hdN(e) = w° 1
do V de — m2BePw —1°

Spectral energy density inside cavity: du = hwdn = p(w)dw.

2 hw 8tv?  h
plw)dw = YW g =T v

2B B _ 177 T T3 b _ 1dy'

Rate (per unit area) at which particles with (average) speed ¢ escape from
cavity through small opening [tex62]: dN/dt = $(N/V)ec.

d 2 1
Spectral density of radiation: R(w) = 2 T;E:u) = 4:202 e 1"
Spectral energy density of radiation:
w? hw

Qw) = hwR(w)

= a2 (Planck radiation law).

High frequencies: ultrarelativistic MB particles [use (n.)yp = e 7]

3
_ hw® 4,
4722

Qw) e (Wien radiation law).

Low frequencies: equipartition law applied to electromagnetic modes:

. kBTw2
422

Qw)

(Rayleigh— Jeans radiation law).



[tex105] Statistical mechanics of blackbody radiation

Electromagnetic radiation inside a cavity is in thermal equilibrium with the walls at temperature
T. This system can be described by a grandcanonical ensemble (with g = 0) of photons (massless
bosonic particles) with energy € = hw and density of states D(w) = (V/7%c®)w?.

(a) Show that the internal energy can be expressed in the form

_ w2k,
15h3¢3

U(T,V)=0oVT*, o

as postulated in a previous thermodydnamics problem [tex23].
(b) Show that the equation of state can be expressed in the form pV = 1U(T,V) as was also
postulated in [tex23].

Solution:
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