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Bose−Einstein functions [tsl36]

gn(z) ≡
1

Γ(n)

∫
∞

0

dx xn−1

z−1ex − 1
=

∞∑
l=1

zl

ln
, 0 ≤ z ≤ 1.

Special cases:

g0(z) =
z

1 − z
, g1(z) = − ln(1 − z), g∞(z) = z.

Riemann zeta function:

gn(1) = ζ(n)
.
=

∞∑
l=1

1

ln
.

Special values:

ζ(1) → ∞, ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

Recurrence relation:

zg′

n
(z) = gn−1(z), n ≥ 1.

Singularity at z = 1 for non-integer n:

gn(α) = Γ(1 − n)αn−1 +

∞∑
ℓ=0

(−1)ℓ

ℓ!
ζ(n − ℓ)αℓ, α

.
= − ln z.
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Ideal Bose-Einstein gas:

equation of state and internal energy [tln67]

Conversion of sums into integrals by means of density of energy levels [tex113]:

D(ǫ) =
V

Γ(D/2)

( m

2π~2

)
D/2

ǫD/2−1, V = LD.

Fundamental thermodynamic relations for BE gas:

pV

kBT
= −

∑
k

ln
(
1 − ze−βǫk

)
= −

∫
∞

0

dǫ D(ǫ) ln
(
1 − ze−βǫ

)
=

V

λD

T

gD/2+1(z),

N =
∑

k

1

z−1eβǫk − 1
=

∫
∞

0

dǫ
D(ǫ)

z−1eβǫ − 1
=

V

λD

T

gD/2(z), z < 1,

U =
∑

k

ǫk

z−1eβǫk − 1
=

∫
∞

0

dǫ
D(ǫ)ǫ

z−1eβǫ − 1
=

D

2
kBT

V

λD

T

gD/2+1(z).

Warning : The range of fugacity is limited to the interval 0 ≤ z ≤ 1. At
z = 1, the expression for N must be amended by an additive term z/(1−z) to
account for the possibility of a macroscopic population of the lowest energy
level (at ǫ = 0). This amendment is only necessary for dimensionalities
D > 2, i.e. for the cases with limǫ→0 D(ǫ) = 0.

Equation of state (with fugacity z in the role of parameter):

pV

N kBT
=

gD/2+1(z)

gD/2(z)
, z < 1.
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[tex113] BE gas in D dimensions I: fundamental relations

From the expressions for the grand potential and the density of energy levels of an ideal Bose-
Einstein gas in D dimensions and confined to a box of volume V = LD with rigid walls,

Ω(T, V, µ) = kBT
∑
k

ln(1− ze−βεk), D(ε) =
V

Γ(D/2)

( m

2π~2

)D/2
εD/2−1,

derive the fundamental thermodynamic relations at fugacity z < 1 in terms of the Bose-Einstein
functions gn(z) and the thermal wavelength λT =

√
h2/2πmkBT as follows:

pV

kBT
=

V

λDT
gD/2+1(z), N =

V

λDT
gD/2(z), U =

D
2
kBT

V

λDT
gD/2+1(z).

Solution:



Reference Values for T , V/N , and p [tln71]

The reference values introduced here are based on

(i) thermal wavelength: λT

.
=

√
h2

2πmkBT
=

√
Λ

kBT
, Λ =

h2

2πm
.

(ii) MB equation of state: pv = kBT , v
.
= V/N .

The reference values for kBT , v, and p in isochoric, isothermal, and isobaric
processes are

kBTv =
Λ

v2/D
pv =

Λ

v2/D+1
(v = const.)

vT =

(
Λ

kBT

)
D/2

pT = Λ

(
kBT

Λ

)
D/2+1

(T = const.)

kBTp = Λ
( p

Λ

)2/(D+2)

vp =

(
Λ

p

)
D/(D+2)

(p = const.)

These reference values are useful for bosons and fermions.

Universal curves for isochores, isotherms, and isobars:

• p/pv versus T/Tv at v = const.

• p/pT versus v/vT at T = const.

• v/vp versus T/Tp at p = const.

For fermions we will introduce alternative reference values based on the chem-
ical potential (Fermi energy).



Bose-Einstein condensation [tsl38]

Particles in the gas phase and in the Bose-Einstein condensate (BEC):

N =
V

λD

T

gD/2(z) +
z

1 − z
= Ngas + NBEC .

Consider process at v = const.
Onset of macroscopic population of the lowest energy level begins when the
fugacity locks in to the value z = 1:

z

1 − z
=




O(1), z < 1,

O(N ), z = 1.

T ≥ Tc :
Ngas

N
= 1,

NBEC

N
= 0.

T ≤ Tc :




Ngas

N
=

[V/λD

T
]ζ(D/2)

[V/λD

Tc
]ζ(D/2)

=

(
T

Tc

)
D/2

,

NBEC

N
= 1 −

Ngas

N
= 1 −

(
T

Tc

)
D/2

.
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Ideal Bose-Einstein gas: isochores [tsl39]

Isochore at T ≥ Tc [tex114]:

p

pv

=
gD/2+1(z)[

gD/2(z)
]2/D+1

,
T

Tv

=
[
gD/2(z)

]
−2/D

.

Isochore at T ≤ Tc (also valid asymptotically for T ≪ Tv in D ≤ 2):

p

pv

=

(
T

Tv

)
D/2+1

ζ(D/2 + 1).

Critical temperature:

Tc

Tv

= [ζ(D/2)]−2/D =




0 D = 1
0 D = 2
0.527 D = 3
1 D = ∞

High-temperature asymptotic behavior:

p

pv

∼
T

Tv

[
1 −

1

2D/2+1

(
Tv

T

)
D/2

]
.
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[tex114] BE gas in D dimensions II: isochore

(a) From the fundamental thermodynamic relations for the Bose-Einstein gas in D dimensions (see
[tln67]), derive the following parametric expression for the isochore at T ≥ Tc:

p

pv
=

gD/2+1(z)[
gD/2(z)

]2/D+1
,

T

Tv
=

[
gD/2(z)

]−2/D
,

where kBTv = Λv−2/D and pv = Λv−2/D+1 with Λ .= h2/2πm are convenient reference values.
(b) Calculate the leading correction to the Maxwell-Boltzmann result at high temperature. (c)
Calculate the exact dependence of p/pv on T/Tv at T ≤ Tc in D > 2. Show that this result also
holds asymptotically for T � Tv in dimensions D = 1 and D = 2.

Solution:



[tex115] BE gas in D dimensions III: isotherm and isobar

(a) From the fundamental thermodynamic relations for the Bose-Einstein gas in D > 2 dimensions
(see [tln67]), derive the following expressions for the isotherm at v > vc and the isobar at T ≤ Tc:

p

pT
= gD/2+1(z),

v

vT
= [gD/2(z)]−1;

v

vp
=

[
gD/2+1(z)

]D/(D+2)

gD/2(z)
,

T

Tp
=

[
gD/2+1(z)

]−2/(D+2)
.

where vT = (Λ/kBT )D/2, pT = Λ(kBT/Λ)D/2+1, kBTp = Λ(p/Λ)2/(D+2), vp = (Λ/p)D/(D+2) with
Λ .= h2/2πm are convenient reference values for temperature and pressure and reduced volume. (b)
Calculate the leading correction to the Maxwell-Boltzmann result for the isotherm at low density
and for the isobar at high temperature.

Solution:



Ideal Bose-Einstein gas: isotherms [tsl40]

For D > 2 we must again distinguish two regimes. At v > vc, all bosons are
in the gas phase. At v < vc, a BEC is present. Only the bosons in the gas
phase contribute to the pressure.

Isotherm at v ≥ vc = λD

T
/ζ(D/2):

p

pT

= gD/2+1(z),
v

vT

= [gD/2(z)]−1.

Isotherm at v ≤ vc:

p

pT

=
pc

pT

= ζ(D/2 + 1) =




2.612 D = 1
1.645 D = 2
1.341 D = 3
1 D = ∞

Critical (reduced) volume:

vc

vT

= [ζ(D/2)]−1 =




0 D = 1
0 D = 2
0.383 D = 3
1 D = ∞
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Ideal Bose-Einstein gas: isobars [tsl48]

A phase transition at Tc > 0 takes place in all dimensions D ≥ 1. However,
the existence of a BEC requires vc > 0, which is realized only for D > 2.

Isobar at T > Tc:

v

vp

=

[
gD/2+1(z)

]
D/(D+2)

gD/2(z)
,

T

Tp

=
[
gD/2+1(z)

]
−2/(D+2)

.

Critical point:

vc

vp

=
[ζ(D/2 + 1)]D/(D+2)

ζ(D/2)
=




0 D = 1
0 D = 2
0.383 D = 3
1 D = ∞

Tc

Tp

= [ζ(D/2 + 1)]−2/(D+2) =




0.527 D = 1
0.779 D = 2
0.884 D = 3
1 D = ∞
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Ideal Bose-Einstein gas: phase diagram [tln72]
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Ideal Bose-Einstein gas: heat capacity [tsl41]

Internal energy:

U

N kBTv

=




D

2

gD/2+1(z)

gD/2(z)

T

Tv

, T ≥ Tc,

D

2
ζ(D/2 + 1)

(
T

Tv

)
D/2+1

, T ≤ Tc.

Heat capacity at T ≥ Tc [use zg′

n
(z) = gn−1(z) for n ≥ 1]:

CV

N kB

=

(
D

2
+

D2

4

)
gD/2+1(z)

gD/2(z)
−

D2

4

g′

D/2+1
(z)

g′

D/2
(z)

.

Heat capacity at T ≤ Tc:

CV

N kB

=

(
D

2
+
D2

4

)
ζ

(
D

2
+1

)(
T

Tv

)
D/2

=

(
D

2
+

D2

4

)
ζ
(
D

2
+ 1

)
ζ

(
D

2

)
(

T

Tc

)
D/2

.

High-temperature asymptotic behavior:

CV

N kB

∼
D

2

[
1 +

D/2 − 1

2D/2+1

(
Tv

T

)
D/2

]
.
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[tex97] BE gas in D dimensions IV: heat capacity at high temperature

The internal energy of the ideal Bose-Einstein gas in D dimensions and at T ≥ Tc is given by the
following expression:

U = NkBT
D
2
gD/2+1(z)
gD/2(z)

.

Use this result to derive the following expression for the heat capacity CV = (∂U/∂T )VN :

CV

NkB
=

(
D
2

+
D2

4

)
gD/2+1(z)
gD/2(z)

− D
2

4

g′D/2+1(z)

g′D/2(z)
.

Use the derivative ∂/∂T of the result gD/2(z) = NλDT /V with V = LD to calculate any occurrence
of (∂z/∂T )VN in the derivation. Use the recursion relation zg′n(z) = gn−1(z) for n ≥ 1 to further
simplify the results pertaining to D ≥ 2.

Solution:



[tex116] BE gas in D dimensions V: heat capacity at low temperature

The internal energy of the ideal Bose-Einstein gas in D > 2 dimensions and at T ≤ Tc is given by
the following expression:

U

NkBTv
=
D
2
ζ(D/2 + 1)

(
T

Tv

)D/2+1

(a) Use this result to derive the following expression for the heat capacity CV = (∂U/∂T )VN :

CV

NkB
=

(
D
2

+
D2

4

)
ζ

(D
2 + 1

)
ζ

(D
2

) (
T

Tc

)D/2

,

where Tc = Tv[ζ(D/2)]−2/D is the critical temperature and kBTv = Λ/v2/D with v
.= V/N and

Λ .= h2/2πm a convenient reference temperature. (b) Show that the heat capacity is continuous
at T = Tc if D ≤ 4 and discontinuous if D > 4. Find the discontinuity ∆CV /NkB as a function of
D for D > 4. (c) Infer from the result of [tex97] the leading singularity of CV /NkB at T/Tv � 1
for D = 1 and D = 2. Then show that these singularitues are consistent with the expression for
CV /NkB obtained here in part (a) provided we substitute (Tv/Tc)D/2 = ζ(D/2).

Solution:



[tex128] BE gas in D dimensions VI: isothermal compressibility

(a) Show that the isothermal compressibility, κT = −(1/V )(∂V/∂p)TN , of the ideal BE gas in D
dimensions at T > Tc is

pTκT =
g′D/2(z)

gD/2(z)g′D/2+1(z)
,

v

vT
=

1
gD/2(z)

,

where v .= V/N , vT
.= (Λ/kBT )D/2, pT

.= kBT/vT , Λ .= h2/2πm, and gn(z) are BE functions.
Use zg′n(z) = gn−1(z) for n ≥ 1 to simplify the results in D ≥ 2. (b) Sketch pTκT versus v/vT

for v ≥ 0 in D = 1 and for v ≥ vc in D = 3, where vc/vT = [ζ(D/2)]−1 marks the onset of BEC.
(c) Determine the nature of the singularity of κT as v/vT → 0 in D = 1, 2. Determine the critical
compressibility pTκT at v = vc in D = 3, 5.

Solution:



[tex129] BE gas in D dimensions VII: isobaric expansivity

To derive the parametric expression of the isobaric expansivity of the ideal BE gas at T > Tc,

Tpαp =
Tp

T

[(
D
2

+ 1
)
gD/2+1(z)g′D/2(z)

gD/2(z)g′D/2+1(z)
− D

2

]
,

Tp

T
=
[
gD/2+1(z)

]D/2+1
,

where kBTp = Λ(p/Λ)2/(D+2), Λ .= h2/2πm, and gn(z) are BE functions, establish first the
general thermodynamic relation αp = κT (∂p/∂T )v with v

.= V/N , the BE-specific relation
CV = N (D/2)v(∂p/∂T )v, and the results for CV and κT calculated in [tex97] and [tex128].

Solution:



[tex130] BE gas in D dimensions VIII: speed of sound

(a) Start from the relation c = (ρκS)−1/2 for the speed of sound as established in [tex18], where
ρ = m/v is the mass density and κS the adiabatic compressibility. Use general thermodynamic re-
lations between response functions to derive the following expression for c in terms of dimensionless
quantities:

mc2

kBT
=

(v/vT )
(pTκT )

[
1 +

(T/Tp)2(v/vT )(Tpαp)2

(pTκT )(CV /NkB)

]
,

where vT , pT , Tp are defined in [tln71]. (b) Use the expressions derived in [tex129] for αp, in [tex128]
for κT , and in [tex97] for CV to derive the result

mc2

kBT
= γ

gD/2+1(z)
gD/2(z)

, γ = 1 +
2
D
.

(c) Relate the T -dependence of mc2 to that of the isochore for v = const and to that of the isobar
for p = const.

Solution:



[tex98] Ultrarelativistic Bose−Einstein gas

Consider a Bose-Einstein gas with ultrarelativistic one-particle energy εk = c~k = cp in the
grandcanonical ensemble at temperature T and chemical potential µ = 0.
(a) Show that the one-particle density of states is D(ε) = (4πV/h3c3)ε2.
(b) Calculate the pressure p(T ), the internal energy U(T, V ), and the average number of particles
in excited states Nε(T, V ).
(c) Show that the heat capacity is CV /kB = [16π5/15h3c3]V (kBT )3.

Solution:



Blackbody radiation [tln68]

Electromagnetic radiation inside cavity in thermal equilibrium at tempera-
ture T . Grandcanonical ensemble of photons (ε = ~ω = cp, p = ~k, spin
s = 1, bosonic, purely transverse).

Density of states: D(ε) = g
4πV

h3c3
ε2 with g = 2 independent polarizations.

Average occupation number: 〈nε〉BE =
1

eβε − 1
.

Number of photons with energies between ε and ε + dε:

dN(ε) = 〈nε〉BED(ε)dε =
8πV ε2

h3c3

1

eβε − 1
dε.

Spectral density inside cavity: [use dN(ε) = V dn(ω) and ε = ~ω]:

dn(ω)

dω
=

~
V

dN(ε)

dε
=

ω2

π2c3

1

eβ~ω − 1
.

Spectral energy density inside cavity: du = ~ωdn = ρ(ω)dω.

ρ(ω)dω =
ω2

π2c3

~ω

eβ~ω − 1
dω =

8πν2

c3

hν

eβhν − 1
dν.

Rate (per unit area) at which particles with (average) speed c escape from
cavity through small opening [tex62]: dN/dt = 1

4
(N/V )c.

Spectral density of radiation: R(ω) =
c

4

dn(ω)

dω
=

ω2

4π2c2

1

eβ~ω − 1
.

Spectral energy density of radiation:

Q(ω) = ~ωR(ω) =
ω2

4π2c2

~ω

eβ~ω − 1
(Planck radiation law).

High frequencies: ultrarelativistic MB particles [use 〈nε〉MB = e−βε]:

Q(ω) =
~ω3

4π2c2
e−βω (Wien radiation law).

Low frequencies: equipartition law applied to electromagnetic modes:

Q(ω) =
kBTω2

4π2c2
(Rayleigh−Jeans radiation law).



[tex105] Statistical mechanics of blackbody radiation

Electromagnetic radiation inside a cavity is in thermal equilibrium with the walls at temperature
T . This system can be described by a grandcanonical ensemble (with µ = 0) of photons (massless
bosonic particles) with energy ε = ~ω and density of states D̄(ω) = (V/π2c3)ω2.
(a) Show that the internal energy can be expressed in the form

U(T, V ) = σV T 4, σ =
π2k4

B

15~3c3

as postulated in a previous thermodydnamics problem [tex23].
(b) Show that the equation of state can be expressed in the form pV = 1

3U(T, V ) as was also
postulated in [tex23].

Solution:
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