University of Rhode Island

DigitalCommons@URI

Cancer Prevention Research Center Faculty Publications

Cancer Prevention Research Center

2015

Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies

Magadalena Harrington University of Rhode Island

Wayne Velicer University of Rhode Island, wvelicer@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/cprc_facpubs

Citation/Publisher Attribution

Harrington, M., & Velicer, W. F. (2015). Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies. *Multivariate Behavioral Research*, *50*(2), 162-183. Available at: http://dx.doi.org/10.1080/00273171.2014.973989

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Cancer Prevention Research Center Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use

This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cprc_facpubs/13

This article was downloaded by: [University Of Rhode Island] On: 17 April 2015, At: 10:16 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Multivariate Behavioral Research

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/hmbr20

Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies

Magadalena Harrington^a & Wayne F. Velicer^a

^a University of Rhode Island Cancer Prevention Research Center Published online: 16 Apr 2015.

To cite this article: Magadalena Harrington & Wayne F. Velicer (2015) Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies, Multivariate Behavioral Research, 50:2, 162-183, DOI: <u>10.1080/00273171.2014.973989</u>

To link to this article: <u>http://dx.doi.org/10.1080/00273171.2014.973989</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies

Magadalena Harrington and Wayne F. Velicer

University of Rhode Island Cancer Prevention Research Center

Little is known about the extent to which interrupted time series analysis (ITSA) can be applied to short, single-case study designs and whether those applications produce results consistent with visual analysis (VA). This article examines the extent to which ITSA can be applied to single-case study designs and compares the results based on two methods: ITSA and VA, using papers published in the *Journal of Applied Behavior Analysis* in 2010. The study was made possible by the development of software called UnGraph[®], which facilitates the recovery of raw data from the graphs. ITSA was successfully applied to 94% of the examined graphs with the number of observations ranging from 8 to 136. Moderate to high lag-1 autocorrelations (>.50) were found for 46% of the data series. Effect sizes similar to group-level Cohen's *d* were identified based on the tertile distribution. Effects ranging from 0.00 to 0.99 were classified as small, those ranging from 1.00 to 2.49 as medium, and large effect sizes were defined as 2.50 or greater. Comparison of the conclusions from VA and ITSA had a low level of agreement (Kappa = .14, accounting for the agreement expected by chance). The results demonstrate that ITSA can be broadly implemented in applied behavior analysis research. These two methods should be viewed as complementary and used concurrently.

Group-level and single-case research designs are two methodological models employed for analyzing longitudinal research. The first model is based on data obtained from a large number of individuals and provides average estimates of longitudinal trajectories of behavior change based on group-level data, emphasizing between-subject variability. A significant limitation of group-level designs, also known as nomothetic designs, is the inability to capture high levels of variability and heterogeneity within the studied populations (Molenaar, 2004). Further, group-level designs emphasize central tendencies of the population and consequently obscure natural patterns of behavior change, their multidimensionality and unique variability within each individual (Molenaar & Campbell, 2009).

The second methodological approach employed in longitudinal research is based on data obtained from one individual or unit (N = 1) through intensive data collection over time. Single-case designs, also known as idiographic designs, examine individual-level data, which allows for highly accurate estimates of within-subject variability and longitudinal trajectories of each individual's behavior. Idiographic methodology characterizes highly heterogeneous processes, which consequently allow for more accurate inferences about the nature of behavior change specific to an individual (Velicer & Molenaar, 2013). Single-case designs address the limitations of group-level designs and present several advantages. They allow for a highly accurate assessment of the impact of the intervention for each individual while grouplevel designs provide information about the effectiveness of the intervention for an "average" person, rather than any person in particular (Velicer & Molenaar, 2013).

In addition, single-case research allows studying longitudinal processes of change with much better precision than group-level designs, due to a higher number of data points and better controlled variability of the data. Also, it can be applied to populations that are otherwise difficult to recruit in numbers large enough to allow for a group-level design (Barlow, Nock, & Hersen, 2009; Kazdin, 2011).

Ergodic Theorems

The discrepancies between results from cross-sectional nomothetic data and those from longitudinal idiographic data

Correspondence concerning this article should be addressed to Wayne F. Velicer, Ph.D., University of Rhode Island Cancer Prevention Research Center, 130 Flagg Road, Kingston, RI 02881. E-mail: velicer@uri.edu

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hmbr.

can be understood through the ergodic theorems (Choe, 2005; Molenaar, 2008). Equivalent results will only occur if the two conditions specified by the ergodic theorems are met: (1) Each individual trajectory has to obey the same dynamic laws, and (2) Each individual trajectory must have equal mean levels and serial dependencies. If these conditions are not met, then results from nomothetic analyses will not capture the processes of the individuals that make up a sample. Inappropriately inferring from a group to an individual is known as an ecological fallacy, and is a common issue with nomothetic methods.

The ergodic theorems are based on a general theory about the relationships between *intersystem* and *intra*-system variability (where a system can be any unit: person, family, school, etc.). Ergodic theory addresses the relationships between individual units and groups of those units in the most general setting possible, namely for all measurable processes and using different metrics. A very special case is the set of Gaussian processes. Ergodicity for Gaussian processes is associated with the two conditions specified by the ergodic theorems. While these two criteria are sufficient for Gaussian processes, they are necessary (but not sufficient) for non-Gaussian processes. These fundamental issues are rarely evaluated by researchers, often due to too few data points (2–3 per unit is common and 8–10 in single-subject research).

Visual Analysis

Visual analysis (VA) is a descriptive method, widely used in applied behavior analysis research. The most basic experimental model used in single-case design is an AB model with a well-defined target behavior that is examined before and after the intervention. The first phase (A) of the design consists of multiple baseline observations that assess the pre-intervention characteristics of the behavior. In the second phase (B) of the design, the treatment component of the experiment is introduced and changes in behavior are examined (Barlow et al., 2009; Kazdin, 2011; Parsonson, & Baer, 1978). The most common form of AB design is a multiple baseline design (Shadish & Sullivan, 2011) where the timing of the intervention is staggered across cases, across dependent variables, or across settings.

The VA of the graph, performed by a judge or a rater, is based on a set of criteria that evaluate and compare the characteristics of Phase A and B and examine whether behavior changes observed in Phase B are caused by the intervention. The baseline (A) phase provides information about the descriptive and predictive aspects of the target behavior, such as stability and variability. Stable behavior, characterized by the absence of a trend or slope in the data, indicates that the targeted behavior neither increases nor decreases on average over time during the baseline phase (Kazdin, 2011). Variability of the data is characterized by the changes in the behavior within the range of possible low and high levels, and it is widely acknowledged that substantial variability of the behavior in the baseline phase can significantly impair the

conclusions regarding the effects of the intervention (Barlow et al., 2009). Single-case experiments are evaluated based on magnitude and rate of change between Phase A and B. The magnitude of change is based on variability in level and slope of the data. Changes in level refer to average changes in the frequency of target behavior, whereas changes in slope refer to shifts in direction of the behavior across different phases. The mean is the average for all data in a particular phase. If the series is stable, the level will equal the slope. Changes in level and slope are independent from each other. Rate of change is based on changes in trend or slope of the data and latency of change. Trend analysis provides information on systematic increases or decreases in the behavior across phases, whereas latency of change refers to the amount of time between the termination of one phase and changes in behavior (Kazdin, 2011).

Although the above criteria are well established in the literature, they are rarely used in practice. Often, conclusions regarding the intervention effects instead of being based on a systematic and criterion based review, they are driven by a researcher's subjective evaluation. Applied behavior analysis researchers argue that large intervention effects are evident and provide unequivocal conclusions that can be easily observed by independent judges. Further, they state that the subjective evaluation of intervention effects has a minimal impact on reliability and validity of the conclusions drawn from the graphs presenting large and therefore easily observable treatment effects, because only those are considered to have significant clinical implications (Baer, 1977; Kazdin, 2011).

Proponents of VA acknowledge that certain characteristics of the data can significantly impair the ability to accurately evaluate intervention effects. The presence of slope in the baseline phase of the experiment may negatively affect the evaluation of the experiment, especially when the trend of the targeted behavior is moving in the same direction as potential treatment effects. High variability of the data may also interfere with the validity of the conclusions. However, advocates of this method state that the conservative approach to evaluating intervention effects guarantees highly accurate and consistent conclusions across independent judges, as well as reduces unknown probability of Type I error rate and consequently increases the probability of Type II error rate (Baer, 1977; Kazdin, 2011).

In the recent literature, some of the VA supporters have discussed the problem of the lack of effect size estimation, which results in an inability to perform meta-analytic reviews of single-case experiments. As stated by Kazdin (2011), the single-case research field would benefit from the ability to integrate a large number of studies in a systematic way that would allow drawing broader conclusions. However, to date there is no consensus regarding guidelines for interpreting effect sizes calculated based on methods that supplement VA. Brossart, Parker, Olson, and Mahadevan (2006) compared five analytic techniques frequently used in single-case research by applying them to the same data. They concluded that each analytical approach was strongly influenced by serial dependency, and the obtained results based on each method varied so much that it prohibited the development of any reliable effect size interpretation guidelines. A noteworthy study by Hedges, Pustejovsky, and Shadish (2012) proposed a new effect size that is comparable to Cohen's *d*, frequently used in group-level designs. It assumes normality and no trend in the data, and it can be applied across studies with at least three independent cases. This new approach can be applied in meta-analytic research and warrants further examination.

Several studies examined agreement rates among judges and showed that VA led to inconsistent conclusions about the intervention effects across different raters. The inter-rater agreement among judges who reviewed the same graphs was relatively poor, ranging on average from .39 to .61 (Jones, Weinrott, & Vaught, 1978; DeProspero & Cohen, 1979; Ottenbacher, 1990). Higher complexity of the data and experimental design resulted in less consistent conclusions. Factors like high variability of the data, inconsistent patterns of behavior over time, changes in slope, and small changes in level of the data were associated with lower agreement rates across judges (DeProsper & Cohen, 1979; Ottenbacher, 1990). One study by Jones et al. (1978) showed that the highest level of agreement between the two methods was found when there were non-statistically significant changes in the behavior, and the lowest agreement occurred when there were significant effects of the intervention. In addition, a number of studies demonstrated that higher levels of serial dependency in the data lead to higher rates of disagreement between visual and statistical analysis (Bengali & Ottenbacher, 1998; Jones et al., 1978; Matyas & Greenwood, 1990). Particularly, Matyas and Greenwood (1990) showed that positive autocorrelation and high variability in the data tend to increase Type I error rates. Overall, the above findings suggest that advantages of the conservative approach of VA are overstated and do not guarantee the reduction of Type I error rate. In addition, the effects of high autocorrelation on single-case data have been shown to negatively impact other analytical techniques such as inferential precision (Smith, Borckardt, & Nash, 2012) and effect size estimation (Manolov & Solanas. 2008).

Interrupted Time Series Analysis

Interrupted time series analysis $(ITSA)^1$ is a statistical method used to examine intervention effects of single-case study designs. It was initially developed by Box and Tiao (1965; Box & Jenkins, 1976) and introduced to the behavioral sciences by Glass, Willson, and Gottman (1975/2008).

Although ITSA is widely used in areas such as econometrics, it has not reached saturation in the behavioral and social sciences to the same degree where there is little consensus on the appropriate method. Other methods that have been proposed for the same task, including multiple regression (e.g., Huitema, 2011; Maggin et al., 2011), multilevel modeling (e.g., Van den Noortgate & Onghena, 2003a, 2003b, 2007, 2008), and the overlap statistics proposed by Parker and others (e.g., Parker et al., 2011). However, the autocorrelation structure of the data is sometimes ignored. For example, multiple regression is a special case of time series analysis when the autocorrelations are all equal to zero. As noted below, having all autocorrelations equal to zero is unlikely to occur, and ignoring the dependency in the data can lead to very inaccurate parameter estimates. An important general problem is that these methods do not directly address violations of the Ergodic Theorems (Molenaar, 2007; Molenaar, 2008; Velicer, Babbin, & Palumbo, 2014). The Ergodic Theorems represent a critical distinction between nomothetic and idiographic approaches and must be addressed before combining multiple idiographic studies.

An inherent property of time series data is serial dependency that reflects the impact of previous observations on the current observation and violates the assumption of independence of errors, which can significantly affect the validity of the statistical test. Serial dependency, examined by the magnitude and direction of autocorrelations between observations spaced at different time intervals (lags), directly impacts error term estimation and validity of the statistical test. Negative autocorrelations produce an overestimation of the error variance, which leads to conservative bias and increases Type II error rate, whereas positive autocorrelations lead to underestimation of the error variance, and cause liberal bias and increase Type I error rates (see Velicer & Molenaar, 2013, for an illustration).

Time series analysis may be expressed as a generalized least squares problem, i.e.,

$$\mathbf{b} = (\mathbf{X}'\mathbf{T}'\mathbf{T}\mathbf{X})^{-1}\mathbf{X}'\mathbf{T}'\mathbf{T}\mathbf{Z} = (\mathbf{X}^{*'}\mathbf{X}^{*})^{-1}\mathbf{X}^{*'}\mathbf{Y}$$
(1)

where the parameters of interest are contained in the vector **b**, X is a design matrix, Z is the vector of observed data, and **T** is a lower triangular transformation matrix where the dependency is removed from the data. For an interrupted time series analysis, there are typically four parameters of interest in the **b** vector, the Level of the series (L), the Slope of the series (S), the Change in Level (DL), and the Change in Slope (DS). The slope parameters represent one of the other unique characteristics of a longitudinal design, the pattern of change over time. Investigating the pattern of change over time represents one of the transformation matrix $\mathbf{T} = \mathbf{I}$, the identity matrix, there is no dependency in the data, and the parameter estimates are provided by the standard general linear model.

¹ITSA is a term descriptive of a method of analyzing idiographic data widely used in many disciplines. It should not be confused with a computer program ITSE developed by Williams and Gottman (1982) which was shown to be inaccurate (Harrop & Velicer, 1990) or the later version ITSACORR (Crosbie, 1993) which is also fatally flawed (Huitema, Bradley, McKean, & Laraway, 2007).

The ITSA method is able to measure the degree of the serial dependency in the data and statistically remove it from the series, allowing for an unbiased estimate of the changes in level and trend across different phases of the experiment (Glass et al., 1975/2008). In addition, after accounting for serial dependency in the data, ITSA facilitates an estimate of the single-case effect size, by accounting for a within-individual variance and evaluating the differences between experimental phases of the study. This type of effect size is similar to group-level Cohen's *d* effect size (Cohen, 1988), which is the most commonly used measure of intervention effects in behavioral sciences research with widely implemented interpretative guidelines.

ITSA Model Identification

Identification of the correct autoregressive moving average model (ARIMA), i.e., determining the specific transformation matrix **T**, is an essential element of ITSA, because model identification, as well as sample size, directly impact the accuracy of the parameter estimation. Proposed by Glass et al. (1975/2008) method for ARIMA estimation is computationally very complex, therefore not accessible to the average researcher, and it requires a large number of observation (minimum 100 data points). Nevertheless, Velicer and Harrop (1983) showed that identifying the correct ARIMA is often unreliable, even with the recommended number of data points, leading to model misidentification. To address the limitations of the Glass et al. (1975/2008) method, the general transformation model that does not require specification of a particular model, was proposed (Velicer & McDonald, 1984). While the Glass et al. (1975/2008) method requires a two-step approach: (1) identification of the ARIMA (p, d, q), which requires large number of data points and has been shown to be unreliable, and (2) estimation of the parameters after correct transformation of the data, the general transformation method replaces the specific transformation matrix by a generalized transformation matrix and avoids the problematic model identification step (Velicer & McDonald, 1984). Harrop and Velicer (1985) compared the results of ITSA using: (1) the model developed by Glass et al. (1975/2008); (2) a priori specified (1, 0, 0) model proposed by Simonton (1977); and (3) an assumed (3, 0, 0) model as an approximation to the recommended (5, 0, 0) general transformation model. The findings led to the conclusion that the model identification step can be eliminated and replaced with the assumed (1, 0, 0) and general transformation model, even for time series data with as few as 40 data points. However, the general transformation model instead of the assumed (1, 0, 0) model is recommended for higher order models.

ITSA Limitations

Although the accuracy of the assumed (1, 0, 0) model and the general transformation model has been shown for data with at least 40 observation, it has not been tested on a very short time series with less than 40 observations, which are very common in single-case study designs. Shadish and Sullivan (2011) found that among single-case studies, the median number of observations is 20, and 90.6% have less than 50 data points. Therefore, the accuracy of the parameter estimation based on time series with less than 40 observations should be considered cautiously. Another limitation is that information about the outcome distribution of the measures is typically lacking, and there may be more appropriate methods for alternative distributions. For example, a Poisson distribution is usually used to model counts, and that type of data is common in JABA reports. Alternative analytic methods based on the Poisson distribution are under development (Jazi, Jones & Lai, 2012) and represent an alternative choice for future analysis of these types of data.

Study Aims

The aim of this study is to examine the level of agreement between the conclusions drawn from VA of graphically presented data with the findings based on ITSA of the same data. The study uses graphical data based on single-case studies published in the *Journal of Applied Behavior Analysis* in 2010. This journal was selected because it is a leading journal on the topic used by applied researchers, and it strongly promotes the use of VA rather than quantitative anal*ysis* methods (Shadish & Sullivan, 2011; Smith, 2012). In a related study, all the studies published in a leading textbook (Kazdin, 2011) were evaluated in the same way (Harrington & Velicer, 2015). The study will also provide estimates of the degree of autocorrelation and estimate the effect size for each study.

METHOD

Sample

Graphical data was obtained from the research papers published in the *Journal of Applied Behavior Analysis* (JABA) in 2010. For a graph to be included in this study, it was required to meet the following inclusion criteria: (1) present actual data (not simulated), (2) present interrupted time series data, (3) present a minimum of three observations in each phase of the design in order to estimate a full four-parameter model, (4) present baseline and treatment phases of an experimental design, (5) include corresponding description of the conclusions drawn from the VA of the graph, and (6) present welldefined data points (observations) in the graph. Any study design (e.g., ABAB, ABCA, etc.) presenting graphs that met the above eligibility criteria was included in the study. Graphs presenting cumulative data or alternating-treatment designs were not eligible.

Procedure

Eligible graphs were scanned and electronically imported into UnGraph[®] software version 5.0 (Biosoft, 2004), and the data was extracted using the UnGraph[®] software's function of a coordinate system. Then, sequentially ordered data recorded in a time series data format was exported into a Microsoft Excel[®] spreadsheet.

Validity and Reliability of UnGraph[®] Software

UnGraph[®] software has been previously examined for its validity and reliability when extracting data from graphs representing single-case designs (Shadish et al., 2009). Results of this study indicated high validity and reliability of the extracted data from graphs, with .96 as an average correlation coefficient between two raters.

Analysis

ITSA was used to evaluate intervention effects of each singlecase study. ITSA parameters were estimated using the assumed ARIMA (1, 0, 0) (Simonton, 1977) and the general transformation ARIMA (5, 0, 0) (Velicer & McDonald, 1984; Harrop & Velicer, 1985), that do not require the model identification step. First, the assumed ARIMA (1, 0, 0) (Simonton, 1977) was applied and a chi-square test for the residuals was used to examine whether the residuals were uncorrelated ("white noise") or contained additional information that required a higher order model (Glass et al., 1975/2008). If the residuals were correlated, then the general transformation ARIMA (5, 0, 0) (Velicer & McDonald, 1984; Harrop & Velicer, 1985) was applied.

Once the best fitting ARIMA was identified, parameters such as trend, change in trend, level, change in level, and mean and variability of the data series were evaluated. Intervention effects were examined based on changes in slope and level across the experimental phases of the design. An effect size similar to Cohen's d ($d = \Delta$ Level /s), where the numerator represents change in level at the interruption point and the denominator represents within-case standard deviation, was calculated to examine the magnitude of the behavior change due to the intervention. The measure of effect size based on within-case standard deviation is expected to be inflated relative to between groups Cohen's d. An effect size was calculated only for studies where no significant slope or change in slope was present. Analyses were performed in SAS version 9.2.

Description of the VA of the graphs presented in the publications published in JABA was used to perform the comparison of the findings. These comparisons were based on conclusions made in regards to trend, change in trend, variability, and change in level across different experimental phases of the experiment.

FIGURE 1 Distribution of lag-1 autoregressive coefficients in eligible time series data (K = 163).

Illustration of ITSE Application and VA Conclusions

To illustrate the application of the ITSA method in the analysis of single-case studies and comparison with the conclusions drawn on VA, three examples were selected from the experiments presented in Table 1.

Example 1

The first example is based on a study that examined the effects of providing praise and preferred edible items based on variable-time schedule in order to reduce problem behavior. In addition, effects of variable-time schedule on compliance were also evaluated. The study was based on a reversal design (ABAB) and included three participants (Lomas, Fisher, & Kelly, 2010). In the current example, data for one of the participants is provided. Sam was an 8-year-old boy diagnosed with Asperger syndrome and attention deficit hyperactivity disorder. Data displaying frequency of problem behavior and percentage of compliance in each phase of the design are presented in Figure 4 and Figure 5, respectively. Conclusions based on VA of the data suggested that the variable-

FIGURE 2 Distribution of the Cohen's d effect size estimates for eligible time series data (k = 98). *Note*. r_1 = percent of cases where first autocorrelations were greater than .40; m_d = mean *d* (effect size estimate).

TABLE	1
A	

Summary of Visual Analysis and Interrupted Time Series Analysis (ITSA) Based on Eligible Studies Published in the Journal of Applied Behavior Analysis in 2010

Figure	N BL	N TX	ARIMA	AR 1	Level	Error σ	Slope	∆ Slope	Δ Level	d
-					20,01		Stope			
St. Peter Pipkin, Vollmer, and Sloman (2010)										
Figure 6. Top panel										
(ABCDEFBFEDC)										
First sequence of conditions										
DRA lost its efficacy when imple	mented at less	than 50% inte	grity with o	combined	l omission a	nd commissi	ion errors" (p. 60).		
On task (B (EF))	9	17	(1, 0, 0)	.48*	-11.22	27.58	4.16*	-5.52^{*}	-1.04	—
Off task (B (EF))	9	17	(1, 0, 0)	.51*	102.47*	30.37	-3.55^{*}	5.01*	0.46	—
econd sequence of conditions	-									
The condition sequence did not in				ing the in	tegrity failu	re phases, in	sofar as her	behavior dur	ing the replic	ations
matched the results obtained from $O_{\rm T}$ to $result (P_{\rm T}({\rm FE}))$				20	29 (1	27.29	0.22*	0.41*	1.00	
On task (B (FE)) Off task (B (FE))	5 5	16 16	(1, 0, 0) (1, 0, 0)	.29 .31	-28.61 123.61*	37.38 37.23	2.33* -2.33*	-2.41* 2.41*	-1.88 2.01	_
Figure 7. Bottom panel	5	10	(1, 0, 0)	.51	125.01	57.25	-2.55	2.41	2.01	
(ABABCACBABCACAB)										
During subsequent DRA phases the	hat followed b	aseline, aggres	sion decrea	used to lo	w rates ai	nd appropria	te behavior i	increased to r	noderate rate	s" (p. 65
Aggression (ABABABAB) ^c	10/5/13/8	22/12/10/46		.73*	8.87*	3.50	1.08	-1.88	-1.38	0.83
Appropriate behavior	10/5/13/8	22/12/10/46	(5, 0, 0)	.78*	0.39	1.28	0.66	1.84	-1.13	0.86
(ABABABAB) ^d										
During the 50% integrity phases t	hat followed I	ORA, a mixtur	e of aggres	sion and	greetings oc	curred, with	some bias to	oward aggres	sion" (p. 65).	•
Aggression (BCBC)	12/10	11/36	(5, 0, 0)	.45*	2.42*	2.24	0.49	-0.24	2.67^{*}	1.14
Appropriate behavior (BCBC) ^b	12/10	11/36	(5, 0, 0)	.38*	5.22*	1.22	0.37	-1.90	-0.03	0.02
During the integrity failures follow		-	-							e" (p. 65
Appropriate behavior (ACAC) ^a	11/18	8/5	(5, 0, 0)	.70*	3.30*	0.89	-3.13*	0.27	-0.35	1.20
Aggression (ACAC)	11/18	8/5	(5, 0, 0)	.25	9.97*	2.82	-0.27	-0.28	1.59	1.30
ee, Yu, Martin, and Martin										
(2010)										
igure 1. (ABAB)										
For all stimuli, higher rates of resp	ponding were	observed in th	e reinforce	ment con	dition than i	n baseline"	(p. 97).			
ynn										
Goldfish Crackers (ABAB)	3/3	3/3	(1, 0, 0)	.45	2.27	1.75	-0.55	1.24	8.58*	8.77
Pretzel (ABAB) [†]	4/3	4/3	(1, 0, 0)	.57*	1.37	1.41	-1.29	4.61*	5.53*	—
Popcorn Twist (ABAB)	3/8	4/7	(1, 0, 0)	.50*	1.56	2.12	0.51	2.13*	0.48	
Cereal (ABAB)	3/4	8/3	(1, 0, 0)	.03	1.30	1.71	0.18	-1.28	2.92*	2.01
Jell-O (ABAB) ames	3/3	3/3	(1, 0, 0)	.50	1.24*	0.60	-0.19	-1.79	2.60*	3.53
ames										
Orange Juice (ABAB)	6/3	5/5	(1, 0, 0)	22	0.34	1.91	0.30	0.26	3 05*	2 22
Orange Juice (ABAB) Smarties (ABAB)	6/3 9/3	5/5 3/5	(1, 0, 0) (1, 0, 0)	.22 24	0.34 1 92*	1.81	0.39 -1.66	-0.26	3.95* 3.91*	2.22
Smarties (ABAB)	9/3	3/5	(1, 0, 0)	.24	1.92*	1.08	-1.66	-0.19	3.91*	2.82
Smarties (ABAB) Pretzel (ABAB)	9/3 3/3	3/5 9/4	(1, 0, 0) (1 , 0 , 0)	.24 .08	1.92* 1.51 *	1.08 1.11	-1.66 - 1.14	-0.19 1.47	3.91* 0.93	
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB)	9/3	3/5	(1, 0, 0)	.24	1.92*	1.08	-1.66	-0.19	3.91*	2.82 0.62
Smarties (ABAB) Pretzel (ABAB)	9/3 3/3 4/3	3/5 9/4 4/7 3/6	(1, 0, 0) (1 , 0 , 0) (1, 0, 0)	.24 .08 –.11	1.92* 1.51 * 1.28*	1.08 1.11 0.76 0.85	-1.66 - 1.14 -1.12 - 1.14	-0.19 1.47 2.22*	3.91* 0.93 -0.46	2.82 0.62
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB)	9/3 3/3 4/3 3/7	3/5 9/4 4/7	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	.24 .08 11 09	1.92* 1.51 * 1.28* 1.67 *	1.08 1.11 0.76	-1.66 - 1.14 -1.12	-0.19 1.47 2.22* 1.75	3.91* 0.93 -0.46 - 1.04	2.82 0.62 0.80
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i>	9/3 3/3 4/3 3/7	3/5 9/4 4/7 3/6	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	.24 .08 11 09	1.92* 1.51 * 1.28* 1.67 *	1.08 1.11 0.76 0.85	-1.66 - 1.14 -1.12 - 1.14	-0.19 1.47 2.22* 1.75	3.91* 0.93 -0.46 - 1.04	2.82 0.62 0.80
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) Groskreutz, Karsina, Miguel, and Groskreutz (2010)	9/3 3/3 4/3 3/7	3/5 9/4 4/7 3/6	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	.24 .08 11 09	1.92* 1.51 * 1.28* 1.67 *	1.08 1.11 0.76 0.85	-1.66 - 1.14 -1.12 - 1.14	-0.19 1.47 2.22* 1.75	3.91* 0.93 -0.46 - 1.04	2.82 0.62 0.80
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) Figure 1. (ABC)	9/3 3/3 4/3 3/7 3/3	3/5 9/4 4/7 3/6 8/3	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	.24 .08 11 09 16	1.92* 1.51 * 1.28* 1.67 * 1.03*	1.08 1.11 0.76 0.85 0.42	-1.66 - 1.14 -1.12 - 1.14	-0.19 1.47 2.22* 1.75	3.91* 0.93 -0.46 - 1.04	2.82 0.62 0.80
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) Figure 1. (ABC) Posttest performances indicated c	9/3 3/3 4/3 3/7 3/3	3/5 9/4 4/7 3/6 8/3	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) dent for all	.24 .08 11 09 16	1.92* 1.51 * 1.28* 1.67 * 1.03*	1.08 1.11 0.76 0.85 0.42	-1.66 - 1.14 -1.12 - 1.14 -1.51	-0.19 1.47 2.22* 1.75 -0.73	3.91* 0.93 -0.46 -1.04 2.77*	2.82 0.62 0.80
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) Groskreutz, Karsina, Miguel, and Groskreutz (2010) Figure 1. (ABC) Posttest performances indicated c Lyle (AC)	9/3 3/3 4/3 3/7 3/3	3/5 9/4 4/7 3/6 8/3 ations were evi 4	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) dent for all (1, 0, 0)	.24 .08 11 09 16 stimuli t .54*	1.92* 1.51 * 1.28* 1.67 * 1.03* ested" (p. - 6.91	1.08 1.11 0.76 0.85 0.42 134). 7.06	-1.66 -1.14 -1.12 -1.14 -1.51 8.77*	-0.19 1.47 2.22* 1.75 -0.73	3.91* 0.93 -0.46 -1.04 2.77*	2.82 0.62 0.80
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) figure 1. (ABC) Posttest performances indicated c Lyle (AC) Derrick (AC)	9/3 3/3 4/3 3/7 3/3	3/5 9/4 4/7 3/6 8/3	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	.24 .08 11 09 16 stimuli t .54* .71*	1.92* 1.51 * 1.28* 1.67 * 1.03* ested" (p. -6.91 15.83*	1.08 1.11 0.76 0.85 0.42 134). 7.06 4.89	-1.66 -1.14 -1.12 -1.14 -1.51 8.77 * -2.88*	-0.19 1.47 2.22* 1.75 -0.73 - 5.08 * -0.00	3.91* 0.93 -0.46 -1.04 2.77* 1.63 9.15*	2.82 0.62 0.80
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>roskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) gure 1. (ABC) Posttest performances indicated c Lyle (AC)	9/3 3/3 4/3 3/7 3/3 conditional relation	3/5 9/4 4/7 3/6 8/3 ations were evi 4 6	(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) dent for all (1, 0, 0)	.24 .08 11 09 16 stimuli t .54*	1.92* 1.51 * 1.28* 1.67 * 1.03* ested" (p. - 6.91	1.08 1.11 0.76 0.85 0.42 134). 7.06	-1.66 -1.14 -1.12 -1.14 -1.51 8.77 *	-0.19 1.47 2.22* 1.75 -0.73	3.91* 0.93 -0.46 -1.04 2.77*	2.82 0.62 0.80 1.67
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) Figure 1. (ABC) Posttest performances indicated c Lyle (AC) Derrick (AC) Roy (AC) Keith (AC)	9/3 3/3 4/3 3/7 3/3 conditional rela 4 6 6	3/5 9/4 4/7 3/6 8/3 ations were evi 4 6 6	(1, 0, 0) (1, 0, 0)	.24 .08 11 09 16 stimuli t .54* .71* .73*	1.92* 1.51 * 1.28* 1.67 * 1.03* ested" (p. -6.91 15.83* 35.60*	1.08 1.11 0.76 0.85 0.42 134). 7.06 4.89 8.40	-1.66 -1.14 -1.12 -1.14 -1.51 8.77* -2.88* -2.83*	-0.19 1.47 2.22* 1.75 -0.73 - 5.08 * -0.00 2.66*	3.91* 0.93 -0.46 -1.04 2.77* 1.63 9.15* 9.35*	2.82 0.62 0.80 1.67
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) Figure 1. (ABC) Posttest performances indicated c Lyle (AC) Derrick (AC) Roy (AC) Keith (AC) <i>Waller and Higbee</i> (2010) Figure 1. (ABAB)	9/3 3/3 4/3 3/7 3/3 conditional rela 4 6 6 6 6	3/5 9/4 4/7 3/6 8/3 ations were evi 4 6 6 6	(1, 0, 0) $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$.24 .08 11 09 16 stimuli t .54* .71* .73* .62*	1.92* 1.51 * 1.28* 1.67 * 1.03* ested" (p. -6.91 15.83* 35.60*	1.08 1.11 0.76 0.85 0.42 134). 7.06 4.89 8.40	-1.66 -1.14 -1.12 -1.14 -1.51 8.77* -2.88* -2.83*	-0.19 1.47 2.22* 1.75 -0.73 - 5.08 * -0.00 2.66*	3.91* 0.93 -0.46 -1.04 2.77* 1.63 9.15* 9.35*	2.82 0.62 0.80 1.67
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) figure 1. (ABC) Posttest performances indicated c Lyle (AC) Derrick (AC) Roy (AC) Keith (AC) <i>Valler and Higbee</i> (2010) figure 1. (ABAB) Brent's disruption rapidly decreas	9/3 3/3 4/3 3/7 3/3 conditional rela 4 6 6 6 6	3/5 9/4 4/7 3/6 8/3 ations were evi 4 6 6 6	(1, 0, 0) $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$ $(1, 0, 0)$.24 .08 11 09 16 stimuli t .54* .71* .73* .62*	1.92* 1.51 * 1.28* 1.67 * 1.03* ested" (p. -6.91 15.83* 35.60*	1.08 1.11 0.76 0.85 0.42 134). 7.06 4.89 8.40	-1.66 -1.14 -1.12 -1.14 -1.51 8.77* -2.88* -2.83*	-0.19 1.47 2.22* 1.75 -0.73 - 5.08 * -0.00 2.66*	3.91* 0.93 -0.46 -1.04 2.77* 1.63 9.15* 9.35*	2.82 0.62 0.80 1.67
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) Figure 1. (ABC) Posttest performances indicated c Lyle (AC) Derrick (AC) Roy (AC) Keith (AC) <i>Waller and Higbee</i> (2010) Figure 1. (ABAB) Brent's disruption rapidly decrease Brent: disruption (ABAB) ^a	9/3 3/3 4/3 3/7 3/3 conditional rela 6 6 6 6	3/5 9/4 4/7 3/6 8/3 ations were evi 4 6 6 6 6 8 3	(1, 0, 0) (1, 0, 0)	.24 .08 11 09 16 stimuli t .54* .73* .62* (p. 152).	1.92* 1.51* 1.28* 1.67* 1.03* ested" (p. -6.91 15.83* 35.60* 5.92	1.08 1.11 0.76 0.85 0.42 134). 7.06 4.89 8.40	-1.66 -1.14 -1.12 -1.14 -1.51 8.77 * -2.88* -2.83* 0.39	-0.19 1.47 2.22* 1.75 -0.73 -5.08* -0.00 2.66* -0.55	3.91* 0.93 -0.46 -1.04 2.77* 1.63 9.15* 9.35* 5.46*	2.82 0.62 0.80 1.67
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) "igure 1. (ABC) Posttest performances indicated c Lyle (AC) Derrick (AC) Roy (AC) Keith (AC) <i>Valler and Higbee</i> (2010) "igure 1. (ABAB) Brent's disruption rapidly decreases Brent: disruption (ABAB) ^a David's disruption decreased to Id	9/3 3/3 4/3 3/7 3/3 conditional rela 4 6 6 6 6 8 sed when treat 12/3 ow levels du	3/5 9/4 4/7 3/6 8/3 ations were evi 4 6 6 6 6 8 3	(1, 0, 0) (1, 0,	.24 .08 11 09 16 stimuli t .54* .71* .62* (p. 152). .58*	1.92* 1.51* 1.28* 1.67* 1.03* ested" (p. -6.91 15.83* 35.60* 5.92 50.99*	1.08 1.11 0.76 0.85 0.42 134). 7.06 4.89 8.40 12.46 14.62	-1.66 -1.14 -1.12 -1.14 -1.51 8.77* -2.88* -2.83* 0.39	-0.19 1.47 2.22* 1.75 -0.73 -5.08* -0.00 2.66* -0.55 0.42	3.91* 0.93 -0.46 -1.04 2.77* 1.63 9.15* 9.35* 5.46* -6.52* 2	2.82 0.62 0.80 1.67 6.74
Smarties (ABAB) Pretzel (ABAB) Mini Cookies (ABAB) Apple Sauce (ABAB) Popcorn Twist (ABAB) <i>Groskreutz, Karsina, Miguel, and</i> <i>Groskreutz</i> (2010) Figure 1. (ABC) 'Posttest performances indicated c Lyle (AC) Porrick (AC) Roy (AC) Keith (AC) <i>Waller and Higbee</i> (2010) Figure 1. (ABAB) 'Brent's disruption rapidly decreas	9/3 3/3 4/3 3/7 3/3 conditional relation 4 6 6 6 6 5 5 5 6 5 5 5 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	3/5 9/4 4/7 3/6 8/3 ations were evi 4 6 6 6 6 8 3	(1, 0, 0) (1, 0, 0)	.24 .08 11 09 16 stimuli t .54* .73* .62* (p. 152).	1.92* 1.51* 1.28* 1.67* 1.03* ested" (p. -6.91 15.83* 35.60* 5.92	1.08 1.11 0.76 0.85 0.42 134). 7.06 4.89 8.40 12.46	-1.66 -1.14 -1.12 -1.14 -1.51 8.77* -2.88* -2.83* 0.39 -0.67 3.07*	-0.19 1.47 2.22* 1.75 -0.73 - 5.08 * -0.00 2.66* -0.55	3.91* 0.93 -0.46 -1.04 2.77* 1.63 9.15* 9.35* 5.46* -6.52* 2 -8.26*	2.82 0.62 0.80 1.67 . 6.74

TABLE 1
Summary of Visual Analysis and Interrupted Time Series Analysis (ITSA) Based on Eligible Studies Published in the Journal of
Applied Behavior Analysis in 2010 (Continued)

		Applied	Behavior A	<i>nalysis</i> i	n 2010 <i>(Co</i>	ntinued)				
Figure	N BL	N TX	ARIMA	AR 1	Level	Error σ	Slope	Δ Slope	Δ Level	d
Toussaint and Tiger (2010)										
Figure 1. (AC)	d and was maintai	and offer in	struction for	the AD #	alation due	ina nastin	tenation much	······································		
'Correct responding increased Fred: (CA) set 1						• •	-4.22^*		4 2 4 *	
	4	7	(1, 0, 0)	.65*	82.52*	7.60		5.99*	4.24*	_
Fred: (CA) set 2	5	6	(1 0 0)	.69*	53 40*	25 59		not converge		0.47
Fred: (CA) set 3	6 7	5 4	(1, 0, 0)	.14 .28	52.49* 38.60	25.58 24.12	-0.70 0.60	1.73 0.11	0.42	0.47
Fred: (CA) set 4			(1,0,0)					0.11	0.81	1.13
correct responding increa Fred: (AC) set 1	4		(1, 0, 0)	.51*	11.21	14.60	(p. 187) 1.42	-1.60	3.62*	3.62
Fred: (AC) set	4 5	6 5	(1, 0, 0)	.70*	11.21	14.00		not converge		5.02
Fred: (AC) set 3	6	4	(1, 0, 0)	.65*	7.67	11.43	-0.65	2.09	4.75*	5.74
Fred: (AC) set 4	0 7	3	(1, 0, 0) (1, 0, 0)	.62	5.02	8.52	0.75	-0.57	4.75 7.24*	11.11
Figure 2. (AC)	/	5	(1, 0, 0)	.02	5.02	0.52	0.75	-0.57	7.24	11.11
For the BA relation, mean corr	oot responding	increased	following A	Dington	tion "(n 1	97)				
Jeremy: (BA) set 1	3	5	(1, 0, 0)	.70*	60.87*	8.29	-2.63	3.43*	6.37*	
Jeremy: (BA) set 2	4	4	(1, 0, 0)	.42	00.87	0.29		not converge		_
For the CA relation, mean corr	-	-			a "(p. 197)	would uld	not converge		
Jeremy: (CA) set 1	3	5	. Ionowing A	.43	ig (p. 187).	Model did	not converge		
Jeremy: (CA) set 1 Jeremy: (CA) set 2	4	4		.45				not converge not converge		
Figure 3. (AC)	4	4	_	.45			would uld	not converge		
" correct responding increa	and to high lovel	ofter AD	instruction"	$(n \ 100)$						
Danielle: (BA) set 1	3	6 6	mstruction	.61	•		Model did	not converge		
Danielle: (BA) set 2	5	4	(1, 0, 0)	.01 .67*	49.67*	7.18	3.16 *	not converge -0.04	0.18	
'Mean correct responding for th			. , , , ,			7.10	5.10	-0.04	0.10	—
Danielle: (CA) set 1	3	6	(1, 0, 0)	.34	16.17	14.23	-0.02	-0.26	5.54*	6.15
Danielle: (CA) set 2	5	4	(1, 0, 0) (1, 0, 0)	.54 .65*	45.75*	2.99	-0.02 15.49*	-0.20 - 9.53 *	1.92	0.15
Correct responding was low in										_
Danielle: (AC) set 1	3	6	(1, 0, 0)	.27	19.62	15.98	0.02	-0.18	(p. 190). 4.46*	5.06
Danielle: (AC) set 2	5	4	(1, 0, 0) (2, 0, 0)	.50	19.02 1.18*	13.98 12.36	3.32 *	-0.18 -2.21	2.66	5.00
Dumener (110) set 2	U	•	(_, 0, 0)	.20	1110	12.00	0.02	2,21	2.00	
Kuhn, Chirighin, and Zelenka										
(2010)										
Figure 2. (ABAB)										
After the introduction (and rein					-			-	• •	
Angela (ABAB)	4/6	6/6	(1, 0, 0)	.23	5.12*	2.92	0.54	-0.82	-1.66	1.28
Greg (ABAB) ^a	3/7	7/7	(1, 0, 0)	.01	2.27*	1.20	0.55	-1.23	-2.02	1.20
Figure 4. (ABC)										
After the introduction of the DI			ng increased	slightly f	for Angela in	Pairs 1 and	d 2, wherea	as problem be	havior persis	sted at lov
levels for Greg in both Pair 1										
Angela: Pair 1 (AB)	6	19	(1, 0, 0)	.18	0.00	1.60	0.08	-0.06	1.12	0.98
Angela: Pair 2 (AB)	12	28	(5, 0, 0)	.25	2.79*	1.56	-2.29*	1.46	4.02*	
Greg: Pair 1 (AB)	3	21	(1, 0, 0)	23	-0.01	0.73	0.16	0.18	0.69	0.66
Greg: Pair 2 (AB)	10	21	(1, 0, 0)		-0.06	1.12	0.19	-0.68	1.67	1.04
When the therapist provided A	•	ntingent acc	ess to prefer	red toys (i.e., bumble l	ball, massa	ger), head ba	nging decreas	sed to near-z	ero levels
across both pairs" (p. 259).										
Angela: Pair 1 (BC)	19	23	(5, 0, 0)	.35*	1.43*	1.14	1.54	-3.05^{*}	-2.91^{*}	
Angela: Pair 2 (BC)	28	8	(5, 0, 0)	.39*	3.24*	1.49	-3.08*	0.41	-0.40	—
'In addition, as shown in the DF		ng behavior	condition (Fi	igure 4, b	ottom two pa	anels), rates	s of problem	behavior pers	isted at near-	zero leve
for Pair 1 and Pair 2 activities										
Greg: Pair 1 (BC)	21	12	(5, 0, 0)	07	0.71*	0.62	-0.48	-0.64	-0.25	0.15
Greg: Pair 2 (BC)	21	5	(1, 0, 0)	17	1.30*	1.25	-1.42	-0.10	0.18	0.18
Digennaro-Reed, Codding,										
Catania, and Maguire (2010)										
Figure 1. (ABC)	1	4 13.25	1	11		205)				
Percentage correct increased in	nmediately during	g the IVM co	ondition for a	all partici	nants (n	293).				
		-		-			0.00	0.17	0.65*	0.01
Kelly $(AB)^{\dagger}$	3	5	(1, 0, 0)	.52	28.28	16.74	0.83	-0.46	3.67*	3.36
Kelly (AB) [†] Lauren (AB) Shannon (AB)		-		-			0.83 0.65 1.26	-0.46 -0.86 - 0.89	3.67* 5.49* 0.41	3.36 4.89 0.47

TABLE 1

Summary of Visual Analysis and Interrupted Time Series Analysis (ITSA) Based on Eligible Studies Published in the Journal of Applied Behavior Analysis in 2010 (Continued)

			Behavior A				<i>a</i> :			
Figure	N BL	N TX	ARIMA	AR 1	Level	Error σ	Slope	Δ Slope	Δ Level	d
Dolezal and Kurtz (2010)										
Figure 1 Bottom panel (AB) "During FCT treatment in the dema	and and divert	ad attention	condition r	ate of pro	blem behavi	or decreased	1 " (n 312))		
Problem behavior (AB)	6	8 8	(1, 0, 0)	.54*	0.81*	0.17	-2.00). 1.88	-2.62*	2.29
Van Houten, Malenfant, Reagan, Sifrit, Compton, and										
<i>Tenenbaum</i> (2010) Figure 2. (ABA and ABCA)										
The top panel shows data from a d 377).	river who dem	nonstrated a	n increase in	seat belt	use followin	g the 8-s del	ay and a dec	line when th	e delay was ro	emoved"
Top panel $(AB)^d$	22	61	(5, 0, 0)	.56*	27.33*	12.74	1.28	-0.89	8.59*	2.78
Top panel $(BA)^d$	30	61	(5, 0, 0)	.76*	70.61*	11.54	1.29	-2.19^{*}	-8.58^{*}	_
"The second panel shows the data f " (p. 377).	rom a driver w	ho demonst	trated an incr	ease follo	owing the int	roduction of	f the delay ar	nd maintenar	ice following	its remov
Second panel (AB) ^d	22	67	(5, 0, 0)	.68*	35.46*	19.18	-1.08	1.32	4.93*	3.14
Second panel (BA)	23	67	(5, 0, 0)	.37*	74.70*	18.39	1.61	-0.23	-0.20	0.13
" the third panel shows data from			was no effect		ne delay was	introduced of				
Third panel (ABCA) ^b	26/27	60/23	—	.50*				not converge		
"The bottom panel shows the data of gradual decline in seat belt use. A	After the 16-s	fixed delay	was introduce	ed, seat b	elt use impro	oved" (p. 37	7).		-	owed by
Bottom panel (AB) ^d	26	60	(5, 0, 0)	.74*	35.72*	18.58	0.27	-3.43*	6.85*	—
Bottom panel (BC) ^d	60	23	(5, 0, 0)	.81*	107.92*	16.74	-13.01*	2.94*	8.05*	—
Lomas, Fisher, and Kelley (2010) Figure 2. (ABAB) "Variable-time delivery of food and Sam: problem behavior	l praise grea 7/5	tly reduced 5/5	problem beh (1, 0, 0)	avior for .40	all three chi 2.56*	ldren" (p. 1.11	431). -1.54	0.94	-2.39*	1.85
(ABAB)										
Aaron: problem behavior (ABAB)	6/7	4/4	(1, 0, 0)	.19	4.60*	2.37	-0.43	0.18	-2.37*	1.79
Mark: problem behavior (ABAB)	7/4	5/6	_	.41				not converge	2	
"Levels of compliance were only sl		•			-				0.42*	1
Sam: compliance (ABAB)	7/5 7/4	5/5	(1, 0, 0)	.13	17.02	23.31	0.63	-1.54	2.43*	1.76
Mark: compliance (ABAB) "Aaron's compliance was maintaine		5/6 d more steh	(1, 0, 0) la lavala duri	.37 na VT f	37.27*	18.10	0.21	-0.68	1.94	1.93
Aaron: compliance (ABAB)	6/7	4/4	(1, 0, 0)	.23	36.03	31.87	- 0.43	0.56	1.02	0.88
Stokes, Luiselli, Reed, and										
Fleming (2010)										
Figure 1. (ABC)										
"Descriptive feedback alone did no	t improve pass	blocking"	(p. 469).							
Dan (AB) [†]	5	3	(1, 0, 0)	.25	40.38*	12.53	-1.19	2.22	0.85	0.76
Steve (AB)	6	3	(1, 0, 0)	32	49.88*	4.84	-0.92	0.51	0.38	0.67
Logan (AB)	7	5	(1, 0, 0)	.34	38.33*	3.17	5.27*	-7.28*	7.59*	—
Matt (AB)	9	7	(1, 0, 0)	.52*	65.22*	6.05	-2.25^{*}	2.05	3.10*	—
Russ (AB)	12	7	(1, 0, 0)	.18	32.51*	10.23	0.79	-1.02	0.52	0.63
"The descriptive and video feedbac						-	-	-		69).
Dan (AC)	5	6	(1, 0, 0)	.65*	45.97*	6.91	-0.96	2.92*	2.76*	
Steve (AC)	6	7	(1, 0, 0)	.80*	50.67*	6.73	-0.66	1.96	3.61*	4.50
Logan (AC)	7	4	(1, 0, 0)	.72*	39.27*	5.44	2.09	-0.03	5.63*	6.79
Matt (AC)	9 12	7 5	(1, 0, 0)	.73* 50*	64.89* 22 10*	5.13	-2.63*	2.48*	6.93*	1.62
Russ (AC) "Video feedback combined with de	12		(1, 0, 0)	.50*	33.19*	10.42	0.73	0.48	1.21	1.62
Dan (BC)	3 scriptive reed	6	(1, 0, 0)	.41*	-54.43	6.57	3.63 *	-2.55	- 0.14	·)· _
Steve (BC) [†]	3	0 7	(1, 0, 0) (1, 0, 0)	.41 .76*	- 54.45 50.01*	0.5 7 7.56	0.57	-2.55 0.28	- 0.14 2.65*	2.65
Logan (BC)	5	4	(1, 0, 0) (1, 0, 0)	.58*	72.94*	5.27	-3.61*	2.36	2.03 6.30*	2.05
	5	-	(1, 0, 0)		, 2.74	5.21	5.01	2.50	0.00	
Matt (BC)	7	7	(1, 0, 0)	.36	67.99*	6.53	0.88	0.04	0.91	0.92

TABLE 1
Summary of Visual Analysis and Interrupted Time Series Analysis (ITSA) Based on Eligible Studies Published in the Journal of
Applied Behavior Analysis in 2010 (Continued)

Figure	N BL	N TX	ARIMA	AR 1	Level	Error σ	Slope	Δ Slope	Δ Level	d
Stokes, Luiselli, and Reed (2010)										
Figure 1. (AB)										
"His correct tackling also increased	l with interven	tion (p. 51	1).							
Mike (AB) ^a	12	10	(1, 0, 0)	.74*	29.01*	7.22	0.08	4.21*	0.68	_
Falcomata, Roane, Feeney, and Stephenson (2010)										
Figure 1. Top panel (ABAB)										
"Rates of elopement were elevated									2.66*	2 (2
Elopement (ABAB)	3/8	5/12	(1, 0, 0)	.31*	1.50*	0.43	-0.65	1.00	-3.66*	2.63
Raiff and Dallery (2010)										
Figure 1. (ABA)			C .		111 / 1/					
"When the intervention was introdu				-	-		1.47	1.22	2.41*	2.00
Talia (AB)	5	5	(1, 0, 0)	.55	0.80	1.22	1.47	-1.33	3.41*	3.98
Bonita (AB)	5	5	(1, 0, 0)	.30	1.45	1.33	0.65	-0.69	2.61*	2.68
Edward (AB)	5	5	(1, 0, 0)	.27	2.78	0.28	2.23	-1.26	1.12	1.21
Andrea (AB)	5	5	(1, 0, 0)	.51	1.02	1.30	0.10	1.80	1.78	2.00
"Removing the intervention resulte		-	-							
Talia (BA)	5	5	(1, 0, 0)	.51	6.88	1.38	-0.20	-0.94	-0.73	1.02
Bonita (BA)	5	5	(1, 0, 0)	05	5.84	1.21	-0.01	-0.39	-1.58	1.67
Edward (BA)	5	5	(1, 0, 0)	.35	3.98*	0.22	0.04	4.15*	-5.44^{*}	
Andrea (BA)	5	5	(1, 0, 0)	.51	0.35	0.96	2.80*	-2.46	-3.99*	—
Leon, Hausman, Kahng, and Becraft (2010) Figure 1. (ABCD)										
5	l reinforcemen	t during non	busy activiti	es resulte	ed in an incr	ease in appro	opriate respo	onding during	g nonbusy act	ivities in
"The implementation of differentia	l reinforcemen 4	t during non 50/10/21	busy activiti (3, 0, 0)	es resulte .41*	ed in an incr 73.84*	ease in appro 20.55	opriate respo - 0.25	onding during 0.31	g nonbusy act — 0.34	ivities in 0.31
"The implementation of differentia Pair 1" (p. 527). Pair 1: Communication		-	-							
"The implementation of differentia Pair 1" (p. 527). Pair 1: Communication (ABCD) ^c Carter (2010)		-	-							
"The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD) ^c <i>Carter</i> (2010) Figure 1. Middle panel (ABABC)	4	50/10/21	(3, 0, 0)	.41*	73.84*	20.55	-0.25	0.31	-0.34	
"The implementation of differentia Pair 1" (p. 527). Pair 1: Communication (ABCD) ^c <i>Carter</i> (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent	4 ace edible item	50/10/21	(3 , 0 , 0)	.41*	73.84*	20.55	-0.25	0.31	-0.34	0.31
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) presentation of a high-preferent Compliance (ABAB) 	4	50/10/21	(3 , 0 , 0)	.41* ce increa	73.84* sed complia	20.55	- 0.25 ced destruct	0.31	- 0.34	
"The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD) ^c <i>Carter</i> (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit	4 nce edible item 5/4 5/4	50/10/21 contingent of 8/3 8/3	(3 , 0 , 0) on compliant (1, 0, 0) (1, 0, 0)	.41 * ce increa .54* .47*	73.84 * sed complia 33.44* 52.38*	20.55 nce and redu 7.92 9.25	- 0.25 ced destruct -0.61 0.38	0.31 tive behavior. 1.57 -3.61*	- 0.34 " (p. 545). 5.16* -1.81	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break for baseline" (p. 545). 	4 nce edible item 5/4 5/4 rom the tasks f	50/10/21 contingent of 8/3 8/3 for both comp	(3 , 0 , 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o	.41* ce increa .54* .47* destructiv	73.84 * sed complia 33.44* 52.38* ve behavior p	20.55 nce and redu 7.92 9.25 produced lev	-0.25 ced destruct -0.61 0.38 els of respon	0.31 tive behavior. 1.57 -3.61* nding similar	- 0.34 " (p. 545). 5.16* -1.81 to those obse	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) 	4 nce edible item 5/4 5/4 rom the tasks f 5/4	50/10/21 contingent of 8/3 8/3 for both comp 6	(3 , 0 , 0) on compliant (1, 0, 0) (1, 0, 0) obliance and c (1 , 0 , 0)	.41* ce increa .54* .47* destructiv .14	73.84* sed complia 33.44* 52.38* ve behavior 33.58*	20.55 nce and redu 7.92 9.25 produced lev 8.37	-0.25 ced destruct -0.61 0.38 els of respon -0.61	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46 *	-0.34 " (p. 545). 5.16* -1.81 to those obse 3.90*	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c <i>Carter</i> (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break for baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) 	4 nce edible item 5/4 5/4 rom the tasks f	50/10/21 contingent of 8/3 8/3 for both comp	(3 , 0 , 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o	.41* ce increa .54* .47* destructiv	73.84 * sed complia 33.44* 52.38* ve behavior p	20.55 nce and redu 7.92 9.25 produced lev	-0.25 ced destruct -0.61 0.38 els of respon	0.31 tive behavior. 1.57 -3.61* nding similar	- 0.34 " (p. 545). 5.16* -1.81 to those obse	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c <i>Carter</i> (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break for baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) <i>Grauvogel-Macaleese and Wallace</i> (2010) 	4 nce edible item 5/4 5/4 rom the tasks f 5/4	50/10/21 contingent of 8/3 8/3 for both comp 6	(3 , 0 , 0) on compliant (1, 0, 0) (1, 0, 0) obliance and c (1 , 0 , 0)	.41* ce increa .54* .47* destructiv .14	73.84* sed complia 33.44* 52.38* ve behavior 33.58*	20.55 nce and redu 7.92 9.25 produced lev 8.37	-0.25 ced destruct -0.61 0.38 els of respon -0.61	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46 *	-0.34 " (p. 545). 5.16* -1.81 to those obse 3.90*	0.31 3.51
"The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD) ^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferen Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2.	4 5/4 5/4 rom the tasks f 5/4 5/4	50/10/21 contingent of 8/3 8/3 for both comp 6 6	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and ((1, 0, 0) (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46	73.84* sed complia 33.44* 52.38* ve behavior p 33.58* 53.12*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01	-0.25 ced destruct -0.61 0.38 els of respon -0.61 0.15	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46 * -0.06	- 0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented differentiation of the provision of a 30-s break fit baseline" (p. 545). 	4 the edible item 5/4 5/4 rom the tasks f 5/4 5/4 5/4 tial reinforcem	50/10/21 contingent of 8/3 8/3 for both comp 6 6 whent, off-task	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o (1, 0, 0) (1, 0, 0) behavior im	.41* ce increa .54* .47* destructiv .14 .46	73.84 * sed complia 33.44* 52.38* ze behavior p 33.58 * 53.12*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three	-0.25 ced destruc -0.61 0.38 els of respon -0.61 0.15 participants	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46 * -0.06	- 0.34 " (p. 545). 5.16* -1.81 to those obse 3.90 * -1.94	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) 	4 the edible item 5/4 5/4 rom the tasks f 5/4 5/4 5/4 tial reinforcem 3/3	50/10/21 contingent of 8/3 8/3 for both comp 6 6 enent, off-task 7/4	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o (1, 0, 0) (1, 0, 0) behavior im (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46	73.84 * sed complia 33.44* 52.38* ze behavior p 33.58 * 53.12*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10	-0.25 ced destruc -0.61 0.38 els of respon -0.61 0.15 participants 2.40*	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46* -0.06	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54*	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) 	4 the edible item 5/4 5/4 tom the tasks f 5/4 5/4 tial reinforcem 3/3 5	50/10/21 contingent of 8/3 8/3 for both comp 6 6 enent, off-task 7/4 9	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o (1, 0, 0) (1, 0, 0) behavior im (1, 0, 0) (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46 mediatel .45* .55*	73.84 * sed complia 33.44* 52.38* ve behavior p 33.58 * 53.12* ly decreased 63.44* 46.43*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55	-0.25 ced destruc -0.61 0.38 els of respon -0.61 0.15 participants 2.40* 3.10*	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46* -0.06 s" (p. 549). -1.75 -3.55*	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54* -6.83*	0.31 3.51 2.24
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) 	4 the edible item 5/4 5/4 rom the tasks f 5/4 5/4 5/4 tial reinforcem 3/3	50/10/21 contingent of 8/3 8/3 for both comp 6 6 enent, off-task 7/4	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o (1, 0, 0) (1, 0, 0) behavior im (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46	73.84 * sed complia 33.44* 52.38* ze behavior p 33.58 * 53.12*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10	-0.25 ced destruc -0.61 0.38 els of respon -0.61 0.15 participants 2.40*	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46* -0.06	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54*	0.31 3.51
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) Drew (AB) Athens and Vollmer (2010) 	4 the edible item 5/4 5/4 tom the tasks f 5/4 5/4 tial reinforcem 3/3 5	50/10/21 contingent of 8/3 8/3 for both comp 6 6 enent, off-task 7/4 9	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o (1, 0, 0) (1, 0, 0) behavior im (1, 0, 0) (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46 mediatel .45* .55*	73.84 * sed complia 33.44* 52.38* ve behavior p 33.58 * 53.12* ly decreased 63.44* 46.43*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55	-0.25 ced destruc -0.61 0.38 els of respon -0.61 0.15 participants 2.40* 3.10*	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46* -0.06 s" (p. 549). -1.75 -3.55*	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54* -6.83*	0.31 3.51 2.24
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) 	4 the edible item 5/4 5/4 tom the tasks f 5/4 5/4 tial reinforcem 3/3 5	50/10/21 contingent of 8/3 8/3 for both comp 6 6 enent, off-task 7/4 9	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o (1, 0, 0) (1, 0, 0) behavior im (1, 0, 0) (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46 mediatel .45* .55*	73.84 * sed complia 33.44* 52.38* ve behavior p 33.58 * 53.12* ly decreased 63.44* 46.43*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55	-0.25 ced destruc -0.61 0.38 els of respon -0.61 0.15 participants 2.40* 3.10*	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46* -0.06 s" (p. 549). -1.75 -3.55*	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54* -6.83*	0.31 3.51 2.24
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) Drew (AB) Athens and Vollmer (2010) Figure 3. " for both participants, the relating the second second	4 the edible item 5/4 5/4 tom the tasks f 5/4 tial reinforcem 3/3 5 7	50/10/21 a contingent of 8/3 8/3 for both comp 6 6 hent, off-task 7/4 9 12	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and obliance and obliance (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46 mediatel .45* .55* .76*	73.84 * sed complia 33.44* 52.38* ve behavior p 33.58 * 53.12* ly decreased 63.44* 46.43* 51.01*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55 11.15	-0.25 ced destruct -0.61 0.38 els of respon -0.61 0.15 participants 2.40* 3.10* 1.18	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46 * -0.06 5" (p. 549). -1.75 -3.55* -0.99	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54* -6.83* -5.53*	0.31 3.51 erved durin 2.24 5.28
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) Drew (AB) Athens and Vollmer (2010) Figure 3. " for both participants, the relatifusion (ABCACA) 	4 the edible item 5/4 5/4 tom the tasks f 5/4 tial reinforcem 3/3 5 7 ve rates of pro-	50/10/21 a contingent of $8/3$ 8/3 for both comp 6 6 hent, off-task 7/4 9 12 blem behavior	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and obliance and obliance (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) obliance and obliance and obliance (1, 0, 0) (1, 0, 0) (1, 0, 0) obliance and obliance (1, 0, 0) (1, 0, 0) (.41* ce increa .54* .47* destructiv .14 .46 mediatel .45* .55* .76*	73.84 * sed complia 33.44* 52.38* ve behavior y 33.58 * 53.12* ly decreased 63.44* 46.43* 51.01* havior were	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55 11.15 sensitive to the	-0.25 ced destruct -0.61 0.38 els of respon- -0.61 0.15 participants 2.40^* 3.10^* 1.18 the reinforce	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46 * -0.06 s" (p. 549). -1.75 -3.55* -0.99 ement duration	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54* -6.83* -5.53*	0.31 3.51 erved durin 2.24 5.28
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c <i>Carter</i> (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fr baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) <i>Grauvogel-Macaleese and Wallace</i> (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) Drew (AB) <i>Athens and Vollmer</i> (2010) Figure 3. " for both participants, the relatifustion (AACA) Problem behavior (ACACA)^b Compliance (ACACA) 	4 the edible item 5/4 5/4 tom the tasks f 5/4 tial reinforcem 3/3 5 7	50/10/21 a contingent of 8/3 8/3 for both comp 6 6 hent, off-task 7/4 9 12	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and obliance and obliance (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46 mediatel .45* .55* .76*	73.84 * sed complia 33.44* 52.38* ve behavior p 33.58 * 53.12* ly decreased 63.44* 46.43* 51.01*	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55 11.15	-0.25 ced destruct -0.61 0.38 els of respon -0.61 0.15 participants 2.40* 3.10* 1.18	0.31 tive behavior. 1.57 -3.61* nding similar - 2.46 * -0.06 5" (p. 549). -1.75 -3.55* -0.99	-0.34 " (p. 545). 5.16* -1.81 to those obsec 3.90 * -1.94 -4.54* -6.83* -5.53*	0.31 3.51 erved durin 2.24 5.28
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c Carter (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) Grauvogel-Macaleese and Wallace (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) Drew (AB) Athens and Vollmer (2010) Figure 3. " for both participants, the relatifustin (ABCACA) Problem behavior (ACACA)^b Compliance (ACACA) Lana (ABAB) 	4 the edible item 5/4 5/4 rom the tasks f 5/4 tial reinforcem 3/3 5 7 ve rates of pro 4/10/14 4/10/14	50/10/21 a contingent of 8/3 8/3 for both comp 6 6 6 hent, off-task 7/4 9 12 blem behavior 14/20 14/20	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and $(1, 0, 0)$ (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) or and appro (5, 0, 0) (5, 0, 0)	.41* cce increa .54* .47* destructiv .14 .46 mediatel .45* .55* .76* priate be .58* .30*	73.84* sed complia 33.44* 52.38* ve behavior p 33.58* 53.12* ly decreased 63.44* 46.43* 51.01* havior were 2.40* 0.24	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55 11.15 sensitive to 0.80 0.64	-0.25 ced destruct -0.61 0.38 els of respon -0.61 0.15 participants 2.40^* 3.10^* 1.18 the reinforce -3.04^* 1.93	0.31 tive behavior: 1.57 -3.61^{*} nding similar -2.46^{*} -0.06 s" (p. 549). -1.75 -3.55^{*} -0.99 ement duratic 0.17 0.56	-0.34 -0.34 -0.34 -1.81 -1.81 -1.94 -4.54^{*} -6.83^{*} -5.53^{*} -0.96 -0.30	0.31 3.51 erved durin 2.24 5.28). 0.17
 "The implementation of differential Pair 1" (p. 527). Pair 1: Communication (ABCD)^c <i>Carter</i> (2010) Figure 1. Middle panel (ABABC) " presentation of a high-preferent Compliance (ABAB) Destructive behavior (ABAB) " the provision of a 30-s break fit baseline" (p. 545). Compliance (AAC) Destructive behavior (AAC) <i>Grauvogel-Macaleese and Wallace</i> (2010) Figure 2. "When peers implemented different Scott (ABAB) Zane (AB) Drew (AB) <i>Athens and Vollmer</i> (2010) Figure 3. " for both participants, the relatifustion (ABCACA) Problem behavior (ACACA)^b 	4 the edible item 5/4 5/4 rom the tasks f 5/4 tial reinforcem 3/3 5 7 ve rates of pro 4/10/14	50/10/21 contingent of 8/3 8/3 for both comp 6 6 6 hent, off-task 7/4 9 12 blem behavio 14/20	(3, 0, 0) on compliant (1, 0, 0) (1, 0, 0) obliance and o (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) or and appro (5, 0, 0)	.41* ce increa .54* .47* destructiv .14 .46 umediatel .45* .55* .76* priate be .58*	73.84 * sed complia 33.44* 52.38* ve behavior p 33.58 * 53.12* ly decreased 63.44* 46.43* 51.01* havior were 2.40 *	20.55 nce and redu 7.92 9.25 produced lev 8.37 8.01 for all three 14.10 12.55 11.15 sensitive to 1 0.80	-0.25 ced destruct -0.61 0.38 els of respon -0.61 0.15 participants 2.40^* 3.10^* 1.18 the reinforce -3.04^*	0.31 tive behavior: 1.57 -3.61* nding similar - 2.46 * -0.06 s" (p. 549). -1.75 -3.55* -0.99 ement duratic 0.17	-0.34 -0.34 5.16^{*} -1.81 to those obse 3.90^{*} -1.94 -4.54* -6.83* -5.53* on" (p. 578) -0.96	0.31 3.51 erved durin 2.24 5.28).

TABLE 1

Summary of Visual Analysis and Interrupted Time Series Analysis (ITSA) Based on Eligible Studies Published in the Journal of Applied Behavior Analysis in 2010 (Continued)

Figure	N BL	N TX	ARIMA	AR 1	Level	Error σ	Slope	Δ Slope	Δ Level	d
Figure 4.										
Justin (ABCAC)										
"In the 1 HQ/1 LQ condition, rate	es of problem b	ehavior decrea	sed, and ar	propriate	behavior in	creased" (p.	579).			
Problem behavior (AB)	5	14	(1, 0, 0)	05	5.31*	1.46	-2.02	2.18*	-0.46	_
Compliance (AB)	5	14	(1, 0, 0)	.13	3.39*	1.21	-2.22^{*}	1.52	4.24*	_
"Problem behavior decreased, and	d appropriate b	ehavior increas	,	levels du	ring the retu	Irn to the 3 H	O/1 LO cor	dition" (p. 5	80).	
Problem behavior (AC)	9	7	(1, 0, 0)	29	2.16*	0.70	-3.46*	-0.51	2.21*	_
Compliance (AC)	9	7	(1, 0, 0)	.06	5.23*	1.34	-0.78	1.61	-1.52	1.35
"In summary, results of the quality	• •			ates of bo	th problem	behavior and	appropriate	behavior we	re sensitive to	o the qual
of reinforcement available for e		.u.,								
Problem behavior (ABCAC)	5/9	14/10/7	(1, 0, 0)	07	2.92*	1.20	-2.88^{*}	1.41	-2.91^{*}	—
Compliance (ABCAC) ^b	5/9	14/10/7	(5, 0, 0)	.44*	1.00	1.44	3.49*	-1.98	0.70	—
Kenneth (ABABACBC)										
"In the 1 HQ/1 LQ condition, rate	-					-				
Problem behavior (AB)	6	15	(1, 0, 0)	.57*	4.54*	1.75	0.21	-0.71	-0.21	0.23
Mand (AB)	6	15	(1, 0, 0)	.54*	-0.05	0.51	0.28	1.45	-2.14*	1.67
" we conducted the 3 HQ/1 LQ		d problem beha	vior decrea	ased to ra	tes lower th	an observed	in previous	conditions ar	id appropriate	e behavior
increased to high rates" (p. 580										
Problem behavior	6/15/5/4/10	19	(5, 0, 0)	.67*	4.34*	1.41	-2.21*	0.32	-0.97	—
(ABABAC) ^a	<i></i>	4.5	/ - • • •	,	0.1-	o			0	
Mand (ABABAC) ^c	6/15/5/4/10		(5, 0, 0)	.64*	-0.17	0.62	5.97*	-1.14	-0.53	
"In summary, results of the quality			e relative ra	ates of bo	th problem	behavior and	appropriate	behavior we	ere sensitive to	o the qual
of reinforcement available for e		.u.,								
Problem behavior	6/5/10	15/4/19/8/ 22	(5, 0, 0)	.58*	4.99*	1.54	-1.35	0.94	-2.19^{*}	1.36
(ABABACBC) ^c										
· · · ·										
Mand (ABABACBC) ^d	6/5/10	15/4/19/8/ 22	(5, 0, 0)	.57*	0.17	0.72	1.59	-1.05	1.84	1.14
Mand (ABABACBC) ^d Figure 5.	6/5/10	15/4/19/8/ 22	(5, 0, 0)	.57*	0.17	0.72	1.59	-1.05	1.84	1.14
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC)			. , , , ,							
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay	analysis indica	te that the relat	. , , , ,							
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC)	analysis indica	te that the relat	. , , , ,	f problem	behavior a					v to
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC)	analysis indica lternative" (p. 1 23/6	nte that the relat 582). 21/17/44	tive rates of (5, 0, 0)	f problem .27 *	behavior a 3.28 *	nd appropria 2.23	te behavior	were sensitiv — 0.77	e to the delay - 0.46	to 0.16
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a	analysis indica llternative" (p. 1	tte that the relat	tive rates of	f problem	behavior a	nd appropria	te behavior	were sensitiv	e to the delay	to
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC)	analysis indica lternative" (p. 1 23/6 23/6	ate that the relat 582). 21/17/44 21/17/44	(5, 0, 0) (5, 0, 0) (5, 0, 0)	f problem .27* .17	behavior a 3.28* 1.60*	nd appropria 2.23 1.12	-0.14 -0.14	were sensitiv -0.77 -0.09	e to the delay -0.46 0.00	0.16 0.00
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a	analysis indica lternative" (p. 1 23/6 23/6	ate that the relat 582). 21/17/44 21/17/44	(5, 0, 0) (5, 0, 0) (5, 0, 0)	f problem .27* .17	behavior a 3.28* 1.60*	nd appropria 2.23 1.12	-0.14 -0.14	were sensitiv -0.77 -0.09	e to the delay -0.46 0.00	0.16 0.00
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582).	analysis indica lternative" (p. 1 23/6 23/6	ate that the relat 582). 21/17/44 21/17/44	(5, 0, 0) (5, 0, 0) (5, 0, 0)	f problem .27* .17	behavior a 3.28* 1.60*	nd appropria 2.23 1.12	-0.14 -0.14	were sensitiv -0.77 -0.09	e to the delay -0.46 0.00	0.16 0.00
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base	analysis indica dternative" (p. 1 23/6 23/6 eline, there was 6	ate that the relat 582). 21/17/44 21/17/44 s a slight increa 8	(5, 0, 0) (5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0)	f problem .27* .17 lem behav .22	behavior a 3.28* 1.60* vior from th 0.46	nd appropria 2.23 1.12	-0.14 -0.14	were sensitiv -0.77 -0.09	e to the delay -0.46 0.00	0.16 0.00
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA)	analysis indica dternative" (p. 2 23/6 23/6 eline, there was 6 6	ate that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 8	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0)	f problem .27* .17 em behav .22 .00	3.28* 3.28* 1.60* vior from th 0.46 1.87*	nd appropria 2.23 1.12 e previous cc 0.79 0.75	the behavior -0.14 -0.14 -0.14 andition and 1.55 -2.45*	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79	e to the delay -0.46 0.00 n appropriate -1.60 2.28*	v to 0.16 0.00 behavior"
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA)	analysis indica dternative" (p. 2 23/6 23/6 eline, there was 6 6	ate that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 8	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0)	f problem .27* .17 em behav .22 .00	3.28* 3.28* 1.60* vior from th 0.46 1.87*	nd appropria 2.23 1.12 e previous cc 0.79 0.75	the behavior -0.14 -0.14 -0.14 andition and 1.55 -2.45*	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79	e to the delay -0.46 0.00 n appropriate -1.60 2.28*	7 to 0.16 0.00 behavior
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA)	analysis indica dternative" (p. 2 23/6 23/6 eline, there was 6 6	ate that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 8	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0)	f problem .27* .17 em behav .22 .00	3.28* 3.28* 1.60* vior from th 0.46 1.87*	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increass 0.75	te behavior -0.14 -0.14 ondition and 1.55 -2.45^* e in appropr 2.21^*	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79	e to the delay -0.46 0.00 n appropriate -1.60 2.28*	7 to 0.16 0.00 behavior
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit	analysis indica dternative" (p. 3 23/6 23/6 eline, there was 6 6 6 cion, there was	ate that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 8 a decrease in pr	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0) roblem beh	f problem .27* .17 em behav .22 .00 avior to 2	3.28* 3.28* 1.60* Vior from th 0.46 1.87* zero rates ar	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase	te behavior -0.14 -0.14 ondition and 1.55 -2.45^* e in appropr	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58	e to the delay -0.46 0.00 n appropriate -1.60 2.28* 2).	7 to 0.16 0.00 behavior
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay	analysis indica dternative" (p. $\frac{23}{6}$ 23/6 eline, there was 6 6 cion, there was 6 6 analysis indica	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 the that the relat	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	f problem .27* .17 lem behav .22 .00 avior to 2 .59* .47	3.28* 1.60* vior from th 0.46 1.87* zero rates ar 0.48 1.67*	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64	the behavior -0.14 -0.14 -0.14 andition and 1.55 -2.45* the in appropri- 2.21* -2.25*	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77* 2.79*	e to the delay -0.46 0.00 n appropriate -1.60 2.28* 2). 0.00 2.25*	0.16 0.00 behavior" 1.75 —
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB)	analysis indica dternative" (p. $\frac{23}{6}$ 23/6 eline, there was 6 6 cion, there was 6 6 analysis indica	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 the that the relat	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)	f problem .27* .17 lem behav .22 .00 avior to 2 .59* .47	a behavior a 3.28* 1.60* vior from th 0.46 1.87* zero rates ar 0.48 1.67* behavior a	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64 nd appropria	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45* the in appropri- 2.21* -2.25* the behavior $-2.25*$	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay	0.16 0.00 behavior, 1.75 —
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay	analysis indica dternative" (p. $\frac{23}{6}$ 23/6 eline, there was 6 6 cion, there was 6 6 analysis indica	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 the that the relat	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) tive rates of	f problem .27* .17 lem behav .22 .00 avior to 2 .59* .47	3.28* 1.60* vior from th 0.46 1.87* zero rates ar 0.48 1.67*	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64	the behavior -0.14 -0.14 -0.14 andition and 1.55 -2.45* the in appropri- 2.21* -2.25*	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77* 2.79*	e to the delay -0.46 0.00 n appropriate -1.60 2.28* 2). 0.00 2.25*	0.16 0.00 behavior, 1.75 —
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC)	analysis indica dternative" (p. $\frac{23}{6}$ 23/6 23/6 eline, there was 6 6 cion, there was 6 6 analysis indica dternative" (p. $\frac{1}{6}$	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 the that the relat 582).	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) tive rates of	f problem .27* .17 lem behav .22 .00 havior to 2 .59* .47 f problem .55*	a behavior a 3.28* 1.60* vior from th 0.46 1.87* tero rates ar 0.48 1.67* behavior a 1.50*	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64 nd appropria 0.80	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45* the in appropri- 2.21* -2.25* the behavior $-2.25*$	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay	0.16 0.00 behavior" 1.75 - - - v to 0.13
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior	analysis indica dternative" (p. $\frac{23}{6}$ 23/6 23/6 eline, there was 6 6 cion, there was 6 6 analysis indica dternative" (p. $\frac{1}{6}$	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 the that the relat 582).	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) tive rates of	f problem .27* .17 lem behav .22 .00 lavior to 2 .59* .47 f problem	a behavior a 3.28* 1.60* vior from th 0.46 1.87* zero rates ar 0.48 1.67* behavior a	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64 nd appropria	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45* the in appropri- 2.21* -2.25* the behavior $-2.25*$	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay	0.16 0.00 behavior" 1.75 — — — 7 to
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC)	analysis indica dternative" (p. $\frac{23}{6}$ 23/6 23/6 eline, there was 6 6 cion, there was 6 6 analysis indica dternative" (p. $\frac{1}{6}$ 4/6/12/4	ate that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 te that the relat 582). 8/11/11/16	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (5, 0, 0)	f problem .27* .17 lem behav .22 .00 havior to 2 .59* .47 f problem .55*	a behavior a 3.28* 1.60* vior from th 0.46 1.87* tero rates ar 0.48 1.67* behavior a 1.50*	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64 nd appropria 0.80	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45* the in appropr 2.21* -2.25* the behavior -0.20	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv -0.35	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay 0.18	0.16 0.00 behavior" 1.75 — — • • • • • • • •
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB)	analysis indica lternative" (p. $\frac{23}{6}$ $\frac{23}{6}$ eline, there was 6 6 cion, there was 6 6 analysis indica lternative" (p. $\frac{3}{6}$ $\frac{4}{6}$ $\frac{12}{4}$	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16	(5, 0, 0) (5, 0, 0) (5, 0, 0) (1, 0, 0) (5, 0, 0) (5, 0, 0)	f problem .27* .17 lem behav .22 .00 havior to 2 .59* .47 f problem .55* .38*	a behavior a 3.28* 1.60* vior from th 0.46 1.87* tero rates ar 0.48 1.67* a behavior a 1.50* 0.74	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64 nd appropria 0.80 0.82	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45^* the in appropri- 2.21^* -2.25^* the behavior -0.20 -0.60	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv -0.35 1.14	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay 0.18 0.63	0.16 0.00 behavior ³⁷ 1.75 — — 7 to 0.13 0.35
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB) "In summary, results of the combi	analysis indica lternative" (p. $\frac{23}{6}$ $\frac{23}{6}$ eline, there was 6 6 cion, there was 6 6 analysis indica lternative" (p. $\frac{3}{6}$ $\frac{4}{6}$ $\frac{4}{6}$ $\frac{12}{4}$ inde analyses in	the that the relat 582). 21/17/44 21/17/44 is a slight increa 8 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16 Indicate that for	tive rates o (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in proble (1, 0, 0) (1,	f problem .27* .17 lem behav .22 .00 navior to 2 .59* .47 f problem .55* .38* cipants th	a behavior a 3.28* 1.60* vior from th 0.46 1.87* tero rates ar 0.48 1.67* a behavior a 1.50* 0.74 he relative rates ar	nd appropria 2.23 1.12 e previous cc 0.79 0.75 od an increase 0.75 0.64 nd appropria 0.80 0.82 ates of proble	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45^* the in appropri- 2.21^* -2.25^* the behavior -0.20 -0.60 the m behavior	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv -0.35 1.14	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay 0.18 0.63	0.16 0.00 behavior" 1.75 - - - 0.13 0.35
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB)	analysis indica lternative" (p. $\frac{23}{6}$ $\frac{23}{6}$ eline, there was 6 6 cion, there was 6 6 analysis indica lternative" (p. $\frac{3}{6}$ $\frac{4}{6}$ $\frac{4}{6}$ $\frac{12}{4}$ inde analyses in	the that the relat 582). 21/17/44 21/17/44 is a slight increa 8 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16 Indicate that for	tive rates o (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in proble (1, 0, 0) (1,	f problem .27* .17 lem behav .22 .00 navior to 2 .59* .47 f problem .55* .38* cipants th	a behavior a 3.28* 1.60* vior from th 0.46 1.87* tero rates ar 0.48 1.67* a behavior a 1.50* 0.74 he relative rates ar	nd appropria 2.23 1.12 e previous cc 0.79 0.75 od an increase 0.75 0.64 nd appropria 0.80 0.82 ates of proble	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45^* the in appropri- 2.21^* -2.25^* the behavior -0.20 -0.60 the m behavior	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv -0.35 1.14	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay 0.18 0.63	0.16 0.00 behavior [*] 1.75 — • • • • • • • • • • • • • • • • • •
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB) "In summary, results of the combi	analysis indica lternative" (p. $\frac{23}{6}$ $\frac{23}{6}$ eline, there was 6 6 cion, there was 6 6 analysis indica lternative" (p. $\frac{3}{6}$ $\frac{4}{6}$ $\frac{4}{6}$ $\frac{12}{4}$ inde analyses in	the that the relat 582). 21/17/44 21/17/44 is a slight increa 8 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16 Indicate that for	tive rates o (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in proble (1, 0, 0) (1,	f problem .27* .17 lem behav .22 .00 navior to 2 .59* .47 f problem .55* .38* cipants th	a behavior a 3.28* 1.60* vior from th 0.46 1.87* tero rates ar 0.48 1.67* a behavior a 1.50* 0.74 he relative rates ar	nd appropria 2.23 1.12 e previous cc 0.79 0.75 od an increase 0.75 0.64 nd appropria 0.80 0.82 ates of proble	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45^* the in appropri- 2.21^* -2.25^* the behavior -0.20 -0.60 the m behavior	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79^* were sensitiv -0.35 1.14	e to the delay -0.46 0.00 a appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay 0.18 0.63	0.16 0.00 behavior [*] 1.75 — • • • • • • • • • • • • • • • • • •
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB) "In summary, results of the combin sensitive to a combination of th	analysis indica lternative" (p. $\frac{23}{6}$ $\frac{23}{6}$ eline, there was 6 6 cion, there was 6 6 analysis indica lternative" (p. $\frac{3}{6}$ $\frac{4}{6}$ $\frac{4}{6}$ $\frac{12}{4}$ ined analyses in re quality, delay	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16 ndicate that for y, and duration	tive rates o (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in proble (1, 0, 0) (1,	f problem .27* .17 lem behav .22 .00 avior to z .59* .47 f problem .55* .38* cipants th ement fol	behavior a 3.28^* 1.60^* vior from th 0.46 1.87^* tero rates ar 0.48 1.67^* behavior a 1.50^* 0.74 he relative rates ar 0.48 1.50^* 0.74	nd appropria 2.23 1.12 e previous cc 0.79 0.75 nd an increase 0.75 0.64 nd appropria 0.80 0.82 ates of proble n alternative"	the behavior -0.14 -0.14 -0.14 ondition and 1.55 -2.45^* the in appropri- 2.21^* -2.25^* the behavior -0.20 -0.60 erm behavior (p. 584).	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79* were sensitiv -0.35 1.14 and appropr	e to the delay -0.46 0.00 a appropriate -1.60 2.28^* 2). 0.00 2.25^* e to the delay 0.18 0.63 iate behavior	0.16 0.00 behavior" 1.75 - - - 0.13 0.35 were
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB) "In summary, results of the combin sensitive to a combination of th Problem behavior (ABAB)	analysis indica lternative" (p. : 23/6 23/6 eline, there was 6 6 cion, there was 6 analysis indica lternative" (p. : 4/6/12/4 4/6/12/4 ined analyses in re quality, delay 7/6	the that the relat 582). 21/17/44 21/17/44 is a slight increa 8 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16 Indicate that for y, and duration 7/10	tive rates o (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in proble (1, 0, 0) (1,	f problem .27* .17 lem behav .22 .00 navior to z .59* .47 f problem .55* .38* cipants th ement fol .45*	t behavior a 3.28^* 1.60^* vior from th 0.46 1.87^* vero rates ar 0.48 1.67^* t behavior a 1.50^* 0.74 he relative r lowing each 3.60^*	nd appropria 2.23 1.12 e previous co 0.79 0.75 o.64 nd appropria 0.80 0.82 ates of proble n alternative" 1.39	te behavior -0.14 -0.14 ondition and 1.55 -2.45^* te in appropr 2.21^* -2.25^* te behavior -0.20 -0.60 em behavior (p. 584). -1.89	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77^* 2.79* were sensitiv -0.35 1.14 and appropr 1.37	e to the delay -0.46 0.00 h appropriate -1.60 2.28^{*} 2). 0.00 2.25^{*} e to the delay 0.18 0.63 iate behavior -2.63^{*}	0.16 0.00 behavior" 1.75 7 to 0.13 0.35 were 1.94
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB) "In summary, results of the combi sensitive to a combination of th Problem behavior (ABAB) Mand (ABAB) ^a	analysis indica lternative" (p. : 23/6 23/6 eline, there was 6 6 ion, there was 6 analysis indica lternative" (p. : 4/6/12/4 4/6/12/4 ined analyses in the quality, delay 7/6 7/6	the that the relatives $21/17/44$ 21/17/44 21/17/44 a sa slight increasing a slight increasing a slight increasing a structure of the second s	tive rates of (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in problem (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (5, 0, 0) these partion of reinforce (5, 0, 0) (1, 0, 0)	f problem .27* .17 lem behave .22 .00 lavior to 2 .59* .47 f problem .55* .38* cipants th ement fol .45* 06	a behavior a 3.28* 1.60* vior from th 0.46 1.87* erero rates ar 0.48 1.67* a behavior a 1.50* 0.74 he relative rr ilowing eacl 3.60* 0.03	nd appropria 2.23 1.12 e previous co 0.79 0.75 0.64 nd appropria 0.80 0.82 ates of proble n alternative" 1.39 0.47	te behavior -0.14 -0.14 ondition and 1.55 -2.45* te in appropr 2.21* -2.25* te behavior -0.20 -0.60 em behavior (p. 584). -1.89 1.17	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77* 2.79* were sensitiv -0.35 1.14 and appropr 1.37 0.19	e to the delay -0.46 0.00 h appropriate -1.60 2.28^* 2). 0.00 2.25^* e to the delay 0.18 0.63 iate behavior -2.63^* 3.92^*	0.16 0.00 behavior' 1.75 - - 0.13 0.35 were 1.94 1.55
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB) "In summary, results of the combi sensitive to a combination of th Problem behavior (ABAB) Mand (ABAB) ^a Clark (ABAB)	analysis indica lternative" (p. : 23/6 23/6 eline, there was 6 6 cion, there was 6 analysis indica lternative" (p. : 4/6/12/4 4/6/12/4 ined analyses in the quality, delay 7/6 7/6 ined analyses in	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16 ndicate that for y, and duration 7/10 7/10 ndicate that for	tive rates of (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in proble (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (5, 0, 0) these partion (5, 0, 0) (1, 0, 0) these partion (1, 0, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)	f problem .27* .17 lem behav .22 .00 lavior to 2 .59* .47 f problem .55* .38* cipants th ement fol .45* 06 cipants th	t behavior a 3.28^* 1.60^* vior from th 0.46 1.87^* erro rates ar 0.48 1.67^* t behavior a 1.50^* 0.74 he relative r clowing each 3.60^* 0.03 he relative r	nd appropria 2.23 1.12 e previous co 0.79 0.75 0.64 nd appropria 0.80 0.82 ates of proble n alternative'' 1.39 0.47 ates of proble	te behavior -0.14 -0.14 ondition and 1.55 -2.45* te in appropr 2.21* -2.25* te behavior -0.20 -0.60 em behavior (p. 584). -1.89 1.17 em behavior	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77* 2.79* were sensitiv -0.35 1.14 and appropr 1.37 0.19	e to the delay -0.46 0.00 h appropriate -1.60 2.28^* 2). 0.00 2.25^* e to the delay 0.18 0.63 iate behavior -2.63^* 3.92^*	0.16 0.00 behavior' 1.75 - - 0.13 0.35 were 1.94 1.55
Mand (ABABACBC) ^d Figure 5. Corey (ABCAC) "In summary, results of the delay reinforcement following each a Problem behavior (ABCAC) Mand (ABCAC) ^a Henry (ABACABAC) "In a reversal to 0-s/0-s delay base (p. 582). Problem behavior (BA) Mand (BA) "During the 0-s/60-s delay condit Problem behavior (AB) Mand (AB) "In summary, results of the delay reinforcement following each a Problem behavior (ABACABAC) Mand (ABACABAC) Figure 6. George (ABAB) "In summary, results of the combi sensitive to a combination of th Problem behavior (ABAB) Mand (ABAB) ^a Clark (ABAB)	analysis indica lternative" (p. : 23/6 23/6 eline, there was 6 6 cion, there was 6 analysis indica lternative" (p. : 4/6/12/4 4/6/12/4 ined analyses in the quality, delay 7/6 7/6 ined analyses in	the that the relat 582). 21/17/44 21/17/44 s a slight increa 8 a decrease in pr 11 11 the that the relat 582). 8/11/11/16 8/11/11/16 ndicate that for y, and duration 7/10 7/10 ndicate that for	tive rates of (5, 0, 0) (5, 0, 0) (5, 0, 0) ase in proble (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (5, 0, 0) these partion (5, 0, 0) (1, 0, 0) these partion (1, 0, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)	f problem .27* .17 lem behav .22 .00 lavior to 2 .59* .47 f problem .55* .38* cipants th ement fol .45* 06 cipants th	t behavior a 3.28^* 1.60^* vior from th 0.46 1.87^* erro rates ar 0.48 1.67^* t behavior a 1.50^* 0.74 he relative r clowing each 3.60^* 0.03 he relative r	nd appropria 2.23 1.12 e previous co 0.79 0.75 0.64 nd appropria 0.80 0.82 ates of proble n alternative'' 1.39 0.47 ates of proble	te behavior -0.14 -0.14 ondition and 1.55 -2.45* te in appropr 2.21* -2.25* te behavior -0.20 -0.60 em behavior (p. 584). -1.89 1.17 em behavior	were sensitiv -0.77 -0.09 a decrease in 0.83 -0.79 iate (p. 58 -3.77* 2.79* were sensitiv -0.35 1.14 and appropr 1.37 0.19	e to the delay -0.46 0.00 h appropriate -1.60 2.28^* 2). 0.00 2.25^* e to the delay 0.18 0.63 iate behavior -2.63^* 3.92^*	0.16 0.00 behavior ² 1.75 - - 0.13 0.35 were 1.94 1.55

TABLE 1

Summary of Visual Analysis and Interrupted Time Series Analysis (ITSA) Based on Eligible Studies Published in the Journal of Applied Behavior Analysis in 2010 (Continued)

Figure	N BL	N TX	ARIMA	AR 1	Level	Error σ	Slope	Δ Slope	Δ Level	d
Wilder, Allison, Nicholson, Abellon, and Saulnier (2010)										
Figure 1.										
Ricky (ABACABAC)										
"For Ricky, compliance improved v		-	*							
Compliance (AACAAC)	3/3/3/3	6/8	(1, 0, 0)	.58*	6.91	23.11	-0.77	1.87	3.23*	1.99
an (ABACABADAD)	mad adible ite	ma initially	appeared to 1	a offooti	ua in inaraa	ing complia	naa hutaan	anlianaa daar	accad toward	the and o
'For Ian, contingent access to prefe this phase" (p. 606).	erred edible ne	ins initially	appeared to t	be effecti	ve in increa	sing compila	nce, but con	ipitance deci	eased toward	the end o
Compliance (AC)	5	6	(1, 0, 0)	.37	1.85	24.35	-0.14	-1.21	3.71*	3.78
"Therefore, a response-cost compo							0.14	1,21	5.71	5.70
Compliance (ADAD)	7/3	3/5	(1, 0, 0)	.50*	3.47	18.75	0.38	-0.76	5.70*	5.08
Andy (ABACADABACAD)			()-)-)							
" contingent access to preferred	edible items w	as immedia	tely effective	in increa	sing compl	iance" (p. 60	7).			
Compliance (AD)	3	6	(1, 0, 0)	.66*	4.03	16.49	-0.24	0.43	4.05*	5.03
Figure 2.										
Ricky (ABACABAC)										
'For Ricky, problem behavior occu	rred exclusive	y during th	e guided com	pliance c	onditions, b	ut appeared	to subside d	uring each in	nplementation	n" (p. 607)
Problem behavior (AACAAC)	3/3/3/3	6/8	(1, 0, 0)	.07	-1.58	12.45	0.36	-2.16^{*}	3.94*	_
Ian (ABACABADAD)										
"Ian exhibited most of his problem		•								
Problem behavior (ABAB)	5/9	8/5	(1, 0, 0)	.46*	32.75	26.72	-0.28	0.22	-0.07	0.07
Figure 3.										
Ed (ABACABAC)		4 . 1. !	f 1	1:1-1 - :				\ \		
'For Ed, compliance improved whe			*		•	-			1.02	1 71
Compliance (ACAC) Carl (ABACABAC)	3/4	6/7	(1, 0, 0)	.62*	5.15	22.66	0.49	1.16	1.93	1.71
'For Carl, contingent access to pref	erred edible it	ems was als	o effective in	increasi	ng compliar	nce" (n. 609)				
Compliance (ACAC)	3/3	3/16	(1, 0, 0)	.57*	1.06	4.31	-0.42	0.53	37.44*	22.74
Sam (ABACABAC)	515	5/10	(1, 0, 0)		1.00	1.01	0.12	0.00	57.11	22.7 1
"For Sam, contingent access to pref	ferred edible it	ems was als	so effective ir	increasi	ng compliar	nce" (p.609).				
Compliance (ACAC)	3/3	3/25	(1, 0, 0)	.42*	18.73	17.54	-0.84	0.60	8.29*	4.85
* · · ·										
Carbone, Sweeney-Kerwin,										
Attanasio, and Kasper (2010)										
Figure 1. (AB)			. 1							
"Tony's mean responding showed a		-	*	-			0.16	0.76	2.00*	2 20
Tony (AB) ^b "Both Ralph's and Nick's manual s	10	21	(5, 0, 0)	.66*	9.58*	6.27	0.16	0.76	3.09*	2.30
unprompted vocalizations during	e	1	lied by very l	lew vocal	responses o	luring basen	ne, but dem	onstrated sub	stantial incre	ases m
Ralph (AB)	17	. 707). 10	(1, 0, 0)	.67*	1.18	5.51	-0.12	0.87	1.51	1.57
Nick (AB)	21	10	(1, 0, 0) (1, 0, 0)	.07 .59*	1.13	5.51 1.46	-0.12 0.11	-0.31	-0.33	0.40
Mick (AD)	21	,	(1, 0, 0)		1.15	1.40	0.11	-0.31	-0.55	0.40
Ulke-Kurkcuoglu and										
Kircaali-Iftar (2010)										
Figure 1. (ABABA)										
"All participants except Yavuz cons										
Utku (ABABA)	4/4/4	4/4	(1, 0, 0)	.47*	62.45*	5.52	4.13*	-2.01	5.91*	—
Alp (ABABA)	4/4/4	4/4	(1, 0, 0)	.53*	65.04*	3.52	6.07*	-0.79	6.34*	—
Selim (ABABA)	4/4/4	4/4	(1, 0, 0)	.57*	70.97*	3.62	3.10*	-0.02	4.64*	—
Yavuz (ABABA)	4/4/4	4/4	(1, 0, 0)	.65*	66.03*	2.51	16.08*	-6.11^{*}	13.31*	—
				1.				N (510)		
"Yavuz's on-task behavior during the Yavuz (BBA)	he last baselind 4	e condition 4/4	was similar to (1, 0, 0)	o his on-t .23	ask behavio 95.83 *	r in the choic 1.60	ce condition 1.62	s" (p. 719). 0.43	-3.13*	3.85

Summary of Visual Analysis and Interrupted Time Series Analysis (ITSA) Based on Eligible Studies Published in the Journa	al of
Applied Behavior Analysis in 2010 (Continued)	

Figure	N BL	$N \operatorname{TX}$	ARIMA	AR 1	Level	Error σ	Slope	Δ Slope	Δ Level	d
Roscoe, Kindle, and Pence (2010)										
Figure 1. Bottom panel (ABAB)										
"During the first FCT intervention	n phase [as well	as return to	the FCT int	ervention	n], she did n	ot exhibit ag	gression and	d emitted the	communica	tion respons
at mostly short latencies and at	a high frequence	y" (p. 72	26).							
Aggression (ABAB)	3/3	5/9	(1, 0, 0)	.46*	42.94	65.99	-0.73	0.51	5.45*	3.80
Communication (ABAB)	3/3	5/9	(1, 0, 0)	.30	304.88*	95.74	-1.11	0.53	-3.17*	2.20
Travis and Sturmey (2010)										
Figure 1. Bottom panel (ABAB)										
"The immediate success of this in	tervention "(p. 748).								
Nondelusional statements	4/4	5/4	(1, 0, 0)	.55*	0.61*	0.15	-2.29^{*}	5.02*	6.61*	_
(ABAB)										
Delusional statements (ABAB)	4/4	5/4	(1, 0, 0)	.58*	1.45*	0.16	-0.07	-1.66	-7.95^{*}	6.38
Wilder, Nicholson, and Allison										
(2010)										
Figure 1.										
Top panel (ABABACAC)										
"Ralph's compliance was generall	y low during ba	aseline	However, wł	nen physi	ical guidanc	e was added	, his complia	ance increase	d and remain	ned at high
levels" (p. 753).					-		_			-
Compliance (ACAC)	3/6	10/5	(1, 0, 0)	.64*	11.83	31.61	0.29	1.35	-0.21	0.21
Middle panel										
(ABABACADACAD)										
"During the first advance notice p	lus physical gui	dance phase	e. complianc	e remain	ned relativel	v low" (p.	753).			
Compliance (AC)	4	7	(1, 0, 0)	.37	-1.21	14.99	0.13	-0.21	0.50	0.62
"During the physical guidance on	ly phase compl	iance increa	(/ / /							
Compliance (AD)	3	11	(1, 0, 0)	.62*	4.21	25.27	-0.24	0.73	-0.07	0.08
Compliance increased again durin							0.24	0.75	0.07	0.00
Compliance (AC)	3	8	(1, 0, 0)	41*	48.89	29.74	-1.03	1.05	2.26	2.49
Compliance increased to high, s	-						-1.03	1.05	2.20	2.49
		9		.04	60.76*	(p. 755). 25.15	2 20*	-0.23	5.27*	
Compliance (AD)	9	9	(1, 0, 0)	.04	00.70	25.15	-2.20^{*}	-0.23	5.27	_
Bottom panel (ABABACACAD)										
"When physical guidance was add					10.04		0.21	0.70	0.00	0.00
Compliance (ACAC)	3/4	8/10	(1, 0, 0)	.52*	12.84	24.74	-0.31	0.69	0.90	0.82
"During the last phase, advance no during this phase" (p. 753).	otice was remov	ved and phy	sical guidan	ce alone	was implen	nented. Com	pliance impr	oved and i	remained at	high levels
Compliance (AD)	4	7	(1, 0, 0)	.70*	-3.05	14.24	0.31	3.56*	-2.29^{*}	_
-			() -) *)							
Miller, Lerman, and Fritz (2010)										
Figure 1. (ABAB)	and a dara	aaaad durin	a tha first	timatia-	nhasa Ci	du'a naan	din a waa -i	ailon to that J	uning has for	at antinati
" the percentage of trials with r				unction	pnase Cii	iuy s respon	ung was sin	mar to that d	uning her fir	st extinction
phase, although suppression wa Cindy (ABAB)	is less pronounc 3/4	-				30.05	1.19			
		4/8	(1, 0, 0)	.38	71.41*			-1.23	-0.55	0.49

Note. The following information is included in the first column: authors of the publication, figure label as it is presented in the publication, experimental design presented using capital letters in the parenthesis. Unless otherwise indicated with the superscript (\dagger), each ITSA model was determined based on four parameters: level, slope, change in slope, and change in level. *N* BL = number of observations in the baseline or reference phase; *N* TX = number of observations in the treatment phase; ARIMA = autoregressive moving average model; AR 1 = autoregressive term 1; Level = intercept; Error σ = standard error estimate; Slope = *t* test statistic for linear trend of the time series; Δ Slope = *t* test statistic for change in slope at the interruption point; Δ Level = *t* test statistic for change in level at the interruption point; *d* = Cohen's *d* effect size; Cohen's *d* effect size is not available for time series with significant slope or change in slope. The quotes in the Table are the interpretation of a significant effect as presented in the original paper. The comparison that the quote refers to is indicated by the bolding below the quote.

^asignificant AR 2.

^bsignificant AR 2 and AR 3.

csignificant AR 2, AR 3, and AR 4.

^dsignificant AR 2, AR 3, AR 4, and AR 5.

[†]ITSA model estimated separately for slope and change in slope due to small number of observation that affected model's stability.

*p < .05

time schedule reduced problem behavior, but did not increase compliance for Sam. Lomas et al. (2010) stated that "levels of compliance were only slightly higher during treatment with VT food and praise for Sam. .." and that "variable-time delivery of food and praise superimposed on a demand baseline (in which problem behavior continued to produce escape) greatly reduced problem behavior. .." (p. 431).

ITSA was implemented to evaluate the effect of variabletime delivery on problem behavior and compliance. The ARIMA (1, 0, 0) was applied to both behaviors to estimate 4 parameters: level, change in level, slope, and change in slope.

For problem behavior, lag-1 autocorrelation was .40. The analysis for slope and change in slope yielded nonsignificant findings, whereas change in level in the variable-time delivery phase indicated significant decrease in problem behavior (t (18) = -2.39, p < .05) with medium effect size (d = 1.85) based on tertile distribution. The findings based on statistical analysis confirm conclusions drawn from VA, indicating decrease in problem behavior due to variable-time delivery of preferred food and praise.

For compliance, lag-1 autocorrelation was .13. The analysis for slope and change in slope yielded nonsignificant findings, whereas change in level in the variable-time delivery phase indicated significant increase in compliance (t (18) = 2.43, p < .05) with medium effect size (d = 1.76). The findings based on statistical analysis did not confirm the conclusions drawn from VA, which indicated only slight increases in compliance, while statistical findings show significant increases with large effect sizes. ITSA details are presented in Table 1.

Example 2

The second example is based on a study that examined the effectiveness of a device that prevents drivers from changing gears for up to 8 seconds unless the seatbelt is buckled. The study was based on an ABA reversal design and included 101 commercial drivers (Van Houten et al., 2010). Data for one driver is displayed in Figure 6. Based on the VA of the data presented in the top panel, Van Houten et al. (2010) concluded "... an increase in seat belt use following the 8-s delay and a decline when the delay was removed" (p. 377).

ITSA was implemented to evaluate the effect of the 8-s gearshift delay on seatbelt use. Two ARIMAs (5, 0, 0) were applied to test increases in seatbelt use following the 8-s delay (AB) and to test a decline in seatbelt use when the delay was removed (BA). Each model estimated 4 parameters: level, change in level, slope, and change in slope. For AB phase of the design, lag-1 autocorrelation was significant (AR 1 = .56). The analysis for slope and change in level in the 8-s delay nonsignificant findings, whereas change in level in the 8-s delay phase indicated significant increase in seatbelt use (t (79) = 8.59, p < .05) with large effect size (d = 2.78).

The findings based on statistical analysis confirm conclusions drawn from VA, indicating an increase in seatbelt use due to 8-s gearshift delay. For the BA phase of the design, lag-1 autocorrelation was significant (AR 1 = .76). The analysis for slope yielded nonsignificant findings; however, change in slope and change in level were significant and indicated a decrease in seatbelt use due to removal of the gearshift delay (t (87) = -2.19, p < .05; t (87) = -8.58, p < .05 for change in slope and change in level respectively). The findings based on statistical analysis confirm conclusions drawn from VA, indicating a decrease in seatbelt use following removal of the 8-s gearshift delay.

Example 3

The third example is based on a study that performed several experiments, one of which examined the effects of delivery of higher quality reinforcement following appropriate behavior and lower quality reinforcement following problem behavior on changes in behavior (Athens & Vollmer, 2010). The study participant reported in this example was a 7-year-old boy diagnosed with attention deficit hyperactivity disorder, and the experiment was based on ABCAC design. Based on the VA of data presented in Figures 7 and 8, Athens and Vollmer (2010) made several conclusions such as "in the 1 HQ/1 LQ condition, rates of problem behavior decreased, and appropriate behavior increased" (p. 579); "problem behavior decreased, and appropriate behavior increased to high levels during the return to the 3 HQ/ 1 LQ condition" (p. 580); and "in summary, results of the quality analyses indicated that... the relative rates of both problem behavior and appropriate behavior were sensitive to the quality of reinforcement available for each alternative" (p. 581).

ITSA was implemented to evaluate the effect of the quality reinforcement on problem behavior and appropriate behavior. Three ARIMAs, estimating 4 parameters (slope, change in slope, level, and change in level) were applied to test each of the conclusions made based on VA.

First, an ARIMA (1, 0, 0) was implemented to evaluate the effects of 1 HQ/ 1 LQ on problem behavior and appropriate behavior (AB phase of the experiment). The lag-1 autocorrelations were -.05 and .13, for problem behavior and compliance, respectively. For problem behavior, ITSA revealed nonsignificant slope, significant change in slope (t (15) = 2.18, p < .05), and nonsignificant change in level. These findings indicated an increase in problem behavior in the quality reinforcement phase and did not confirm conclusions based on VA that found a decrease in problem behavior. For appropriate behavior, ITSA indicated significant slope (t (15) = -2.22, p < .05), nonsignificant change in slope, and significant change in level (t (15) = 4.24, p < .05). These findings indicated an initial decreasing trend in baseline phase (A) followed by an increase in compliance as an effect of 1 HQ/ 1 LQ quality reinforcement. The statistical results are consistent with VA conclusions.

		Statistical radiaty one		
		Significant	Not	Total
Graphical Analysis	Significant	79	52	131
		73.4% r ₁ >.40	65.4% r ₁ >.40	
		$m_d = 4.25$	m _d = .95	
	Not	8	15	23
		25% r ₁ >.40	13.3% r ₁ >.40	
		$m_d = 3.13$	$m_d = .81$	
	Total	87	67	154

Statistical Analysis

FIGURE 3 Agreement between graphical analysis and statistical analysis.

Second, an ARIMA (1, 0, 0) was applied to examine the effect of the return to 3 HQ/ 1 LQ phase on problem and appropriate behavior (AC phase of the experiment). The lag-1 autocorrelations were -.29 and .06, for problem behavior and compliance, respectively. For problem behavior, ITSA revealed significant slope (t (12) = -3.46, p < .05), a nonsignificant change in slope, and significant change in level (t (12) = 2.21, p < .05). These findings indicate an initial decreasing trend in problem behavior; however, the change in level indicate an increase in problem behavior during the 3 HQ/ 1 LQ experimental phase. The statistical results are not consistent with VA that concluded a decrease in problem behavior during the return to the quality reinforcement phase. For appropriate behavior, ITSA revealed nonsignificant slope, change in slope, and change in level. These findings indicate that no significant change in compliance occurred as a result of the 3 HQ/ 1 LQ experimental phase. The statistical results are not consistent with VA that concluded a high increase in compliance as a result of quality reinforcement phase.

Third, an ARIMA (1, 0, 0) and (5, 0, 0), for problem and appropriate behavior, respectively, was applied to examine the overall effect of the quality reinforcement (ABCAC experimental design). The lag-1 autocorrelations were -.07for problem behavior and significant .44, for compliance. For problem behavior, ITSA revealed significant slope (t (41) = -2.88, p < .05), a nonsignificant change in slope, and significant change in level (t(41) = -2.91, p < .05). These findings indicate an initial decreasing trend, as well as decrease in problem behavior during the quality reinforcement phases. These results are consistent with VA. For appropriate behavior, ITSA revealed an initial significant increase in trend (t(41) = 3.49, p < .05), a nonsignificant change in slope, and change in level, indicating that quality of reinforcement did not have an effect on compliance. These results are not consistent with VA that concluded effectiveness of experimental treatment on increasing appropriate behavior.

FIGURE 4 Graphical presentation of the data illustrated in the first example of interrupted time series analysis (ITSA) application. *Note.* Figure reproduced from the data extracted using UnGraph[®] software from Lomas, Fisher, and Kelly, 2010 (p. 430).

FIGURE 5 Graphical presentation of the data illustrated in the first example of interrupted time series analysis (ITSA) application. *Note.* Figure reproduced from the data extracted using UnGraph[®] software from Lomas, Fisher, and Kelly, 2010 (p. 430).

RESULTS

Sample

A total of 75 research papers were published in the JABA in 2010. After reviewing the content of the publications, 25 papers met eligibility criteria and were included in the study. Excluded publications did not present interrupted time series data (27), presented fewer than 3 observations in at least one phase of the design (4), presented cumulative data (3), or alternating-treatment designs (9). One study presented gen-

erated, hypothetical data, and one study presented a graph with insufficiently defined observations, which prevented data point extraction. Five studies were ineligible because presented descriptions of the findings based on the VA of the graphs were not possible to verify using ITSA (e.g., findings were generalized across all conducted experiments, rather than reported for each experiment separately). The eligible publications included one or more graphs. A total of 99 graphs presenting interrupted time series data with corresponding conclusions based on VA were included in the

FIGURE 6 Graphical presentation of the data illustrated in the second example of interrupted time series analysis (ITSA) application. *Note*. Figure reproduced from the data extracted using UnGraph[®] software from Van Houten et al., 2010 (p. 377).

FIGURE 7 Graphical presentation of the data illustrated in the third example of interrupted time series analysis (ITSA) application. *Note.* Figure reproduced from the data extracted using UnGraph[®] software from Athens and Vollmer, 2010 (p. 580).

study. The graphs displayed a diversified range of single-case designs, such as AB design and its variations (e.g., ABA, ABAB), ABC design and its variations (e.g., ABCA, AB-CACA, ABABACBC), and designs that included more than two different interventions (e.g., ABCD, ABCDEFBFEDC) (see Table 1 for details).

Based on 99 graphs, a total of 163 ITSA were performed, either because some graphs presented more than one inter-

rupted time series data (e.g., two independent behaviors were plotted on a single graph) or multiple conclusions were made based on VA (e.g., conclusions were made based on different phases of the study). ITSA was applied to the data with the corresponding description of the findings formulated in a way that could be validated using statistical methods. To be certain that specific conclusions based on VA are directly comparable to findings based on ITSA, the key conclusions

FIGURE 8 Graphical presentation of the data illustrated in the third example of interrupted time series analysis (ITSA) application. *Note.* Figure reproduced from the data extracted using UnGraph[®] software from Athens and Vollmer, 2010 (p. 580).

were identified and matched with specific study phases, so that ITSA can be computed only for those phases. To illustrate the comparison process, the first study presented in Table 1 (St. Peter Pipkin, Vollmer, & Sloman, 2010) is used as an example. The complete study design is presented in parenthesis, next to the figure number (Figure 6. Top panel (ABCDEFBFEDC)). The bolded and underlined phases are those comparisons made in the paper. In the row below, a conclusion based on VA of selected phases is cited: "DRA lost its efficacy when implemented at less than 50% integrity with combined omission and commission errors" (p. 60). In order to directly compare findings based on VA and ITSA, statistical analyses are performed only on data obtained from selected phases. The analyzed phases identified by letters are reported on the left side of the table in the same row as corresponding ITSA results, e.g. (B (EF)).

Descriptive Statistics

The number of observations in the analyzed experiments ranged from 8 to 136, with a minimum of 3 and maximum of 90 observations per phase. For 9 (5.52%) analyzed experiments, the interrupted-time series ARIMA did not converge. Six of those experiments came from one study that had multiple single-case data series characterized by low number of observations (<12) and low variability across observations; two experiments had higher number of observations (43 and 136) but low variability across observations; one experiment had high variability across 22 observations. The majority of the examples where the model did not converge typically did not meet the What Works Clearinghouse standards (Kratochwill & Levin, 2010; Smith, 2012).

An assumed ARIMA (1, 0, 0) (Simonton, 1977) was applied to 120 data series (77.92%). The general transformation ARIMA (5, 0, 0) (Velicer & McDonald, 1984; Harrop & Velicer, 1985) was applied to 32 data series (20.78%), all of which had 30 or more observations. ARIMAs (3, 0, 0)and (2, 0, 0) were applied to two experiments, after an assumed ARIMA (1, 0, 0) indicated correlated residuals and the general transformation ARIMA (5, 0, 0) (Velicer & Mc-Donald, 1984; Harrop & Velicer, 1985) did not converge due to an insufficient number of observations (for details see Table 1). According to classification outlined by Jones et al. (1978), low lag-1 autocorrelations ranging from .00 to .50 were found for 75 (46.01%) time series data, moderate lag-1 autocorrelations ranging from .51 to .75 were found for 67 (41.10%) time series data, and high lag-1 autocorrelations over .75 were found for 8 (4.91%) time series data. Lag-1 autocorrelation less than .00 were found for 13 (7.98%) time series data and ranged from -.32 to -.05. Lag-1 autocorrelations were significant for 93 time series data, 28 of those time series data also had significant lag-2 autocorrelations. The findings show a high heterogeneity of the lag-1 autocorrelations that could be largely related to a small number of observations in some experiments as well as different study

designs. It has been shown that for short data series autocorrelations are negatively biased and may underestimate the true autocorrelation, and correcting for small sample bias is suggested (Huitema & McKean, 2000; Shadish & Sullivan, 2011). Figure 1 presents the distribution of the lag-1 autocorrelations for the eligible studies, and details are presented in Table 1.

Changes in the target behavior such as changes in level and decreasing or increasing trend were evaluated for all 154 data series for which an ARIMA was established. Twenty-three experiments (14.94%) had significant slope, indicating that the target behavior was either decreasing or increasing in the baseline phase; 15 (9.74%) had significant change in slope due to experimental design, indicating that the target behavior was either decreasing in the intervention phase of the experiment; 18 (11.69%) had significant slope and change in slope, indicating that target behavior was either decreasing or increasing in both phases of the experiment. The nonlinearity of the slopes was not examined. Over 50% of the examined time series data (k = 79) had significant changes in level as a result of the experiment due to examined study design phase change.

An effect size estimate, based on a similar formula used to evaluate Cohen's *d*, was estimated for all experiments that did not have significant slope or change in slope, a total of 98 (63.64%). The effect sizes ranged from 0.00 to 22.74 (see Table 1 for details). Figure 2 presents the distribution of the effect size estimates for the eligible studies. Cohen's (1988) traditional classification of effect sizes cannot be used, as effects calculated for single-case designs are expected to be inflated relatively to Cohen's standards for betweengroup studies. Therefore, in this study we propose alternative classification based on the tertile distribution of the effect sizes, where effects ranging from 0.00 to 0.99 are classified as small, those ranging from 1.00 to 2.49 as medium, and large effect size are defined as 2.50 or greater.

ITSA and VA Comparison

Comparison of the findings based on VA and ITSA was performed for 154 data series. Consistent results were found for 94 (61.04%) data series, with most conclusions (k =79, 84.04%) referring to significant changes between different phases of the experiment, and 15 (15.96%) referring to nonsignificant changes such as reversal to baseline. For the remaining 60 experiments (38.96%), the findings based on statistical analysis did not confirm the conclusions based on VA (bolded data in Table 1). Among the experiments that led to inconsistent findings between the two methods, 30% had significant slope, change in slope or both, and 53% had lag-1 autoregressive term greater than .40.

Fifty-two, out of 60 data series that were identifies ad inconsistent, were identified as significant based on the VA method, while ITSA did not confirm these results. For 49 of those experiments, VA indicated significant changes between different phases of the study design, while statistical analysis did not reveal significant differences. No significant slope parameter or change in slope parameter was found for 38 of those experiments; 10 experiments had significant slope in the first phase with the trend of the targeted behavior moving in the same direction as hypothesized in the reference phase, and 1 experiment had significant slope in the treatment phase with the trend of the targeted behavior moving in the opposite direction than hypothesized based on VA analysis. For three experiments statistical analysis revealed significant findings. However those findings were in the opposite direction than conclusions reported based on VA. Two out of three experiments had significant slope in the first phase with the trend of the targeted behavior moving in the same direction as hypothesized in the reference phase. All three experiments were reported in the same research paper and are bolded and italicized in Table 1.

For eight experiments, nonsignificant findings based on VA were not confirmed by statistical analysis. Three of those experiments had no significant slope or change in slope parameter, four had significant slope in the first phase with the trend of the targeted behavior moving in the same direction as hypothesized in the reference phase, and one experiment had significant slope in the treatment phase with the trend of the targeted behavior moving in the opposite direction then hypothesized based on VA analysis.

The level of agreement between VA and ITSA was calculated based on the difference between the observed agreement and the expected agreement that would be present by chance alone. Kappa coefficient is a measure of this difference, ranging from -1 to 1, where 1 is a perfect agreement, 0 is an agreement by chance, and value < 0 would indicate an agreement less than expected by chance (Cohen, 1960). Figure 3 provides a summary of the agreement and disagreement between the two methods as well as the percent of cases with lag-1 autocorrelations greater than .40 for each cell. The overall level of agreement was low (Cohen's Kappa = .14) (Cohen, 1960). The VA results identified as significant had a very high percent of cases with lag-1 autocorrelations greater than .40. This is consistent with the potential bias that the positive autocorrelation can create the illusion of significance but decrease the apparent variability of the series. Figure 3 also presents the mean effect size estimate for each cell. As would be expected, the average effect size was higher for the significant ITSA results.

DISCUSSION

This study applied ITSA to 75 studies published in the JABA in 2010 and compared the conclusions authors reported based on VA with those obtained through ITSA. Issues such as autocorrelation, effect size estimation, and level of agreement between statistical and VA were addressed. Evaluated studies covered a wide range of single-case experiments that included different study designs, such as multiple-baseline, reversal, and multiple intervention designs. The experiments also differed in total number of observations in each study as well as within each phase of the design. ITSA model was estimated for all but nine of the eligible studies, indicating that this statistical method can be applied to a wide range of single-case experimental designs.

Agreement between Visual and Statistical Analysis

Comparison of the conclusions drawn from VA and ITSA revealed an overall low level of agreement (Kappa = .14). When graphical presentation of the intervention effects presents ideal or almost ideal data patterns, such as low variability, no trend, and large effect size, ITSA was in agreement with VA for 94 data series, including those with small numbers of observations. However, in 60 (38.96%) of the evaluated data series, the conclusions drawn based on VA did not agree with the statistical analysis. VA was more likely to imply significant effects when ITSA indicated nonsignificant findings. This is the opposite state of affairs expected by Baer (1977), who argued that visual analysis should be less likely to report significant findings than statistical analysis. Only for eight experiments, nonsignificant findings based on VA were not confirmed by statistical analysis, and for 3 experiments ITSA resulted in significant findings but in the opposite direction than indicated by VA. Among the experiments that led to inconsistent findings between the two methods, 30% had significant slope, change in slope or both, and 53% had lag-1 autoregressive term greater than .40.

If we view statistical analysis as a necessary but not sufficient condition for clinical significance, this result is discouraging. Moderate to high autocorrelation, present in most examples, is one potential explanation for the low agreement. Also, trend in the data, closely related to the autocorrelation and not easily observable, particularly in short series, may impact the accuracy of the conclusions based on VA. ITSA is able to account for trend in the data when examining intervention effects, as well as evaluate quantitatively trend and change in trend that may occur across different phases of the design.

Although the failure to detect a statistically significant effect occurred at a much smaller rate (5%), these errors have the potential to prematurely terminate the investigation of a potentially effective intervention. Initial studies of an intervention in a real world study typically represent an attempt to detect an effect in a very noisy environment, and effect sizes that are initially small can become much more important with additional controls.

Autocorrelation

Overall findings based on ITSA revealed high lag-1 autocorrelations for most of the evaluated data, including short time series of less than 20 observations. These results confirm findings based on earlier studies showing that serial dependency is a common property of single-case data (Jones, Vaught, & Weinrott, 1977; Jones et al., 1978; Matyas & Greenwood, 1990; Barlow et al., 2009). With over 60% of the lag-1 autocorrelations at either moderate or high level, the assumption that autocorrelations can be ignored (Huitema & McKeon, 1998) seems to be indefensible. The effect of a positive autocorrelation is to decrease the apparent degree of variability. This would potentially affect both graphical analysis and any statistical analysis that ignores dependency in the data.

The autocorrelations can also help address another important research question, i.e., what is the nature of the generating function for the observed data. The autocorrelations also provide information about the extent to which the ergodic theorems are satisfied, a critical question for combining data across individuals (Molenaar, 2008; Velicer & Molenaar, 2013). In order to draw valid inferences from group-level data to the individual level, two ergodic theorem conditions must be met: (1) the individual trajectories must obey the same dynamic laws, and (2) must have equivalent mean levels and serial dependencies (Molenaar, 2008; Velicer, Babbin, & Palumbo, 2014). However, the small sample sizes available in the studies reviewed here do not permit these questions to be addressed.

Effect Size Estimation

The effect size estimates were predominately large with some very large effect sizes such as d = 22.74, an extremely large effect size for the behavioral sciences. The term "clinical significance" is largely undefined but can be viewed as analogous to a large effect size. (Statistical significance is typically viewed as a necessary but not sufficient condition for clinical significance.) Based on this interpretation, the effect size estimates observed in this set of studies support the contention that graphical methods focus on clinically significant effect sizes.

Advantages of Statistical Analysis

ITSA provides supplementary quantitative information such as degree of the serial dependency, trend, changes in trend and level across phases, and variability of the data, that are not available through visual inspection of the graphs. Evaluation of the serial dependency could provide information about the generating function of the examined behavior, such as the strength of relationships of the observations or cyclic patterns in the behavior that are not observable by visual inspection of the graph. Unbiased statistical evaluation of the graphs facilitates comparison of the intervention effects across different individuals within the same experiment or across different studies. This information is particularly useful when experiments are executed across multiple subjects or settings, allowing for a better understanding of the unique variability of the behavior across different subjects or settings.

ITSA facilitates an estimate of effect size similar to Cohen's d that enables systematic meta-analytic review of

single-case experiments, as well as evaluation of the intervention effects for experiments with small numbers of observations. In this study, we used the effect size to examine the magnitude of the intervention effects within single-cases; for the application of Cohen's d effect size to between-cases see work by Hedges et al. (2012). Statistical significance tests are largely dependent on the sample size. For small sample sizes, the results may be insignificant due to insufficient statistical power. However effect size is independent of sample size, and meta-analysis can provide more accurate estimates of effect size based on multiple replications. The development of the new software such as UnGraph[®] (Biosoft, 2004), DataThief (Tummers, 2006), and a new function in R (Bulté & Onghena, 2012) permits extraction of the data from published graphs and reanalysis using ITSA. This would permit the inclusion of historical data based on single-case studies in meta-analytical studies.

Limitations

The results of this study have limited representativeness. The collected data is based on a set of single-case studies published in JABA in 2010. The characteristics of these studies may influence the findings, particularly the large effect sizes and high autocorrelations, which are likely a product of the design and interventions published in JABA and the journal's preference of publishing studies that are likely to show the "clinically meaningful" threshold.

In addition, the autocorrelations were not corrected for small sample bias, which could underestimate the true autocorrelation. Therefore replication of these results in other samples of the published studies within the applied behavior analysis field is needed. Another potential limitation of the analysis was that nonlinearity was not examined. There is some reason to believe nonlinearity is present in this type of data.

The sample size, defined in single-case study designs as number of observations in each phase rather than number of different individuals, is another limitation of the study. For the set of studies reviewed here, the numbers of observations was generally very small compared to idiographic studies reported in other disciplines or even other areas of behavioral science. The average number of data points was 28 (median = 19) for 163 data series. These findings are similar to those presented by Shadish and Sullivan (2011) in a comprehensive review of 21 journals that report on single-case studies. They found that the median number of data points was equal to 20, whereas average number of data points in JABA in the year of 2008 was 29.

Large effect sizes are necessary for any type of significance, given the small sample sizes. However, a power analysis was seldom performed to guide the choice of the number of observations. Given that these studies focus on four parameters (slope, change in slope, level, and change in level), the lack of statistical power produces very poor estimates of the parameters of interest. Increasing the number of observations by even a small amount would greatly improve the quality of the research. There are times when obtaining additional observations is very difficult and expensive, but at other times a larger number of observations were collapsed for the graphical presentation of the data.

The number of observations is also related to the time between observations. Time is a core concept for idiographic studies, and we presently have very little information to guide researchers on how frequently observations should be taken. Advances from the information sciences are producing new measures that can greatly improve the quality and number of observations. A review of these methods, often labeled telemetrics, is provided by Goodwin, Velicer, and Intille (2008). Indeed, advances in telemetrics may shift the issue from not having many observations to having too many observations.

CONCLUSIONS

In conclusion, ITSA models can be applied to a large number of the published applied examples of single-case study designs. Moderate to high lag-1 autocorrelations (>.50) were found for 46% of the data series, and the majority of first order autocorrelations (more than 60%) were positive and at the moderate to high level (.41-.60 or >.60). Comparison of the conclusions drawn from VA and ITSA revealed an overall low level of agreement (Kappa = .14), and the results of the study support the conclusion that VA is prone to bias and should not be used as a stand-alone analytical method. When both methods produce discrepant results, the researcher should determine the basis for the discrepancy. Finally, ITSA provides important additional information such as effect size estimates, which permits the application of meta-analysis and the accumulation of knowledge.

ARTICLE INFORMATION

Conflict of Interest Disclosures: Each author signed a form for disclosure of potential conflicts of interest. No authors reported any financial or other conflicts of interest in relation to the work described.

Ethical Principles: The authors affirm having followed professional ethical guidelines in preparing this work. These guidelines include obtaining informed consent from human participants, maintaining ethical treatment and respect for the rights of human or animal participants, and ensuring the privacy of participants and their data, such as ensuring that individual participants cannot be identified in reported results or from publicly available original or archival data.

Funding: This work was partially supported by Grant DA020112 from NIDA (PI: Velicer).

Role of the Funders/Sponsors: None of the funders or sponsors of this research had any role in the design and conduct of the study; collection, management, analysis, and interpretation of data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Acknowledgments: The authors would like thank Dr. William Shadish, Dr. Colleen Redding, and Dr. Mathew Goodwin for their comments on prior versions of this manuscript. The ideas and opinions expressed herein are those of the authors alone, and endorsement by the authors' institution or NIDA is not intended and should not be inferred

REFERENCES

- Note: References marked with an asterisk (*) indicate studies included in the visual and interrupted time-series analysis comparison.
- Aitken, A. C. (1934). On least squares and lineal combination of observations. Proceedings of the Royal Society of Edinburg H, 55, 42-47.
- *Athens, E. S., & Vollmer, T. R. (2010). An investigation of differential reinforcement of alternative behavior without extinction. Journal of Applied Behavior Analysis, 43, 569-589
- Baer, D. M. (1977). "Perhaps it would be better not to know everything." Journal of Applied Behavior Analysis, 10, 167-172.
- Barlow, D. H., Nock, M. K., & Hersen, M. (2009). Single case experimental designs: Strategies for studying behavior for change (3rd ed.). Boston: Pearson Education
- Bengali, M. K., & Ottenbacher, K. J. (1998). The effects of autocorrelation on the results of visually analyzing data from single-subject designs. Quantitative Research Series, 52, 650–655. Biosoft (2004). UnGraph[®] for Windows (Version 5.0). Cambridge, UK:
- Author.
- Brossart, D. F., Parker, R. I., Olson, E. A., & Mahadevan, L. (2006). The relationship between visual analysis and five statistical analyses in a simple AB single-case research design. Behavior Modification, 30, 531-563.
- Bulté, I., & Onghena, P. (2012). When the truth hits you between the eyes: A software tool for the visual analysis of single-case experimental data Methodology, 8, 104-114.
- *Carbone, V. J., Sweeney-Kerwin, E. J., Attanasio, V., & Kasper, T. (2010). Increasing the vocal responses of children with autism and developmental disabilities using manual sign mand training and prompt delay. Journal of Applied Behavior Analysis, 43, 705–709.
- *Carter, S. L. (2010). A comparison of various forms of reinforcement with and without extinction as treatment for escape-maintained problem behavior. Journal of Applied Behavior Analysis, 43, 543-546.
- Choe, G. H. (2005). Computational ergodic theory. Berlin: Springer.
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
- Cohen, J. (1988). Statistical power analysis for behavioral sciences. Hillsdale, NJ: Erlbaum.
- Crosbie, J. (1993). Interrupted time-series analysis with brief singlesubject data. Journal of Consulting and Clinical Psychology, 61, 966-974
- DeProspero, A., & Cohen, S. (1979). Inconsistent visual analyses of intrasubject data. Journal of Applied Behavior Analysis, 12, 573-579.
- *Digennaro-Reed, F. D., Codding, R., Catania, C. N., & Maguire, H. (2010). Effects of video modeling on treatment integrity of behavioral interventions. Journal of Applied Behavior Analysis, 43, 291-295.

- *Dolezal, D. N., & Kurtz, P. F. (2010). Evaluation of combined-antecedent variables on functional analysis results and treatment of problem behavior in a school setting. *Journal of Applied Behavior Analysis*, 43, 309– 314.
- *Falcomata, T. S., Roane, H. S., Feeney, B. J., & Stephenson, K. M. (2010). Assessment and treatment of elopement maintained by access to stereotypy. *Journal of Applied Behavior Analysis*, 43, 513–517.
- Glass, G. V., Willson, V. L., & Gottman, J. M. (1975/2008). Design and analysis of time-series experiments. Boulder, CO: Colorado Associate University Press.
- Goodwin, M. S., Velicer, W. F., & Intille, S. S. (2008). Telemetric monitoring in the behavior sciences. *Behavior Research Methods*, 40, 328– 341.
- *Grauvogel-MacAleese, A. N., & Wallace, M. D. (2010). Use of peermediated intervention in children with attention deficit hyperactivity disorder. *Journal of Applied Behavior Analysis*, 43, 547–551.
- *Groskreutz, N. C., Karsina, A., Miguel, C. F., & Groskreutz, M. P. (2010). Using complex auditory-visual samples to produce emergent relations in children with autism. *Journal of Applied Behavior Analysis*, 43, 131– 136.
- Harrington, M., & Velicer, W. F. (2015). Comparing visual and statistical analysis in single-subject studies: Results for Kazdin Textbook Examples. [Paper in preparation.]
- Harrop, J. W., & Velicer, W. F. (1985). A comparison of three alternative methods of time series model identification. *Multivariate Behavioral Research*, 20, 27–44.
- Harrop, J. W., & Velicer, W. F. (1990). Computer programs for interrupted time series analysis: A quantitative evaluation. *Multivariate Behavioral Research*, 25, 219–231.
- Hedges, L. V., Pustejovsky, J. E., & Shadish, W. R. (2012). A standardized mean difference effect size for single case designs. *Research Synthesis Methods*, 3, 324–239.
- Huitema, B. E. (2011). The analysis of covariance and alternatives: Statistical methods for experiments, quasi-experiments, and single-case studies (2nd ed.). Hoboken, NJ: Wiley.
- Huitema, B. E., & McKean, J. W. (1998). Irrelevant autocorrelation in least-squares intervention models. *Psychological Methods*, 3, 104– 116.
- Huitema, B. E., & McKean, J. W. (2000). A simple and powerful test for autocorrelation errors in OLS intervention model. *Psychological Reports*, 87, 3–20.
- Huitema, B. E., McKean, J. W., & Laraway, S. (2007). Time-series intervention analysis using ITSACORR: Fatal flaws. *Journal of Modern Applied Statistical Methods*, 6(2), Article 4.
- Jazi, M. A., Jones, G., & Lai, C. D. (2012). First-order integer valued AR processes with zero inflated poisson innovations. *Journal of Time Series Analysis*, 33, 954–963.
- Jones, R. R., Vaught, R. S., & Weinrott, M. (1977). Time-series analysis in operant research. *Journal of Applied Behavior Analysis*, 10, 151– 166.
- Jones, R. R., Weinrott, M. R., & Vaught, R. S. (1978). Effects of serial dependency on the agreement between visual and statistical inference. *Journal of Applied Behavior Analysis*, 11, 277–283.
- Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings (2nd ed.). New York: Oxford University.
- Kratochwill, T. R., & Levin, J. R. (2010). Enhancing the credibility of singlecase intervention research: Randomization to the rescue. *Psychological Methods*, 15, 124–144.
- *Kuhn, D. E., Chirighin, A. E., & Zelenka, K. (2010). Discriminated functional communication: A procedural extension of functional communication training. *Journal of Applied Behavior Analysis*, 43, 249– 264.
- *Lee, M. S. H., Yu, C. T., Martin, T. L., & Martin, G. L. (2010). On the relation between reinforce efficacy and preference. *Journal of Applied Behavior Analysis*, 43, 95–100.

- *Leon, Y., Hausman, N. L., Kahng, S., & Becraft, J. L. (2010). Further examination of discriminated functional communication. *Journal of Applied Behavior Analysis*, 43, 525–530.
- *Lomas, J. E., Fisher, W. W., & Kelley, M. E. (2010). The effects of variabletime delivery of food items and praise on problem behavior reinforced by escape. *Journal of Applied Behavior Analysis*, 43, 425–435.
- Maggin, D. M., Swaminathan, H., Rogers, H. J., O'Keeffe, B. V., Sugai, G., & Horner, R. (2011). A generalized least squares regression approach for computing effect sizes in single-case research: Application examples. *Journal of School Psychology*, 49, 301–321.
- Manolov, R., & Solanas, A. (2008). Comparing N = 1 effect sizes in presence of autocorrelation. *Behavior Modification*, 32, 860–875.
- Matyas, T. A., & Greenwood, K. M. (1990). Visual analysis of singlecase time series: Effects of variability, serial dependence, and magnitude of intervention effects. *Journal of Applied Behavior Analysis*, 23, 341–351.
- *Miller, J. R., Lerman, D. C., & Fritz, J. N. (2010). An experimental analysis of negative reinforcement contingencies for adults-delivered reprimands. *Journal of Applied Behavior Analysis*, 43, 769–773.
- Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. *Measurement: Interdisciplinary Research and Perspectives*, 2, 201–211.
- Molenaar, P. C. M. (2007). On the implications of the classical ergodic theorems: Analysis of developmental processes has to focus on intraindividual variation. *Developmental Psychobiology*, 50, 60–69.
- Molenaar, P. C. M. (2008). Consequences of the ergodic theorems for classical test theory, factor analysis, and the analysis of developmental processes. In S. M. Hofer & D. F. Alwin (Eds.), *Handbook of Cognitive Aging* (pp. 90–104). Thousand Oaks, CA: Sage.
- Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. *Current Direction in Psychological Science*, 18, 112–117.
- Ottenbacher, K. J. (1990). Visual inspection of single-subject data: An empirical analysis. *Mental Retardation*, 28, 283–290.
- Ottenbacher, K. J. (1992). Analysis of data in idiographic research. *American Journal of Physical Medicine & Rehabilitation*, 71, 202–208.
- Parker, R. I., Vannest, K. J., & Davis, J. L. (2011). Effect size in single-case research: A review of nine nonoverlap techniques. *Behavior Modification*, 35, 303–322.
- Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011). Combining nonoverlap and trend for single-case research: Tau-u. *Behavior Therapy*, 42, 284–299
- Parsonson, B. S., & Baer, D. M. (1978). The analysis and presentation of graphic data. In T. R. Kratochwill (Ed.), *Single-Subject Research: Strategies for Evaluating Change* (pp. 101–165). New York: Academic.
- *Raiff, B. R., & Dallery, J. (2010). Internet-based contingency management to improve adherence with blood glucose testing recommendations for teens with type 1 diabetes. *Journal of Applied Behavior Analysis*, 43, 487–491.
- *Roscoe, E. M., Kindle, A. E., & Pence, S. T. (2010). Functional analysis and treatment of aggression maintained by preferred conversational topics. *Journal of Applied Behavior Analysis*, 43, 723–727.
- Shadish, W. R., Brasil, I. C. C., Illingworth, D. A., White, K. D., Galindo, R., Nagler, E. D., & Rindskopf, D. M. (2009). Using UnGraph[®] to extract data from image files: Verification of reliability and validity. *Behavior Research Methods*, 41, 177–183.
- Shadish, W. R., & Sullivan, K. J. (2011). Characteristics of single-case designs used to assess intervention effects in 2008. *Behavior Research Methods*, 43, 971–980.
- Simonton, D. K. (1977). Cross-sectional time-series experiments: Some suggested statistical analyses. *Psychological Bulletin*, 84, 489–502.
- Smith, J. D. (2012). Single-case experimental designs: A systematic review of published research and current standards. *Psychological Methods*, 17, 510–550.

- Smith, J. D., Borckardt, J. J., & Nash, M. R. (2012). Inferential precision in single-case time-series datastreams: How well does the EM procedure perform when missing observations occur in autocorrelated data? *Behavior Therapy*, 43, 679–685.
- *Stokes, J. V., Luiselli, J. K., & Reed, D. D. (2010). A behavioral intervention for teaching tackling skills to high school football athletes. *Journal of Applied Behavior Analysis*, 43, 509–512.
- *Stokes, J. V., Luiselli, J. K., Reed, D. D., & Fleming, R. K. (2010). Behavioral coaching to improve offensive line pass-blocking skills of high school football athletes. *Journal of Applied Behavior Analysis*, 43, 463–472.
- *St. Peter Pipkin, C., Vollmer, T. R., & Sloman, K. N. (2010). Effects of treatment integrity failures during differential reinforcement of alternative behavior: A translational model. *Journal of Applied Behavior Analysis*, 43, 47–70.
- *Toussaint, K. A., & Tiger, J. H. (2010). Teaching early Braille literacy skills within a stimulus equivalence paradigm to children with degenerative visual impairments. *Journal of Applied Behavior Analysis*, 43, 181–194.
- *Travis, R., & Sturmey, P. (2010). Functional analysis and treatment of the delusional statements of a man with multiple disabilities: A four-year follow-up. *Journal of Applied Behavior Analysis*, 43, 745–749.
- Tummers, B. (2006). DataThief III [Computer software]. Retrieved from http://datathief.org
- *Ulke-Kurkcuoglu, B., & Kircaali-Iftar, G. (2010). A comparison of the effects of providing activity and material choice to children with autism spectrum disorders. *Journal of Applied Behavior Analysis*, 43, 717–721.
- Van den Noortgate, W., & Onghena, P. (2003a). Combining single case experimental studies using hierarchical linear models. *School Psychology Quarterly*, 18, 325–346.
- Van den Noortgate, W., & Onghena, P. (2003b). Hierarchical linear models for the quantitative integration of effect sizes in single-case research. *Behavior Research Methods, Instruments, and Computers*, 35, 1–10.
- Van den Noortgate, W., & Onghena, P. (2003c). Multilevel meta-analysis: A comparison with traditional meta-analytical procedures. *Educational* and Psychological Measurement, 63, 765–790.
- Van den Noortgate, W., & Onghena, P. (2007). The aggregation of singlecase results using hierarchical linear models. *The Behavior Analyst Today*, 8, 196–209.
- Van den Noortgate, W., & Onghena, O. (2008). A multilevel meta-analysis of single-subject experimental design studies. *Evidence-Based Commu*nication Assessment and Intervention, 2(3), 142–151.
- *Van Houten, R., Malenfant, J. E. L., Reagan, I., Sifrit, K., Compton, R., & Tenebaum, J. (2010). Increasing seat belt use in service vehicle drivers with a gearshift delay. *Journal of Applied Behavior Analysis*, 43, 369–380.
- Velicer, W. F., Babbin, S. F., & Palumbo, B. (2014). Idiographic applications: Issues of ergodicity and generalizability. In P. Molenaar, R. Lerner, & K. Newell (Eds.), *Handbook of Relational Developmental Systems Theory* and Methodology (pp. 425–441). New York: Guilford.
- Velicer, W. F., & Colby, S. M. (2005). Missing data and the general transformation approach to time series analysis. In A. Maydeu-Olivares & J. J. McArdle (Eds.), *Contemporary Psychometrics. A Festschrift to Roderick P. McDonald* (pp. 509–535). Hillsdale, NJ: Erlbaum.

- Velicer, W. F., & Harrop, J. (1983). The reliability and accuracy of time series model identification. *Evaluation Review*, 7, 551–560.
- Velicer, W. F., & McDonald, R. P. (1984). Time series analysis without model identification. *Multivariate Behavioral Research*, 19, 33– 47.
- Velicer, W. F., & Molenaar, P. (2013). Time Series Analysis. In J. Schinka & W. F. Velicer (Eds.), *Handbook of Psychology: Research Methods in Psychology* (2nd ed., Vol. 2, pp. 628–660). New York: Wiley.
- *Waller, R. D., & Higbee, T. S. (2010). The effects of fixed-time escape on inappropriate and appropriate classroom behavior. *Journal of Applied Behavior Analysis*, 43, 149–153.
- *Wilder, D. A., Allison, J., Nicholson, K., Abellon, O. E., & Saulnier, R. (2010). Further evaluation of antecedent interventions on compliance: The effects of rationales to increase compliance among preschoolers. *Journal* of Applied Behavior Analysis, 43, 601–613.
- *Wilder, D. A., Nicholson, K., & Allison, J. (2010). An evaluation of advance notice to increase compliance among preschoolers. *Journal of Applied Behavior Analysis*, 43, 751–755.
- Williams, E. A., & Gottman, J. M. (1982). A user's guide to the Gottman-Williams time-series analysis computer programs for social scientists [Computer program manual]. Cambridge: Cambridge University Press.

APPENDIX

An example of syntax SAS v.9.2 procedure implemented to evaluate ITSA parameters using assumed ARIMA (1, 0, 0).

procarima;

identifyvar = data esacf p = (0.7) q = (0.7) crosscorr = (treatment);

estimate p = 1 q = 0 input = (treatment) plot method = cls;

run;

An example of syntax SAS v.9.2 procedure implemented to evaluate ITSA parameters using general transformation ARIMA (5, 0, 0).

procarima;

identifyvar = data esacf p = (0.7) q = (0.7) crosscorr = (treatment);

estimate p = 5 q = 0 input = (treatment) plot method = cls;

run;

"Estimate" indicates the autocorrelation (p) order and moving average (q) order

"Input" and "crosscorr" indicates the design variable, e.g.: baseline phase vs. treatment phase