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Canada, 34 Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, 35 Department of Zoology, University of British Columbia, Vancouver, British Columbia,

Canada, 36 Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America, 37 University of New Brunswick, Department of Biology,

Fredericton, New Brusnswick, Canada, 38 School of Biosciences and Biotechnology, University of Camerino, Camerino, Italy, 39 School of Environmental Sciences, University of East

Anglia, Norwich, United Kingdom, 40 Stazione Zoologica Anton Dohrn, Naples, Italy, 41 Department of Marine Sciences, University of Georgia, Athens, Georgia, United States of

America, 42 Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, Australia, 43 Department of Marine Sciences, University of Puerto Rico,

Mayaguez, Puerto Rico, United States of America, 44 National Research Institute of Fisheries Science, Kanagawa, Japan, 45 Department of Biology, University of Pisa, Pisa, Italy, 46 CNRS,
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Microbial ecology is plagued by prob-

lems of an abstract nature. Cell sizes are so

small and population sizes so large that

both are virtually incomprehensible. Nich-

es are so far from our everyday experience

as to make their very definition elusive.

Organisms that may be abundant and

critical to our survival are little under-

stood, seldom described and/or cultured,

and sometimes yet to be even seen. One

way to confront these problems is to use

data of an even more abstract nature:

molecular sequence data. Massive envi-

ronmental nucleic acid sequencing, such

as metagenomics or metatranscriptomics,

promises functional analysis of microbial

communities as a whole, without prior

knowledge of which organisms are in the

environment or exactly how they are

interacting. But sequence-based ecological

studies nearly always use a comparative

approach, and that requires relevant

reference sequences, which are an ex-

tremely limited resource when it comes to

microbial eukaryotes [1].

In practice, this means sequence data-

bases need to be populated with enormous

quantities of data for which we have

some certainties about the source. Most

important is the taxonomic identity of

the organism from which a sequence is

derived and as much functional identifica-

tion of the encoded proteins as possible. In

an ideal world, such information would be

available as a large set of complete, well-

curated, and annotated genomes for all the

major organisms from the environment

in question. Reality substantially diverges

from this ideal, but at least for bacterial

molecular ecology, there is a database

consisting of thousands of complete ge-

nomes from a wide range of taxa,

supplemented by a phylogeny-driven ap-

proach to diversifying genomics [2]. For

eukaryotes, the number of available ge-

nomes is far, far fewer, and we have relied

much more heavily on random growth of

sequence databases [3,4], raising the

question as to whether this is fit for

purpose.

The Wrong Biases

Compared with those of prokaryotes,

nuclear genomes are large and dispropor-

tionately difficult to analyze, and this means

that eukaryotic genomics have been even

more strongly affected by ‘‘prioritization.’’

This results in acute taxonomic biases in the

nuclear genomes chosen for sequencing,

with a large proportion of them being

derived from organisms of particular

biomedical or biotechnological signifi-

cance. Specifically, the great majority of

nuclear genomes come from animals,

fungi, and plants, and from parasites that

infect animals [3,4]. For marine systems,

this makes for a weak reference database,

because these organisms are collectively a

poor representation of eukaryotic life in

the seas. Indeed, the marine organisms

that maintain Earth’s atmosphere, fuel

the world’s fisheries, and sustain the

historical (pre-anthropogenic) global car-

bon cycle, as well as major chemical and

nutrient cycles in the ocean, fall outside

these groups. The lack of appropriate

reference sequences risks erroneous con-

clusions as we compare marine ecological

sequence data to references too phyloge-

netically distant and, therefore, too bio-

logically different.

Each sequenced genome of an aquatic

unicellular eukaryote has provided a bevy of

new and unexpected insights (e.g., [5–13]).

However, because nuclear genomes can be

difficult to sequence and assemble, and gene

modeling is not always straightforward, our

immediate needs require an alternative way

to generate a reference database, the

most obvious being transcriptomics [1].

Large-scale sequencing of an organism’s

mRNA allows the rapid and efficient

characterization of expressed genes without

spending sequencing resources on the large

intergenic regions, introns, and repetitive

DNA so common to eukaryotes, while at the

same time eliminating many problems with

assembly as well as gene prediction and

modeling. As a first step, transcriptomes

from pure cultures are suitable building

blocks to begin to assemble reference

databases for eukaryotic microbial ecology.

This approach generates a large number of

coding sequences (in the form of assembled

contigs) from a known organism.

The availability of transcriptomic data

from an organism should not be viewed,

however, as a substitute for sequencing its

genome. The two approaches have differ-

ent strengths and weaknesses and are

better viewed as complementary rather

than ‘‘either/or.’’ Indeed, nuclear genome

sequencing generally requires substantial

transcript sequencing to inform gene

prediction algorithms. As sequencing and

computational methods grow increasingly

powerful, many of the challenges to

genome sequencing are being reduced.

Nevertheless, until more genomes are

available, transcriptomes from a sufficient

number of representative species from a

given environment could provide a valu-

able benchmark against which environ-

mental data can be analyzed.

MMETSP—The Right Stuff

The Marine Microbial Eukaryotic

Transcriptome Sequencing Project, or

MMETSP, aims to provide a significant

foothold for integrating microbial eukary-

otes into marine ecology by creating over

650 assembled, functionally annotated,

and publicly available transcriptomes.

These transcriptomes largely come from

some of the more abundant and ecologi-

cally significant microbial eukaryotes in

the oceans. The choice of species, strain,

and physiological condition was based on

a grassroots nomination process, where

researchers working in the field nominated

projects based on phylogeny, environmen-

tal and ecological importance, physiolog-

ical impact, and other diverse criteria. The

data have been assembled and annotated

by homology with existing databases (see

Text S1), providing baseline information

on gene function. Because the majority of

transcriptomes were sequenced from cul-

tured species, they are also taxonomically

well defined. Most organisms are available

from public culture collections and,
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therefore, can be further investigated

based on hypotheses derived from the

transcriptome data. The project as a whole

will go a substantial distance towards

fulfilling the two criteria for relevant

reference sequences noted above. This is

not to say these data solve all our

problems: new biases have been intro-

duced (see below), and Illumina-based

transcriptomes can be challenging to

assemble and work with. In addition, there

is an apparently universal problem of low

levels of contamination—some from other

species living with the target organism in

culture, others possibly from the process of

library construction and sequencing. Im-

portantly, however, the taxa from which

these data are derived on aggregate

conform much more closely to our under-

standing of marine eukaryotic diversity

from sequence surveys than do the current

reference databases, which are the result of

ad hoc sequencing priorities that do not fit

(A) Unicellular taxa in a marine sample
based on environmental 18S rRNA genes

(B) Distribution of sequenced genomes 
            from eukaryotes

(C) MMETSP transcriptomes

Prasinophytes

Genomes MMETSP

Class/Clade

(D) Within lineage sequencing diversity

Dinoflagellates

Genomes MMETSP

Class/Clade

VII
VI
V

I
II
III
IV

Glaucophytes

Apicomplexans

Dinoflagellates

Rhizaria

Stramenopiles

Telonemids

Biliphytes

Katablepharids

Unknown

Viridiplanatae

Rhodoophytes

Ciliates

Opisthokonts

Excavates

Cryptophytes

Haptophytes

Amoebozoa

Noctilucales
Gymnodiniales
Gonyaulacales
Dinophysiales

Oxyrrhinales

Suessiales
Pyrocystales
Prorocentrales
Peridiniales

Thoracosphaerales

Figure 1. Comparing the diversity of
microbial eukaryotes at one marine site
with that represented in genome data
and the MMETSP project. (A) Taxon
assignments for 930 Small Subunit (SSU) rRNA
gene sequences from environmental clone
libraries built using DNA from three size
fractions in sunlit surface waters of the North
Pacific Ocean. Four hundred and five se-
quences corresponding to Syndiniales (non-
photosynthetic members of the dinoflagellate
lineage, often referred to as MALV1 and
MALV2) were excluded for visualization pur-
poses. Syndiniales are not represented in any
complete genome data or the MMETSP, and
the vast majority are only known as sequenc-
es from uncultivated taxa that often dominate
clone libraries [22,31]. Filter size fractions
were 0.1 to ,0.8 mm, 0.8 to ,3 mm, and 3
to ,20 mm. This graph is only intended to
give a snapshot of one marine sample;
relative distributions vary based on distance
from shore and depth, and several studies
provide more detailed reviews of available
SSU rRNA gene sequence surveys, see e.g.,
[21,32]. (B) Taxonomic diversity of eukaryotes
with complete genome sequences, as sum-
marized in the Genomes Online Database
(GOLD: http://genomesonline.org). Note that
multicellular organisms are included (unlike in
A or C); animals, land plants, and multicellular
rhodophytes are included in the opisthokont,
viridiplantae, and rhodophyte categories,
respectively. (C) Taxon breakdown of the
MMETSP sequencing project, collapsed at
the strain level (for some strains, cells were
grown under multiple conditions and these
have been counted only once). (D) Compar-
ison of currently available complete genomes
and MMETSP transcriptomes by Class for two
diverse and well-studied groups of algae,
prasinophytes [14] and dinoflagellates [15,16].
For both lineages, genomes are broken down
by Class on the left and MMETSP transcrip-
tomes on the right.
doi:10.1371/journal.pbio.1001889.g001
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those of marine ecology (Figure 1A–1C).

Indeed, digging deeper into the taxonomy

of the more abundant and generally

better-studied groups such as prasino-

phytes [14] and dinoflagellates [15,16]

shows this to be true at multiple levels

(Figure 1D).

For the MMETSP data to achieve

maximum impact, the transcriptomes have

been made readily available through the

CAMERA [17] Data Distribution Center

(http://camera.crbs.ucsd.edu/mmetsp/),

in which all MMETSP data have been

automatically deposited. In addition, all

data is in the Sequence Read Archive

(SRA) under BioProject PRJNA231566,

giving access to the raw trace data through

GenBank. Given that library construction

is not as robustly consistent as one might

hope and that Illumina RNAseq assembly

(in the absence of a sequenced genome) is

not a completely solved problem, it is

helpful that all of this work occurred at a

single sequencing center where the proto-

cols used for the .650 transcriptomes were

similar (see Text S1 for a full description of

methods). This approach not only broad-

ened the types of participating labs (i.e., not

just those with experience in genomics) but

also maximized comparability of the data-

sets without the user feeling obliged to

reassemble contigs, or to re-predict protein

sequences for consistency. At the same

time, the availability through the SRA

allows for re-analysis of particular datasets.

More Than a Reference
Database

The more than 650 transcriptomes will

have far-reaching impact beyond the field

of marine science. The diversity of taxa

represented in the database is impressive,

even when held up to the enormous

diversity of microbial eukaryotes as a

whole (Figure 2). In some cases, these data

provide the first glimpse of the genome of

an important group of microbial eukary-

otes, such as parasitic haplosporidia,

several amoebozoans, and the enigmatic

heterotrophic flagellate Palpitomonas. In

other cases, they provide genomic data

from a diverse selection of taxa within a

lineage where only sparse genomic data

previously existed from a few distant

relatives (such as the ciliates [18–20]).

Experience has shown that such data can

transform our understanding of the basic

biology and function of these organisms.

In the past, we have described a protistan

lineage for which there is a single genome

sequence as being ‘‘well studied.’’ Thus,

even for those that are comparatively

‘‘well studied,’’ the MMETSP data facil-

itates new directions. It opens the door to

comparative genomics within lineages

and between related lineages in major
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Figure 2. A schematic of the major lineages in the eukaryotic tree of life, showing the relationships between lineages for which
genomic resources are currently available and those that have been targeted by the MMETSP. Lineages with complete genomes
according to the GOLD database, as summarized in [3], are indicated by a solid line leading to that group, whereas lineages with no complete
genome are represented by a dashed line. Lineages where at least one MMETSP transcriptome is complete or underway are indicated with a red dot
by the name. Major lineages discussed in the text have been named and color-coded, but for clarity, some major lineages have not been labeled.
doi:10.1371/journal.pbio.1001889.g002
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protistan groups, including foraminifera,

cryptophytes, and several groups of red

algae and stramenopiles. Digging further,

other cases will allow us to ask population

genomic-level questions by providing data

from multiple strains of a single species (or

even asking whether the ‘‘multiple strains’’

do indeed belong to the same species!).

Examining the diversity between sister

species or members of the same species

can help identify functionally important

genes, genes under selection, recent gene

family expansions and contractions, or

other significant changes like horizontal

gene transfer—of course, with recognition

that absence from a given transcriptome

assembly does not necessarily represent

absence from the genome. In other cases,

the same isolate has been analyzed under

different physiological conditions to devel-

op testable hypotheses on environmental

controls. For example, it should be

possible to gain first molecular insights

into how photosynthetic algae alter their

immediate surroundings, the so-called

phycosphere [21], by comparing sequenc-

es from the luminescent dinoflagellate

Lingulodinium polyedrum that is co-cultured

with different bacteria, or cultured on its

own. Likewise, growth controls and as-

pects of niche differentiation should be-

come clearer for many major phytoplank-

ton groups.

A Fast Start and a Long Way to
Go

The MMETSP is a significant step in

recognizing that purpose-built reference

databases from ecologically key biomes

are essential for all domains of life.

Nevertheless, it is only the beginning, and

important biases remain that should be

addressed. The MMETSP relies primarily

on cultured organisms, and this introduces

a different set of biases, most obviously,

favoring organisms that are photosynthetic.

Eukaryotic heterotrophs have critical eco-

logical roles but are under-represented.

Indeed, the natural diversity of eukaryotic

heterotrophs is huge in general (Figure 1A),

and the four most commonly recovered

sequences retrieved in environmental sur-

veys of marine samples worldwide corre-

spond to lineages for which most members

are uncultivated (e.g.,Marine Stramenopiles

(MAST) and Marine Alveolates (MALV)

[22–24]). These are probably heterotrophs,

but we lack a solid biological definition for

most of these cells and have become adroit

at ignoring heterotrophs in general. Simi-

larly, organisms from the open ocean are

underrepresented. Culture-independent

methods for generating transcriptomes and

genomes and, in some cases, transcrip-

tomes and genomes from single cells will

be essential to moving beyond this

problem. Methodologies for population

[25–27] and single-cell genomics and

transcriptomics are advancing rapidly

[4,28–30], transitioning from techno-

logical feats to something we should

expect to work routinely. This transition

holds great promise for filling the rather

substantial gap in our knowledge imposed

by uncultivated protists, as well as allowing

us to carry out condition-specific analyses

of expressed genes in difficult-to-work-

with systems. The MMETSP program

foreshadows this development by sequenc-

ing a small set of culture-independent

samples.

The MMETSP dataset serves as an

example of how purpose-built reference

databases focused on a particular niche or

environment can be established relatively

quickly and efficiently. This database will

allow us to address eukaryotic sequences

from nature in a robust manner for the

first time. Because the strength of the

MMETSP project is precisely its focus on

the marine environment, it will not serve

as a universal database of eukaryotic

diversity that can be easily applied to

other environments. While the taxonomic

diversity included in the project is amazing

(Figure 2), it is also immediately clear that

many major groups of eukaryotes are not

covered by MMETSP transcriptomes. In

some cases, this is because these lineages

are not abundant in the oceans (e.g., many

excavates), but in others it is simply

because members of the lineage are

difficult to cultivate and are generally

poorly represented in molecular data

(e.g., most rhizarians), even if they are

abundant and important in the ocean. For

other major environments (e.g., freshwa-

ter, soil) similar databases could be

developed in a focused manner, but all

such efforts rely on a detailed knowledge

of what lives in that environment, which is

not always adequate. To remedy these

gaps in our knowledge, we advocate a

taxonomy-based approach similar to the

Genomic Encyclopedia of Bacteria and

Archaea (www.jgi.doe.gov/programs/

GEBA/) [2,4]. This undertaking will

require a focus on developing the neces-

sary tools for gaining access to the

transcriptomes and genomes of unculti-

vated organisms and would represent a

major advance for all aspects of the study

of microbial eukaryotes. We look for-

ward to the many creative analyses and

results enabled by the MMETSP and the

minds of the broader scientific commu-

nity; the new insights to be gained in

ecology, physiology, and evolution of

unicellular eukaryotes will significantly

advance understanding of marine eco-

systems and eukaryotic microbial biology

as a whole. The MMETSP illustrates

the power behind such a community

activity and bodes well for a future

Genomic Encyclopedia of Microbial

Eukaryotes.

Supporting Information

Text S1 The supplementary methods

file contains a referenced description of

the standardized methods used for tran-

scriptome sequencing, assembly, and anal-

ysis used for all MMETSP projects.

(DOC)
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Messié M, et al. (2010) Targeted metagenomics

and ecology of globally important uncultured
eukaryotic phytoplankton. Proc Nat Acad

Sci U S A 107: 14679–14684.
26. Monier A, Welsh RM, Gentemann C, Weinstock

G, Sodergren E, et al. (2012) Phosphate transporters
in marine phytoplankton and their viruses: cross-

domain commonalities in viral-host gene exchanges.

Environ Microbiol 14: 162–176.
27. Vaulot D, Lepere C, Toulza E, De la Iglesia R,

Poulain J, et al. (2012) Metagenomes of the
picoalga Bathycoccus from the Chile coastal

upwelling. PLoS ONE 7: e39648.

28. Cameron Thrash J, Temperton B, Swan BK,
Landry ZC, Woyke T, et al. (2014) Single-cell

enabled comparative genomics of a deep ocean
SAR11 bathytype. ISME J. E-pub ahead of print.

doi:10.1038/ismej.2013.243

29. Rinke C1, Schwientek P, Sczyrba A, Ivanova
NN, Anderson IJ, et al. (2013) Insights into the

phylogeny and coding potential of microbial dark
matter. Nature 499: 431–437.

30. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B,
et al. (2014) Quantitative assessment of single-cell

RNA-sequencing methods. Nat Methods 11: 41–46.

31. Massana R, Karniol B, Pommier T, Bodaker I,
Beja O (2008) Metagenomic retrieval of a

ribosomal DNA repeat array from an uncultured
marine alveolate. Environ Microbiol 10: 1335–

1343.

32. Not F, Gausling R, Azam F, Heidelberg JF,
Worden AZ (2007) Vertical distribution of

picoeukaryotic diversity in the open ocean.
Environ Microbiol 9: 1233–1252.

PLOS Biology | www.plosbiology.org 6 June 2014 | Volume 12 | Issue 6 | e1001889


	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans Through Transcriptome Sequencing
	Citation/Publisher Attribution

	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans Through Transcriptome Sequencing
	Creative Commons License

	pbio.1001889 1..6

