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[mex70] Stability of rigid body rotations about principal axes

Consider a rigid body with principal moments of inertia I1 < I2 < I3 undergoing a torque-
free rotation about one of the principal axes. Investigate the stability of this motion against
small perturbations as follows: (a) Use the vector ~ω = ωiêi + δj êj + δkêk with δj , δk � ωi for
{i, j, k} = cycl{1, 2, 3} in Euler’s equations and linearize them in δj , δk. (b) Solve the linearized
equations exactly. (c) Describe the motion of ~ω separately for i = 1, 2, 3 in the range of the
approximations made.

Solution:



[mex176] Steady precession of symmetric top

A symmetric top with moments of inertia I3, I⊥ rotates with constant angular velocity ωspin about
its symmetry axis, which, in turn, precesses with constant angular velocity ωprec at an angle θ
about a direction fixed in the inertial frame. Use Euler’s equations to show that the torque N
causing this precessional motion is

N =

[
I3 + (I3 − I⊥)

ωprec

ωspin
cos θ

]
~ωprec × ~ωspin.

spin

θ

ωprec

ω

Solution:



Heavy symmetric top: general solution [mln47]

Lagrangian: L = T (θ, φ̇, θ̇, ψ̇)− V (θ). The coordinates φ, ψ are cyclic.

T =
1

2
I⊥(ω2

1+ω
2
2)+

1

2
I3ω

2
3 =

1

2
I⊥(sin2 θφ̇2+θ̇2)+

1

2
I3(cos θφ̇+ψ̇)2, V = mg` cos θ.

Conserved generalized momenta:

αφ ≡
∂L

∂φ̇
= (I⊥ sin2 θ + I3 cos2 θ)φ̇+ I3 cos θψ̇ = const.

αψ ≡
∂L

∂ψ̇
= I3(ψ̇ + cos θφ̇) = I3ω3 = const ⇒ ω3 = const.

⇒ φ̇ =
αφ − αψ cos θ

I⊥ sin2 θ
, ψ̇ =

αψ
I3
− (αφ − αψ cos θ) cos θ

I⊥ sin2 θ
.

Routhian function: R(θ, θ̇;αφ, αψ) = T̃ (θ̇)− Ṽ (θ).

T̃ (θ̇) =
1

2
I⊥θ̇

2, Ṽ (θ) =
α2
ψ

2I3
+

(αφ − αψ cos θ)2

2I⊥ sin2 θ
+mg` cos θ.

Conserved energy: E = T̃ (θ̇) + Ṽ (θ) = const.

Solution by quadrature:
dθ

dt
=

√
2

I⊥

[
E − Ṽ (θ)

]
.

• Nutation: t(θ) =

∫
dθ√

2

I⊥

[
E − Ṽ (θ)

] .
• Precession: φ(t) =

∫
dt φ̇(t).

• Rotation: ψ(t) =

∫
dt ψ̇(t).

Specification of general solution:

• integrals of the motion αψ, αφ, E,

• starting values θs, φs, ψs.

Physical solution for given αψ, αφ requires E ≥ E0 = Ṽ (θ0).

For energies E > E0 the angle of inclination θ oscillates between θ1 and θ2.

E0

E

0 θ2 θ0 θ1 π

V
~



Heavy symmetric top: steady precession [mln81]

Special case: E = E0 ⇒ θ = θ0 = const ⇒ φ̇ = const, ψ̇ = const.

Steady angle of inclination θ0 determined by condition (dṼ /dθ)θ0 = 0.
⇒ Quadratic equation for β0

.
= αφ − αψ cos θ0:

(cos θ0)β
2
0 − (αψ sin2 θ0)β0 +mg`I⊥ sin4 θ0 = 0.

Solution: β±0 =
αψ sin2 θ0

2 cos θ0

[
1±

√
1− 4mg`I⊥ cos θ0

α2
ψ

]
.

Interpretation: For given θ0 and αψ there exist two values α±φ for which
steady precession is realized.

Distinguish frequencies of fast precession (+) and slow precession (−):

φ̇±0 =
β±0

I⊥ sin2 θ0

.

Distinguish hanging top (θ0 > π/2) and standing top (θ0 < π/2):

• θ0 > π/2: Steady precession exists without restrictions on αψ.

• θ0 < π/2: Steady precession requires that angular velocity about figure
axis exceeds threshold value:

α2
ψ ≥ 4mg`I⊥ cos θ0 ⇒ ω3 =

αψ
I3
≥ 2

I3

√
mg`I⊥ cos θ0.

Consider fast top (αψ � 2
√
mg`I⊥ ):

β±0 '
αψ sin2 θ0

2 cos θ0

[
1± 1∓ 2mg`I⊥ cos θ0

α2
ψ

]
.

• Fast precession: β±0 '
αψ sin2 θ0

cos θ0

⇒ φ̇+
0 '

I3ω3

I⊥ cos θ0

.

• Slow precession: β±0 '
mg`I⊥ sin2 θ0

αψ
⇒ φ̇−0 '

mg`

I3ω3

.



[mex177] Stability of sleeping top

A symmetric top (with principal moments of inertia I⊥, I3) is standing in an upright position
(θ = 0) and rotating with angular velocity ω3 about the symmetry axis. This motion is only stable
under small perturbations if ω3 exceeds a critical value ωc. Find ωc.

Solution:



[mex72] Cube standing on edge

A homogeneous cube of side ` is initially in a position of unstable equilibrium with one edge on
a horizontal plane. The cube then falls on one side. Calculate the angular velocity ω of the cube
when the face strikes the plane, (a) if the lowest edge remains fixed, (b) if the lowest edge can slide
on the plane without friction. Express the results as functions of g and `.

g

l l

l l

Solution:



[mex178] Rolling pendulum

Consider a homogeneous cylinder of mass m and radius a rolling on the inside of a cylindrical
surface with radius R. The cylinder axes are horizontal. There is a uniform, vertical gravitational
field g. (a) Find the Lagrangian L(φ, φ̇). (b) Find the period T of small-amplitude oscillations
about the stable equilibrium position.

gR
φ

a

Solution:



[mex74] Cone on the roll

A cone of mass M , height h, and angle 2α at the apex rolls without slipping on a horizontal plane.
As it rolls in a circle about its apex, the cone rotates with angular velocity Ω about the figure axis.
Calculate the total kinetic energy of the cone. Express the result as a function of M,h, α,Ω.

Solution:



[mex4] Make the billiard ball roll

Find the height h at which a billiard ball should be struck (via horizontal impulse) to make it
roll without slipping on a surface with negligible friction. The billiard ball is to be regarded as a
homogeneous sphere with radius R and mass m.

h

R

m

F

Solution:



[mex220] From sliding to rolling motion

A billiard ball (rigid homogeneous sphere of mass m and radius R) is initially at rest on a flat
table. A cue then imparts a horizontal impulse P in a very short time at height R. The coefficient
of kinetic friction between table and ball is µ. (a) Find the time tr that elapses before the motion
of the billiard ball turns into pure rolling. (b) Find the speed vr of the rolling billiard ball.

P R

mR

Solution:



[mex179] Rolling inhomogeneous disk

Consider a disk of mass m and radius R composed of two homogeneous halves connected along a
diameter. One half has twice the density of the other half.
(a) Find the distance b between the center of mass and the geometric center of the disk.
(b) Find the moment of inertia Icm for rotations about the center of mass.
(c) Find the Lagrangian L(φ, φ̇) for the rolling motion of the disk on a flat surface. Use φ = 0 for
the stable equilibrium position.
(d) Consider the disk being pulled by a horizontal force at constant speed across the surface. What
is the maximum speed vmax at which the disk can roll without jumping of the ground?

Solution:



[mex75] Balancing act of board on cylinder

A homogeneous rigid board of thickness a, width w, and length ` is placed symmetrically atop a
rigid and fixed cylinder of radius R and horizontal axis. (a) Show that the condition for stable
equilibrium of the board in its horizontal position is a < 2R. (b) Show that the angular frequency
of small oscillations of the board about this stable equilibrium as obtained from the linearized
equation of motion is ω2

0 = [6g(2R− a)]/[4a2 + `2], where g is the acceleration due to gravity. The
assumption is that the board rolls back and forth without slipping.

l

R

a

Solution:



[mex256] Falling flat

Two rods of mass m and length l each are connected at one end by a hinge. The opposite end
of one rod is hinged to the origin of the coordinate system. The opposite end of the other rod is
free to slide along the horizontal axis. Starting from rest at initial angle φ = 60◦ the triangular
configuration collapses under the influence of the gravitational field g. Find the speed v of the
hinge that connects rods when it hits the horizontal axis.

φ

ll
g

x

y

Solution:



[mex258] Rod off balance

A uniform rod of mass m and length l is positioned upright (θ = 0), initially at rest, on a slippery
floor (x-axis) against a slippery wall (y-axis). The unstable equilibrium is upset when, in the
absence of friction, the two ends of the rod begin to slide as shown under the influence of a uniform
gravitational field g.
(a) Find the kinetic energy T as a function of the angle θ.
(b) Find the the components px, py of the center-of-mass momentum as functions of the angle θ.
(c) Identify an attribute in the results of parts (a) or (b) that can be used as a criterion to determine
if and when the rod loses contact with the wall during its fall.
(d) Find (or show how to determine) the angle θc at which the rod does indeed lose wall contact.

x

l

y

θ

g

Solution:



[mex260] Solid sphere rolling on plane

A solid sphere of mass m and radius a is rolling without slipping on the xy-plane under the influence
of an external force F = (Fx, Fy, Fz) and an external torque N = (Nx, Ny, Nz), both acting on
its center of mass. The rolling motion is described by the instantaneous velocity V = (Vx, Vy, Vz)
of the center of mass and the instantaneous angular velocity ~ω = (ωx, ωy, ωz) about its center of
mass. In [mln106] we have established the equations of motion,

m
dV

dt
= F + Fc, I

d~ω

dt
= N− an̂× Fc,

and the equation of constraint,
V̇ = a ~̇ω × n̂

Eliminate the contact force of constraint, Fc, from these relations to arrive at the equations of
motion for V and ~ω reduced to quadrature as stated in [mln106].

Solution:
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