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Abstract: Flood Insurance Rate Maps (FIRMs) are developed by the Federal Emergency Management
Agency (FEMA) to provide guidance in establishing the risk to structures and infrastructure in the
coastal zone from storm surge and coincidental waves. The maps are used by state agencies and
municipalities to help guide coastal planning and establish the minimum elevation standard for new
or substantially improved structures. A summary of the methods used and results of 2012 FIRM
mapping are presented for Charlestown, RI; a coastal community located along the exposed, southern
shoreline of the state. Concerns with the methods used in the 2012 analysis are put in context with
the National Research Council’s (NRC) 2009 review of the FEMA coastal mapping program. New
mapping is then performed using state of the art, fully coupled surge and wave modeling and data
analysis methods to address the concerns in the NRC review. The new maps and methodologies
are in compliance with FEMA regulations and guidelines. The approach makes extensive use of the
numerical modeling results from the recent US Army Corp of Engineers (USACE), North Atlantic
Coast Comprehensive Study (NACCS 2015). Revised flood maps are presented and compared with
the 2012 FIRM map to provide insight into the differences. The new maps highlight the importance
of developing better estimates of offshore surge dynamics and its coupling to waves, dune erosion
based on local observations, and the advancement in nearshore mapping of waves in flood inundated
areas by the use of state of the art, two-dimensional wave transformation models.

Keywords: coastal flooding; inundation; waves; Flood Insurance Rate Maps (FIRMs); coupled wave
and surge modeling; dune and shoreline erosion; base flood elevation

1. Introduction

Federal Emergency Management Agency (FEMA) leads the national effort for the development
of Flood Insurance Rate Maps (FIRMS) for coastal flooding for the purposes of establishing the
risk structures and infrastructure face from inundation and wave attack and setting the associated
insurance rates. In most cases coastal municipalities also use these maps to guide coastal development
and establish the minimum elevation standards. Additionally, the maps are regulatory, universally
available, and developed within strict FEMA guidelines. This work is typically performed by
contractors and organized by individual FEMA regions. The regions are given substantial latitude in
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establishing the methods used in the analysis, but all must follow FEMA guidelines; for example the
Atlantic and Gulf of Mexico guidelines are provided in [1].

A Flood Insurance Study (FIS) was completed in 2012 for Washington County, RI [2] (Figure 1).
The storm surge levels were estimated by linear interpolation of 100 year return period water levels
from adjacent National Oceanic and Atmospheric Administration (NOAA), National Ocean Survey
(NOS) water level stations [3]. For this study, data from the New London, CT; Newport, RI; and
Providence, RI stations were used. The record lengths for the three stations are approximately 70
to 80 years. The 10-, 2-, 1-, and 0.2-percent-annual-chance flood water levels were determined by
application of extreme statistics analysis (using L Moments) to the historical water level data at the
three stations. One value of the water level for the selected return period was provided for each
station. The water levels at intermediate locations, relative to the reference stations, were determined
by linear interpolation. No estimates of values for other confidence levels (e.g., upper or lower
95%) were provided. The contractor used FEMA’s Coastal Hazard Analysis and Modeling Program
(CHAMP)/Wave Height Analysis for Flood Insurance Studies (WHAFIS) [4] to estimate the waves
in the flood inundated areas. This program computes the wave crest elevations along representative
transects using a 1-D wave action equation. Transects are selected by considering major topographic,
vegetative, and cultural features with variable spacing of 30 m to hundreds of meters, depending on
density of development and nearshore topography. WHAFIS is forced by an appropriate depth-limited
wave height at the seaward end of each transect. The 100 year Still Water Elevation Level data (SWEL),
empirically determined wave setup, and the wave height estimates are then assembled to provide
estimates of the Base Flood Elevation (BFE) (Figure 2). The wave height is defined in terms of the
wave crest (ηc) of the controlling wave height Hc, where Hc is the average of 1% of the highest waves.
ηc is then equal to 0.7 × Hc, where is related to the significant wave height by Hc = 1.66 × Hs. The
wave heights are then used to establish flooding zones (VE: 1% annual chance interval, wave heights
higher than 3 ft (0.9 m); AE: 1% annual chance interval, wave heights lower than 3 ft (0.9 m) and X:
0.2% annual recurrence interval). Data from each transect are laterally interpolated to develop a 2-D
map of the BFEs for the flooding zones.

The National Research Council (NRC) performed an in-depth review of the FEMA flood mapping
program in 2009 [5]. Recommendations from their report on coastal flooding (References, page
numbers are provided for each) include the following:

FEMA should use coupled 2-D surge and wave models to reduce uncertainties associated with the
use of a 2-D surge model and the 1-D WHAFIS model. Before choosing which models to incorporate
into mapping practice, an analysis of the impact of various uncertainties on the models should be
undertaken. [5] (p. 72)

FEMA should work toward a capability to use coupled surge-wave-structure models to calculate
base flood elevations, starting with incorporating coupled two-dimensional surge and wave models
into mapping practice. [5] (p. 75)

Wave crests calculated by CHAMP/WHAFIS have not been sufficiently validated, creating
potentially significant uncertainties in BFE (base flood elevations) estimates. Factors that
contribute to the uncertainty of WHAFIS wave crest calculations include the following: (1) wave
transformation is a 2-D process that cannot be represented in a 1-D model; (2) WHAFIS wave
crests and BFEs are not 1 percent annual chance values (i.e., probabilistic wave conditions are not
incorporated in the WHAFIS calculations); (3) surge and waves are completely decoupled, which
may lead to over- or underestimates of the BFE; (4) the 540-square-foot rule for dune erosion (i.e., a
dune exceeding a cross-sectional area of 540 square feet will not be breached in a 1 percent annual
chance storm) has not been validated; (5) the approach for wave dissipation by vegetation, buildings,
and levees has not been validated; (6) One-dimensional transects do not reflect 2-D terrain; and (7)
the manual interpolation of 1-D results to two dimensions is subjective. [5] (p. 71)
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Figure 1. Location of the Federal Emergency Management Agency (FEMA) (2012) [2] Washington 

County, RI Wave Height Analysis for Flood Insurance Studies (WHAFIS) transects in the vicinity of 

the study area. The Charlestown study area is shown in the red circle. The FEMA transects of primary 

interest are numbers 19 (west) and 20 (east). 

 

Figure 2. FEMA definition schematic for flooding and structures located on grade and elevated [6]. The 

still water elevation (SWEL) for 1% annual chance (100 year) is shown in the dashed red line and the 

Base Flood Elevation (BFE) in the blue dashed line. FEMA zones (VE, AE seaward and landward of the 

Limit of Moderate Wave Action (LiMWA)), based on wave heights, are also noted at the top of the figure.  

It is clear from comparing the methods used in the 2012 flood maps performed for Washington 

County, RI, summarized above, that NRC’s recommendations were not followed.  

The goal of the present study is to develop FIRMs for a portion of the southern RI coastal line 

using state of the art methods, following the NRC recommendations. The town of Charlestown, RI 

has been selected for this application, since it is located along the exposed southern RI coastline, has 

a substantial barrier system, and is well suited to showing the impact of improving the approach 

Figure 1. Location of the Federal Emergency Management Agency (FEMA) (2012) [2] Washington
County, RI Wave Height Analysis for Flood Insurance Studies (WHAFIS) transects in the vicinity of the
study area. The Charlestown study area is shown in the red circle. The FEMA transects of primary
interest are numbers 19 (west) and 20 (east).
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Figure 2. FEMA definition schematic for flooding and structures located on grade and elevated [6].
The still water elevation (SWEL) for 1% annual chance (100 year) is shown in the dashed red line and
the Base Flood Elevation (BFE) in the blue dashed line. FEMA zones (VE, AE seaward and landward
of the Limit of Moderate Wave Action (LiMWA)), based on wave heights, are also noted at the top of
the figure.

It is clear from comparing the methods used in the 2012 flood maps performed for Washington
County, RI, summarized above, that NRC’s recommendations were not followed.

The goal of the present study is to develop FIRMs for a portion of the southern RI coastal line
using state of the art methods, following the NRC recommendations. The town of Charlestown, RI
has been selected for this application, since it is located along the exposed southern RI coastline, has a
substantial barrier system, and is well suited to showing the impact of improving the approach used
to flood mapping. In keeping with the FEMA guidelines, only models approved by FEMA for use in
coastal flood mapping studies have been used in the present effort [7]. FEMA guidelines for coastal
flood mapping for the study area have also been followed [1].
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Section 2 provides an overview of the methods used in the analysis for estimating surge and
waves. Results and discussion are provided in Section 3, conclusions in Section 4 and References at the
end. Supplementary material is provided in Appendix A.

2. Methods

2.1. Surge and Tide Water Levels

The US Army Corp of Engineers (USACE) has recently completed a multi-year numerical
modeling effort under the North Atlantic Coast Comprehensive Study (NACCS) [8], with a focus on
the area impacted by Hurricane Sandy. In this study simulations were performed using fully coupled
surge and wave models (ADCIRC, WAM, and STWAVE) for 1050 synthetic tropical storms and 100
historical extratropical storms, with a primary focus on the region from Cape Hatteras to Cape Cod.
A high resolution (down to 50 m) unstructured grid was used to represent the area flooded during
a storm. The surge model was validated with data from NOAA NOS water observation stations for
hurricanes Gloria, Josephine, Irene, and Sandy and two extratropical storms in 1996 (storms #070 and
#073) (see [8] for details on model validation). The wave model was similarly validated with data from
offshore wave buoy observations [8]. Given constraints based on the volume of data generated, results
of model simulations were archived at selected save points (approximately 18,000 in total for the study
area and about 1000 in RI). These included peak water levels, peak wave heights and short time series
of both for each storm event. The data were made available via ArcView on line or as GIS layers under
the STORMTOOLS® initiative [9]. (The goal of STORMTOOLS is to provide access to a suite of coastal
planning tools (numerical models, maps, etc.), available as a web/app service, that allows wide spread
accessibly and applicability at high resolution for user selected coastal areas of interest. The approach
is well suited for classic downscale modeling approaches used to investigate the impact of climate
change on coastal and riverine processes and can readily take advantage of rapidly evolving cloud
computing resources). Figure 3 shows the location of the save points along the southern RI coastline
with the Charlestown study area circled in red. An analysis was performed to estimate the water level
vs. return period for the tropical storms for surge only and surge and tidal (96 random tidal phases,
linear superposition) [8]. Predictions are provided for mean and upper and lower 95% confidence
interval values and are available at all save points.
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Flood maps were generated from the NACCS simulations for selected return periods and are
available at the STORMTOOLS web site [10]. The strategy utilized in this application is to apply
extremal analysis at a primary water level station to determine the water levels for varying return
period and then the results of hydrodynamic model simulations to determine the spatial scaling of the
water levels for storms/return periods, referenced to this primary gauging station. As an alternate,
water levels can be directly determined from the NACCS save point where return period information
is available (e.g., Figure 3). Figure 4 shows the 100 year flooding contour map for the upper 95%
confidence interval for the surge plus tide case for RI. The water levels (m, referenced to Mean Sea
Level (MSL)) were spatially interpolated from the save points noted in part in Figure 3 to generate this
figure. The spatial structure shows little variation in the west to east direction along the southern RI
coastline and then increasing water levels with distance up Narragansett Bay. The amplification in the
bay is almost linear with distance referenced to the mouth of the bay [9] and approximately constant
in the cross bay direction.
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Figure 4. Water level contour map for 100 year, upper 95%, surge plus tide case, based on NACCS data.

Model predictions show a coupling between waves and surge, resulting in a wave setup along
the coast. The pattern is most clearly observed by studying the local slope of the sea surface (Figure 5).
The slope is largest in a small band along the southern RI coast line and is absent offshore and in
Narragansett Bay. In the present application, the wave induced set up (order of 1 m) is predicted as
part of the STWAVE application to the study area.
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Figure 5. Contour map of the slope of water level (m/km) for NACCS 100 year, upper 95% surge plus
tide case.

2.2. Wave and Wave Set Up Modeling

Wave estimates for flood inundated areas were made by applying Steady-state spectral WAVE
model (STWAVE) [11,12] to the study area, at a grid resolution of 10 m, with forcing on the offshore
boundary (43 m depth) from an analysis of the NACCS wave data set. The domain included the area
immediately offshore and the entire flood inundated area. The water level is the same as used for
the inundation estimates presented in Figure 4. Figure 6 shows the mean 100 year wave heights for
the surge plus tide case from NACCS generated by interpolating values at the save points to create
a contour map. The figure clearly shows large waves propagating toward the southern RI shoreline
from the southeast (SE). The amplitudes are dramatically reduced by breaking as they approach the
Charlestown coast line. It is noted that the waves for the 100 year mean case are used in this analysis,
rather than the upper 95% values selected for the water level. A review of the upper 95% wave heights
show that they could not exist in much of the study area due to steepness limited wave breaking, thus
the selection of the more reasonable mean values. Validation of the wave model with a long-term
hindcast of waves in the study area is provided in Section 3.

The STWAVE model is a phase-average, steady state, spectral wave model and simulates
depth-induced wave refraction and shoaling, current induced refraction and shoaling, depth and
steepness-induced wave breaking, wind-wave growth, and wave-wave interaction and white-capping,
that redistributes and dissipates energy in a growing wave field. The model does not include wave
run-up as this is a time-dependent process. The dune that is present along the barrier system is
assumed to be eroded based on Oakley’s (2016) [13] analysis of a long-term (>30 years) time series
of cross-shore beach profiles for the study area. Frictional losses from overland flows are addressed
by assigning Manning roughness coefficients to each grid and depend on land cover and vegetation
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type. The land use was translated into Manning roughness based on standard hydraulic literature [14],
as implemented by Wamsley et al. [15], resulting in a Manning coefficient map with variations from
0.02 in open water to 0.1 over woody wetlands. Manning roughness was specified based on a 30 m
resolution map of ground cover provided by RI Geographic Information System (RIGIS) [16]. Table A1
provides the Manning coefficients by land type and use. Figure A1 shows its spatial distribution for
the coastal area along the southern RI shoreline.

J. Mar. Sci. Eng. 2017, 5, 10 7 of 23 

 

assigning Manning roughness coefficients to each grid and depend on land cover and vegetation 

type. The land use was translated into Manning roughness based on standard hydraulic literature 

[14], as implemented by Wamsley et al. [15], resulting in a Manning coefficient map with variations 

from 0.02 in open water to 0.1 over woody wetlands. Manning roughness was specified based on a 30 

m resolution map of ground cover provided by RI Geographic Information System (RIGIS) [16]. Table 

A1 provides the Manning coefficients by land type and use. Figure A1 shows its spatial distribution for 

the coastal area along the southern RI shoreline. 

 

Figure 6. Contour map of the 100 year return period significant wave height (m, Mean Sea Level 

(MSL) referenced) for the mean surge plus tide case for RI coastal waters. 

STWAVE was set up for the Charlestown study area, with the southern open, offshore boundary 

having a water depth of 43 m. The wave period at the location was set at 20 s and the wave height at 

7 m based on the NACCS model wave predictions. Swell and wind generated gravity waves in 

shallow water are specified by a Texel, Marsen, and Arsloe (TMA) spectrum [11,12], with a direction 

of 170 degrees clockwise relative to North (waves from the SE). The model had a grid resolution of 10 

m (Figure A1). The spectral peak enhancement factor was set at 3.3 and the directional spreading 

factor (cosn) at n = 4. The method is referred to as the NAST method in the following (referring to a 

combination of NACCS and STWAVE). 

2.3. Digital Elevation Model (DEM) 

To represent the topography and bathymetry in the flooded area, the wave analysis used the 

2011 Laser Imaging, Detection, and Ranging (LIDAR) data Digital Elevation Model (DEM) for RI [16] 

Figure 6. Contour map of the 100 year return period significant wave height (m, Mean Sea Level (MSL)
referenced) for the mean surge plus tide case for RI coastal waters.

STWAVE was set up for the Charlestown study area, with the southern open, offshore boundary
having a water depth of 43 m. The wave period at the location was set at 20 s and the wave height
at 7 m based on the NACCS model wave predictions. Swell and wind generated gravity waves in
shallow water are specified by a Texel, Marsen, and Arsloe (TMA) spectrum [11,12], with a direction
of 170 degrees clockwise relative to North (waves from the SE). The model had a grid resolution of
10 m (Figure A2). The spectral peak enhancement factor was set at 3.3 and the directional spreading
factor (cosn) at n = 4. The method is referred to as the NAST method in the following (referring to a
combination of NACCS and STWAVE).

2.3. Digital Elevation Model (DEM)

To represent the topography and bathymetry in the flooded area, the wave analysis used the 2011
Laser Imaging, Detection, and Ranging (LIDAR) data Digital Elevation Model (DEM) for RI [16] and
the flood maps to determine the water inundation depths. The data is available at 1 m horizontal
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resolution, NAVD88 benchmarked, with a vertical root mean square error (RMSE) of 15 cm. The DEM
was benchmarked against 20 Blind Control Points (BCP) that were distributed throughout the state
and performed as part of the 2011 LIDAR survey, with an RMSE—9.4 cm. A detailed comparison
was also performed against elevation certificates, filed with the town, that were available for selected
structures using the value of the Lowest Adjacent Grade (LAG) (Figure 7). After quality controlling
the certificates, twenty three (23) were selected for analysis. The RMSE was 37.3 cm. The data were
interpolated onto a 10 m grid for the wave simulations.
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Figure 7. Location of elevation certificates for Charlestown, RI study area provided by the Town of
Charlestown, RI.

According to the expected storm surge elevation (order of 4 m) and the fore-dune crest elevation
(around 3.5 to 4 m), the 100-year storm is expected to overtop the dune. According to Sallenger [17],
if overtopped, the dune should be flattened and the sand transported inland, creating wash-over
fans. The current dune topography is therefore modified to reflect this erosion process and a 100-year
storm dune profile is substituted for the current profile. The profile is based on Oakley’s (2016) [13]
analysis of historical aerial photographs following the 1938 Hurricane and Hurricane Carol (1954),
long-term time series of cross-shore beach profiles for the study area, interpreted elevations for historic
wash-over fans and slopes derived from modern wash-over fans using LiDAR. The resulting eroded
profile reduces the dune crest elevation from its present value to 1.6 m (NAVD88) with a foreshore
slope of 11%, and landward slope of 0.3% (300 m from crest) representing the wash-over fan; and after
300 m landward of the dune crest, reverts to the existing bathymetry.

3. Results and Discussion

3.1. Surge and Tide Water Levels

To assess the performance of the NACCS model predictions for the study area, the model predicted
water levels vs. return period were compared with data from the closest NOAA NOS water level station
at Newport, RI (Station ID #8452660) [18]. This is the water level station closest to the Charlestown
study area.

Figure 8 shows the mean and upper and lower 95% confidence limits for the water level vs. return
period based on NACCS model predictions and NOAA historical observations. The water levels
vs. return period for the mean value for NACCS surge only and the NOAA mean are in very good
agreement. The NACCS is higher (typically about 30 cm) than the NOAA values for the surge plus
tide case. The structure of the upper 95% is dramatically different between the NOAA and NACCS
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data. NOAA uncertainties are strongly asymmetric with return period, with the upper confidence
deviating more from the mean than the lower confidence interval. This is a result of the limited
length of the historical record (70 years) and the presence of several large storm events (1938 and 1954)
in the record [18]. The uncertainty in the NACCS, as shown by the upper 95% confidence limit, is
approximately independent of the return period. This is attributed by NACCS to the fact that the
analysis is based on synthetic tropical storms rather than historical events [8]. For the most frequently
used 100 year return period water level, the mean value for NOAA is 2.45 m, while the corresponding
values from NACCS are 2.42 m (surge only) and 2.76 m (surge plus tide). The upper 95% water level
from NOAA for this case is 3.46 m, compared with NACCS values of 3.58 m (surge only) and 3.93 m
(surge plus tide). The estimates are hence reasonably comparable. FEMA guidance typically rounds
up to the nearest 30 cm (1 ft).
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Figure 8. Surge elevation (meters, relative to NAVD88) vs. return period (years) for Newport, RI
(Station ID #8452660). Estimates are provided from NOAA for the mean and lower and upper 95%
confidence intervals and for NACCS for mean and upper 95% confidence intervals, for the surge only
and surge plus tidal cases.

It is noted that the above analysis is based on a return period analysis using only the tropical
storms from NACCS and for all data from the historical record. Employing all storms (e.g., tropical
and extratropical storms) in the NACCS data, the return period analysis is essentially the same as the
tropical storm case only. This is attributed to the fact that tropical storms provide the highest water
levels and hence dominate the upper end of the low frequency tail of the distribution. This is consistent
with the NOAA NOS historical observations at the site, with hurricanes responsible for the 6 of the top
10 surge levels [18].

Hashemi et al. developed an artificial neural network (ANN) model using the NACCS models
predictions, which also serves to validate NACCS model predictions [19]. Model input included the
tropical storm strength, forward speed, radius to maximum winds, and storm path used as input to
the NACCS model. The ANN model predicted peak water levels at Newport and Providence for each
of these events. Seventy percent (70%) of the storms (approximately 1000 tropical storms) were used to
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train the algorithm, with 15% utilized for validation, and 15% for testing. Model performance was
very good for all three phases, with correlation coefficients greater than 0.92. The root mean square
error (RMSE) was approximately 30 cm. The ANN model was then applied to predict the peak storm
elevation for the largest tropical storms that have historically impacted the area (1938, 1944, 1954,
1991, 2011, and 2012) [18] using the same parameters as for the NACCS storms, but derived from the
historical data. Predictions were again performed at Newport and Providence, RI. Model performance
gave a RMSE = 32 cm for all storms except 2012 (Sandy). The ANN model under predicted the peak
water levels for this storm by about 50 cm. This reduced performance is attributed to the fact that
storms with characteristics like Sandy are extremely rare in the historical record and were not included
in the NACCS synthetic tropical storm data base.

Model predictions, in another evaluation [9] were compared with a wide array of point
observations collected during the 1938, 1954, and 2012 storms and reported by FEMA in their FIS for
Washington County [2]. In this case the slope of the linear regression line from Newport to the head of
the bay in Providence was based on the storm of interest. Figure A3 shows a comparison of model
predictions to observations. While the data quality is typically quite variable, the analysis does well
in capturing the amplification of the storm water levels with distance up the bay. The amplification
is clearly strongly storm dependent and driven primarily by storm track, relative to the bay, and
storm strength.

In the interest of developing conservative estimates of flooding and addressing uncertainties
inherent in the modeling and extremal analysis methods, the NACCS surge plus tide, 95% confidence
limit case is selected for this study.

Figure 9 shows the flood inundation levels (m) for the Charlestown study area for the 100 year
storm event, assuming that the barrier dune is eroded. Inundation in the coastal pond (Ninigret and
Green Hill Ponds) is masked in this figure. Note that either the spatial scaling method, noted earlier,
or the selection of the data from the save points immediately offshore of the study area can be used
to specify the flooding. In this case, the data from the NACCS save points have been used. Since the
model used to generate the water level is coupled to a wave model, wave set up is inherently included
at the save points closest to shore (Figure 5), but not in the spatially scaled values.
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Figure 9. Inundation depths (m) relative to grade for Charlestown, RI for 100 year event [20]. Ninigret
Pond is shown in the yellow oval and Green Hill Pond in the yellow box. The contour scale provided
at the right of the figure is in meters.
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3.2. Wave Modeling

An analysis was performed comparing extreme values for the 100-year wind and significant wave
heights based on the US Army Corp of Engineers, Wave Information Study (WIS) [21] hindcast point
#63079 (referred to as #79 in the text to follow) and an analysis of the NACCS peak wave heights for
save point ID# 6859 for the synthetic tropical storms [8]. This is the save point in closest proximity to
WIS#79. The WIS analysis is based on a hindcast of winds and waves from 1980 to 2012. A generalized
extreme value (GEV) method was applied to both analyses, so the results are internally consistent for
the method. The results are summarized in Table 1 for mean and upper and lower 95% confidence
interval (CI) limits for wind speed and significant wave height and peak period.

Table 1. Once in one hundred (100) year return period, mean and lower and upper 95% confidence
interval (CI) limits for significant wave height and period and wind based on WIS hindcast data at
station #63079 [20] and NACCS save point #6859 [8].

100 Years Return Period Based on Generalized Extreme Value [GEV] at WIS 79

Variable
WIS Time Series NACCS Synthetic Storms

100 Year Mean Lower 95% CI Upper 95% CI 100 Year Mean Lower 95% CI Upper 95% CI

Hs (m) 10.1 5.8 14.5 13.0 11.5 15.1
Ws (m/s) 32.8 24.5 41.0 39.3 33.9 47.9

Tp (s) 17.0 10.8 23.1 19.9 19.0 21.0

The significant wave heights, Hs, based on the NACCS data, are larger than the corresponding
values using the WIS data for the lower (11.5 m vs. 5.8 m) and mean (13 m vs. 10.1 m) values, but
comparable for the upper 95% confidence limit case (15.1 m vs. 14.5 m). The WIS based values likely
underestimate the wave heights since the two largest hurricanes (1938 and 1954) to impact the area
(1938 and 1954) are not included in the hindcast period. The 100-year wind speed mean and lower 95%
are both higher for the NACCS values, than for the WIS based estimate and comparable at the upper
95% confidence interval. The wave and wind values are internally consistent with the higher winds
giving larger and longer period waves. Based on this comparison the results from the NACCS study
provide reasonable estimates of the 100 year wave height and period.

3.3. Simulations

Figure 10 shows the model predicted controlling wave height for Charlestown, RI, assuming
the dune is eroded. Once again the wave heights in Ninigret and Green Hill Ponds (see Figure 9)
are masked. The figure clearly shows that waves are subject to shallow water breaking on top of the
eroded dune, thus reducing the wave heights on the landward side of the coastal pond. The wave field
is seen to show strong 2-D effects with substantial variation in wave heights along the landward side
of the ponds and the nearby flood inundated area.
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Figure 10. Controlling wave height (m) for Charlestown, RI, 100 year event, dune eroded [20]. The
contour scale provided at the right of the figure is in meters.

Figure 11 shows the combination of the surge level (Figure 9) plus the controlling wave height
(Figure 10) for Charlestown. This is essentially a map of the BFEs for the study area.
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Figure 11. Total water depth (m) (inundation plus wave height) for Charlestown, RI, 100 year event,
dune eroded [20]. The contour scale provided at the right of the figure is in meters.

In the interest of better understanding the impact of improvements in the modeling methodologies
applied on the final FIRM maps, Figure 12 shows the FEMA predicted flooding zones for the
Charlestown study area. The upper panel shows the total depth of water (m) (BFE-elevation of
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grade), while the lower panel shows the BFEs (m) relative to NAVD88. The latter is typical of the FIRM
maps distributed by FEMA. Figure 13 shows the same set of maps using the results of the present
study, referenced as NAST or URI Coastal Environmental Risk Index (CERI) [21].

Restricting attention to the area flooded, FEMA’s (Figure 12) and the present study (NAST)
(Figure 13) results show that the region impacted is slightly larger for the present study compared with
FEMA’s estimates. This is consistent with the fact that the SWEL in the present study is approximately
4.1 m compared with FEMA’s value of 3.7 m; a difference of 0.4 m. This difference is consistent with
the use of the upper 95% confidence interval value for the 100 year return period in the present study,
compared with the mean value that FEMA used. The spatial variation in surge level along the southern
RI coastline is limited and consistent between the two approaches.
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Figure 12. FEMA predicted total water depth (m) measured from grade to Base Flood Elevation (BFE)
(upper panel) and BFE (m) relative to NAVD88 (lower panel). FEMA transect lines are shown in
yellow, #19 (left) and #20 (right). Area of substantial increase in BFE near the shoreline from one side of
transect #20 to the other (red circle).
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Figure 13. NAST/URI (CERI—Coastal Environmental Risk Index) predicted total water depth (m)
measured from grade to BFE (upper panel) and BFE (m) relative to NAVD88 (lower panel).

To provide a more in-depth comparison between the results of FEMA and the current study
(NAST), Figure 14 shows the predicted SWEL and BFEs vs. distance landward for transects #19 (upper
panel, a and b) and #20 (lower panel, c and d). The location of the transects are shown in Figure 12
(lower panel). The length of transect #19, over the flooded area (2100 m), is about twice that of transect
#20 (1200 m). Analyses were performed for the dune intact (left side, a, c) and dune eroded (right side,
b, d) conditions. The FEMA dune erosion protocol was used by FEMA to generate their results, while
the current study used observation based estimates of the eroded dune profile, as described earlier [13].
The FEMA erosion model assumes that a dune with a volume less than 540 square feet per foot of
shoreline above the SWEL are eroded [1]. No dunes in the study area exceed this volume for either
of the SWEL’s (3.7 m or 4.1 m). The FEMA erosion model projects erosion from the toe of the dune,
landward at a slope of 1:50 [22,23]. This does not match the observations in the study area for previous
storm events. FEMA did not provide a dune intact case; hence the eroded dune case is shown. The
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topography is shown in black and based on the current DEM for the study area. The eroded dune
profile shown in the figure is based on the present study approach. The plain bold blue line shows
the NAST simulated total water elevation (Base Flood Elevation, BFE), and the light blue, dashed line
shows the predicted still water elevation level (SWEL, combination of astronomical tide, storm surge,
and static wave setup). For comparison, FEMA’s inundation zones are shown in red, with the BFE
shown in bold plain, and the SWEL in dashed, light red. The FEMA results are taken directly from the
Washington County FIS [2]. Attempts were made to reproduce the WHAFIS predictions for these two
transects but without success. Unfortunately, FEMA was unable to reproduce the results shown for
each of these transects.
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Figure 14. Water elevation (m/NAVD88; BFE, plain; Still Water Elevation Level data (SWEL), dashed) 

versus landward cross-shore distance (m) along FEMA transects 19 (a,b) and 20 (c,d) for FEMA 
Figure 14. Water elevation (m/NAVD88; BFE, plain; Still Water Elevation Level data (SWEL), dashed)
versus landward cross-shore distance (m) along FEMA transects 19 (a,b) and 20 (c,d) for FEMA
calculation (red) and NAST simulations (blue) assuming dune intact (a,c) or dune eroded (b,d);
topography (black).
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Table 2 summarizes the comparison between FEMA and present study results at the intersection
of each transect and the shoreline. As noted above, the water elevation for the two transects, including
the effects of wave setup, are comparable (FEMA—3.7 to 3.8 m vs. NAST—4.1 m). The critical wave
crest values are however substantially larger for the present study (2.8–2.9 m) compared with FEMA
(0.9–1.1 m). This is a result of assuming a constant offshore wind and unlimited fetch in FEMA’s
method versus using the results of offshore wind and wave simulations and return period analyses in
the present study. One of the key problems here is that FEMA used a mean 100 year wind speed of
24.4 m/s derived from Quonset, RI airport. This station is located well inside Narragansett Bay and
hence is not representative of offshore winds. For comparison, the mean 100 year winds offshore are
32.8 m/s and 39.3 m/s (Table 1) using the WIS and NACCS data, respectively.

Table 2. Comparison of the water elevation (NAVD88, m), critical wave crest height (m) and deep
water significant wave height (m) at the intersection of the transect and shoreline for transects #19
and #20.

Transect

Shoreline
Coordinates (deg)

Water Elevation NAVD88 (m) Critical Wave
Crest (m)

Deep Water
Significant Wave
Height (m) [Hs]

FEMA NAST

FEMA NAST FEMA NAST
Lat. N Lon. W SWEL +

SETUP BFE SWEL +
SETUP BFE

19 41.338 71.670 3.7 4.6 4.1 6.9 0.9 2.8 4.0 7.0
20 41.346 71.619 3.8 4.9 4.1 7.0 1.1 2.9 4.0 7.0

For the dune intact case (Figure 14a,c), FEMA predicts a constant SWEL with distance along
both transects. (FEMA values shown here assume that the dune in fact is eroded according to the
specified dune erosion rules [4].). The NAST predictions are slightly higher and increase with distance
landward. The increase in water level is about twice as large at the landward end of transect #19 as for
#20. This increase in SWEL is associated with the water level setup resulting from the balance between
wind stress and friction in the flood inundated area [24,25], inherent in the NACCS coupled surge and
wave model (ADCIRC-STWAVE). The set up scales approximately linearly with transect length, and
therefore is twice as large at the landward end of transect 19 compared with transect 20. WHAFIS does
not include wind induced set up in flood inundated areas. The NAST BFEs show a similar shape to
the SWEL, with slightly higher values. FEMA predictions show a stepped pattern, characteristic of
the output of WHAFIS, with the BFEs generally decreasing with distance landward. (The stepping
is a direct result of the FEMA results being rounded up to the nearest 30 cm (1 ft)). This behavior is
controlled by wave breaking dynamics, given the lower SWEL in FEMA’s method, compared with the
NAST approach. The peak BFE values along each transect are comparable for both methods.

The SWEL and BFE results for the FEMA dune eroded case (Figure 14b,d) are the same as for
the dune intact case. The FEMA SWEL is constant with distance along the transect, while the NAST
results show the characteristic set up with distance landward, similar to the dunes intact case. This
setup is the same as for the NAST dune intact case, showing that the presence of the dunes has little
impact on flooding, since the dunes are overtopped in either case. The BFEs are however substantially
larger for the dune eroded case, approximately 1 m greater, than the dune intact case. The NAST BFEs
show an increase with distance landward for transect #19, until shallow water breaking reduces the
wave heights at the landward end of the transect. The trend on transect #20 is in general a reduction
with distance landward, reflecting shallow water breaking and the fact that water depths are much
lower along transect #20 compared with #19.

Comparing NAST simulations for dune intact and eroded case shows that the condition of the
dunes has little impact on the SWEL inundation levels since the dunes are overtopped in either case.
The dunes however play a very important role in reducing waves and hence the BFE.
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An attempt was made to compare the spatial structure of the BFEs generated by FEMA with those
generated by NAST. In order to do this one needs to understand the procedure that FEMA used to
translate the WHAFIS predictions along the 1-D transects to a 2-D map. The pattern of the FEMA
BFEs suggests that they must be closely related to the inundation depths. This proved impossible to
do however since the analysis has been done according to engineering judgement following FEMA
guidelines [1]. The problem is compounded in the present case given the fact that only two transects
were used in the analysis and their spacing exceeded FEMA guidance [1]. One clear indication of the
level of the problem is the discrete increase in the BFE (over 1.5 m) on either side of transect #20 (see
red circle in Figure 12, lower panel). The NAST simulation results highlight the importance of 2-D
wave processes involved in wave propagation in flood inundated areas.

4. Conclusions

Flood inundation maps have been developed for Charlestown RI using state of the art, fully
coupled high-resolution surge and wave models (ADCIRC, WAM, and STWAVE) applied to the study
area as part of the NACCS. The model predictions were extensively validated with data from tropical
and extratropical storms during the study. NACCS simulations were performed for 1050 synthetic
tropical storms and 100 historical extratropical storms. Peak values were archived at selected save
points and return period analyses performed for each storm data set. Additional validation, of the both
water levels and wave heights vs. return period, with historical water level data at Newport, RI for the
former and hindcasts (1980–2012) of wave conditions for selected locations off the coast for the later,
from the USACE Wave Information Study (WIS) [20], were performed as part of this study to gain
additional insight into model performance. The results are generally in reasonable to good agreement.

Simulations were then performed using STWAVE on a high resolution grid (10 m) of the flood
inundated study area. The model was driven by offshore water levels, wave set up, and wave height,
period, and direction along the open boundaries assuming a shallow water TMA wave spectral
distribution model from the NACCS study with cosn directional spreading. The model included wave
dissipation based a comprehensive mapping of the roughness from both structures and ground cover.
STWAVE predicted the 2-D wave transformation processes and explicitly considered dune erosion
based on an analysis of a long historical record of beach profiles for the barrier system under study.
The model clearly showed the importance of the dunes in preventing large waves from entering the
coastal ponds and highlighted the 2-D nature of the wave field.

Key findings in the study include:

• FEMA and present study predict comparable SWEL for the study area. Present study values
are slightly larger (4.1 m) than FEMA (3.7 m). This results in slightly larger inundated areas.
The slightly larger values are attributed to the use of upper 95% confidence limit water levels
used in the present study and the water level setup from the NAST simulations in the storm
inundated area.

• The present study results show SWEL increasing with distance landward from the shoreline
because of the balance between wind stress and frictional dissipation in flood inundated areas.
FEMA’s SWELs are independent of distance landward.

• FEMA (with eroded dunes) and the present study (with dunes assumed to be intact) predict
comparable peak BFEs in the flood inundated areas. If the dunes are eroded FEMA results are
substantially lower (about 1 m) than the present results. The primary source of differences is
lower wave heights at the offshore end of the FEMA transects and differences in the eroded
dune profiles. Attempts to obtain the FEMA bathymetry to use as input to WHAFIS for the two
transects under study were not successful.

• FEMA results show strong evidence of the impact of the selection of the transects to represent
wave conditions. As an example, for transect #20 the BFE shows a variation of almost 1.5 m from
one side of the transect to the other at the dune crest line.



J. Mar. Sci. Eng. 2017, 5, 10 18 of 23

• It has proven impossible to recreate the 2-D structure of the wave field that FEMA has developed
given the results for the two transects. It seems to be primarily controlled by topography. The
transect spacing is too large to determine the spatial structure, and 2-D wave processes are not
represented by the methods used (e.g., WHAFIS).

• The largest difference in the BFEs between the FEMA and present study methods is in the waves,
particularly wave conditions at the shoreline and their subsequent 2-D spatial transformation.
The present study predicts wave heights that are approximately twice as large as FEMA values. It
has been impossible to determine which wave processes are critical in controlling the 2-D wave
environment, but the initial indications are that they are caused by wave breaking along the
eroded dunes, the specification of the eroded dune profile, and wave refraction and shallow water
wave breaking on the landward edge of the coastal ponds and the nearby flood inundated areas.

The analysis presented herein implemented all of the NRC recommendations raised in their
review of the FEMA coastal mapping program [5]. Thus, it represents an advancement over the
methods used in the FEMA study [1,2].

Simulations for cases with dunes and with dunes eroded, including the effects of sea level rise for
Charlestown are provided in [21]. Additional details on the application of the methods outlined here
to other communities in Washington County, RI are provided in [26].
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ADCIRC ADvanced CIRCulation model
ANN Artificial Neural Network
BCP Blind Control Points
BFE Base Flood Elevation
CHAMP Coastal Hazard Analysis and Modeling Program
CERI Coastal Environmental Risk Index
CI Confidence Interval
CRMC RI Coastal Resources Management Council
DEM Digital Elevation Model
FEMA Federal Emergency Management Agency
FIRM Flood Insurance Rate Maps
FIS Flood Insurance Study
HUD Housing and Urban Development
LAG Lowest Adjacent Grade
LIDAR Laser Imaging, Detection, and Ranging
LiMWA Limit of Moderate Wave Action
MSL Mean Sea Level
NACCS ACOE, North Atlantic Coast Comprehensive Study
NAST North Atlantic Coast Comprehensive Study and STWAVE
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NAVD88 North Atlantic Vertical Datum, 1988
NOAA NOS National Oceanic and Atmospheric Administration- National Ocean Survey
OHCD Office of Housing and Community Development
RI GIS Rhode Island- Geographic Information System
RMSE Root Mean Square Error
SAMP Special Area Management Plan
SLR Sea Level Rise
STWAVE STeady state spectral WAVE model
STORMTOOLS tools in support of storm analysis
SWEL Still Water Elevation
TMA Texel, Marsen, and Arsloe wave spectrum
URI University of Rhode Island
USACE US Army Corp of Engineers
WAM Wavewatch III, Model
WHAFIS Wave Height Analysis for Flood Insurance Studies
WIS ACOE Wave Information Study

Appendix A

Table A1. Manning coefficients by land use category.

Land Use Manning

Open water 0.02
Low intensity residential 0.07
High intensity residential 0.14
Commercial industrial transportation 0.05
Bare rock/sand/clay 0.04
Quarries/strip mines/gravel pit 0.04
Transitional (cleared forest) 0.1
Deciduous forest 0.12
Evergreen forest 0.15
Mixed forest 0.12
Shrubland 0.05
Grassland/herbaceous 0.034
Pasture/hay 0.03
Row/crops 0.035
Small grain 0.035
Fallow 0.03
Urban recreational grasses 0.025
Woody wetlands 0.1
Emergent herbaceous wetland 0.04
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Figure A3. Peak storm surge water levels [2] for 1938, 1954, and 2012 hurricanes vs. distance up the bay
referenced to Newport, RI. The data are fitted using a straight line with distance along the central axis
of Narragansett Bay. Negative distances are to the west following the southern RI shoreline. (Figure 2,
Spaulding et al. 2015 [9]). Data for 1938 and 1954 are based on observations collected during the event
and provided in [2]. Data for 2012 were provided from temporary gauges deployed by US Geological
Survey [27]. The slopes for the straight line fit to the data are 1.3 (1938), 1.56 (1954), and 1.1 (2012).
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