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Grandcanonical ensemble .o

Consider an open classical system (volume V', temperature 7', chemical po-
tential p). The goal is to determine the thermodynamic potential Q(7,V, u)
pertaining to that situation, from which all other thermodynamic properties
can be derived.

A quantitative description of the grandcanonical ensemble requires a set of
phase spaces 'y, N = 0,1,2,... with probability densities pn(X). The
interaction Hamiltonian for a system of N particles is Hy(X).

Maximize Gibbs entropy § = —kg Y / d*N X pn(X) In[Crpn (X))
N=0YT
subject to the three constraints

o0

) Z/ d"X pn(X) =1 (normalization),
N=0"TN

o Z/ dN X pn(X)Hy(X) = (H) = U (average energy),
N=07TnN

) Z/ d*N X pn(X)N = (N) = N (average number of particles).
N=0"TN

Apply calculus of variation with three Lagrange multipliers:

) [Z / d6NX {_kBpN 1H[CNpN] + QopPN + aUHNpN -+ aNNpN}] =0
N=0"TN

= Z/ dGNX(SPN{—kBIH[CNpN] —k’B—i-Oéo—FCYUHN—i-OéNN} =0
N=0YTN

1 « « «
= {-1=0 = pN(X):C—Nexp(k—;—l—i—k—ZHN(X)—i—k—gN).

Determine the Lagrange multipliers oy, oy, an:

Qg =1 6N ay QN o
1—-— ] = — A X — Hxn(X —N | =7
eXp< kB) NZ::OCN/FN eXp(kB N(X) + ) :

[e.9]

Z/ dﬁNXpN(X){"'}:OiS—kB+Oéo+OéUU+OéNN:0
N=0’TN

1 k
= U4+ —S+ YN =Lz
oy ay oy

1



1
Compare with U — TS — uN = —pV =Q = ay = —7 N =

~I=

Grand potential: Q(T,V,u) = —kgT'InZ = —pV.

Grand partition function: Z = —/ dON X e PUNX)HOUN 3 — _—
NZ—O CN I'n k’BT
1
Probability densities: py(X) = — e PHNX)+BuN
ZCy

Grandcanonical ensemble in quantum mechanics:

1
Z = Tre PH-1N), p:Ze_B(H_’“‘N), Q=—kgTlnhZ.

Derivation of thermodynamic properties from grand potential:

o0} o2 o2
S () e () e ()
(aT) Vi P (av) T, < > a/"b %

Relation between canonical and grandcanonical partition functions:

7 = Z etN/keT 7, — Z NZy, 2= etk (fugacity).
N=0 N=0

Open system of indistinguishable noninteracting particles:

1 - 1 N :
Iy=—=2", Z=) ﬁzNZN = ¢*?

= Q= —kgThZ =—kgT2Z.

Thermodynamic properties of the classical ideal gas in the grandcanonical
ensemble are calculated in exercise [tex94].



[tex94] Classical ideal gas (grandcanonical ensemble)

Consider a classical ideal gas [Hy = Zfil(plz /2m)] in a box of volume V in equilibrium with heat
and particle reservoirs at temperature T' and chemical potential u, respectively.

(a) Show that the grand partition function is Z = exp(zV/A%), where z = exp(u/kgT) is the
fugacity, and Ar = \/h?/2mmkpgT is the thermal wavelength.

(b) Derive from Z the grand potential Q(T,V, ), the entropy S(T,V, u). the pressure p(T,V, u),
and the average particle number (N) = N(T,V, ).

(c) Derive from these expressions the familiar results for the internal energy U = 3N'kpT, and the
ideal gas equation of state pV = NkpT.

Solution:



Density fluctuations and compressibility .

Average number of particles in volume V:

<1 1 07
— d6NX N f,BHN(X)Jrﬁ,uN -~ Yz
2 70w / ‘ ZBop ~ Bop

Fluctuations in particle number (in volume V):

(N?)—(N)? =

Z3 ou

Z32 o2 ? ooz T P ou

Here we use Z = Z(3,V, ).

1% ou ) 1% ( Oop )
Gibbs-Duh d d dT = = — :
e S Vi Y (8(V/N) » N\OV/N) ),
For V — " o  ON 0 _J\_fQi
LY T O SWIN) T aVINYON vV ON
0 ov. 0 0
For N = const: a(V//\/) (V/N)W:NW
M 3_ﬂ) _V(_p) ( ) _ Vo
V \ON ) v oV o N2
Compressibility: kr = —— (—)
dp
L . 9 , N?
Fluctuations in particle number: (N<) — (N)° = A kgTkr.

An alternative expression for (N?) — (N)? is calculated in exercise [tex95].

The density fluctuations for a classical ideal gas are calculated in exercise
[tex96].

At the critical point of a liquid-gas transition, the isotherm has an inflec-
tion point with zero slope (Op/0V = 0), implying k7 — oo. The strongly
enhanced density fluctuations are responsible for critical opalescence.

1 a?z_{ 1 az] 10°InZ LM—J@T(—

).



[tex95] Density fluctuations in the grandcanonical ensemble

Consider a system of indistinguishable particles in the grandcanonical ensemble. Derive the follow-
ing two expressions for the fluctuations in the number of particles N for an open system of volume
V' in equilibrium with heat and particle reservoirs at temperature 7' and chemical potential pu,
respectively:
o 0 9?p

N — (N2 =z2-—z2—InZ =kpgTV_—,

(N7) = (V) ‘9. 02 " B ou?
where z = exp(p/kpT) is the fugacity, p(T,V,u) = —(0Q/0V)r, = —Q/V is the pressure, and
Q(T,V,u) = —kpT In Z is the grand potential.

Solution:



[tex96] Density fluctuations and compressibility of the classical ideal gas

(a) Use the results of [tex94] and [tex95] to show that the variance of the number of particles in a
classical ideal gas (open system) is equal to the average number of particles:

(N?) — (N)? = (N) = A

(b) Use this result to show that the isothermal compressibility of the classical ideal gas is kp = 1/p.

Solution:



[tex103] Energy fluctuations and thermal response functions

(a) Show that the following relation holds between the energy fluctuations in the microscopic
ensemble and the heat capacity of a system described by a microscopic Hamiltonian H:

((H —(H))*) = kpT*Cy.
(b) Prove the following relation in a similar manner:
(H—(H)*) =k% |T* | %) +2T3Cy|.
ar ),

(c) Determine the relative fluctuations as measured by the quantities ((H — (H))?)/(H)? and
((H — (H))3)/(H)? for the classical ideal gas with N atoms.

Solution:



Microscopic states of ideal quantum gases (o

N
Hamiltonian: fIN = Z }Alg.
=1

1-particle eigenvalue equation: h|k,) = e/|ky).

N-particle eigenvalue equation: fIN|k1, ., ky) = Enlky, ... ky).

al h2K2
Energy: En = E €, €= ¢
=1

om

N-particle product eigenstates: |ki,...,ky) = |ki)... ky).

Symmetrized states for bosons: |ki,. .., ky)).
1
o N =2 |ki, ko)™ = — (ki) |ko) + |[ko)|k1)).
k1, ko) \/5(| 1)[k2) + [ka) [ki))
Antisymmetrized states for fermions: |ki, ..., ky)@.

1

o NV =2: |k17k2>(A) = \/§

(k1) [ka) — [ka)[ki)).

Occupation number representation: |ki,...,ky) =|ny,ng,...).

Here k; represents the wave vector of the first particle, whereas n, refers to
the number of particles in the first 1-particle state.

oo
e cnergy: H|ny,ns,...) = E|ny,ng,...), E= anek.
k=1
o0
e number of particles: N|ny,ng,...) = N|ng,ng,...), N= an
k=1

€s: energy of particle /. ex: energy of 1-particle state k.

Allowed occupation numbers:

e bosons: ny =0,1,2,...

e fermions: n, =0, 1.



Partition function of ideal quantum gases (.

/

Canonical partition function: Zy = Z o(ny,na,...)exp ( Z nkek> )

{ne}
/ o0
Z : sum over all occupation numbers compatible with Z ny = N.
{nk} k=1

The statistical weight factor o(ny, no, . ..) is different for fermions and bosons:

e Bose-Einstein statistics: ogg(ni, ng,...) = 1 for arbitrary values of ny.
1 ifalln,=0,1

e Fermi-Dirac statistics: opp(ny,ng,...) = { 0 otherwise

What is the statistical weight factor for the Maxwell-Boltzmann gas?

N
1 - 1 - —fe e1\" —Bea\ ™
ZNZMZNZM (;e 6k> — N' an‘nZ 51) 1 (6 52) 2

!/

= Zﬁexp( ﬂanek>.

{nx}
1

e Maxwell-Boltzmann statistics: oyp(ng,ng,...) = ———.
nl!nQ! Ce

Grandcanonical partition function:

Z NZN—Z o(ni,ng,...) exp( ﬁznk (€x — pu )7

{ni}

where we have used 2" = ()Y = exp (ﬁuZm) :
k=1

o0

o Zpp = Z Z Coeexp <—ﬁan(ek —u)) = H (1 —ze’ﬁ%)fl

n1=0mn2=0 k=1

[e.9]

o Upp = Z Z <o exXp (—ﬁan(ek —,u)> = H (1+ze‘ﬁe’“).

n1=0n9=0 k=1

oZMB:ZZ.. ﬁexp( ﬁan € — )) :gexp(zeﬁek)

n1=0n2=0



Ideal quantum gases:
grand potential and thermal averages ..

Grand potential: Q(T,V,pu) = —kgTInZ =U — TS — uN = —pV.

o Qyp = —kBTZ ze Pek — —/{BTzefﬁ(ezru)’

k=1 k=1
o Qpp=kpT Y In (1= ze7%) = kT Y n (1 — e P00),
k=1 k=1
¢ Opp=—kpT Y In(1+z2e7%%) = —kgT Y In (1 +e ).
k=1 k=1

Parametric representation [a =1 (FD), a =0 (MB), a = —1 (BE)]:

_ Vo 1y e
InZ = T a;ln(1+aze k)

Average number of particles:

o0 1 /0lnZ - 1 -
N__(@>T,V_B( o )T,V_le_leﬁf’“-ka_zmk)‘

k k=1
Average energy (internal energy):
olnZz > €L >
U _= — — _— .
( 5 )z,v 2 ey~ 2
Average occupation number of energy level e:
,0InZ 1

Oey, eBlee—n) +q

Fluctuations in occupation number [tex110]:

,0*InZ
dez

(nk) — () = B8~



Average occupation numbers
for MB, FD, and BE gases .z

Average occupation number of energy level e:

1
eﬁ(fk_ﬂ) +a

(ng) =

e ¢ = 1: Fermi-Dirac gas,

e a =(0: Maxwell-Boltzmann gas,

e . = —1: DBose-Einstein gas.
Range of 1-particle energies: ¢, > 0.

BE gas restriction: p <0 = 0<z<1.

25

1.

w

- Maxwell-Boltzmann Bose-Einstein

05 m

! ! !
-2 -1 0 1 2 3

B (ex- 1)

<nk>

The BE and FD gases are well approximated by the MB gas provided the
thermal wavelength Ay = \/h2/27mkgT is small compared to the average
interparticle distance:

Bleg—p)>1 = —0u>1 = z<1.

[tex94] for D=3: = \p < (V/N)V3,



[tex110] Occupation number fluctuations

Consider an ideal quantum gas specified by the grand partition function Z. Start from the expres-
sions ) -
1 0%z 1 07 1
2 2 _ -2 -1 _ —Bex

ng) —{(ng)° = — — — | = — InZ=- In(1 + aze ,

) = e = 55752 - [ 357 5] s 1 Faze )
where a = +1,0, —1 represent the FD, MB, and BE cases, respectively, to derive the following
result for the relative fluctuations in the occupation numbers:

()~ ) 1
(nk)? (nk)

Note that in the BE (FD) statistics, these fluctuations are enhanced (suppressed) relative to those
in the MB statistics.

Solution:



[tex111] Density of energy levels for ideal quantum gas

Consider a nonrelativistic ideal quantum gas in D dimensions and confined to a box of volume
V = LP with rigid walls. Show that the density of energy levels is

L? m \D/2 _
D& =t (27rh2) R

Solution:



[tex112] Maxwell-Boltzmann gas in D dimensions

From the expressions for the grand potential and the density of energy levels of an ideal Maxwell-
Boltzmann gas in D dimensions and confined to a box of volume V = LP with rigid walls,

—Bler—u LP m \D/2 _
Q(T,V,,u):—kBTze Blek—n) D<6):F(T/2)<2ﬂ'h2) ¢D/2-1
k

derive the familiar results pV = N'kgT for the equation of state, Cyn = (D/2)Nkp for the heat
capacity, and pV(P+2)/P = const for the adiabate at fixed N.

Solution:
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