University of Rhode Island [DigitalCommons@URI](https://digitalcommons.uri.edu/)

[Equilibrium Statistical Physics](https://digitalcommons.uri.edu/equilibrium_statistical_physics) [Physics Open Educational Resources](https://digitalcommons.uri.edu/phys_course)

12-16-2015

12. Grandcanonical Ensemble

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Follow this and additional works at: [https://digitalcommons.uri.edu/equilibrium_statistical_physics](https://digitalcommons.uri.edu/equilibrium_statistical_physics?utm_source=digitalcommons.uri.edu%2Fequilibrium_statistical_physics%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages) Abstract

Part twelve of course materials for Statistical Physics I: PHY525, taught by Gerhard Müller at the University of Rhode Island. Documents will be updated periodically as more entries become presentable.

Recommended Citation

Müller, Gerhard, "12. Grandcanonical Ensemble" (2015). Equilibrium Statistical Physics. Paper 3. [https://digitalcommons.uri.edu/equilibrium_statistical_physics/3](https://digitalcommons.uri.edu/equilibrium_statistical_physics/3?utm_source=digitalcommons.uri.edu%2Fequilibrium_statistical_physics%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in Equilibrium Statistical Physics by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Contents of this Document $_{[ttc12]}$

- 12. Grandcanonical Ensemble
	- Grandcanonical ensemble. [tln60]
	- Classical ideal gas (grandcanonical ensemble). [tex94]
	- Density fluctuations and compressibility. [tln61]
	- Density fluctuations in the grand canonical ensemble. [tex95]
	- Density fluctuations and compressibility in the classical ideal gas. [tex96]
	- Energy fluctuations and thermal response functions. [tex103]
	- Microscopic states of quantum ideal gases. [tln62]
	- Partition function of quantum ideal gases. [tln63]
	- Ideal quantum gases: grand potential and thermal averages. [tln64]
	- Ideal quantum gases: average level occupancies. [tsl35]
	- Occupation number fluctuations. [tex110]
	- Density of energy levels for ideal quantum gas. [tex111]
	- Maxwell-Boltzmann gas in D dimensions. [tex112]

$Grandcanonical$ ensemble $_{[tln60]}$

Consider an open classical system (volume V , temperature T , chemical potential μ). The goal is to determine the thermodynamic potential $\Omega(T, V, \mu)$ pertaining to that situation, from which all other thermodynamic properties can be derived.

A quantitative description of the grandcanonical ensemble requires a set of phase spaces Γ_N , $N = 0, 1, 2, \ldots$ with probability densities $\rho_N(\mathbf{X})$. The interaction Hamiltonian for a system of N particles is $H_N(\mathbf{X})$.

Maximize Gibbs entropy $S = -k_B \sum_{n=1}^{\infty}$ $N=0$ Z Γ $d^{6N}X\,\rho_N(\mathbf{X})\ln[C_N\rho_N(\mathbf{X})]$ subject to the three constraints

\n- \n
$$
\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \rho_N(\mathbf{X}) = 1 \quad \text{(normalization)},
$$
\n
\n- \n
$$
\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \rho_N(\mathbf{X}) H_N(\mathbf{X}) = \langle H \rangle = U \quad \text{(average energy)},
$$
\n
\n- \n
$$
\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \rho_N(\mathbf{X}) N = \langle N \rangle = \mathcal{N} \quad \text{(average number of particles)}.
$$
\n
\n

Apply calculus of variation with three Lagrange multipliers:

$$
\delta \left[\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \left\{ -k_B \rho_N \ln[C_N \rho_N] + \alpha_0 \rho_N + \alpha_U H_N \rho_N + \alpha_N N \rho_N \right\} \right] = 0
$$

\n
$$
\Rightarrow \sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \delta \rho_N \left\{ -k_B \ln[C_N \rho_N] - k_B + \alpha_0 + \alpha_U H_N + \alpha_N N \right\} = 0
$$

\n
$$
\Rightarrow \left\{ \cdots \right\} = 0 \Rightarrow \rho_N(\mathbf{X}) = \frac{1}{C_N} \exp \left(\frac{\alpha_0}{k_B} - 1 + \frac{\alpha_U}{k_B} H_N(\mathbf{X}) + \frac{\alpha_N}{k_B} N \right).
$$

Determine the Lagrange multipliers $\alpha_0, \alpha_U, \alpha_N$:

$$
\exp\left(1 - \frac{\alpha_0}{k_B}\right) = \sum_{N=0}^{\infty} \frac{1}{C_N} \int_{\Gamma_N} d^{6N} X \exp\left(\frac{\alpha_U}{k_B} H_N(\mathbf{X}) + \frac{\alpha_N}{k_B} N\right) \equiv Z,
$$

$$
\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \rho_N(\mathbf{X}) \{\cdots\} = 0 \implies S - k_B + \alpha_0 + \alpha_U U + \alpha_N \mathcal{N} = 0
$$

$$
\implies U + \frac{1}{\alpha_U} S + \frac{\alpha_N}{\alpha_U} \mathcal{N} = \frac{k_B}{\alpha_U} \ln Z.
$$

Compare with $U - TS - \mu \mathcal{N} = -pV = \Omega \Rightarrow \alpha_U = -\frac{1}{\sigma}$ $\frac{1}{T}$, $\alpha_N =$ μ T . Grand potential: $\Omega(T, V, \mu) = -k_B T \ln Z = -pV$. Grand partition function: $Z = \sum_{n=1}^{\infty}$ $N=0$ 1 C_N Z Γ_N $d^{6N}X e^{-\beta H_N(\mathbf{X})+\beta\mu N}, \ \beta=\frac{1}{1-\beta}$ k_BT . Probability densities: $\rho_N(\mathbf{X}) = \frac{1}{Z}$ ZC_N $e^{-\beta H_N(\mathbf{X})+\beta\mu N}$.

Grandcanonical ensemble in quantum mechanics:

$$
Z = \text{Tr} \, e^{-\beta (H - \mu N)}, \quad \rho = \frac{1}{Z} \, e^{-\beta (H - \mu N)}, \quad \Omega = -k_B T \ln Z.
$$

Derivation of thermodynamic properties from grand potential:

$$
S = -\left(\frac{\partial\Omega}{\partial T}\right)_{V,\mu}, \quad p = -\left(\frac{\partial\Omega}{\partial V}\right)_{T,\mu}, \quad \mathcal{N} = \langle N \rangle = -\left(\frac{\partial\Omega}{\partial\mu}\right)_{T,V}.
$$

Relation between canonical and grandcanonical partition functions:

$$
Z = \sum_{N=0}^{\infty} e^{\mu N / k_B T} Z_N = \sum_{N=0}^{\infty} z^N Z_N, \quad z \equiv e^{\mu / k_B T}
$$
 (fugacity).

Open system of indistinguishable noninteracting particles:

$$
Z_N = \frac{1}{N!} \tilde{Z}^N, \quad Z = \sum_{N=0}^{\infty} \frac{1}{N!} z^N \tilde{Z}^N = e^{z\tilde{Z}}
$$

$$
\Rightarrow \Omega = -k_B T \ln Z = -k_B T z \tilde{Z}.
$$

Thermodynamic properties of the classical ideal gas in the grandcanonical ensemble are calculated in exercise [tex94].

[tex94] Classical ideal gas (grandcanonical ensemble)

Consider a classical ideal gas $[H_N = \sum_{l=1}^N (p_l^2/2m)]$ in a box of volume V in equilibrium with heat and particle reservoirs at temperature T and chemical potential μ , respectively.

(a) Show that the grand partition function is $Z = \exp(zV/\lambda_T^3)$, where $z = \exp(\mu/k_BT)$ is the fugacity, and $\lambda_T = \sqrt{h^2/2\pi mk_BT}$ is the thermal wavelength.

(b) Derive from Z the grand potential $\Omega(T, V, \mu)$, the entropy $S(T, V, \mu)$. the pressure $p(T, V, \mu)$, and the average particle number $\langle N \rangle = \mathcal{N} (T, V, \mu)$.

(c) Derive from these expressions the familiar results for the internal energy $U = \frac{3}{2} N k_B T$, and the ideal gas equation of state $pV = Nk_BT$.

Density fluctuations and compressibility [tln61]

Average number of particles in volume V :

$$
\mathcal{N} = \langle N \rangle = \sum_{N=0}^{\infty} \frac{1}{Z C_N} \int_{\Gamma_N} d^{6N} X \, N e^{-\beta H_N(\mathbf{X}) + \beta \mu N} = \frac{1}{Z \beta} \frac{\partial Z}{\partial \mu} = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z.
$$

Fluctuations in particle number (in volume V):

$$
\langle N^2 \rangle - \langle N \rangle^2 = \frac{1}{Z\beta^2} \frac{\partial^2 Z}{\partial \mu^2} - \left[\frac{1}{Z\beta} \frac{\partial Z}{\partial \mu} \right]^2 = \frac{1}{\beta^2} \frac{\partial^2 \ln Z}{\partial \mu^2} = \frac{1}{\beta^2} \frac{\partial (\beta \langle N \rangle)}{\partial \mu} = k_B T \left(\frac{\partial \mathcal{N}}{\partial \mu} \right)_{TV}.
$$

.

Here we use $Z = Z(\beta, V, \mu)$.

Gibbs-Duhem:
$$
d\mu = \frac{V}{\mathcal{N}} dp - \frac{S}{\mathcal{N}} dT \implies \left(\frac{\partial \mu}{\partial (V/\mathcal{N})}\right)_T = \frac{V}{\mathcal{N}} \left(\frac{\partial p}{\partial (V/\mathcal{N})}\right)_T
$$

For $V = \text{const:}$ $\frac{\partial}{\partial (V/\mathcal{N})} = \frac{\partial \mathcal{N}}{\partial (V/\mathcal{N})} \frac{\partial}{\partial \mathcal{N}} = -\frac{\mathcal{N}^2}{V/\mathcal{N}} \frac{\partial}{\partial \mathcal{N}}.$

For
$$
V = \text{const:}
$$
 $\frac{\partial}{\partial (V/N)} = \frac{\partial N}{\partial (V/N)} \frac{\partial}{\partial N} = -\frac{N}{V} \frac{\partial}{\partial N}$

For
$$
\mathcal{N} = \text{const:}
$$
 $\frac{\partial}{\partial (V/\mathcal{N})} = \frac{\partial V}{\partial (V/\mathcal{N})} \frac{\partial}{\partial V} = \mathcal{N} \frac{\partial}{\partial V}.$

$$
\Rightarrow -\frac{\mathcal{N}^2}{V} \left(\frac{\partial \mu}{\partial \mathcal{N}} \right)_{TV} = V \left(\frac{\partial p}{\partial V} \right)_{TN} \Rightarrow \left(\frac{\partial \mu}{\partial \mathcal{N}} \right)_{TV} = \frac{V}{\mathcal{N}^2} \kappa_T^{-1}.
$$

opressibility: $\kappa_T \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial V} \right)$.

Com $\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{TN}$

Fluctuations in particle number: $\langle N^2 \rangle - \langle N \rangle^2 = \frac{\mathcal{N}^2}{V}$ $\frac{\mathbf{v}}{V} k_B T \kappa_T.$

An alternative expression for $\langle N^2 \rangle - \langle N \rangle^2$ is calculated in exercise [tex95].

The density fluctuations for a classical ideal gas are calculated in exercise [tex96].

At the critical point of a liquid-gas transition, the isotherm has an inflection point with zero slope $(\partial p/\partial V = 0)$, implying $\kappa_T \to \infty$. The strongly enhanced density fluctuations are responsible for critical opalescence.

[tex95] Density fluctuations in the grandcanonical ensemble

Consider a system of indistinguishable particles in the grandcanonical ensemble. Derive the following two expressions for the fluctuations in the number of particles N for an open system of volume V in equilibrium with heat and particle reservoirs at temperature T and chemical potential μ , respectively:

$$
\langle N^2 \rangle - \langle N \rangle^2 = z \frac{\partial}{\partial z} z \frac{\partial}{\partial z} \ln Z = k_B T V \frac{\partial^2 p}{\partial \mu^2},
$$

where $z = \exp(\mu/k_BT)$ is the fugacity, $p(T, V, \mu) = -(\partial \Omega/\partial V)_{T\mu} = -\Omega/V$ is the pressure, and $\Omega(T, V, \mu) = -k_BT \ln Z$ is the grand potential.

[tex96] Density fluctuations and compressibility of the classical ideal gas

(a) Use the results of [tex94] and [tex95] to show that the variance of the number of particles in a classical ideal gas (open system) is equal to the average number of particles:

$$
\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle = \mathcal{N}.
$$

(b) Use this result to show that the isothermal compressibility of the classical ideal gas is $\kappa_T = 1/p$.

[tex103] Energy fluctuations and thermal response functions

(a) Show that the following relation holds between the energy fluctuations in the microscopic ensemble and the heat capacity of a system described by a microscopic Hamiltonian H :

$$
\langle (H - \langle H \rangle)^2 \rangle = k_B T^2 C_V.
$$

(b) Prove the following relation in a similar manner:

$$
\langle (H - \langle H \rangle)^3 \rangle = k_B^2 \left[T^4 \left(\frac{\partial C_V}{\partial T} \right)_V + 2T^3 C_V \right].
$$

(c) Determine the relative fluctuations as measured by the quantities $\langle (H - \langle H \rangle)^2 \rangle / \langle H \rangle^2$ and $\langle (H - \langle H \rangle)^3 \rangle / \langle H \rangle^3$ for the classical ideal gas with N atoms.

Microscopic states of ideal quantum gases $_{[tln62]}$

Hamiltonian: $\hat{H}_N = \sum$ N $_{\ell=1}$ $\hat{h}_\ell.$

1-particle eigenvalue equation: $\hat{h}_{\ell}|\mathbf{k}_{\ell}\rangle = \epsilon_{\ell}|\mathbf{k}_{\ell}\rangle.$ *N*-particle eigenvalue equation: $\hat{H}_N | \mathbf{k}_1, \dots, \mathbf{k}_N \rangle = E_N | \mathbf{k}_1, \dots, \mathbf{k}_N \rangle$.

Energy:
$$
E_N = \sum_{\ell=1}^N \epsilon_\ell, \quad \epsilon_\ell = \frac{\hbar^2 \mathbf{k}_\ell^2}{2m}.
$$

N-particle product eigenstates: $|\mathbf{k}_1, \ldots, \mathbf{k}_N\rangle = |\mathbf{k}_1\rangle \ldots |\mathbf{k}_N\rangle$. Symmetrized states for bosons: $|\mathbf{k}_1,\ldots,\mathbf{k}_N\rangle^{(S)}$.

•
$$
N = 2
$$
: $|\mathbf{k}_1, \mathbf{k}_2\rangle^{(S)} = \frac{1}{\sqrt{2}} (|\mathbf{k}_1\rangle |\mathbf{k}_2\rangle + |\mathbf{k}_2\rangle |\mathbf{k}_1\rangle).$

Antisymmetrized states for fermions: $|\mathbf{k}_1,\ldots,\mathbf{k}_N\rangle^{(A)}$.

•
$$
N = 2
$$
: $|\mathbf{k}_1, \mathbf{k}_2\rangle^{(A)} = \frac{1}{\sqrt{2}} (|\mathbf{k}_1\rangle |\mathbf{k}_2\rangle - |\mathbf{k}_2\rangle |\mathbf{k}_1\rangle).$

Occupation number representation: $|\mathbf{k}_1,\ldots,\mathbf{k}_N\rangle \equiv |n_1,n_2,\ldots\rangle$.

Here k_1 represents the wave vector of the first particle, whereas n_1 refers to the number of particles in the first 1-particle state.

\n- energy:
$$
\hat{H}|n_1, n_2, \ldots\rangle = E|n_1, n_2, \ldots\rangle
$$
, $E = \sum_{k=1}^{\infty} n_k \epsilon_k$.
\n- number of particles: $\hat{N}|n_1, n_2, \ldots\rangle = N|n_1, n_2, \ldots\rangle$, $N = \sum_{k=1}^{\infty} n_k \epsilon_k$.
\n

• number of particles:
$$
\hat{N}|n_1, n_2, \ldots\rangle = N|n_1, n_2, \ldots\rangle
$$
, $N = \sum_{k=1}^{\infty} n_k$.

 ϵ_{ℓ} : energy of particle ℓ . ϵ_k : energy of 1-particle state k.

Allowed occupation numbers:

- bosons: $n_k = 0, 1, 2, \ldots$
- fermions: $n_k = 0, 1$.

Partition function of ideal quantum gases $_{[t\ln 63]}$

$$
\text{Canonical partition function: } Z_N = \sum_{\{n_k\}}' \sigma(n_1, n_2, \ldots) \exp\left(-\beta \sum_{k=1}^{\infty} n_k \epsilon_k\right).
$$

 \sum' ${n_k}$: sum over all occupation numbers compatible with $\sum_{n=1}^{\infty}$ $k=1$ $n_k = N$.

The statistical weight factor $\sigma(n_1, n_2, \ldots)$ is different for fermions and bosons:

- Bose-Einstein statistics: $\sigma_{BE}(n_1, n_2, ...) = 1$ for arbitrary values of n_k .
- Fermi-Dirac statistics: $\sigma_{FD}(n_1, n_2, ...) = \begin{cases} 1 & \text{if all } n_k = 0, 1 \\ 0 & \text{otherwise} \end{cases}$.

What is the statistical weight factor for the Maxwell-Boltzmann gas?

$$
Z_N = \frac{1}{N!} \tilde{Z}^N = \frac{1}{N!} \left(\sum_{k=1}^{\infty} e^{-\beta \epsilon_k} \right)^N = \frac{1}{N!} \sum_{\{n_k\}}' \frac{N!}{n_1! n_2! \dots} \left(e^{-\beta \epsilon_1} \right)^{n_1} \left(e^{-\beta \epsilon_2} \right)^{n_2} \dots = \sum_{\{n_k\}}' \frac{1}{n_1! n_2! \dots} \exp \left(-\beta \sum_{k=1}^{\infty} n_k \epsilon_k \right).
$$

• Maxwell-Boltzmann statistics: $\sigma_{MB}(n_1, n_2, ...) = \frac{1}{n_1! n_2! n_3! n_4! n_5! n_6! n_7! n_8! n_9! n_1! n_1! n_2! n_3! n_5! n_6! n_7! n_8! n_9! n_1! n_1! n_2! n_1! n_2! n_5! n_6! n_7! n_8! n_9! n_1! n_1! n_2! n_5! n_6! n_7! n_8! n_9! n_1! n_1! n_2! n_1! n_1! n_2!$ $n_1!n_2! \ldots$.

Grandcanonical partition function:

$$
\Rightarrow Z = \sum_{N=0}^{\infty} z^N Z_N = \sum_{\{n_k\}} \sigma(n_1, n_2, \ldots) \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right),
$$

where we have used $z^N = (e^{\beta \mu})^N = \exp \left(\beta \mu \sum_{n=1}^{\infty} \right)$ $k=1$ n_k \setminus

$$
\bullet Z_{BE} = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \cdots \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right) = \prod_{k=1}^{\infty} (1 - z e^{-\beta \epsilon_k})^{-1}.
$$

$$
\bullet Z_{FD} = \sum_{n_1=0}^{1} \sum_{n_2=0}^{1} \cdots \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right) = \prod_{k=1}^{\infty} (1 + z e^{-\beta \epsilon_k}).
$$

$$
\bullet Z_{MB} = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \cdots \frac{1}{n_1! n_2! \cdots} \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right) = \prod_{k=1}^{\infty} \exp(z e^{-\beta \epsilon_k})
$$

.

 $\big)$.

Ideal quantum gases: grand potential and thermal averages H_{tho64}

Grand potential: $\Omega(T, V, \mu) = -k_B T \ln Z = U - TS - \mu \mathcal{N} = -pV$.

•
$$
\Omega_{MB} = -k_B T \sum_{k=1}^{\infty} z e^{-\beta \epsilon_k} = -k_B T \sum_{k=1}^{\infty} e^{-\beta (\epsilon_k - \mu)},
$$

\n• $\Omega_{BE} = k_B T \sum_{k=1}^{\infty} \ln (1 - z e^{-\beta \epsilon_k}) = k_B T \sum_{k=1}^{\infty} \ln (1 - e^{-\beta (\epsilon_k - \mu)}),$
\n• $\Omega_{FD} = -k_B T \sum_{k=1}^{\infty} \ln (1 + z e^{-\beta \epsilon_k}) = -k_B T \sum_{k=1}^{\infty} \ln (1 + e^{-\beta (\epsilon_k - \mu)}).$

Parametric representation $[a = 1 (\text{FD}), a = 0 (\text{MB}), a = -1 (\text{BE})]$:

$$
\ln Z = \frac{pV}{k_B T} = \frac{1}{a} \sum_{k=1}^{\infty} \ln \left(1 + aze^{-\beta \epsilon_k} \right).
$$

Average number of particles:

$$
\mathcal{N} = -\left(\frac{\partial \Omega}{\partial \mu}\right)_{T,V} = \frac{1}{\beta} \left(\frac{\partial \ln Z}{\partial \mu}\right)_{T,V} = \sum_{k=1}^{\infty} \frac{1}{z^{-1}e^{\beta \epsilon_k} + a} = \sum_{k=1}^{\infty} \langle n_k \rangle.
$$

Average energy (internal energy):

$$
U = -\left(\frac{\partial \ln Z}{\partial \beta}\right)_{z,V} = \sum_{k=1}^{\infty} \frac{\epsilon_k}{z^{-1}e^{\beta \epsilon_k} + a} = \sum_{k=1}^{\infty} \epsilon_k \langle n_k \rangle.
$$

Average occupation number of energy level ϵ_k :

$$
\langle n_k \rangle = -\beta^{-1} \frac{\partial \ln Z}{\partial \epsilon_k} = \frac{1}{e^{\beta(\epsilon_k - \mu)} + a}.
$$

Fluctuations in occupation number [tex110]:

$$
\langle n_k^2 \rangle - \langle n_k \rangle^2 = \beta^{-2} \frac{\partial^2 \ln Z}{\partial \epsilon_k^2}.
$$

Average occupation numbers for MB, FD, and BE gases $_{[ts]35]}$

Average occupation number of energy level ϵ_k :

$$
\langle n_k \rangle = \frac{1}{e^{\beta(\epsilon_k - \mu)} + a}
$$

- $a = 1$: Fermi-Dirac gas,
- $a = 0$: Maxwell-Boltzmann gas,
- $a = -1$: Bose-Einstein gas.

Range of 1-particle energies: $\epsilon_k \geq 0$.

BE gas restriction: $\mu \leq 0 \Rightarrow 0 \leq z \leq 1$.

The BE and FD gases are well approximated by the MB gas provided the thermal wavelength $\lambda_T = \sqrt{h^2/2\pi mk_BT}$ is small compared to the average interparticle distance:

 $\beta(\epsilon_k - \mu) \gg 1 \Rightarrow -\beta\mu \gg 1 \Rightarrow z \ll 1.$ [tex94] for $\mathcal{D} = 3: \Rightarrow \lambda_T \ll (V/\mathcal{N})^{1/3}$.

[tex110] Occupation number fluctuations

Consider an ideal quantum gas specified by the grand partition function Z. Start from the expressions $\overline{2}$

$$
\langle n_k^2 \rangle - \langle n_k \rangle^2 = \frac{1}{Z} \beta^{-2} \frac{\partial^2 Z}{\partial \epsilon_k^2} - \left[\frac{1}{Z} \beta^{-1} \frac{\partial Z}{\partial \epsilon_k} \right]^2, \quad \ln Z = \frac{1}{a} \sum_{k=1}^{\infty} \ln(1 + aze^{-\beta \epsilon_k}),
$$

where $a = +1, 0, -1$ represent the FD, MB, and BE cases, respectively, to derive the following result for the relative fluctuations in the occupation numbers:

$$
\frac{\langle n_k^2\rangle - \langle n_k\rangle^2}{\langle n_k\rangle^2} = \frac{1}{\langle n_k\rangle} - a.
$$

Note that in the BE (FD) statistics, these fluctuations are enhanced (suppressed) relative to those in the MB statistics.

[tex111] Density of energy levels for ideal quantum gas

Consider a nonrelativistic ideal quantum gas in D dimensions and confined to a box of volume $V = L^{\mathcal{D}}$ with rigid walls. Show that the density of energy levels is

$$
D(\epsilon) = \frac{L^{\mathcal{D}}}{\Gamma(\mathcal{D}/2)} \left(\frac{m}{2\pi\hbar^2}\right)^{\mathcal{D}/2} \epsilon^{\mathcal{D}/2 - 1}.
$$

[tex112] Maxwell-Boltzmann gas in D dimensions

From the expressions for the grand potential and the density of energy levels of an ideal Maxwell-Boltzmann gas in $\mathcal D$ dimensions and confined to a box of volume $V = L^{\mathcal D}$ with rigid walls,

$$
\Omega(T, V, \mu) = -k_B T \sum_k e^{-\beta(\epsilon_k - \mu)}, \qquad D(\epsilon) = \frac{L^{\mathcal{D}}}{\Gamma(\mathcal{D}/2)} \left(\frac{m}{2\pi\hbar^2}\right)^{\mathcal{D}/2} \epsilon^{\mathcal{D}/2 - 1},
$$

derive the familiar results $pV = N k_B T$ for the equation of state, $C_{VN} = (D/2)N k_B$ for the heat capacity, and $pV^{(\mathcal{D}+2)/\mathcal{D}} = \text{const}$ for the adiabate at fixed N.