University of Rhode Island

DigitalCommons@URI

Equilibrium Statistical Physics

Physics Open Educational Resources

12-16-2015

12. Grandcanonical Ensemble

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/equilibrium_statistical_physics Abstract

Part twelve of course materials for Statistical Physics I: PHY525, taught by Gerhard Müller at the University of Rhode Island. Documents will be updated periodically as more entries become presentable.

Recommended Citation

Müller, Gerhard, "12. Grandcanonical Ensemble" (2015). *Equilibrium Statistical Physics*. Paper 3. https://digitalcommons.uri.edu/equilibrium_statistical_physics/3

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in Equilibrium Statistical Physics by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Contents of this Document [ttc12]

12. Grandcanonical Ensemble

- Grandcanonical ensemble. [tln60]
- Classical ideal gas (grandcanonical ensemble). [tex94]
- Density fluctuations and compressibility. [tln61]
- Density fluctuations in the grand canonical ensemble. [tex95]
- Density fluctuations and compressibility in the classical ideal gas. [tex96]
- Energy fluctuations and thermal response functions. [tex103]
- Microscopic states of quantum ideal gases. [tln62]
- Partition function of quantum ideal gases. [tln63]
- Ideal quantum gases: grand potential and thermal averages. [tln64]
- Ideal quantum gases: average level occupancies. [tsl35]
- Occupation number fluctuations. [tex110]
- \bullet Density of energy levels for ideal quantum gas. [tex111]
- \bullet Maxwell-Boltzmann gas in D dimensions. [tex112]

Grandcanonical ensemble [tln6]

Consider an open classical system (volume V, temperature T, chemical potential μ). The goal is to determine the thermodynamic potential $\Omega(T, V, \mu)$ pertaining to that situation, from which all other thermodynamic properties can be derived.

A quantitative description of the grandcanonical ensemble requires a set of phase spaces Γ_N , $N=0,1,2,\ldots$ with probability densities $\rho_N(\mathbf{X})$. The interaction Hamiltonian for a system of N particles is $H_N(\mathbf{X})$.

Maximize Gibbs entropy $S = -k_B \sum_{N=0}^{\infty} \int_{\Gamma} d^{6N} X \, \rho_N(\mathbf{X}) \ln[C_N \rho_N(\mathbf{X})]$ subject to the three constraints

•
$$\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \, \rho_N(\mathbf{X}) = 1$$
 (normalization),

•
$$\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \, \rho_N(\mathbf{X}) H_N(\mathbf{X}) = \langle H \rangle = U$$
 (average energy),

•
$$\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \, \rho_N(\mathbf{X}) N = \langle N \rangle = \mathcal{N}$$
 (average number of particles).

Apply calculus of variation with three Lagrange multipliers:

$$\delta \left[\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N}X \left\{ -k_B \rho_N \ln[C_N \rho_N] + \alpha_0 \rho_N + \alpha_U H_N \rho_N + \alpha_N N \rho_N \right\} \right] = 0$$

$$\Rightarrow \sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N}X \delta \rho_N \left\{ -k_B \ln[C_N \rho_N] - k_B + \alpha_0 + \alpha_U H_N + \alpha_N N \right\} = 0$$

$$\Rightarrow \left\{ \cdots \right\} = 0 \Rightarrow \rho_N(\mathbf{X}) = \frac{1}{C_N} \exp\left(\frac{\alpha_0}{k_B} - 1 + \frac{\alpha_U}{k_B} H_N(\mathbf{X}) + \frac{\alpha_N}{k_B} N \right).$$

Determine the Lagrange multipliers $\alpha_0, \alpha_U, \alpha_N$:

$$\exp\left(1 - \frac{\alpha_0}{k_B}\right) = \sum_{N=0}^{\infty} \frac{1}{C_N} \int_{\Gamma_N} d^{6N} X \exp\left(\frac{\alpha_U}{k_B} H_N(\mathbf{X}) + \frac{\alpha_N}{k_B} N\right) \equiv Z,$$

$$\sum_{N=0}^{\infty} \int_{\Gamma_N} d^{6N} X \, \rho_N(\mathbf{X}) \{\cdots\} = 0 \implies S - k_B + \alpha_0 + \alpha_U U + \alpha_N \mathcal{N} = 0$$

$$\Rightarrow U + \frac{1}{\alpha_U} S + \frac{\alpha_N}{\alpha_U} \mathcal{N} = \frac{k_B}{\alpha_U} \ln Z.$$

Compare with
$$U - TS - \mu \mathcal{N} = -pV = \Omega \implies \alpha_U = -\frac{1}{T}, \ \alpha_N = \frac{\mu}{T}.$$

Grand potential: $\Omega(T, V, \mu) = -k_B T \ln Z = -pV$.

Grand partition function:
$$Z = \sum_{N=0}^{\infty} \frac{1}{C_N} \int_{\Gamma_N} d^{6N} X \, e^{-\beta H_N(\mathbf{X}) + \beta \mu N}, \, \beta = \frac{1}{k_B T}.$$

Probability densities:
$$\rho_N(\mathbf{X}) = \frac{1}{ZC_N} e^{-\beta H_N(\mathbf{X}) + \beta \mu N}$$
.

Grandcanonical ensemble in quantum mechanics:

$$Z = \operatorname{Tr} e^{-\beta(H-\mu N)}, \quad \rho = \frac{1}{Z} e^{-\beta(H-\mu N)}, \quad \Omega = -k_B T \ln Z.$$

Derivation of thermodynamic properties from grand potential:

$$S = -\left(\frac{\partial\Omega}{\partial T}\right)_{V,\mu}, \quad p = -\left(\frac{\partial\Omega}{\partial V}\right)_{T,\mu}, \quad \mathcal{N} = \langle N \rangle = -\left(\frac{\partial\Omega}{\partial\mu}\right)_{T,V}.$$

Relation between canonical and grandcanonical partition functions:

$$Z = \sum_{N=0}^{\infty} e^{\mu N/k_B T} Z_N = \sum_{N=0}^{\infty} z^N Z_N, \quad z \equiv e^{\mu/k_B T} \text{ (fugacity)}.$$

Open system of indistinguishable noninteracting particles:

$$Z_N = \frac{1}{N!} \tilde{Z}^N, \quad Z = \sum_{N=0}^{\infty} \frac{1}{N!} z^N \tilde{Z}^N = e^{z\tilde{Z}}$$

$$\Rightarrow \Omega = -k_B T \ln Z = -k_B T z \tilde{Z}.$$

Thermodynamic properties of the classical ideal gas in the grandcanonical ensemble are calculated in exercise [tex94].

[tex94] Classical ideal gas (grandcanonical ensemble)

Consider a classical ideal gas $[H_N = \sum_{l=1}^N (p_l^2/2m)]$ in a box of volume V in equilibrium with heat and particle reservoirs at temperature T and chemical potential μ , respectively.

- (a) Show that the grand partition function is $Z = \exp(zV/\lambda_T^3)$, where $z = \exp(\mu/k_BT)$ is the fugacity, and $\lambda_T = \sqrt{h^2/2\pi m k_B T}$ is the thermal wavelength.
- (b) Derive from Z the grand potential $\Omega(T, V, \mu)$, the entropy $S(T, V, \mu)$. the pressure $p(T, V, \mu)$, and the average particle number $\langle N \rangle = \mathcal{N}(T, V, \mu)$.
- (c) Derive from these expressions the familiar results for the internal energy $U = \frac{3}{2}\mathcal{N}k_BT$, and the ideal gas equation of state $pV = \mathcal{N}k_BT$.

Average number of particles in volume V:

$$\mathcal{N} = \langle N \rangle = \sum_{N=0}^{\infty} \frac{1}{ZC_N} \int_{\Gamma_N} d^{6N} X \, N e^{-\beta H_N(\mathbf{X}) + \beta \mu N} = \frac{1}{Z\beta} \frac{\partial Z}{\partial \mu} = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z.$$

Fluctuations in particle number (in volume V):

$$\langle N^2 \rangle - \langle N \rangle^2 = \frac{1}{Z\beta^2} \frac{\partial^2 Z}{\partial \mu^2} - \left[\frac{1}{Z\beta} \frac{\partial Z}{\partial \mu} \right]^2 = \frac{1}{\beta^2} \frac{\partial^2 \ln Z}{\partial \mu^2} = \frac{1}{\beta^2} \frac{\partial (\beta \langle N \rangle)}{\partial \mu} = k_B T \left(\frac{\partial \mathcal{N}}{\partial \mu} \right)_{TV}.$$

Here we use $Z = Z(\beta, V, \mu)$.

Gibbs-Duhem:
$$d\mu = \frac{V}{N} dp - \frac{S}{N} dT \implies \left(\frac{\partial \mu}{\partial (V/N)}\right)_T = \frac{V}{N} \left(\frac{\partial p}{\partial (V/N)}\right)_T$$
.

For
$$V = \text{const}$$
: $\frac{\partial}{\partial (V/\mathcal{N})} = \frac{\partial \mathcal{N}}{\partial (V/\mathcal{N})} \frac{\partial}{\partial \mathcal{N}} = -\frac{\mathcal{N}^2}{V} \frac{\partial}{\partial \mathcal{N}}$.

For
$$\mathcal{N} = \text{const:} \quad \frac{\partial}{\partial (V/\mathcal{N})} = \frac{\partial V}{\partial (V/\mathcal{N})} \frac{\partial}{\partial V} = \mathcal{N} \frac{\partial}{\partial V}.$$

$$\Rightarrow \quad -\frac{\mathcal{N}^2}{V} \left(\frac{\partial \mu}{\partial \mathcal{N}}\right)_{TV} = V \left(\frac{\partial p}{\partial V}\right)_{T\mathcal{N}} \quad \Rightarrow \quad \left(\frac{\partial \mu}{\partial \mathcal{N}}\right)_{TV} = \frac{V}{\mathcal{N}^2} \, \kappa_T^{-1}.$$

Compressibility:
$$\kappa_T \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{TN}$$
.

Fluctuations in particle number: $\langle N^2 \rangle - \langle N \rangle^2 = \frac{N^2}{V} k_B T \kappa_T$.

An alternative expression for $\langle N^2 \rangle - \langle N \rangle^2$ is calculated in exercise [tex95].

The density fluctuations for a classical ideal gas are calculated in exercise [tex96].

At the critical point of a liquid-gas transition, the isotherm has an inflection point with zero slope $(\partial p/\partial V = 0)$, implying $\kappa_T \to \infty$. The strongly enhanced density fluctuations are responsible for critical opalescence.

[tex95] Density fluctuations in the grandcanonical ensemble

Consider a system of indistinguishable particles in the grandcanonical ensemble. Derive the following two expressions for the fluctuations in the number of particles N for an open system of volume V in equilibrium with heat and particle reservoirs at temperature T and chemical potential μ , respectively:

$$\langle N^2 \rangle - \langle N \rangle^2 = z \frac{\partial}{\partial z} z \frac{\partial}{\partial z} \ln Z = k_B T V \frac{\partial^2 p}{\partial \mu^2},$$

where $z=\exp(\mu/k_BT)$ is the fugacity, $p(T,V,\mu)=-(\partial\Omega/\partial V)_{T\mu}=-\Omega/V$ is the pressure, and $\Omega(T,V,\mu)=-k_BT\ln Z$ is the grand potential.

[tex96] Density fluctuations and compressibility of the classical ideal gas

(a) Use the results of [tex94] and [tex95] to show that the variance of the number of particles in a classical ideal gas (open system) is equal to the average number of particles:

$$\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle = \mathcal{N}.$$

(b) Use this result to show that the isothermal compressibility of the classical ideal gas is $\kappa_T = 1/p$.

[tex103] Energy fluctuations and thermal response functions

(a) Show that the following relation holds between the energy fluctuations in the microscopic ensemble and the heat capacity of a system described by a microscopic Hamiltonian H:

$$\langle (H - \langle H \rangle)^2 \rangle = k_B T^2 C_V.$$

(b) Prove the following relation in a similar manner:

$$\langle (H - \langle H \rangle)^3 \rangle = k_B^2 \left[T^4 \left(\frac{\partial C_V}{\partial T} \right)_V + 2T^3 C_V \right].$$

(c) Determine the relative fluctuations as measured by the quantities $\langle (H-\langle H\rangle)^2\rangle/\langle H\rangle^2$ and $\langle (H-\langle H\rangle)^3\rangle/\langle H\rangle^3$ for the classical ideal gas with N atoms.

Microscopic states of ideal quantum gases

Hamiltonian:
$$\hat{H}_N = \sum_{\ell=1}^N \hat{h}_\ell$$
.

1-particle eigenvalue equation: $\hat{h}_{\ell}|\mathbf{k}_{\ell}\rangle = \epsilon_{\ell}|\mathbf{k}_{\ell}\rangle$.

N-particle eigenvalue equation: $\hat{H}_N|\mathbf{k}_1,\ldots,\mathbf{k}_N\rangle = E_N|\mathbf{k}_1,\ldots,\mathbf{k}_N\rangle$.

Energy:
$$E_N = \sum_{\ell=1}^N \epsilon_\ell$$
, $\epsilon_\ell = \frac{\hbar^2 \mathbf{k}_\ell^2}{2m}$.

N-particle product eigenstates: $|\mathbf{k}_1, \dots, \mathbf{k}_N\rangle = |\mathbf{k}_1\rangle \dots |\mathbf{k}_N\rangle$.

Symmetrized states for bosons: $|\mathbf{k}_1, \dots, \mathbf{k}_N\rangle^{(S)}$.

•
$$N = 2$$
: $|\mathbf{k}_1, \mathbf{k}_2\rangle^{(S)} = \frac{1}{\sqrt{2}} (|\mathbf{k}_1\rangle |\mathbf{k}_2\rangle + |\mathbf{k}_2\rangle |\mathbf{k}_1\rangle).$

Antisymmetrized states for fermions: $|\mathbf{k}_1, \dots, \mathbf{k}_N\rangle^{(A)}$.

•
$$N=2$$
: $|\mathbf{k}_1, \mathbf{k}_2\rangle^{(A)} = \frac{1}{\sqrt{2}} (|\mathbf{k}_1\rangle |\mathbf{k}_2\rangle - |\mathbf{k}_2\rangle |\mathbf{k}_1\rangle).$

Occupation number representation: $|\mathbf{k}_1, \dots, \mathbf{k}_N\rangle \equiv |n_1, n_2, \dots\rangle$.

Here \mathbf{k}_1 represents the wave vector of the first particle, whereas n_1 refers to the number of particles in the first 1-particle state.

• energy:
$$\hat{H}|n_1, n_2, \ldots\rangle = E|n_1, n_2, \ldots\rangle$$
, $E = \sum_{k=1}^{\infty} n_k \epsilon_k$.

• number of particles:
$$\hat{N}|n_1, n_2, \ldots\rangle = N|n_1, n_2, \ldots\rangle$$
, $N = \sum_{k=1}^{\infty} n_k$.

 ϵ_{ℓ} : energy of particle ℓ . ϵ_{k} : energy of 1-particle state k.

Allowed occupation numbers:

- bosons: $n_k = 0, 1, 2, ...$
- fermions: $n_k = 0, 1$.

Canonical partition function:
$$Z_N = \sum_{\{n_k\}}' \sigma(n_1, n_2, \ldots) \exp\left(-\beta \sum_{k=1}^{\infty} n_k \epsilon_k\right)$$
.

$$\sum_{\{n_k\}}'$$
: sum over all occupation numbers compatible with $\sum_{k=1}^{\infty} n_k = N$.

The statistical weight factor $\sigma(n_1, n_2, ...)$ is different for fermions and bosons:

- Bose-Einstein statistics: $\sigma_{BE}(n_1, n_2, ...) = 1$ for arbitrary values of n_k .
- Fermi-Dirac statistics: $\sigma_{FD}(n_1, n_2, ...) = \begin{cases} 1 & \text{if all } n_k = 0, 1 \\ 0 & \text{otherwise} \end{cases}$

What is the statistical weight factor for the Maxwell-Boltzmann gas?

$$Z_{N} = \frac{1}{N!} \tilde{Z}^{N} = \frac{1}{N!} \left(\sum_{k=1}^{\infty} e^{-\beta \epsilon_{k}} \right)^{N} = \frac{1}{N!} \sum_{\{n_{k}\}}' \frac{N!}{n_{1}! n_{2}! \dots} \left(e^{-\beta \epsilon_{1}} \right)^{n_{1}} \left(e^{-\beta \epsilon_{2}} \right)^{n_{2}} \dots$$
$$= \sum_{\{n_{k}\}}' \frac{1}{n_{1}! n_{2}! \dots} \exp\left(-\beta \sum_{k=1}^{\infty} n_{k} \epsilon_{k} \right).$$

• Maxwell-Boltzmann statistics: $\sigma_{MB}(n_1, n_2, ...) = \frac{1}{n_1! n_2! ...}$

Grandcanonical partition function:

$$\Rightarrow Z = \sum_{N=0}^{\infty} z^N Z_N = \sum_{\{n_k\}} \sigma(n_1, n_2, \ldots) \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right),$$

where we have used $z^N = (e^{\beta\mu})^N = \exp\left(\beta\mu\sum_{k=1}^{\infty}n_k\right)$.

•
$$Z_{BE} = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \cdots \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right) = \prod_{k=1}^{\infty} \left(1 - ze^{-\beta \epsilon_k}\right)^{-1}$$
.

•
$$Z_{FD} = \sum_{n_1=0}^{1} \sum_{n_2=0}^{1} \cdots \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right) = \prod_{k=1}^{\infty} (1 + ze^{-\beta \epsilon_k}).$$

•
$$Z_{MB} = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \cdots \frac{1}{n_1! n_2! \dots} \exp\left(-\beta \sum_{k=1}^{\infty} n_k (\epsilon_k - \mu)\right) = \prod_{k=1}^{\infty} \exp\left(ze^{-\beta \epsilon_k}\right).$$

Ideal quantum gases:

grand potential and thermal averages

Grand potential: $\Omega(T, V, \mu) = -k_B T \ln Z = U - TS - \mu \mathcal{N} = -pV.$

•
$$\Omega_{MB} = -k_B T \sum_{k=1}^{\infty} z e^{-\beta \epsilon_k} = -k_B T \sum_{k=1}^{\infty} e^{-\beta (\epsilon_k - \mu)},$$

•
$$\Omega_{BE} = k_B T \sum_{k=1}^{\infty} \ln \left(1 - z e^{-\beta \epsilon_k} \right) = k_B T \sum_{k=1}^{\infty} \ln \left(1 - e^{-\beta (\epsilon_k - \mu)} \right),$$

•
$$\Omega_{FD} = -k_B T \sum_{k=1}^{\infty} \ln\left(1 + ze^{-\beta\epsilon_k}\right) = -k_B T \sum_{k=1}^{\infty} \ln\left(1 + e^{-\beta(\epsilon_k - \mu)}\right).$$

Parametric representation [a = 1 (FD), a = 0 (MB), a = -1 (BE)]:

$$\ln Z = \frac{pV}{k_B T} = \frac{1}{a} \sum_{k=1}^{\infty} \ln \left(1 + aze^{-\beta \epsilon_k} \right).$$

Average number of particles:

$$\mathcal{N} = -\left(\frac{\partial\Omega}{\partial\mu}\right)_{T,V} = \frac{1}{\beta}\left(\frac{\partial\ln Z}{\partial\mu}\right)_{T,V} = \sum_{k=1}^{\infty} \frac{1}{z^{-1}e^{\beta\epsilon_k} + a} = \sum_{k=1}^{\infty} \langle n_k \rangle.$$

Average energy (internal energy):

$$U = -\left(\frac{\partial \ln Z}{\partial \beta}\right)_{z,V} = \sum_{k=1}^{\infty} \frac{\epsilon_k}{z^{-1}e^{\beta\epsilon_k} + a} = \sum_{k=1}^{\infty} \epsilon_k \langle n_k \rangle.$$

Average occupation number of energy level ϵ_k :

$$\langle n_k \rangle = -\beta^{-1} \frac{\partial \ln Z}{\partial \epsilon_k} = \frac{1}{e^{\beta(\epsilon_k - \mu)} + a}.$$

Fluctuations in occupation number [tex110]:

$$\langle n_k^2 \rangle - \langle n_k \rangle^2 = \beta^{-2} \frac{\partial^2 \ln Z}{\partial \epsilon_k^2}.$$

Average occupation numbers for MB, FD, and BE gases [tsl35]

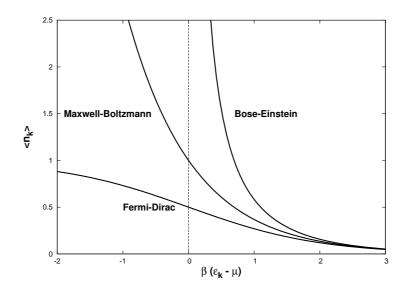
Average occupation number of energy level ϵ_k :

$$\langle n_k \rangle = \frac{1}{e^{\beta(\epsilon_k - \mu)} + a}$$

- a = 1: Fermi-Dirac gas,
- a = 0: Maxwell-Boltzmann gas,
- a = -1: Bose-Einstein gas.

Range of 1-particle energies: $\epsilon_k \geq 0$.

BE gas restriction: $\mu \le 0 \implies 0 \le z \le 1$.



The BE and FD gases are well approximated by the MB gas provided the thermal wavelength $\lambda_T = \sqrt{h^2/2\pi m k_B T}$ is small compared to the average interparticle distance:

$$\beta(\epsilon_k - \mu) \gg 1 \quad \Rightarrow \quad -\beta\mu \gg 1 \quad \Rightarrow \quad z \ll 1.$$

[tex94] for
$$\mathcal{D} = 3$$
: $\Rightarrow \lambda_T \ll (V/\mathcal{N})^{1/3}$.

[tex110] Occupation number fluctuations

Consider an ideal quantum gas specified by the grand partition function Z. Start from the expressions

$$\langle n_k^2 \rangle - \langle n_k \rangle^2 = \frac{1}{Z} \beta^{-2} \frac{\partial^2 Z}{\partial \epsilon_k^2} - \left[\frac{1}{Z} \beta^{-1} \frac{\partial Z}{\partial \epsilon_k} \right]^2, \quad \ln Z = \frac{1}{a} \sum_{k=1}^{\infty} \ln(1 + aze^{-\beta \epsilon_k}),$$

where a = +1, 0, -1 represent the FD, MB, and BE cases, respectively, to derive the following result for the relative fluctuations in the occupation numbers:

$$\frac{\langle n_k^2 \rangle - \langle n_k \rangle^2}{\langle n_k \rangle^2} = \frac{1}{\langle n_k \rangle} - a.$$

Note that in the BE (FD) statistics, these fluctuations are enhanced (suppressed) relative to those in the MB statistics.

[tex111] Density of energy levels for ideal quantum gas

Consider a nonrelativistic ideal quantum gas in \mathcal{D} dimensions and confined to a box of volume $V=L^{\mathcal{D}}$ with rigid walls. Show that the density of energy levels is

$$D(\epsilon) = \frac{L^{\mathcal{D}}}{\Gamma(\mathcal{D}/2)} \left(\frac{m}{2\pi\hbar^2}\right)^{\mathcal{D}/2} \epsilon^{\mathcal{D}/2-1}.$$

[tex112] Maxwell-Boltzmann gas in \mathcal{D} dimensions

From the expressions for the grand potential and the density of energy levels of an ideal Maxwell-Boltzmann gas in \mathcal{D} dimensions and confined to a box of volume $V = L^{\mathcal{D}}$ with rigid walls,

$$\Omega(T, V, \mu) = -k_B T \sum_k e^{-\beta(\epsilon_k - \mu)}, \qquad D(\epsilon) = \frac{L^{\mathcal{D}}}{\Gamma(\mathcal{D}/2)} \left(\frac{m}{2\pi\hbar^2}\right)^{\mathcal{D}/2} \epsilon^{\mathcal{D}/2 - 1},$$

derive the familiar results $pV = \mathcal{N}k_BT$ for the equation of state, $C_{V\mathcal{N}} = (\mathcal{D}/2)\mathcal{N}k_B$ for the heat capacity, and $pV^{(\mathcal{D}+2)/\mathcal{D}} = \text{const}$ for the adiabate at fixed \mathcal{N} .