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Grandcanonical ensemble [tln60]

Consider an open classical system (volume V , temperature T , chemical po-
tential µ). The goal is to determine the thermodynamic potential Ω(T, V, µ)
pertaining to that situation, from which all other thermodynamic properties
can be derived.

A quantitative description of the grandcanonical ensemble requires a set of
phase spaces ΓN , N = 0, 1, 2, . . . with probability densities ρN(X). The
interaction Hamiltonian for a system of N particles is HN(X).

Maximize Gibbs entropy S = −kB

∞∑
N=0

∫
Γ

d6NX ρN(X) ln[CNρN(X)]

subject to the three constraints

•
∞∑

N=0

∫
ΓN

d6NX ρN(X) = 1 (normalization),

•
∞∑

N=0

∫
ΓN

d6NX ρN(X)HN(X) = 〈H〉 = U (average energy),

•
∞∑

N=0

∫
ΓN

d6NX ρN(X)N = 〈N〉 = N (average number of particles).

Apply calculus of variation with three Lagrange multipliers:

δ

[
∞∑

N=0

∫
ΓN

d6NX {−kBρN ln[CNρN ] + α0ρN + αUHNρN + αNNρN}

]
= 0

⇒
∞∑

N=0

∫
ΓN

d6NXδρN {−kB ln[CNρN ]− kB + α0 + αUHN + αNN} = 0

⇒ {· · · } = 0 ⇒ ρN(X) =
1

CN

exp

(
α0

kB

− 1 +
αU

kB

HN(X) +
αN

kB

N

)
.

Determine the Lagrange multipliers α0, αU , αN :

exp

(
1− α0

kB

)
=

∞∑
N=0

1

CN

∫
ΓN

d6NX exp

(
αU

kB

HN(X) +
αN

kB

N

)
≡ Z,

∞∑
N=0

∫
ΓN

d6NX ρN(X){· · · } = 0 ⇒ S − kB + α0 + αUU + αNN = 0

⇒ U +
1

αU

S +
αN

αU

N =
kB

αU

ln Z.
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Compare with U − TS − µN = −pV = Ω ⇒ αU = − 1

T
, αN =

µ

T
.

Grand potential: Ω(T, V, µ) = −kBT ln Z = −pV.

Grand partition function: Z =
∞∑

N=0

1

CN

∫
ΓN

d6NX e−βHN (X)+βµN , β =
1

kBT
.

Probability densities: ρN(X) =
1

ZCN

e−βHN (X)+βµN .

Grandcanonical ensemble in quantum mechanics:

Z = Tr e−β(H−µN), ρ =
1

Z
e−β(H−µN), Ω = −kBT ln Z.

Derivation of thermodynamic properties from grand potential:

S = −
(

∂Ω

∂T

)
V,µ

, p = −
(

∂Ω

∂V

)
T,µ

, N = 〈N〉 = −
(

∂Ω

∂µ

)
T,V

.

Relation between canonical and grandcanonical partition functions:

Z =
∞∑

N=0

eµN/kBT ZN =
∞∑

N=0

zNZN , z ≡ eµ/kBT (fugacity).

Open system of indistinguishable noninteracting particles:

ZN =
1

N !
Z̃N , Z =

∞∑
N=0

1

N !
zN Z̃N = ezZ̃

⇒ Ω = −kBT ln Z = −kBTzZ̃.

Thermodynamic properties of the classical ideal gas in the grandcanonical
ensemble are calculated in exercise [tex94].
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[tex94] Classical ideal gas (grandcanonical ensemble)

Consider a classical ideal gas [HN =
∑N

l=1(p2
l /2m)] in a box of volume V in equilibrium with heat

and particle reservoirs at temperature T and chemical potential µ, respectively.
(a) Show that the grand partition function is Z = exp(zV/λ3

T ), where z = exp(µ/kBT ) is the
fugacity, and λT =

√
h2/2πmkBT is the thermal wavelength.

(b) Derive from Z the grand potential Ω(T, V, µ), the entropy S(T, V, µ). the pressure p(T, V, µ),
and the average particle number 〈N〉 = N (T, V, µ).
(c) Derive from these expressions the familiar results for the internal energy U = 3

2NkBT , and the
ideal gas equation of state pV = NkBT .

Solution:



Density fluctuations and compressibility [tln61]

Average number of particles in volume V :

N = 〈N〉 =
∞∑

N=0

1

ZCN

∫
ΓN

d6NX Ne−βHN (X)+βµN =
1

Zβ

∂Z

∂µ
=

1

β

∂

∂µ
ln Z.

Fluctuations in particle number (in volume V ):

〈N2〉−〈N〉2 =
1

Zβ2

∂2Z

∂µ2
−

[
1

Zβ

∂Z

∂µ

]2

=
1

β2

∂2 ln Z

∂µ2
=

1

β2

∂(β〈N〉)
∂µ

= kBT

(
∂N
∂µ

)
TV

.

Here we use Z = Z(β, V, µ).

Gibbs-Duhem: dµ =
V

N
dp− S

N
dT ⇒

(
∂µ

∂(V/N )

)
T

=
V

N

(
∂p

∂(V/N )

)
T

.

For V = const:
∂

∂(V/N )
=

∂N
∂(V/N )

∂

∂N
= −N

2

V

∂

∂N
.

For N = const:
∂

∂(V/N )
=

∂V

∂(V/N )

∂

∂V
= N ∂

∂V
.

⇒ − N 2

V

(
∂µ

∂N

)
TV

= V

(
∂p

∂V

)
TN

⇒
(

∂µ

∂N

)
TV

=
V

N 2
κ−1

T .

Compressibility: κT ≡ − 1

V

(
∂V

∂p

)
TN

.

Fluctuations in particle number: 〈N2〉 − 〈N〉2 =
N 2

V
kBTκT .

An alternative expression for 〈N2〉 − 〈N〉2 is calculated in exercise [tex95].

The density fluctuations for a classical ideal gas are calculated in exercise
[tex96].

At the critical point of a liquid-gas transition, the isotherm has an inflec-
tion point with zero slope (∂p/∂V = 0), implying κT → ∞. The strongly
enhanced density fluctuations are responsible for critical opalescence.



[tex95] Density fluctuations in the grandcanonical ensemble

Consider a system of indistinguishable particles in the grandcanonical ensemble. Derive the follow-
ing two expressions for the fluctuations in the number of particles N for an open system of volume
V in equilibrium with heat and particle reservoirs at temperature T and chemical potential µ,
respectively:

〈N2〉 − 〈N〉2 = z
∂

∂z
z
∂

∂z
lnZ = kBTV

∂2p

∂µ2
,

where z = exp(µ/kBT ) is the fugacity, p(T, V, µ) = −(∂Ω/∂V )Tµ = −Ω/V is the pressure, and
Ω(T, V, µ) = −kBT lnZ is the grand potential.

Solution:



[tex96] Density fluctuations and compressibility of the classical ideal gas

(a) Use the results of [tex94] and [tex95] to show that the variance of the number of particles in a
classical ideal gas (open system) is equal to the average number of particles:

〈N2〉 − 〈N〉2 = 〈N〉 = N .

(b) Use this result to show that the isothermal compressibility of the classical ideal gas is κT = 1/p.

Solution:



[tex103] Energy fluctuations and thermal response functions

(a) Show that the following relation holds between the energy fluctuations in the microscopic
ensemble and the heat capacity of a system described by a microscopic Hamiltonian H:

〈(H − 〈H〉)2〉 = kBT 2CV .

(b) Prove the following relation in a similar manner:

〈(H − 〈H〉)3〉 = k2
B

[
T 4

(
∂CV

∂T

)
V

+ 2T 3CV

]
.

(c) Determine the relative fluctuations as measured by the quantities 〈(H − 〈H〉)2〉/〈H〉2 and
〈(H − 〈H〉)3〉/〈H〉3 for the classical ideal gas with N atoms.

Solution:



Microscopic states of ideal quantum gases [tln62]

Hamiltonian: ĤN =
N∑

`=1

ĥ`.

1-particle eigenvalue equation: ĥ`|k`〉 = ε`|k`〉.

N -particle eigenvalue equation: ĤN |k1, . . . ,kN〉 = EN |k1, . . . ,kN〉.

Energy: EN =
N∑

`=1

ε`, ε` =
~2k2

`

2m
.

N -particle product eigenstates: |k1, . . . ,kN〉 = |k1〉 . . . |kN〉.

Symmetrized states for bosons: |k1, . . . ,kN〉(S).

• N = 2: |k1,k2〉(S) =
1√
2

(|k1〉|k2〉+ |k2〉|k1〉).

Antisymmetrized states for fermions: |k1, . . . ,kN〉(A).

• N = 2: |k1,k2〉(A) =
1√
2

(|k1〉|k2〉 − |k2〉|k1〉).

Occupation number representation: |k1, . . . ,kN〉 ≡ |n1, n2, . . .〉.

Here k1 represents the wave vector of the first particle, whereas n1 refers to
the number of particles in the first 1-particle state.

• energy: Ĥ|n1, n2, . . .〉 = E|n1, n2, . . .〉, E =
∞∑

k=1

nkεk.

• number of particles: N̂ |n1, n2, . . .〉 = N |n1, n2, . . .〉, N =
∞∑

k=1

nk.

ε`: energy of particle `. εk: energy of 1-particle state k.

Allowed occupation numbers:

• bosons: nk = 0, 1, 2, . . .

• fermions: nk = 0, 1.



Partition function of ideal quantum gases [tln63]

Canonical partition function: ZN =
′∑

{nk}

σ(n1, n2, . . .) exp

(
−β

∞∑
k=1

nkεk

)
.

′∑
{nk}

: sum over all occupation numbers compatible with
∞∑

k=1

nk = N .

The statistical weight factor σ(n1, n2, . . .) is different for fermions and bosons:

• Bose-Einstein statistics: σBE(n1, n2, . . .) = 1 for arbitrary values of nk.

• Fermi-Dirac statistics: σFD(n1, n2, . . .) =

{
1 if all nk = 0, 1
0 otherwise

.

What is the statistical weight factor for the Maxwell-Boltzmann gas?

ZN =
1

N !
Z̃N =

1

N !

(
∞∑

k=1

e−βεk

)N

=
1

N !

′∑
{nk}

N !

n1!n2! . . .

(
e−βε1

)n1
(
e−βε2

)n2 · · ·

=
′∑

{nk}

1

n1!n2! . . .
exp

(
−β

∞∑
k=1

nkεk

)
.

• Maxwell-Boltzmann statistics: σMB(n1, n2, . . .) =
1

n1!n2! . . .
.

Grandcanonical partition function:

⇒ Z =
∞∑

N=0

zNZN =
∑
{nk}

σ(n1, n2, . . .) exp

(
−β

∞∑
k=1

nk(εk − µ)

)
,

where we have used zN = (eβµ)N = exp

(
βµ

∞∑
k=1

nk

)
.

• ZBE =
∞∑

n1=0

∞∑
n2=0

· · · exp

(
−β

∞∑
k=1

nk(εk − µ)

)
=

∞∏
k=1

(
1− ze−βεk

)−1
.

• ZFD =
1∑

n1=0

1∑
n2=0

· · · exp

(
−β

∞∑
k=1

nk(εk − µ)

)
=

∞∏
k=1

(
1 + ze−βεk

)
.

• ZMB =
∞∑

n1=0

∞∑
n2=0

· · · 1

n1!n2! . . .
exp

(
−β

∞∑
k=1

nk(εk − µ)

)
=

∞∏
k=1

exp
(
ze−βεk

)
.



Ideal quantum gases:

grand potential and thermal averages [tln64]

Grand potential: Ω(T, V, µ) = −kBT ln Z = U − TS − µN = −pV.

• ΩMB = −kBT
∞∑

k=1

ze−βεk = −kBT
∞∑

k=1

e−β(εk−µ),

• ΩBE = kBT

∞∑
k=1

ln
(
1− ze−βεk

)
= kBT

∞∑
k=1

ln
(
1− e−β(εk−µ)

)
,

• ΩFD = −kBT
∞∑

k=1

ln
(
1 + ze−βεk

)
= −kBT

∞∑
k=1

ln
(
1 + e−β(εk−µ)

)
.

Parametric representation [a = 1 (FD), a = 0 (MB), a = −1 (BE)]:

ln Z =
pV

kBT
=

1

a

∞∑
k=1

ln
(
1 + aze−βεk

)
.

Average number of particles:

N = −
(

∂Ω

∂µ

)
T,V

=
1

β

(
∂ ln Z

∂µ

)
T,V

=
∞∑

k=1

1

z−1eβεk + a
=

∞∑
k=1

〈nk〉.

Average energy (internal energy):

U = −
(

∂ ln Z

∂β

)
z,V

=
∞∑

k=1

εk

z−1eβεk + a
=

∞∑
k=1

εk〈nk〉.

Average occupation number of energy level εk:

〈nk〉 = −β−1∂ ln Z

∂εk

=
1

eβ(εk−µ) + a
.

Fluctuations in occupation number [tex110]:

〈n2
k〉 − 〈nk〉2 = β−2∂2 ln Z

∂ε2
k

.



Average occupation numbers

for MB, FD, and BE gases [tsl35]

Average occupation number of energy level ǫk:

〈nk〉 =
1

eβ(ǫk−µ) + a

• a = 1: Fermi-Dirac gas,

• a = 0: Maxwell-Boltzmann gas,

• a = −1: Bose-Einstein gas.

Range of 1-particle energies: ǫk ≥ 0.

BE gas restriction: µ ≤ 0 ⇒ 0 ≤ z ≤ 1.

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1  0  1  2  3

<
n

k
>

β (εk - µ)

Maxwell-Boltzmann Bose-Einstein

Fermi-Dirac

The BE and FD gases are well approximated by the MB gas provided the
thermal wavelength λT =

√

h2/2πmkBT is small compared to the average
interparticle distance:

β(ǫk − µ) ≫ 1 ⇒ − βµ ≫ 1 ⇒ z ≪ 1.

[tex94] for D = 3 : ⇒ λT ≪ (V/N )1/3.



[tex110] Occupation number fluctuations

Consider an ideal quantum gas specified by the grand partition function Z. Start from the expres-
sions

〈n2
k〉 − 〈nk〉2 =

1
Z
β−2 ∂

2Z

∂ε2k
−
[

1
Z
β−1 ∂Z

∂εk

]2
, lnZ =

1
a

∞∑
k=1

ln(1 + aze−βεk),

where a = +1, 0,−1 represent the FD, MB, and BE cases, respectively, to derive the following
result for the relative fluctuations in the occupation numbers:

〈n2
k〉 − 〈nk〉2

〈nk〉2
=

1
〈nk〉

− a.

Note that in the BE (FD) statistics, these fluctuations are enhanced (suppressed) relative to those
in the MB statistics.

Solution:



[tex111] Density of energy levels for ideal quantum gas

Consider a nonrelativistic ideal quantum gas in D dimensions and confined to a box of volume
V = LD with rigid walls. Show that the density of energy levels is

D(ε) =
LD

Γ(D/2)

( m

2π~2

)D/2

εD/2−1.

Solution:



[tex112] Maxwell-Boltzmann gas in D dimensions

From the expressions for the grand potential and the density of energy levels of an ideal Maxwell-
Boltzmann gas in D dimensions and confined to a box of volume V = LD with rigid walls,

Ω(T, V, µ) = −kBT
∑
k

e−β(εk−µ), D(ε) =
LD

Γ(D/2)

( m

2π~2

)D/2
εD/2−1,

derive the familiar results pV = NkBT for the equation of state, CVN = (D/2)NkB for the heat
capacity, and pV (D+2)/D = const for the adiabate at fixed N .

Solution:
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