12. Magnetic Field I

Gerhard Müller

University of Rhode Island, gmuller@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/elementary_physics_2

Abstract

Lecture slides 12 for Elementary Physics II (PHY 204), taught by Gerhard Müller at the University of Rhode Island.

Some of the slides contain figures from the textbook, Paul A. Tipler and Gene Mosca. Physics for Scientists and Engineers, 5th/6th editions. The copyright to these figures is owned by W.H. Freeman. We acknowledge permission from W.H. Freeman to use them on this course web page. The textbook figures are not to be used or copied for any purpose outside this class without direct permission from W.H. Freeman.

Recommended Citation

This Course Material is brought to you for free and open access by the Physics Open Educational Resources at DigitalCommons@URI. It has been accepted for inclusion in PHY 204: Elementary Physics II (2015) by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Electricity

- Electric charges generate an electric field.
- The electric field exerts a force on other electric charges.

Magnetism

- Electric currents generate a magnetic field.
- The magnetic field exerts force on other electric currents.
Sources of Electric and Magnetic Fields

Capacitor
The parallel-plate capacitor generates a near uniform electric field provided the linear dimensions of the plates are large compared to the distance between them.

Solenoid
The solenoid (a tightly wound cylindrical coil) generates a near uniform magnetic field provided the length of the coil is large compared to its radius.
Electric and Magnetic Forces on Point Charge

Electric Force
- $\vec{F} = q\vec{E}$
- electric force is parallel to electric field
- SI unit of E: 1N/C=1V/m

Magnetic Force
- $\vec{F} = q\vec{v} \times \vec{B}$, $F = qvB \sin \phi$
- magnetic force is perpendicular to magnetic field
- SI unit of B: 1Ns/Cm=1T (Tesla)
- 1T=10^4G (Gauss)
Consider drift of Na\(^+\) and Cl\(^-\) ions in a plastic pipe filled with salt water.

- \(v_{1x} > 0,\ v_{2x} < 0\): drift velocities; \(q_1 > 0,\ q_2 < 0\): charge on ions
- \(n_1,\ n_2\): number of charge carriers per unit volume

- Electric current through \(A\): \(I = A(n_1 q_1 v_{1x} + n_2 q_2 v_{2x})\)
- Force on Na\(^+\): \(\vec{F}_1 = q_1 \vec{v}_1 \times \vec{B} \Rightarrow F_{1z} = q_1 v_{1x} B_y\)
- Force on Cl\(^-\): \(\vec{F}_2 = q_2 \vec{v}_2 \times \vec{B} \Rightarrow F_{2z} = q_2 v_{2x} B_y\)
- Force on current-carrying pipe: \(F_z = (n_1 q_1 v_{1x} + n_2 q_2 v_{2x})ALB_y = ILB_y\)
- Vector relation: \(\vec{F} = I \vec{L} \times \vec{B}\)
\[\vec{F} = I \vec{L} \times \vec{B} \]
Direction of Magnetic Force

\[\vec{F} = I \vec{L} \times \vec{B} \]

- \(B_{in} \)
- \(I = 0 \)
- \(I \)
A wire of length $L = 62\text{cm}$ and mass $m = 13\text{g}$ is suspended by a pair of flexible leads in a uniform magnetic field $B = 0.440\text{T}$ pointing in to the plane.

- What are the magnitude and direction of the current required to remove the tension in the supporting leads?
Magnetic Force Application (2)

A metal wire of mass $m = 1.5\text{kg}$ slides without friction on two horizontal rails spaced a distance $d = 3\text{m}$ apart.

The track lies in a vertical uniform magnetic field of magnitude $B = 24\text{mT}$ pointing out of the plane. A constant current $I = 12\text{A}$ flows from a battery along one rail, across the wire, and back down the other rail. The wire starts moving from rest at $t = 0$.

- Find the direction and magnitude of the velocity of the wire at time $t = 5\text{s}$.
Fancy solution:

- Uniform magnetic field \vec{B} points out of the plane.
- Magnetic force on segment ds: $dF = IBds = IBRd\theta$.
- Integrate $dF_x = dF \sin \theta$ and $dF_y = dF \cos \theta$ along semicircle.
- $F_x = IBR \int_0^{\pi} \sin \theta d\theta = 2IBR$, $F_y = IBR \int_0^{\pi} \cos \theta d\theta = 0$.

\[X = IBR \int_0^{\pi} \sin \theta d\theta = 2IBR, \quad Y = IBR \int_0^{\pi} \cos \theta d\theta = 0. \]
Clever solution:

- Replace the semicircle by symmetric staircase of tiny wire segments.
- Half the vertical segments experience a force to the left, the other half a force to the right. The resultant horizontal force is zero.
- All horizontal segments experience a downward force. The total length is $2R$. The total downward force is $2IBR$.
- Making the segments infinitesimally small does not change the result.
Inside the cube there is a magnetic field \vec{B} directed vertically up.

Find the direction of the magnetic force experienced by a proton entering the cube

(a) from the left,
(b) from the front,
(c) from the right,
(d) from the top.
Charged Particle Moving in Uniform Electric Field

- Electric field \vec{E} is directed up.
- Electric force: $\vec{F} = q\vec{E}$ (constant)
- Acceleration: $\vec{a} = \frac{\vec{F}}{m} = \frac{q}{m} \vec{E} = \text{const.}$
- Horizontal motion: $a_x = 0 \Rightarrow v_x(t) = v_0 \Rightarrow x(t) = v_0 t$
- Vertical motion: $a_y = \frac{q}{m} E \Rightarrow v_y(t) = a_y t \Rightarrow y(t) = \frac{1}{2} a_y t^2$
- The path is parabolic: $y = \left(\frac{qE}{2mv_0^2} \right) x^2$
- \vec{F} changes direction and magnitude of \vec{v}.
Charged Particle Moving in Uniform Magnetic Field

- Magnetic field \vec{B} is directed into plane.
- Magnetic force: $\vec{F} = q\vec{v} \times \vec{B}$ (not constant)
- $\vec{F} \perp \vec{v} \Rightarrow \vec{F}$ changes direction of \vec{v} only $\Rightarrow v = v_0$.
- \vec{F} is the centripetal force of motion along circular path.
- Radius: $\frac{mv^2}{r} = qvB \Rightarrow r = \frac{mv}{qB}$
- Angular velocity: $\omega = \frac{v}{r} = \frac{qB}{m}$
- Period: $T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB}$
A proton with speed \(v = 3.00 \times 10^5 \text{m/s} \) orbits just outside a charged conducting sphere of radius \(r = 1.00 \text{cm} \).

(a) Find the force \(F \) acting on the proton.
(b) Find the charge per unit area \(\sigma \) on the surface of the sphere.
(c) Find the total charge \(Q \) on the sphere.

Note: Charged particles in circular motion lose energy through radiation. This effect is ignored here.
Magnetic Force Application (3)

The dashed rectangle marks a region of uniform magnetic field \(\vec{B} \) pointing out of the plane.

- Find the direction of the magnetic force acting on each loop with a ccw current \(I \).
A charged particle is moving horizontally into a region with “crossed” uniform fields:

- an electric field \vec{E} pointing down,
- a magnetic field \vec{B} pointing into the plane.

Forces experienced by particle:

- electric force $F = qE$ pointing down,
- magnetic force $B = qvB$ pointing up.

Forces in balance: $qE = qvB$.

Selected velocity: $v = \frac{E}{B}$.

Trajectories of particles with selected velocity are not bent.
Measurement of e/m for Electron

First experiment by J. J. Thomson (1897)
Method used here: velocity selector

Equilibrium of forces: $eE = evB \Rightarrow v = \frac{E}{B}$

Work-energy relation: $eV = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{\frac{2eV}{m}}$

Eliminate v: $\frac{e}{m} = \frac{E^2}{2VB^2} \simeq 1.76 \times 10^{11} \text{C/kg}$
Measurement of e and m for Electron

First experiment by R. Millikan (1913)
Method used here: balancing weight and electric force on oil drop
Radius of oil drop: $r = 1.64\mu m$
Mass density of oil: $\rho = 0.851 g/cm^3$
Electric field: $E = 1.92 \times 10^5 N/C$

Mass of oil drop: $m = \frac{4\pi}{3} r^3 \rho = 1.57 \times 10^{-14} kg$

Equilibrium of forces: $neE = mg$
Number of excess elementary charges (integer): $n = 5$

Elementary charge: $e = \frac{mg}{nE} \simeq 1.6 \times 10^{-19} C$

Mass of electron: $m \simeq 9.1 \times 10^{-31} kg$
Mass Spectrometer

Purpose: measuring masses of ions.

- Charged particle is accelerated by moving through potential difference $|\Delta V|$.
- Trajectory is then bent into semicircle of radius r by magnetic field \vec{B}.
- Kinetic energy: $\frac{1}{2}mv^2 = q|\Delta V|$.
- Radius of trajectory: $r = \frac{mv}{qB}$.
- Charge: $q = e$
- Mass: $m = \frac{eB^2r^2}{2|\Delta V|}$.
Cyclotron

Purpose: accelerate charged particles to high energy.

- Low-energy protons are injected at \(S \).
- Path is bent by magnetic field \(\vec{B} \).
- Proton is energized by alternating voltage \(\Delta V \) between \(Dee_1 \) and \(Dee_2 \).
- Proton picks up energy \(\Delta K = e\Delta V \) during each half cycle.
- Path spirals out as velocity of particle increases:
 Radial distance is proportional to velocity: \(r = \frac{mv}{eB} \).
- Duration of cycle stays is independent of \(r \) or \(v \):
 cyclotron period: \(T = \frac{2\pi m}{eB} \).
- Cyclotron period is synchronized with alternation of accelerating voltage.
- High-energy protons exit at perimeter of \(\vec{B} \)-field region.
Magnetic Bottles

Moving charged particle confined by inhomogeneous magnetic field.

Van Allen belt: trapped protons and electrons in Earth's magnetic field.
Conversion of electric signal into mechanical vibration.
Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

(a) Find the direction of the magnetic force acting on the particle.

(b) Find the magnitude of the magnetic force acting on the particle.
Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

(a) Find the direction of the magnetic force acting on the particle.
(b) Find the magnitude of the magnetic force acting on the particle.

Solution:

(a) Use the right-hand rule: positive x-direction (front, out of page).
Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

(a) Find the direction of the magnetic force acting on the particle.
(b) Find the magnitude of the magnetic force acting on the particle.

Solution:

(a) Use the right-hand rule: positive x-direction (front, out of page).
(b) $F = qvB \sin 30^\circ = (5 \times 10^{-9}\text{C})(3\text{m/s})(4 \times 10^{-3}\text{T})(0.5) = 3 \times 10^{-11}\text{N}$.
A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B = 30 \text{ mT}$ as shown. The current in the loop is $I = 0.4 \text{ A}$ in the direction indicated.

(a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.

(b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.
A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $\mathcal{B} = 30\text{mT}$ as shown. The current in the loop is $I = 0.4\text{A}$ in the direction indicated.

(a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.

(b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

Solution:

(a) $\vec{F}_1 = I\vec{L} \times \mathcal{B} = 0$ (angle between \vec{L} and \mathcal{B} is 180°).
A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B = 30 \text{ mT}$ as shown. The current in the loop is $I = 0.4 \text{ A}$ in the direction indicated.

(a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.

(b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

![Diagram of a right triangle with magnetic field](image)

Solution:

(a) $\vec{F}_1 = I\vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).

(b) $F_2 = ILB = (0.4 \text{ A})(0.2 \text{ m})(30 \times 10^{-3} \text{ T}) = 2.4 \times 10^{-3} \text{ N}$. Direction of \vec{F}_2: \otimes (into plane).
In a region of uniform magnetic field $B = 5\text{mT} \hat{i}$, a proton ($m = 1.67 \times 10^{-27}\text{kg}$, $q = 1.60 \times 10^{-19}\text{C}$) is launched with velocity $v_0 = 4000\text{m/s} \hat{k}$.

(a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
(b) Calculate the radius r of the circular path.
(c) Calculate the time T it takes the proton to go around that circle once.
(d) Sketch the circular path of the proton in the graph.
In a region of uniform magnetic field $\mathbf{B} = 5\text{mT}\hat{\mathbf{i}}$, a proton
($m = 1.67 \times 10^{-27}\text{kg}$, $q = 1.60 \times 10^{-19}\text{C}$) is launched with velocity $\mathbf{v}_0 = 4000\text{m/s}\hat{\mathbf{k}}$.
(a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
(b) Calculate the radius r of the circular path.
(c) Calculate the time T it takes the proton to go around that circle once.
(d) Sketch the circular path of the proton in the graph.

Solution:

(a) $F = qv_0 B = 3.2 \times 10^{-18}\text{N}$.
In a region of uniform magnetic field $B = 5\text{mT} \hat{i}$, a proton $(m = 1.67 \times 10^{-27}\text{kg}, \; q = 1.60 \times 10^{-19}\text{C})$ is launched with velocity $v_0 = 4000\text{m/s} \hat{k}$.

(a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.

(b) Calculate the radius r of the circular path.

(c) Calculate the time T it takes the proton to go around that circle once.

(d) Sketch the circular path of the proton in the graph.

Solution:

(a) $F = qv_0B = 3.2 \times 10^{-18}\text{N}$.

(b) $\frac{mv_0^2}{r} = qv_0B \Rightarrow r = \frac{mv_0}{qB} = 8.35\text{mm}$.
In a region of uniform magnetic field $\mathbf{B} = 5\text{mT} \hat{i}$, a proton $(m = 1.67 \times 10^{-27}\text{kg}, \, q = 1.60 \times 10^{-19}\text{C})$ is launched with velocity $\mathbf{v}_0 = 4000\text{m/s} \hat{k}$.

(a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
(b) Calculate the radius r of the circular path.
(c) Calculate the time T it takes the proton to go around that circle once.
(d) Sketch the circular path of the proton in the graph.

Solution:

(a) $F = qv_0B = 3.2 \times 10^{-18}\text{N}$.

(b) $\frac{mv_0^2}{r} = qv_0B \quad \Rightarrow \quad r = \frac{mv_0}{qB} = 8.35\text{mm}$.

(c) $T = \frac{2\pi r}{v_0} = \frac{2\pi m}{qB} = 13.1\mu\text{s}$.
In a region of uniform magnetic field $\mathbf{B} = 5 \text{mT} \hat{i}$, a proton
($m = 1.67 \times 10^{-27} \text{kg}$, $q = 1.60 \times 10^{-19} \text{C}$) is launched with velocity $\mathbf{v}_0 = 4000 \text{m/s} \hat{k}$.
(a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
(b) Calculate the radius r of the circular path.
(c) Calculate the time T it takes the proton to go around that circle once.
(d) Sketch the circular path of the proton in the graph.

Solution:

(a) $F = q\mathbf{v}_0 \mathbf{B} = 3.2 \times 10^{-18} \text{N}$.

(b) $\frac{mv_0^2}{r} = q\mathbf{v}_0 \mathbf{B}$ \Rightarrow $r = \frac{mv_0}{qB} = 8.35 \text{mm}$.

(c) $T = \frac{2\pi r}{v_0} = \frac{2\pi m}{qB} = 13.1 \mu\text{s}$.

(d) Center of circle to the right of proton’s initial position (cw motion).
In a region of uniform magnetic field \(B \) a proton \((m = 1.67 \times 10^{-27}\) kg, \(q = 1.60 \times 10^{-19}\) C\) experiences a force \(\mathbf{F} = 8.0 \times 10^{-19}\) N \(\hat{i} \) as it passes through point \(P \) with velocity \(\mathbf{v}_0 = 2000\) m/s \(\hat{k} \) on a circular path.
(a) Find the magnetic field \(B \) (magnitude and direction).
(b) Calculate the radius \(r \) of the circular path.
(c) Locate the center \(C \) of the circular path in the coordinate system on the page.
In a region of uniform magnetic field \(\mathbf{B} \) a proton \((m = 1.67 \times 10^{-27}\text{kg}, \ q = 1.60 \times 10^{-19}\text{C})\) experiences a force \(\mathbf{F} = 8.0 \times 10^{-19}\text{N} \hat{i} \) as it passes through point \(P \) with velocity \(v_0 = 2000\text{m/s} \hat{k} \) on a circular path.

(a) Find the magnetic field \(\mathbf{B} \) (magnitude and direction).

(b) Calculate the radius \(r \) of the circular path.

(c) Locate the center \(C \) of the circular path in the coordinate system on the page.

Solution:

\[
(a) \quad B = \frac{F}{qv_0} = 2.50 \times 10^{-3}\text{T}, \quad \hat{i} = \hat{k} \times (-\hat{j})
\]

\[
\Rightarrow \quad \mathbf{B} = -2.50 \times 10^{-3}\text{T} \hat{j}.
\]
In a region of uniform magnetic field \mathbf{B} a proton ($m = 1.67 \times 10^{-27}\text{kg}$, $q = 1.60 \times 10^{-19}\text{C}$) experiences a force $\mathbf{F} = 8.0 \times 10^{-19}\text{N} \hat{i}$ as it passes through point P with velocity $\mathbf{v}_0 = 2000\text{m/s} \hat{k}$ on a circular path.

(a) Find the magnetic field \mathbf{B} (magnitude and direction).
(b) Calculate the radius r of the circular path.
(c) Locate the center C of the circular path in the coordinate system on the page.

Solution:

(a) $B = \frac{F}{qv_0} = 2.50 \times 10^{-3}\text{T}$, $\hat{i} = \hat{k} \times (-\hat{j})$

$\Rightarrow \mathbf{B} = -2.50 \times 10^{-3}\text{T} \hat{j}$.

(b) $F = \frac{mv_0^2}{r} = qv_0 B$

$\Rightarrow r = \frac{mv_0^2}{F} = \frac{mv_0}{qB} = 0.835\text{cm}.$
In a region of uniform magnetic field \mathbf{B} a proton $(m = 1.67 \times 10^{-27} \text{kg}, \, q = 1.60 \times 10^{-19} \text{C})$ experiences a force $\mathbf{F} = 8.0 \times 10^{-19} \text{N} \, \hat{i}$ as it passes through point P with velocity $v_0 = 2000 \text{m/s} \, \hat{k}$ on a circular path.

(a) Find the magnetic field \mathbf{B} (magnitude and direction).
(b) Calculate the radius r of the circular path.
(c) Locate the center C of the circular path in the coordinate system on the page.

Solution:

(a) \[B = \frac{F}{qv_0} = 2.50 \times 10^{-3} \text{T}, \quad \hat{i} = \hat{k} \times (-\hat{j}) \]
\[\Rightarrow B = -2.50 \times 10^{-3} \text{T} \, \hat{j}. \]

(b) \[F = \frac{mv_0^2}{r} = qv_0 B \]
\[\Rightarrow r = \frac{mv_0^2}{F} = \frac{mv_0}{qB} = 0.835 \text{ cm}. \]

(c) \[C = 3.84 \text{ cm} \, \hat{i} + 3.00 \text{ cm} \, \hat{k}. \]