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When Products are Sums

When we open up the classroom to student thinking we run into discoveries
and conjectures that adults would likely not see, blocked by the constraints and
conventions we have accepted in our own thinking. It is this lack in established
constraints and conventions that can enable young thinkers to explore the world of
mathematics more unencumbered. The risk of content unfamiliarity in such learning
environments is not for the students; it is for their teachers (Ball, Thames, & Phelps,
2008; Chazan, 1999; Liping Ma, 1999). We want to relay one such instance in which
a third grade student saw a new connection that stimulated us to investigate the
mathematics of the situation in greater depth. In this article we want to show how
this novel idea can be explored by students at multiple grade levels in different
ways. The tasks at hand are especially well suited to address several of the
mathematical practices standards from the Common Core State Standards, such as
reason abstractly and quantitatively, look for and make use of structure, and look
for and make use of regularity in repeated reasoning.

Discovery of a Third Grade Student

18

3 6

Figure 1. Fact Triangle Grade 3
While we were conducting a demonstration lesson in a third grade class,
students explored the relationship between multiplication and division as

represented by the fact triangle from Figure 1. We discussed the idea that if the
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quantity 3 was covered up we could prove that the missing number had to be 3
because “three times six equals eighteen” or, as some of the children said, “eighteen
divided by six equals three.” As this conversation was going on one girl stated that
she could find 18 with 3 and 6 in another way. She claimed that if one adds 3 and 6
and then doubles this sum, the result is also 18. This created some “ahs” and “ohs” in
the class. We asked if this was always possible and, with the class, checked to see if it
also worked with 3 x 7 = 21. Alas, this did not work in this example: 2(3+7) = 20.
Then one student found another example: 4 x 4 = 16 and 2(4+4) = 16. The class
started buzzing until finally one student said that “it also works for 6 x 3, but that
really the same as 3 x 6.” In this article we want to share the mathematical richness
of this idea and how it can be investigated at the different grade levels.
Investigating this idea in the elementary grades.

There are no other natural number factor pairs besides 3&6 and 4&4 that
have the relationship that states that the product of two factors is equal to double
their sum. Elementary students can discover this by creating tables and analyzing

patterns, such as below:

Table 1 Table 2
6x1 =6 2(6+1)=14 7xX1 =17 2(7+1) =16
6x2 = 12 2(6+2) =16 7x2 = 14 2(7+2) =18
6x3 =18 2(6+3)=18 7x3 =21 2(7+3)=20
6x4 = 24 2(6 +4) =20 7x4 = 28 2(7 + 4) = 22
6x5 = 30 2(6 +5) =22 7x5 =35 2(7+5) =24
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In table 1, we can see that when 6 is chosen as the first factor, the factor partner that
will satisfy the stated relationship will be 3. In table 2, we do not find a factor pair
that has this relationship. Students can discover that double the sum (the second
column in each table) will have to be even. Therefore, only factor pairs that have an
even product can be considered as candidates for the property. In table 1, all factor
partners of 6 will generate even products because 6 is even. In table 2, only even
factor partners of 7 will yield an even product. Students can discover in the
patterned table that the product can be less than, equal to, or greater than double
the sum. In the case of table 1, all three of these instances occur, but in table 2 there
is no partner of 7 that results in equality. Once the product is larger than double the
sum, it cannot become equal. Therefore 7 has no natural number factor partner that
satisfies the property. We encourage elementary teachers to allow students to
investigate many tables like these, with one factor fixed and the other variable, to
arrive at these possible patterns. There is a deeper underlying structure that
teachers may want to address when students are ready for it. This structure will
involve ideas of equivalence and the distributive property.

Let’s first return to figure 1 and understand why the student’s idea worked
for the given example of 3 x 6 = 18. She stated that 18 can also be found as follows:
2(3+6)

By applying the distributive property we can see that this is equivalent to:
2x3+2x6
Because 2 x 3 is equivalent to 1 x 6, we can write this expression as follows:

1x6+2x6,
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And by applying the distributive property again we show that this is equivalent to
3x6.

So we have given a proofthat 2 (3 + 6) =3 x 6.

The crucial step here is to write 2 x 3 (double the first number) as a multiple of 6 (a
multiple of the second number) so that the distributive property can be applied. It is
the distributive property that relates a product and a sum. We will generalize this
approach to the problem in our section on the high school grades below. But first we
will take a look at how this relationship can be extended to the middle grades.
Investigating this idea in the middle grades.

In the middle school we can extend this idea to the domains of Integers and
Rational numbers. We return to the tables 1 and 2 above. We will represent the first
and second columns in each table as a linear function. We represent the pattern in
the first column in table 1 as y = 6x and the second column as y = 2(6 + x). In
these equations, 6 is the chosen factor that is kept constant, x is the factor that
varies, and y represents the product or double the sum of the factor pairs. This then
turns the problem of finding factor pairs for which their product is equal to twice
their sum into solving a system of linear equations. Students can solve this
algebraically (using substitution) or graphically. From the functions representing
table 1 students can solve that x=3 is the factor partner of 6 such that y=18. When
we apply the same idea to table 2, where 7 is the chosen factor, we will obtain a
rational factor partner as follows:

7x = 2(7 + x)

7x = 14 + 2x
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So in the example of table 2, we can see that % is the rational factor partner of 7

such that y=95—8.

This demonstrates that there are factor pairs beyond the natural numbers for
which this relationship holds. Teachers can expand this investigation by asking
students if there are also factor pairs with negative rational numbers that have this

relationship. For example, choose the first factor to be -1 and vary the second

factor. This will lead to solving - x = 2(—1 + x), which yield 2 as a factor partner of

-1, withy = — 2 There exists one integer pair of factors with this relationship: 1 and

-2. We will show this later on in this article. In the middle school we can encourage
students to explore this relationship from a function perspective using tables,
graphs, and equations. Next we will look at how we can further generalize this
relationship.

Investigating this idea in the high school.

We would like high school students to consider the relationship in a broader, more
general sense by investigating the question: For which pairs of factors (a,b) is their

product (ab) equal to twice their sum [2(a+b)]? (See figure 2.)
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ab

Figure 2. General fact triangle
From specific numerical examples, such as 6x3=2(6+3), students can conjecture that
all possible factor pairs with this property have the following relationship, as we
investigated in the elementary grades section above:
Twice the first factor (2a) is a multiple of the second factor (nb).
We can formulate this relationship symbolically as
(1) 2xXa = nxXb, wherea,b,n € N
The general relationship can be described as follows:
(2)axb =2(a+ b)
Solving for b in equation (1) yields:
B)b==
Substitute (2) into (1) yields:
(4) axb = (n+ 2)xb
From (4) we can show that
5a=n+2
Substituting (5) into (3) yields:

4
©b=2+>
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We will create a table (see table 3) with n, a, and b, using (5) and (6). We will be

looking for all values of n such that a and b are natural numbers.

Table 3.
4
n a=n+2 b=2+— axb
n
1 3 6 18
2 4 4 16
3 5 3l 162
3
4 6 3 18
2 3
5 7 2g 19g

The values we can choose for n, such that a and b are natural numbers are
constrained by (6). There we can see that n = 1, 2, 4. For all other values for n we
will get rational values for b and this will make the product ab, a non-natural
quantity. However, it should be noted that rule (2) does hold in these cases within
the rational number set, as we investigated in the middle grades section above. Last,
we consider the solutions for n=1 and n=4 to be identical. And thus we have shown
that there are only two pairs of numbers whose product is equal to twice their sum
for natural numbers. The children in grade 3 had found those with a little effort.

If we extend the domain to the Integers, we find additional solutions. Note
that n cannot be equal to 0. We can now additionally substitute -1, -2, and -4 for n to

yield Integer solutions (see Table 4 for results). For n=-2, we get a trivial solution.
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Table 4.

4 8
n a=n+2 b=2+— axb=2n+8+—
n n
-1 1 -2 -2
-2 0 0 0
2 2
-3 -1 3 3
-4 -2 1 -2
1 3
'5 '3 1§ _3E

Investigating this idea in Calculus

If we allow this relationship over the Real number set, then we can generalize the

product as follows: ab = 2n + 8 + %. In Figure 3 we have plotted the function

f(n)=2n+8+ %, where f(n) represents the possible products. We can see that
for larger values of n, the function of products appears to be more like f(n) = 2n +
8 and for smaller values of n, the function appears to be more like f(n) = %. We can

see that f(n) = 2n + 8 is the slanted asymptote of this function. Furthermore, by
investigating the derivative of f (n) we can see that for n=2, the function has a
relative minimum and for n=-2 a relative maximum. This means that no products

will be found between 0 and 16.
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Figure 3. The function of products over R.

Once a thorough investigation of this property has been completed, high
school teachers can provide additional challenges to their students. Consider posing
the following question: For which pairs of numbers is their product equal to three
times their sum? We will reason by analogy with the prior case. We first set up the
following relationships for Figure 2.
axb = 3(a + b), and 3xa = nxb.

From this follows that:
a=n+3,andb = 3+%
The number of solutions will depend on the term rgl. From this we can see that

choices for n, such that a and b are natural numbers can only be 1, 3, and 9. We find

that4x 12 =3(4 +12) and 6 x 6 = 3(6+6). Additional Integer solutions are forn = -1,
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-3,-9:2x-6=-12,0x0=0,and -6 x 2 = 12 (same as first solution by commutative
property).
Investigating this idea beyond high school.

Looking back at this trajectory, we can generalize this situation even further.
This will require applications of Number Theory. From the above high school level

investigation students can conjecture that the terms in the expressions for b that
2 2
constrained the choices for n, were the square of the multiple of a: 2: and 3; We will

use this to generalize the prior two cases. Note that we have investigated two cases
in which the multiple of a is a prime (2 and 3). Below we will investigate multiples
that are non-prime as well. We can now consider the following question: For which
pairs of factors (a,b) is their product a multiple of their sum [p(a+b)]?

From the prior example we derive the following two relationships:
(1) ab = p(a + b) = pa + pb, where p represents the multiple of the sum, where
ab,p€El.
(2) pa =nb
Note that in this relationship the two multiples are connected. It states that a
multiple of the first factor (pa) is equal to some other multiple of the second factor
(nb).
Substituting (2) into (1) yields:
(3)ab=nb+pb=Mn+p)b
From (3) it follows that
(4)a=n+p.

From (2) we can solve for b
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b = 22 and then substitute (4):

n

2 2
PP thus b = p + p:

_ p(n+p) _
(5)b=22E =

n )
From this we can see that the constraining term for choice of multiples that satisfy

2 2
(1)is %. From this we can note that n has to be a factor of p?, such that % € Z.

If p is prime, we can only have six factors of p?, namely +1, +p, and +p?%. We have

summarized the results for g, b, and ab in Table 5 below.

Table 5
p’ p’
n a=n+p b=p+; a><b=np+2p2+;
-p? p —p? p—1 —p*+2p*—p
P 0 0 0
-1 p—1 p—p? —p*+2p*-p
1 p+1 p + p? p3+2p2+0p
p 2p 2p 4p?
p? p +p? p+1 p®+2p® +p

Note how the products for n=-1 and n=-p2, as well as the products for n=1 and n=p2
are the same due to the commutative property. Therefore, we will always have four
distinct pairs of numbers for which relationship (1) holds when p is prime. This, in
part, answers our question from above. We now consider the remainder of the
question for non-prime multiple relationships: Can we predict the amount of factor

pairs that hold this relationship for any given multiple?
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Again, we begin to consider the following relationships, first over N:
(1) ab = p(a + b) = pa + pb, where p represents the multiplier of the sum.
(2) pa =nb
We now consider the multiplier p to be non-prime. Our goal is to find the number of
factors of p and subsequently p? so that we can determine exactly which values of n
we can choose. This in turn will determine the number of pairs of numbers we can
find for a given multiplier p.
First we determine the prime factorization of the multiplier p:

p =P Xp X L Xp,
Then the prime factorization of p? is as follows:
p? = P PMXP P X X, P
From this we can determine the number of factors, f, of p?as follows:
f=0Cm;+1)(2m,+1)..2m, + 1)

Now that we know how many factors p?has, we can determine the number of pairs
of factors that will satisfy (1) above. Note that the number of factors of p? is odd
and that p is one of the factors and for the remaining factors (f-1), half are less than
p and the other half greater than p. We can also see that each half yields the same

pairs of numbers and therefore the total number of pairs for which relationship (1)
holds is f_Tl + 1.

Last we will consider the same question over Z. By symmetry we can see that

the number of factors of p?over Z must be twice the number if factors of pZover N.
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By extending the reasoning above the amount of pairs for which relationship (1)
e : f-1
holds in Z is twice as much as in N: 2 (T + 1) =f+1

In exploring whether or not the number of factors pairs that satisfy the
relationship described, the use of exponent properties and recalling prime
factorization is key. Though these skills may be above the level of ability for
elementary age students, high school students looking for applications of these

topics would be able to investigate these relationships. The expression we

determined as the number of pairs over N was denoted as % + 1. Though this

f+1
2’

could have written equivalently as this does not allow for the symmetry of the

solution to be observed. As stated above, half the factors of p? are greater than p

and the other half are less than p. This shows symmetry in the list of factors around
p, thus the f_Tl + 1 is more useful in this case (See Figure 4.). When observed over Z,

the situation for the negative integer factors is symmetrical with the positive integer
factors. This is a good example in which “simplifying” the expressions hides the
structure that we are after. It can teach us that “simplifying” is not always desirable

or useful.

-36 -18 -12 9 67 -4-32-1 234 6 9 12 18 6

Figure 4. Symmetry of factors for p=6
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Conclusion

The high-level math skills that teachers at all levels need to possess are apparent in
exploring this problem as well. Having a deep understanding of the underlying
mathematics, referred to as content knowledge in many instances, can give teachers
the courage to ask students questions such as “is that always possible?”, “Why do
you think so?”, and “Are there any other possible solutions?”. Being able to gauge
the plausibility of students’ claims is an essential tool that all teacher must have.
Ball, Thames, and Phelps (2008) discuss the numerous characteristics and abilities
needed for mathematical teaching tasks. For instance, they attest that teachers
“need not only understand that something is so; the teacher must further
understand why it is so” (p. 391).

We took ourselves to task and attempted to find depth and structure in the
discovery of a third grade student. This process involved much trial and error; lots
of notes on little pieces of paper; many discussions trying to convince each other;
and digging back into our own prior knowledge. We encourage teachers and teacher
educators to go on these journeys together inspired by their students’ unique and
unconstrained thoughts. It was fun and worthwhile for us.

We hope that teachers at elementary, middle, and high school levels are
encouraged to use this thirds grader’s thinking in their classrooms with their
students. We hope you and your students will experience as much pleasure as we

did.
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Editor’s Addendum:

Addendum to When Products are Sums

The more that the authors and I discussed the previous article When Products are Sums,
the more we came to realize how mathematically rich the problem was. That it originated
from a third grade student and can be adapted to various levels gives it wide appeal. The
article itself was written to encourage student exploration, emphasizing tabular data and
pattern recognition. Our discussions revealed a few insights that didn’t quite fit into the
framework of the original article. We decided that they were worth mentioning in this
addendum. At the very least, this addendum will show just how rich a fairly simple
question can be when re-examined. It also shows some mathematical “trickery” which
are often utilized by mathematicians.
Looking at the original problem and solving ab = 2(a + b) for b you get

ab =2a+ 2b

2a _(2a—4)+4_2 4

bza—Z a—2 a—2

(Notice the trick of “un-cancelling” the 4’s.)
At this point, the fact thata%zmust be a positive integer means thata — 2 =

1,2,4 s0 a = 3,4, 6 with corresponding b = 6,4, 3. This extends to negative integers as
well witha — 2 = —1,—2,—4 and a = 1, 0, —2 with corresponding b = —2,0, 1.
In general, suppose p is a fixed integer. The problem is to find integers a, b with

ab =p(a+b)

Again, solving for b and “un-cancelling”, we get

2

a a—p?) + p?
p_ P2 _pa—p)+p _p+ P
a-—p a-—p a-—p

This says that a — p must be a divisor of p2. For example, if p is prime then we only
have six factors of p2, namely +1, +p, and +p?, so that
a=p*1lptpptp?

Another approach involves exploring unit fractions. For example, consider that
the original equation ab = 2(a + b) can be rewritten as

ab

2 =
a+b
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So the problem becomes one of writing % as a sum of two unit fractions. The solutions

%= i+ i and% = § + é are well known. The task is to show that these are the only

positive solutions. If a,b =5 then
1 4 1 < 1 4
b a” 5

<

Ul N
N =

1
5
so at least one of a or b must be 3 or 4, which we already have.

If one of the integers, say a, is negative, then —a is positive, and we can rewrite
the original equation as

1 1 1
2 —a b
The only possible solution is when a = —2 and b = 1, which matches what we obtained

before.
In general, students can rewrite ab = p(a + b) as

SHN

+

S| =
S| =

. 1 . .
and examine the ways to represent S asasum of two unit fractions.

The original problem also has a nice geometric interpretation. Positive solutions
to the equation

ab = 2(a + b)

are the (integral) sides of a rectangle whose area is equal to its perimeter.

The point behind this addendum (and the original article) is that an innocent
comment by a student can turn into a rich mathematical experience. We should
encourage this as much as possible and be prepared to run with it when it happens. The
excitement of learning for both the student and the teacher comes from finding out what
can happen.
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