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Dynamics of Rigid Bodies [mln24]

System with 6 degrees of freedom (3 translations and 3 rotations).

Equations of motion: ṗ = F(e), L̇ = N(e) [mln2].

For the description of the rigid-body dynamics it is useful to introduce three
coordinate systems:

• inertial coordinate system with axes (X, Y, Z),

• coordinate system with axes (x′, y′, z′) parallel to (X, Y, Z) and origin
O fixed to some point of the rigid body,

• coordinate system with axes (x, y, z) fixed to rigid body and with the
same origin O as (x′, y′, z′).
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Motion of rigid body: v
α

= Ṙ + ~ω × r
α
.

• Translational motion of (x′, y′, z′) relative to (X, Y, Z).

• Rotational motion of (x, y, z) relative to (x′, y′, z′).

The optimal choice of the origin O is dictated by the circumstances:

• for freely rotating rigid bodies, the center of mass is the best choice;

• for rigid bodies rotating about at least one point fixed in the inertial
system, one such fixed point is a good choice.

Analysis of rigid body motion:

• Solve the equations of motion in the coordinate system (x, y, z). They
are called Euler’s equations [mln27].

• Transform the solution to the coordinate system (x′, y′, z′) via Eulerian

angles [msl25], [msl26] and from there to the inertial system (X, Y, Z).



Rotational Kinetic Energy [mln25]

Consider a rigid body undergoing a purely rotational motion (Ṙ = 0).

T =
1

2

∑
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mα (~ω × rα)2 =
1

2

∑
α

mα

[
ω2r2

α − (~ω · rα)2
]
.

~ω = (ω1, ω2, ω3): instantantaneous angular velocity of body frame relative to
inertial frame (components in body frame).

rα = (rα1, rα2, rα3): position coordinates in body frame.
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Use ωi =
∑

j ωjδij.
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Inertia tensor: Iij =
∑

α

mα

[
δijr

2
α − rαirαj

]
.

Inertia tensor of cont. mass distrib. ρ(r): Iij =

∫
d3r ρ(r)

[
δijr

2 − rirj

]
.

Comments:

• Inertia tensor is symmetric: Iij = Iji.

• Matrix notation: T =
1

2
(ω1, ω2, ω3) ·

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 ·

 ω1

ω2

ω3

 .

• Iij depends on choice of body frame.

• If ω = ωi then T = 1
2
Iiiω

2
i , where Iii is called a moment of inertia.

• The use of the body frame guarantees that the inertia tensor is time-
independent.

For Ṙ 6= 0 the kinetic energy generally has three parts, translational, mixed,
and rotational, which are further discussed in [mex67], [mex173]:
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[mex67] Translational and rotational kinetic energies

A rigid body is regarded as composed of particles with mass mα whose relative positions have
constant magnitude. Consider the inertial coordinate system (X,Y, Z) and the coordinate system
(x, y, z) with axes fixed to the rigid body. The velocity of particle α as expressed in the inertial
frame is Ṙ + ~ω × rα, where R is the position of the origin of the body frame measured in the
inertial frame, ~ω is the instantaneous angular velocity of the body frame relative to the inertial
frame, and rα is the position of particle α in the body frame. (a) Calculate the kinetic energy T
of the rigid body in the inertial system. (b) Show that if the origin of the body frame is chosen
at the center of mass, then the kinetic energy can be written as the sum of two terms where one
represents the translational kinetic energy and the other the rotational kinetic energy.

Solution:



[mex173] Kinetic energy of rolling cylinder

A solid cylinder of mass m and radius a is rolling with angular velocity ω on a level surface.
Calculate the translational, mixed, and rotational parts of the kinetic energy, T = Tt + Tm + Tr,
from the general formula

T =
∑
α

1

2
mα

(
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2

by using three different body frames with origins at points A,B,C, respectively.
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Solution:



Principal Axes of Inertia [mln80]

The inertia tensor I is real and symmetric. Hence it has real eigenvalues.

The orthogonal transformation which diagonalizes the inertia tensor is a
rotation of the body coordinate axes to the directions of the principal axes.

The eigenvalue problem,

I · ~ωk = Ik ~ωk, k = 1, 2, 3,

amounts to a system of linear, homogeneous equations,

I11ω1k + I12ω2k + I13ω3k = I1ω1k

I21ω1k + I22ω2k + I23ω3k = I2ω2k

I31ω3k + I32ω3k + I33ω3k = I3ω3k,

where the principal moments of inertia Ik, k = 1, 2, 3 are the roots of the
characteristic polynomial,∣∣∣∣∣∣

I11 − Ik I12 I13

I21 I22 − Ik I23

I31 I32 I33 − Ik

∣∣∣∣∣∣ = 0.

The three eigenvectors ~ωk, k = 1, 2, 3 have undetermined magnitude.
If normalized, we construct an orthonormal matrix from them:

Ω = (~ω1, ~ω2, ~ω3) =

 ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

 .

In matrix notation the transformation to principal axes looks as follows:

I · Ω = Ω · Ī ⇒ ΩT · I · Ω = ΩT · Ω · Ī = Ī,

where

I =

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 , Ī =

 I1 0 0
0 I2 0
0 0 I3

 ,

ΩT · Ω =

 1 0 0
0 1 0
0 0 1

 .



[mex69] Parallel-axis theorem

Consider a rigid body composed of particles with mass mα whose relative positions have constant
magnitude. The total mass of the rigid body is

∑
αmα =M . Two body coordinate systems with

parallel axes are labelled (r1, r2, r3) and (R1, R2, R3), respectively. The center of mass coordinate
of the rigid body is (0, 0, 0) in the former and (a1, a2, a3) in the latter. Show that the inertia tensor
of the rigid body in the displaced coordinate system, Iij , is obtained from the inertia tensor in the

center-of-mass system, I
(cm)
ij , by adding to it the inertia tensor of a point mass M at the position

of the center of mass:
Iij = I

(cm)
ij +M

(
a2δij − aiaj

)
.

Solution:



[mex73] Perpendicular-axis theorem

Consider a homogeneous sheet of material which has infinitesimal thickness dx3 and some arbitray
shape in the (x1, x2)-plane. (a) Prove the following relation between the moments of inertia for
rotations about the coordinate axes: I11 + I22 = I33. (b) Use the parallel-axis and perpendicular-
axis theorems to calculate the principal moments of inertia I11, I22, I33 of a coin (mass M , radius
R) for rotations about the axes of the following coordinate system: The origin is at the rim of the
coin. The x1-axis is radial toward the center of the coin, the x2-axis is tangential to the coin, and
the x3-axis is perpendicular to the plane of the coin.
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x2

x3

x1

x2

x3

Solution:



[mex68] Inertia tensor of homogeneous cube

Consider a cube of mass M and side L and a coordinate system with origin at one corner of the
cube and axes along the adjacent edges. (a) Calculate the inertia tensor Iij for this body reference
frame. (b) Determine the principal moments of inertia I1, I2, I3. (c) Determine the directions of
the principal axes of inertia relative to the coordinate system used originally.
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L

Solution:



[mex252] Principal moments of solid cylinder

Calculate the principal moments of inertia I1, I2, I3 of a solid cylinder as functions of its mass M ,
its radius R, and its height h for rotations about the center of mass..

Solution:



[mex253] Principal moments of a solid sphere.

Calculate the principal moments of inertia I1, I2, I3 of a solid sphere as a function of its mass M
and its radius R for rotations about the center of mass.

Solution:



[mex254] Principal moments of a solid ellipsoid

Calculate the principal moments I1, I2, I3 of a solid ellipsoid as functions of its mass M and its
semi-axes a, b, c for rotations about the center of mass.

Solution:



[mex255] Inertia tensor of four-atomic molecule

Consider a four-atomic molecule with the atoms at the corners of a pyramid. The base is an
equilateral triangle of side a. The height is h. The three atoms at the base each have mass m1

and the atom at the tip has mass m2.
(a) Find the principal moments of inertia I1, I2, I3 as functions of m1,m2, a, h for rotations about
the center of mass.
(b) Identify the simplifications that occur when the pyramid is a regular tetrahedron of side a and
all four masses are equal.

Solution:



[mex71] Inertia tensor of a cone

Calculate the principal moments of inertia for a homogeneous cone of mass M , height h, and radius
R at the base. Perform the calculation for rotations about an axis (a) through the apex of the
cone, (b) through the center of mass. Express all results as functions of M,R, h.

Solution:



[mex143] Simulating a stick by three point masses

Consider a nonuniform rod with mass m and moment of inertia I0 for rotations about an axis
through the center of mass and perpendicular to the axis of the rod. The moment of inertia for
rotations about a parallel axis displaced by x is then Ix = I0 + mx2.
Show that three point masses m0,m1,m2 with m0 +m1 +m2 = m in the configuration shown can
be chosen such that its moment of inertia for rotations about an axis through m0 is I0 and that
for rotations about a parallel axis displaced by x is Ix just as is the case for the rod. Express the
values of m0,m1,m2 as functions of the specifications m, I0, a, b of the rod.

x

cm

m1
m

0
m

2

ba

Solution:



Angular Momentum [mln26]

Ltot =
∑

α

mα(R + rα)×
(
Ṙ + ~ω × rα

)
.

If the rigid body rotates freely, choose the origin of the body frame at the
center of mass:

∑
α mαrα = 0, R = rcm, Ṙ = vcm.

⇒ Ltot = mrcm × vcm +
∑

α

mαrα × (~ω × rα) = Lorb + Lspin.

If the rigid body rotates about a fixed point in the inertial frame, choose the
origin of the body and inertial frames at the fixed point: R = 0, Ṙ = 0.

⇒ Ltot =
∑

α

mαrα × (~ω × rα) = Lspin.

Consider a rigid body undergoing a purely rotational motion (Ṙ = 0).

L =
∑

α

mαrα × (~ω × rα) =
∑

α

mα

[
r2
α ~ω − rα(rα · ~ω)

]
.

Use body frame components ω1, ω2, ω3 and rα1, rα2, rα3:

Li =
∑

α

mα

[
r2
αωi − rαi

∑
j

rαjωj

]
=

∑
α

mα

∑
j

[
ωjδijr

2
α − ωjrαirαj

]
.

⇒ Li =
∑

j

ωj

∑
α

mα

[
δijr

2
α − rαirαj

]
=

∑
j

Iij ωj.

Comments:

• The vectors ~ω and L are, in general, not parallel.

• Matrix notation:

 L1

L2

L3

 =

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 ·

 ω1

ω2

ω3

 .

• Kinetic energy: T = 1
2
~ω · L.

• If ~ω = const then L varies ⇒ N 6= 0 (torque).

• If N = 0 then L = const ⇒ ~ω varies.

• If the body frame is along principal axes, then Iij = Iiδij.
⇒ Li = Iiωi, T = 1

2

∑
i Iiω

2
i .



Eulerian Angular Velocities [msl26]

The rotation of a rigid body is described by the vector ~ω of angular velocity.
In general, this vector changes magnitude and direction in both coordinate
systems (x1, x2, x3) and (x′1, x

′
2, x

′
3).

The most natural formulation of the equations of motion for a rigid body is
in the body frame (x1, x2, x3). They are called Euler’s equations.

However, the solution is incomplete unless we know how to express the vector
~ω in the frame (x′1, x

′
2, x

′
3), which is typically the frame of the observer.

Eulerian angular velocities:

φ̇ directed along z′-axis.
θ̇ directed along line of nodes.
ψ̇ directed along z-axis.

Projections onto axes of (x1, x2, x3):

ψ̇1 = 0, ψ̇2 = 0, ψ̇3 = ψ̇.
θ̇1 = θ̇ cosψ, θ̇2 = −θ̇ sinψ, θ̇3 = 0.
φ̇1 = φ̇ sin θ sinψ, φ̇2 = φ̇ sin θ cosψ, φ̇3 = φ̇ cos θ.

Projections onto axes of (x′1, x
′
2, x

′
3):

φ̇′
1 = 0, φ̇′

2 = 0, φ̇′
3 = φ̇.

θ̇′1 = θ̇ cosφ, θ̇′2 = θ̇ sinφ, θ̇′3 = 0.
ψ̇′
1 = ψ̇ sin θ sinφ, ψ̇′

2 = −ψ̇ sin θ cosφ, ψ̇′
3 = ψ̇ cos θ.

Instantaneous angular velocity in the frame (x1, x2, x3): ~ω = (ω1, ω2, ω3).

ω1 = φ̇1 + θ̇1 + ψ̇1 = φ̇ sin θ sinψ + θ̇ cosψ.
ω2 = φ̇2 + θ̇2 + ψ̇2 = φ̇ sin θ cosψ − θ̇ sinψ.
ω3 = φ̇3 + θ̇3 + ψ̇3 = φ̇ cos θ + ψ̇.

Instantaneous angular velocity in the frame (x′1, x
′
2, x

′
3): ~ω′ = (ω′

1, ω
′
2, ω

′
3).

ω′
1 = φ̇′

1 + θ̇′1 + ψ̇′
1 = ψ̇ sin θ sinφ+ θ̇ cosφ.

ω′
2 = φ̇′

2 + θ̇′2 + ψ̇′
2 = −ψ̇ sin θ cosφ+ θ̇ sinφ.

ω′
3 = φ̇′

3 + θ̇′3 + ψ̇′
3 = ψ̇ cos θ + φ̇.

Magnitude of angular velocity: |~ω|2 = |~ω′|2 = φ̇2 + θ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ.



[mex174] Rotating rectangular box

A rectangular box with principal moments of inertia I1 < I2 < I3 spins with angular velocity
α̇ about the y-axis of the body frame, which, in turn, rotates with angular velocity β̇ about the
Z-axis of the inertial frame. The origins of both coordinate systems are at the center of mass and
the axes of the two systems coincide at time t = 0. Find the rotational kinetic energy.

I y, Y

z, Z

x, X

I
2

1

I 3

Solution:



Euler’s Equations [mln27]

Equation of motion in inertial frame:

(
dL

dt

)
I

= N.

Equation of motion in (rotating) body frame:

(
dL

dt

)
R

+ ~ω × L = N.

Proof:

N =
d

dt

[∑
α

mαrα × (~ω × rα)

]
=

d

dt

[∑
i

Liei

]
=

d

dt

[∑
ij

Iijωjei

]
.

Use ėi = ~ω × ei. ⇒ N =
∑
ij

Iijω̇jei + ~ω ×
∑
ij

Iijωjei.

Choose body frame with principal coordinate axes: Li = Iiωi, i = 1, 2, 3.

Euler’s equations:

I1ω̇1 − ω2ω3(I2 − I3) = N1

I2ω̇2 − ω3ω1(I3 − I1) = N2

I3ω̇3 − ω1ω2(I1 − I2) = N3

A purely rotating rigid body has 3 degrees of freedom.
The associated Lagrange equations are three 2nd order ODEs.

The solution via Euler’s equations proceeds in two steps:

1. Euler’s equations themselves are three 1st order ODEs for ω1, ω2, ω3.

2. The transformation to the inertial frame, ωi = ωi(φ, θ, ψ; φ̇, θ̇, ψ̇) amounts
to solving another three 1st order ODEs.



[mex175] Heavy wheels

The axes of two wheels (solid disks of mass m and radius R) are free to bend vertically about point
O. A motor forces the axes to rotate with angular velocity ω about the vertical axis through O
while the two wheels on the ground move in a circle of radius `. Find the normal force FN between
each wheel and the ground by performing the calculation (a) in the inertial frame and (b) in the
frame rotating with the vertical axis.

O

F
N

l

2R

Solution:
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