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Phase changes in selected Lennard-Jones  X;3_,Y, clusters

Dubravko Sabo,? Cristian Predescu,” and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

(Received 22 March 2004; accepted 19 April 2p04

Detailed studies of the thermodynamic properties of selected binary Lennard-Jones clusters of the
type X13-,Y,, (wheren=1, 2, 3 are presented. The total energy, heat capacity, and first derivative
of the heat capacity as a function of temperature are calculated by using the classical and path
integral Monte Carlo methods combined with the parallel tempering technique. A modification in
the phase change phenomena from the presence of impurity atoms and quantum effects is
investigated. ©2004 American Institute of Physic§DOI: 10.1063/1.1759625

I. INTRODUCTION potential energy surface affects phase change phenomena. In
addition, we examine the importance of quantum contribu-

Clusters, as aggregates of atoms or molecules that rangi®ns to the phase change phenomena in these systems.

in size from two to tens of thousands of monomer units, can  From a computational point of view, these clusters are

be viewed as an intermediate state of matter between finitglso interesting because of their complex potential energy

and bulk. Many of the cluster properties, such as structuragurface. The double-funnel character of their potential energy

and thermodynamic, for example, are different from the corsurface makes them a particularly challenging case for

responding bulk properties because of the large number aflonte Carlo simulation$®?832Therefore, they constitute a

surface species and finite size effects. good numerical test for measuring the efficiency of Monte
One thermodynamic property of clusters that has reCarlo techniques designed to overcome quasiergodicity in

ceived much experimental’ and theoreticd*° attention is  both classicdf32and quanturf? simulations.

the “phase transition.” Since phase transitions are character- The remainder of the paper is organized as follows: In

istic of bulk systems, we shall refer to the phase transformaSec. Il we give a brief review of the methods and the model

tions in clusters as phase changes, adopting the languagetential we employ to calculate the thermodynamic proper-

introduced by Berry and co-workefdn a bulk material, the  ties for the given systems. In Sec. Ill we present the results

phase transition from solid to liquid occurs at a definite tem-ncluding the total energy, the heat capacity, and the first

perature and the heat capacity at that temperature has a shaigrivative of the heat capacity as a function of temperature.

(8-function-like) peak®>® In clusters, the phase change occursThe phase change behavior is characterized with the help of

at a range of temperatures, lying between freezing and melthe probability distribution of isomers as a function of en-

ing temperatures, and the heat capacity has a broad peakgy. Finally, in Sec. IV we summarize our findings.

about the transition temperature owing to finite size effects.

Between the freezing and melting temperatures an ensembjg coMPUTATIONAL METHOD

of clusters coexists in liquidlike and solidlike formayith _ _ _

some notable exceptioighe melting transition takes place In the present section, we describe the computational

at lower temperatures than the corresponding Bfilk. details of our studies involving binary clusters of the form
In previous worR! (hereafter referred to as Paper I, we X13-nYn- We have chosen to study three systeXig;Y,

have explored the energy landscape of the selected binaf§11Y2. andXyoYs. The choice of the systems is motivated

Lennard-Jones clusters of the typgs_ Y, and examined by the detalleq studies of thew_potentlgl energy .sgr(&d‘eS .

the effect of adding1 Y impurity atoms on the structures of and construction of the associated disconnectivity graphs in

their X,5_, core. In the present work, we extend our studiesth® companion papét.

of the given systems into the thermodynamic domain. Thera_ |nteraction potential

modynamic properties, such as the total energy, heat capac-

ity, and first derivative of the heat capacity as a function of

temperature, are calculated in both the classical and quantum N N

regime. Our goals are to examine the effect of perturbing Vt0t=2 VLJ(rij)+E V(ry), D

atoms on the thermodynamic properties of the selected sys- <] =1

tems and to understand how the complex topology of thavhere V| ,(rj;), the pairwise Lennard-Jones potential as a

function of the distance;; between atomsandj, is given by

12 6
ﬁ) _(ﬁ)
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The clusters are modeled by the total potential energy
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andV.(r;) is the confining potential 3
20 (E)= 55 N+(V), (7)
|ri_Rc.m.| 2,8
Ve(r=e| =] - 3
i 93 N grovs - vy ®
In Eq. (2), the constants;; and oj; are the energy and ks 2 '

length-scale parameters for the interaction of partickesd]. 1 (#(Cy)

For the binary clusters, we need to specify both the _( v ) = —2B(Cy)+ B (V3)
“like” ( X-X,Y-Y) as well as the “mixed” K-Y) interac- kg| T
tions. The mixed Lennard-Jones parameters are obtained
from the like Lennard-Jones parameters by usual combina- T2V)P= 3V, ©)
tion rules* where kg is Boltzmann constantT is the temperaturef
=1kgT, V is the potential energy, and angular brackets de-

-1
TxY= 2 TxxF o), @ note the canonical averages with respect to the Boltzmann
Exy= VEXXEYY- (5) Welght exm_ﬁ\/(x)]

In the present work, we have chosen to examine selecte&i . .
. ! . Parallel tempering and sampling strate
binary Lennard-Jones clusters of the typg_ Y, where the pering ] ping g,\-/ )
impurity atoms are less massive than their cotecounter- The parallel tempering Monte Carlo simulations are car-

parts. Based on our previous wotkwe have chosen tg  ried out using a total of 48 parallel streams, each running a
atoms to be argon eyy=119.8K, oxx=3.405A, mass replica of the system at a different temperature. The streams

—39.949 and Y atoms to be “neonlike.” Specifically, we are independent and uncorrelated sequences of random num-

have chosen theo(= oy y/oyx, €= eyylexy) ratios for the bers that can be generated simultaneously on multiple pro-

impurity atoms to be(0.8,0.6 for X;,Y; and (0.8,0.5 for ~ €€ssors. In this paper, we have used the parallel random

both X;,Y, and XyoY3, values that produce interesting Number generator library called the scalable parallel random
) 43,44

classes of potential energy surface topologies. The mass 8tMber generatdiSPRNG.™ ™" Temperatures are generated

the Y-atom impurity has been taken to be that of neonin the range fromiT i, to Tray in such a way that they are

(20.1797 in all calculations. distributed as the geometric progresémn
In EQ. (3) r; andR , are the coordinates qf theh atom T=RY T, 1<j<M, (10
and the center of mass of the cluster, respectively. The center
of mass of the cluster is given by where
E:\‘—lmiri Rr= (Tmin/Tmax)ll(M_l)- (11)
Rem= ) We have chosef yjn=0.2K, Tma=50K, andM =48. For

.m.— N | .
Zi=am the range of temperaturé¥ i, Tmaxd=[0.2,50 K, a number

Finally, R, is the radius of the confining sphéfewhile ¢  of M =48 streams has produced acceptance probabilities for
governs the strength of the confining potential. The role ofswaps larger than 40% for all streams and for all simulations
the confining potential/.(r;) is to prevent atoms from per- performed.
manently leaving the cluster since the cluster in vacuum at  Explicitly, the Monte Carlo simulation is conducted as
any finite temperature is metastable with respect to evapordellows. For each stream, a random walk is carried out
tion. through configuration space according to the Metropolis
The optimal choice of the parame®g for the confining  algorithm?#® The basic Monte Carlo step consists of at-
potential has been discussed in recent w8r. R, is taken  tempted moves of the physical coordinates associated with a
to be too small, the properties of the system become sensitivgiven particle. Each attempted move is either accepted or
to its choice, whereas large valuesRyf can result in prob- rejected in accord with the Metropolis prescription. The
lems attaining an ergodic simulation. The classical and quamrmaximum displacements have been adjusted in order to en-
tum Monte Carlo simulations presented here have been pesure a 40%-60% acceptance ratio in the Monte Carlo
formed with Re.=20yx and e=exyx. Since the potential moves. The maximum displacements or step sizes are chosen
energy surfaces of all the systems studied in the present woiik an analogous manner to the temperatures, to satisfy geo-
display a double-funnel charactér,their thermodynamic metric progression. In other words, the step size at the tem-
properties are calculated with Monte Carlo methods couplegeratureT; is
with the parallel tempering technigtie®333"~*%evised to

=R1-I .
tackle possible ergodicity problems. Saj =R™Se,min, (12
where
R:(Sa,minlsa,max)ll(M_l) (a:X!yiz)' (13)

B. Classical Monte Carlo simulation The required acceptance ratio between 40% and 60% is

The total energyE), the constant volume heat capacity achieved fors, ,,=0.3a.u.,S, na—=1.2 a.u. andi =48.
(Cy), and the first derivative of the heat capacity with re- We define apassas the minimal set of Monte Carlo
spect to the temperaturé(C,)/JT)y for clusters consisting attempted moves over all particles in the system. Since the
of N particles are calculated using the standard expressionslusters of interest are made of 13 atoms, a pass consists of
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passes. The size of the block is sufficiently large that the m
fp

13 basic steps. We also definebfock as a set of 10000 p(x: B) o 1
=J 3NdP[a]ex —,BJ \%
block averages of the estimated quantities are independent @ 0

for all practical purposes. The simulation is divided in two

phases: an equilibration phase that consists of 100 blocks and X+ 0, a(u) du] , (18
an accumulation phase that consists of 400 blocks per tem- k=1

perature. wherepg,(B) is the density matrix of a free particléor the

An exchange of configurations between streams at adjgth free particle Pipi( B)=(m/2x%?B)Y?, dP[a] is the
cent temperatures has been attempted every 25 passes angriibability measure, defined on the sp&&
has been accepted or rejected according to the parallel tem- N
pering logic?8323337-427 stream at any given temperature ap[al=I] dP[a] (19
attempts a swap of configurations with a stream at adjacent s =
lower and higher temperature in succession. Because of this.
swapping strategy, the streams at minimum and maximur%‘”th
temperatures are involved in swaps only every 50 passes. - 1 ,
All error bars quoted in the current work correspond to ~ dP[a;]=[] da —=e a2 (20
two standard deviations. In order to avoid the cluttering of K=t V2w
data the error bars have not been shown. The error bars alée vectorsag = (a; .8, .- ) are path variables or in-
comparable to the thickness of the lines drawn in the variouslependent identically distributedi.d) standard normal vari-
graphs. ables  with & = (ayik,ayik,azk-. The vector xT
=(X1,Xs,...,Xy) represents the physical variables of the sys-
tem, while o for theith particle is ¢28/m;)*? wherem; is
C. Path integral Monte Carlo simulation its mass.oca, can be written as

181k )

ONaN k

)f'he reader should note that;=(o,0yi,0,) and oy
=0yi=0. A(u) are a set of functions defined in the fol-
)fowing way. Let{\(7)}«=1 be a set of functions defined on
the interval[0,1] that, together with the constant function

No(7)=1, make up an orthonormal basis lif[0,1]. Then,
Ay(u) is defined as

For quantum simulations of the heat capacity, we have
employed a reweighted Wiener-Fourier path integfR¥V- oa=
WFPI) method’”*® and recently developed energy and heat
capacity estimators that can be numerically implemented b
finite difference schemes:*° Since the methodology is fully
described in the cited references in this section we onl
present their salient features.

The guantum analogs of the total enekds), the con-
stant volume heat capaci{fy), and its first derivative with
respect to the temperaturé(Cy)/dT)y are given with the
following expressions:

Au)= Jou)\k(t)dt.

1(9Z
E\=—=|—] , 14 . o e
(8 Z(aﬁ)v a4 In practical applications, the series in HE48) needs to
be replaced by a finite sum. Within the RW-WFPI frame-
(Cv) _ ﬂ_z A B E E 2 15 work, a finite dimensional approximation to the exact density
ks Z ap? v Z\aBl,|" (19 matrix in Eq.(18) is given by the expression
pn(X;B) — 1
1 (0<Cv>> Bz =f dP[a]ex —3[ Vv
T ==2B(Cy)—kgB{ 5| — Pip(B) Q3N 0
kB JoT v Z aﬁs v "
Blaz\ 1® | B%[éz x+o >, akxn,k(u)}du : (21)
+2 Z % -3 ? — k=1
v 9By The functions,
/3(32> ~ \/?sin(ka-ru)
X|z|— , (16 ==
z\a8), W=\ 5 (22)

whereZ is a partition function of the system. The partition for 1<k=n, and
function is an integral of the diagonal density matrix over

whole configuration space Ap k(u)=f(u)sin(kmu) (23
for n<k=4n, are chosen so that to maximize the rate of
Z:f P B)AX. (17)  convergence,
R

In the random series path-integral representafiche den- Pa(XB)=p(XGB).
sity matrix can be written as follows: The functionf(u) is defined a¥
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. . 2<n . 27112 o 1
()= u(l—u)—2/m2s}_, sirf(kmu)/k | Un(x’a;ﬂ):f V[x(u)]du, (24
e L sirf(karu) 0
Therefore, a path that starts and ends in the same configura-  X,(x,a;8) = p,( 8)exd — BUn(x,8; 8)], (25)
tion spacex (called a thermal loopcan be written
and
n .
2 sin(kmu)
X(U)=x+o 121 a \/;—k R E g Xn(X,a Be€)
. B0 B
+fu) > ay sin(kwu)]. =e N2exd — BeU,(x,a; Be)
k=n+1 —
: . +BUn(Xa B)]. (26)
It turns out to be useful to define several auxiliary
quantitie4® Then it is easy to show that, fér=1, 2, 3, we have
|
_ _ K _
JrandX [ gand PLa]Xq(X,8;8) — Rn(X,8;8,€)
ﬂk ﬁkz de e=1
Z\ap, [ xandx gandPa]Xy(x,2; B) ' 20

The quantities above can be evaluated by Monte Carlo integration, where the canonical averages are carried out with respect
to the Boltzmann-like weight e)KﬂEiNzliﬁilafklz— BUn(x,aB8)]. The derivatives of the quantitR,(x,a;8) can be ex-

pressed in terms of the derivatives of the quanitly(x,a; 8)

dR — 3N — d — 08
& n(X,a,ﬁ,E) Ezl__T_ﬂun(xaayﬁ)_B$Un(xaalﬁ6) e=11 ( )
dZR a —>dR a 23deu a OIZU a 29
E n(X,a,B,E) 71__& n(X,a,,B,E) . +7 B& n(X,a,BE) . BE n(X,a,BG) 711 ( )
and
dsR a —»dR a 3+3dR a N2l ua
E n(X,a,ﬂ,E) 71_ E n(x’a’B7E) . & n(X,a,B,E) . ? B& n(X,a,Bé') .
d? U xS L d? U
_'BE n(X, & Be) B 5 2B g Un(xaBe) e=l_BE n(X,a;Be) .
d? _ d? _
—[3N+38——Un(xaBe)|  +B-5Un(xaBe)| |. (30
de 1 de 1
|
The derivatives with respect toare evaluated numerically and
by a finite difference approximation
dd _ _
d _ _ — Un(x,a;B€)| =1~ €5 {U[x,a B(1+2¢€p)]
geUnxapell  ~(2e) X{Uixap(1+e)] de
- _ —3U,[x,3B(1+€)]
—U,[x,aB(1l—¢€ , 31 _
X, B(1—€o) ]} (31) 30 (x5 4]
d? ~UlxaB(l-e)l}. (33

~ eaz{Un[X,E;B(l"‘ €0)]

— U, (x,a; B¢
qa x|

1. Parallel tempering and sampling strategy

—2Un[x.a ]+ Unlx.a B(1- €)1}, The sampling strategy is similar to the one employed in
(32 the classical Monte Carlo simulations. Here, with each at-
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=378,

tempted move of the physical coordinateof a particle, we e
attempt to move a randomly selected path variable associatesss
with that particle. Apassis defined as the minimal set of 77 |
Monte Carlo attempted moves over all 13 particles in the s
system. We define a block as a set of 10000 passes. Excef”
tions are simulations with 32 and 64 path variables, where a..

block contains 20 000 passes. For each simulation 400 blocks::~;

have been utilized. a2

The maximum displacements for the physical coordi- s !
nates are chosen analogously to those utilized in classica, A }
simulations[see Eqs(12) and (13)], while the maximum - o ‘

442 ! 422

displacements for the path variables are chosen in the follow-,;
ing way: A;=As,; at temperaturd; , whereA is a constant
chosen so that the acceptance ratio for each randomly se (a) )
lected path variable is between 40% and 60%. 346
We implement a parallel tempering procedure that is -0
analogous to the one utilized in classical simulations. An ¢
exchange of configurations between streams at adjacent temjz
peratures has been attempted every 25 passes and it has be_, ||
accepted or rejected according to the parallel tempering pre-s|
scription. By monitoring the acceptance ratios for all 48 -
streams we have found that values have been larger thar™
40% for all simulations performed. It should be noted that .
the exchange of configurations between streams includes,,
both particle(physica) coordinates as well as their associ- -4
ated path variables. 398
The value of the discretization step needed to evaluate -
a finite difference approximation to the derivatives with re-
spect toe has been set tey=2"12 The order of error for the
third derivative isO(ey) while for the first and the second FIG. 1. Disconnectivity graph fofa) X3, (b) X1,Ys, (€) X1;Y>, and(d)
derivative it is O(e2). We would like to mention that the %0\235 ;:‘ee(fgeigg ?gfgeo'g Ir(lougngssaf;(] i (Tohg‘ g’;) r‘éz?:;i\fl:rlyp%ﬁ';
error introduced in the evaluation of the first derivative of thepanches leading to the 200 lowest-energy minima are shown.
heat capacity(total energy, heat capacjtyfrom the finite
difference approximation, is at least {0000 times smaller

than the corresponding statistical error for all simulationssamp|ed configurations by implementing the Fletcher-

performed. Reeves-Polak-Ribiere version of the conjugate gradient
We end this section with a comment on the convergencenethod using the algorithm given iNumerical Recipe®

and the error bars involved in the determination of the totalrhe quenches allow us to interpret structural transformations

energy and the heat capacity. The convergence of the tot@d the clusters that are associated with the peaks in the heat

energy and the heat capacity has been tested with respectdgpacity curves as well as variations in the slopes of the

the number of path variables. We have found the results to bgajoric and the first derivative of the heat capacity curves.
converged for 4= 32 path variables. Further increasing the

number of path variables to 64 has yielded the same results
within the statistical erroftwo standard deviationsThe er- IIl. RESULTS AND DISCUSSION
ror bars have not been shown in the graphs in order to avoid | this section, we present the results of classical and
the cluttering of data. For all but the lowest temperatures th‘?quantum parallel tempering Monte Carlo simulations per-
error bars are comparable to the thickness of the lines disyrmed on each of thi .Y, X115 andXoY5 clusters. The
played in the graphs. For reference, at the lowest tempegetails about the calculations are given in Sec. .
ature at which the path int_egral simulations have beep Per-  Figure 1 shows disconnectivity graphs for the studied
formed, T=4 K, the following results have been obtained system together with a disconnectivity graph for the homo-
for XyoY5: (E)=-296.47-0.13, (Cy)/Nkg=0.52+0.20, geneousX;3 cluster. A description of the construction of a
(9(Cy)/dT)v/Nkg=—0.10+0.54. For the same system but gisconnectivity graph is given in the companion pdpand
at the temperature 7.22 K we have obtained the followingyeferences therein. A disconnectivity graph is a useful tool
(E)=-293.74-0.07, (Cy)/Nkg=1.10%0.04, (@(Cv)/  for the visualization of the underlying potential energy sur-
dT)v/Nkg=0.15+0.06. face of the studied systerns®?
While the potential energy surface of the homogeneous
X3 cluster is characterized by a single funriethose for
We have performed minimization or quenching of theX,,Y1, X;,Y,, and X;,Y53 have a double-funnel structure.
parallel tempering Monte Carldclassical and quantum The global minimum of each system is labeled by the num-

() (d)

D. Quenching procedure
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-100

— X, ‘ T ]
—-XQ) - oL i

C,/(k,N)

-100

T (K)

FIG. 3. Classical heat capacities per particle for studied systems in units of
kg as a function of temperature.

TX) and quantum simulations are shown in Figs. 3 and 4, respec-

FIG. 2. Classical and . _ gvely. Again, the results for the,3 cluster are shown for
. 2. guantum caloric curves for the studied systems. Soli . .
(dashedl lines represent classic@l-(quantum@) results.(E) is given in comparison. Replacement fX (AI‘) atoms in the homer'
units of kelvin per particle. The number of path variables employed in theneous clusters by Y (Ne) atoms manifests itself in Fig. 3 in
path integral simulations isr#=32. such a way that the maxima of the heat capacity curves are
shifted toward lower temperatures with respect to the maxi-
] o ] mum of the heat capacity of the homogeneous cluster. A
ber 1 and the next higher-lying inherent structurg is labeledimilar trend is seen for the quantum heat capacites Fig.
by the number 2. For th&;,Y,[X;,Y>] cluster, inherent 4 Erom Fig. 3, it can be seen that binary clusters exhibit
structures 1 E=—42.426Gx,) [(E=—39.89kxx)] and |oper temperature peaks, in addition to higher temperature
2 (E=—42.39%xx) [(E=—39.78%x) ] define two basins heaks. Their numerical values and temperatures at which
of similar energies separated by a large energy barrier. FQhey occur are listed in Table I. Both higher and lower tem-
the X;oY;5 cluster, two basins are associated with inherent,eratyre maxima are to be discussed in more details in sec-
structure 1 E=—38.25%y) (inherent structures 2 and 3 {jons below. As can be seen from Fig. 4, lower temperature
belong to the basin defined by inherent structurard in-  heaks are absent from the heat capacity curves obtained by
herent structure 4= —37.61&xx). The lowest energy ba- path integral simulations, at least in the temperature range
sin of theX,,Y, cluster contains 30 inherent structures COM-(from 4 to 50 K) considered here. Numerical values of the

pared with 67 inherent structures in the basin associated Witﬂuantum heat capacity peaks with associated temperatures
the second lowest minimum, inherent structure 2. Two diSyye Jisted in Table |I.

tinct funnels on the PES oXK;,Y, cluster, one associated
with inherent structure 1 and another with inherent structure
2, contain 56 and 116 inherent structures, respectively. 8
Therefore, their lowest energy basin is slightly narrower than
the second basin. On the other hand, two funnels on the PES
of the X;,Y3 cluster, one associated with inherent structure 1
and another with inherent structure 4, contain 98 and 85
minima, respectively. The number of inherent structures as- L
sociated with a basin often indicates the likelihood that the z.
system will relax to the minimum at the bottom of that basin. §> 4r
Figure 2 displays the caloric curves, i.e., the average ©
total energy of the clusters, as a function of temperature.
Solid lines represent classical results, while dashed lines rep- 2
resent quantum results. The caloric curves of the homoge-
neous X3 cluster are included for comparison purposes. I
Comparison of the classical and quantum caloric curves in- L
dicates that quantum effects are considerable over the entire 0 10 20 30 40 50
temperature range. A variation in the slope of the caloric TX)
curves is characteristic of a phase Change in the CIUSterS_‘ FIG. 4. Quantum heat capacities per particle for studied systems in units of
The constant volume heat capacity curves of the studieg, as a function of temperature. The number of path variables employed in
clusters as a function of temperature obtained by classicahe simulations is #=32.
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TABLE I. Classical heat capacity peak parameters for 13 atom clusters. The
temperature is given in kelvin while the heat capacity is given in unitg;of

per particle. The values are obtained by a cubic spline interpolation of the
parallel tempering data shown in Fig. 3. The heat capacity error bars esti-

mates are averages of two standard deviations of the points near the peaks. ;
X
Lower temperature peak Higher temperature peak g
v
Tpeak <CV>/kbN Tpeak <Cv>lkbN
X13 34.090.18 8.27-0.06
XoY1 0.65+0.01 3.48£0.02 31.670.08 7.54:0.05
X11Yo 2.21+0.07 3.36£0.02 28.18:0.24 6.73£0.04
X10Y3 11.09+0.17 4.03-0.02 25.61-0.05 6.03-0.04 3

(b}

A. XY

The heat capacity curves and their first derivatives ob-
tained by classical and path integral Monte Carlo simulations
are shown in Figs.(®) and 3b), respectively. The solid lines

are classical results. 2 ‘ . . .
0 10 20 30 40 50

1. Classical simulation T(K)

(U/NkG)<C,>/T),,

The heat capacity has a broad peak at a temperature EIG 5. X1oY;. Panel(a) shows classicalsolid line) and quanturidashed
about 31.7 K and a narrow, low temperature peak at aboqﬁwe)—heat capacities per particle in unitslgf as a function of temperature.
0.65 K. In order to identify the phase changes associatefanel(b) shows first derivative of the heat capacity per particle in units of
with the peaks in the heat capacity curves, the configurationks . The solid(dashedlline represents classicajuantum results. The num-
generated by parallel tempering Monte Carlo simulations at Ler of path variables employed in the path integral simulationsiis 32.

temperature somewhat below and above the temperatures of

the peaks in the heat capacity curves have been quenchegays 4 double-funnel structure. The funnel associated with
The results of the quenches are shown in Fig. 6. Quenchingyherent structure 2 contains twice as many local minima as
from the configurations sampled at 0.3 K yields only inher-ihe funnel associated with inherent structure 1. Even though

ent structure Yglobal minimum¥ atom is in the interior of  nnel 1 is energetically more favorable, owing to the larger
the cluster; center of the icosahedromhe quenches of the

configurations sampled at 1.7 K produce predominantly in-

herent structure 2Y atom is on the surface of the cluster 1t 1',=03'K
although there is still a small populatid0.06 of inherent )
structure 1. The low temperature peak in the classical heat 0.5¢
capacity curve is associated with the structural transition
from inherent structure 1 to inherent structure 2, that is, a 0 T
solid < solid phase change between two bassee Fig. 6. ! T=17K
The high probability(=0.94) of finding theX;,Y; clus-
ter to “dwell” in inherent structure 2, at a very low tempera- = 051
ture of 1.7 K might be surprising at first sight. One possible § 0
explanation is likely to be found in the shape of its discon- § 0.05 L
nectivity graph, see Fig.(th). As we noticed earlier, by ex- A T=26.0 K
amining its disconnectivity graph, the energy landscape dis- 0.0251 x20
TABLE Il. Quantum heat capacity peak parameters for 13 atom clusters. 0 T T " At
The temperature is given in kelvin while the heat capacity is given in units 0.1 : - ; : -
of kg per particle. The values are obtained by a cubic spline interpolation of T=40.2K
the parallel tempering data shown in Fig. 4. The number of path variables 0.05t 2
employed in the quantum calculations ia432. The heat capacity error
bars estimates are averages of two standard deviations of the points near the Ihu o
peaks. O a2 41 A0 39 38 37 36
Lower temperature peak Higher temperature peak Energy/sxx
Toeak (Cy)/ kN Tpeak (Cy)IKkN FIG. 6. Distribu_tions of _the in_herent structures for Dhﬁ\_(l cluster, gener- _
ated by quenching configurations sampled from classical parallel tempering
X13 33.68+0.21 7.89-0.04 Monte Carlo simulations at temperatures above and below the soldlid
XioYq 31.23+0.27 7.070.04 transition(1.7 and 0.3 Kand above and below the solid liquid transition
X11Y5 27.88+0.30 6.16-0.04 (40.2 and 26.0 K Note that the lines representing the population of inherent
X10Y3 24.86+0.12 5.42:0.03 structure 2 at energy-42.39%yy, labeled “X20” and “X2”, have been

reduced by a factor of 20 and 2, respectively.
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FIG. 7. Distributi f the inh for thaY. cl FIG. 8. X4,Y,. Panel(a) shows classicalsolid line) and quantundashed
- 7. Distributions of the inherent structures for g Y, cluster, gener- line) heat capacities per particle in unitslgf as a function of temperature.

ated by quenching configurations sampled from quantum parallel temperinaanel(b) shows the first derivative of the heat capacity per particle in units

g/leolg\ts (§6ag°l<)sgglztt')%r\llse(jé ;egptﬁ;atslgﬁds: Irhi%jotgn@its;d ’Ilir:;ptehr:ttureaf kg . The solid(dashedl line represents classicéjuantum results. The
A ) . ’ : . ) number of path variables employed in the path integral simulationsis 4
the lines representing the population of inherent structure 2 at energy:32

—42.39%yy, labeled “x20" and “x2", have been reduced by a factor of
20 and 2, respectively.

effectively raise the energy of the inherent structures, lower
number of minima associated with funnel 2, the volume ofthe energy barriers between them, and thus allow for easier
the configuration space available to funnel 2 is likely to beisomerization.
larger than the one available to funnel 1 and makes it en- From the distribution of inherent structures B4 K
tropicaly more favorable. However, it should be noted that(see Fig. T it can be seen that the system “likes” to stay in
the number of minima in a disconnectivity graph does notinherent structure 2 with the probability 1.0. A normal mode
necessarily indicate the volume of available configurationanalysis of inherent structures 1 and 2 shows that estimated
space. Another possible explanation is that inherent structurgero-point energy of inherent structure 1 lies about 2Z%tm
1 has a smaller vibrational entrop{/At a temperatureT  higher than the corresponding zero-point energy associated
=26K (below the T,e) the system occupies mainly Wwith inherent structure 2. At the temperature of 10.5 K, there
(~0.93 inherent structure 2. However, a very small popula-is still a very high populatiort~0.99 of inherent structure 2
tion of inherent structure 1 and higher energy amorphougvith almost a negligible population of inherent structure 1
structures is present. As the temperature increases, the poga=0.01). We have compared the classical distribution of in-
lation of higher energy amorphous structures rapidly in-herent structures at approximately the same temperatures
creases and at=40.2K they begin to dominate. Thus, the (T=4.09K andT=10.9K) with its quantum counterpart. It
broad peak in the heat capacity Bt31.67 K is associated has been found that the global minimum in the classical case

with the solid—liquid phase change. is slightly more likely to be populated than in the quantum
case. At the temperatures beld®26.2 K) and above€40.3 K)
2. Path integral simulation the temperature at which the salidiquid phase change oc-

Unlike the classical heat capacity, the quantum heat c8urs: the classical and quantum distributions of inherent

pacity curve has only one peak, centered ea31.23 K. It structures are similar,
can be seen from Fig. 5 and by comparing the numerical
results from Tables | and Il that the solid-liquid phase chang@- XuY>

in the “quantum” system occurs at slightly lower tempera-  The heat capacity curves and their first derivatives ob-
ture than in the “classical” one. Quantum effects lower thetained by classical and path integral Monte Carlo simulations

transition temperature by 1.4%. Likewise, there is a decreasgre shown in Figs. @) and 8b), respectively. The solid lines
in the height of the heat capacity maximum. The lowering ofgre classical results.

the transition temperature and the height of the heat capacit ) . .

peak from quantum effects are expected and have been dOCiJ/‘- Classical simulation

mented in the literatur®?°30%These phenomena are the  Asis the case witkX;,Y;, the heat capacity curve of the
consequence of the zero-point motion and/or tunneling thaX,,Y, cluster has two peaks. A broad, high temperature peak
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FIG. 9. Distributions of the inherent structures for tgY, cluster, gener-  F|G. 10. Distributions of the inherent structures for thaY, cluster, gen-

ated by quenching configurations sampled from classical parallel temperingrated by quenching configurations sampled from quantum parallel temper-
Monte Carlo simulations at temperatures above and below the-ssbtid ing Monte Carlo simulations at temperatures 4 K, 10.5 K, and temperatures
transition(4.2 and 1.2 K and above and below the solidiquid transition below (20.1 K) and above40.3 K) the solid—liquid transition.

(39.5 and 19.5 K

=27.88 K. From Fig. 8 one can see that the quantum effects

occurs at 28.18 K and a smaller, narrower peak occurs affect the phase change in tg,Y, cluster by shifting the
2.21 K. Quenching of the configurations generatedTat solid-liquid transition temperature toward lower tempera-
=1.2K gives only inherent structure(bneY atom is in the  tures and decreasing the height of the maximum of the heat
interior and the other is on the surface of the clust®he  capacity curve. The change in the transition temperature with
quenches of the configurations generated at4.2K yield  respect to the classical result is approximately 1.1%.
inherent structures 1, 2, and 3 with the population probability  The quenches from the configurations sampled by quan-
of approximately 0.2, 0.77, and 0.03, respectively. Inherentum parallel tempering Monte Carlo simulatiorts4aK yield
structures 2 and 3 belong to the same funnel. Thus, the lownherent structures 2, 3, and(dssociated with the basin 2
temperature peak in the heat capacity curve is associataith the probability 0.95, 0.04, and 0.01, respectively. There
with the structural transition between inherent structure Jis no measurable population of the global minimum at that
and inherent structure 2 and corresponds to a sediolid  temperature. Comparing the quantum distributisae Fig.
phase change. 10) of the inherent structureg 4 K with the classical distri-

The high probability of occupying inherent structure 2 atbution (see Fig. 9 at approximately the same temperature,
a relatively low temperature could be explained in an analoT=4.2K, we see that there is a sizable population of the
gous manner to that for th¥,,Y; cluster. The funnel asso- global minimum in the classical results. Why is that? An
ciated with inherent structure [3ee Fig. 1b)] contains two  explanation is in the quantum effects, i.e., zero-point energy.
times more minima than the one associated with inherenie have performed a normal mode analysis of inherent
structure 1 and is likely to have a larger entropy. structures 1 and 2 and have found that the estimate of zero-

At a temperaturd = 19.5 K, inherent structures 2, 3, and point energy of inherent structure 1 lies about 30 ¢m
4 associated with funnel 2 dominate in the quench distribuhigher than the corresponding zero-point energy associated
tion. There is also a very small population of the amorphouswith inherent structure 2. At =10.5K, the quenching again
(glassy structures. AfT=39.5K, which is on the high tem- vyields inherent structures 2, 3, and 4 but with probability
perature side of the higher peak in the heat capacity curve).75, 0.21, and 0.04, respectively. At the temperatures below
the inherent structures from the basin 2 still dominate, bu{20.1 K) and above(40.3 K) the temperature at which the
there is an appreciable population of the higher energy amosolid—liquid phase change occurs, the classical and quantum
phous structures. This indicates that the cluster undergoesdistributions of the inherent structures are similar.
phase change from a solidlike to a liquidlike fosee Fig.

9). C. X10Y3
_ ) ) The heat capacity curves and their first derivatives ob-
2. Path integral simulation tained by classical and path integral Monte Carlo simulations

In the temperature range examined in this work, theare shown in Figs. 1&) and 11b), respectively. The solid
guantum heat capacity curve has only one peakTat lines are classical results.
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FIG. 12. Distributions of the inherent structures for gY; cluster, gen-
erated by quenching configurations sampled from classical parallel temper-

5.1 K the system dwells in the funnel associated with the
1. Classical simulation global minimum, which is not the case for thg,Y; and
X11Y, clusters as discussed earlier.

The heat capacity has a broad peak at a temperature of At T=20.9K, the group of inherent structures that be-
about 25.6 K and a narrower, low temperature peak at aboyéngs to the funnel associated with inherent structure 4 domi-
11.1 K Quenching of the configurations generated at 5.1 Kqates in the quench distribution. However, there is a large
(see Fig. 12 obtains inherent structures 1 and 2 with prob-number of amorphous structures that start to be populated. At
abilities of 0.99 and 0.01, respectively. Both inherent struc-T=36.1 K the popu|ation of amorphous structures rap|d|y
tures 1 and 2 belong to the funnel associated with inherenhcreases. The heat capacity peal at25.61 K is, therefore,

structure 1. At the temperature 15.1 K, the quenches of thgssociated with the sokdliquid phase changesee Fig. 12
sampled configurations obtain two groups of inherent struc-

tures. One group, comprised of the low-lying inherent struc- ) ) )

tures(l, 2, 3, and § belongs to the funnel associated with 2. Path integral simulation

inherent structure 1 and the other group, comprised of the Unlike the classical heat capacity, in the range of tem-
low-lying inherent structure$4, 5, 7, 8, and 9 belongs to  peratures examined in the current work, the quantum heat
the funnel associated with inherent structure 4. The populacapacity curve has only one peak, at the temperature of 24.86
tion probability of the low-lying inherent structures at the K. This single peak behavior can be seen from Fig. 11 and by
bottom of the funnel associated with inherent structure 1 iomparing the numerical results from Tables | and Il that the
0.22 while for those structures that belong to the funnel asquantum effects lower the transition temperature by 2.9%
sociated with inherent structure 4, the population probabilitywith respect to the classical result.

is 0.77. There is also a very small population of the higher-  The quenches from the configurations sampled at 5.0 K
energy, glassylike structures. The low temperature heat cadeld two groups of inherent structures with approximately
pacity peak can be characterized as a phase change arisitige same probabilitysee Fig. 13 Group 1 contains inherent
from the structural transition between two groups of the in-structures 1 and 2, and they belong to the funnel associated
herent structures rather than the structural transition betweenith inherent structure 1. Group 2 is made up of inherent
individual inherent structures, which is the case for thestructures 4, 5, 7, and 8, and they belong to the funnel asso-
X12Yq and X4,Y, clusters. Therefore, it is characterized as aciated with inherent structure 4. Comparing the quantum dis-
solid—solid phase change. As noticed earlier, the energyribution of the inherent structures with its classical counter-
landscape oK,,Y5 has two funnels with approximately the part at the same temperature, one can see that quantum
same number of associated inherent structures. As a conseffects allow for an easier isomerization between two fun-
guence, it is equally likely that the system upon cooling en-els. Moreover, the quantum effects eliminate the low tem-
ters either of the funnels. At the relatively low temperature ofperature peak in the quantum
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0.5 — WFPIl) Monte Carlo method combined with parallel
T=50K tempering. Quenching of the Monte Carlo sampled configu-
0.25} 1 rations permits us to identify the structural transitions asso-
ciated with the peaks in the heat capacity curves.
0 N Classical results show that all three studied systems ex-
0.4 _— hibit a low temperature peak in the heat capacity curve.
T=153K These low temperature peaks result from a structural trans-
.. 02 formation between two solidlike low lying, close in energy,
= inherent structures, or groups of inherent structures. In other
§ oLt words, low temperature peaks are a direct consequence of the
QE_ 0.3 TI—21‘2K double-funnel structure of the underlying potential energy

surface of the system. The high temperature peaks are asso-
ciated with a solid to liquid melting transition.
Replacingn X (core atoms in the homogeneous cluster
0 o with n lighter impurity atomsy results in the lowering of the
0.04 — melting temperature and the height of the peak of the classi-
cal heat capacity when compared to the same quantities in
0.02} 1 the homogeneous clustéee Fig. 3. The quantum heat ca-
pacity shows a similar trengsee Fig. 4. On the other hand,
. low temperature peaks in the classical heat capacity curves
-39 38 37 E;i?gy'/ii . 3433 - are shi_fted towar_d higher temperatures as the number of at-
omsY increases in the clusters.
FIG. 13. Distributions of the inherent structures for %gY cluster, gen- Quantum effects are important but relatively modest in
ferat't\%ﬂd bty qcuerllchi_ng ft)tnfiguretttitons sampled \fr)rim lqsugnéum F(Jjara"el tempethe whole range of temperatures except in the low tempera-
s o varaon " "%re regime where ey are more pronounce. This is under-
standable because the dominant species in the clusteks are
atoms that mimic¢heaviey Ar atoms. As the number of the

heat capacity curve over the studied temperature range. woms, that mimiglighter) Ne atoms, increases so does.the
have also performed a normal mode analysisXggYs and magnitude of the quantum effect. In general, t.he magnitude
found that the zero-point energy changes the energetic orde‘i’]c the quantum effects depends on the particle mass, the

ing. The zero-point energy of inherent structure 4 lies about éemperatgrg, and t.he reIaUvg Istrengths of ftfhe S|m|Ia|1r and
cm™ lower than the corresponding zero-point energy assomixed pair interaction potential. Quantum effects do lower

ciated with inherent structure 1. A similar reversal of theNe mer:tlnlg temperatures in allkthree stud!edhsystlemg I\/II%re—
energetic ordering has been found in teY, andX,y, ©ver the low temperature peaks present in the classical heat

systems and might be a reason for the absence of the lofiPacities of the clusters disappear in the quantum Gse
temperature peaks. Another possibility could be that thd€@St in the temperature range considered in this yvork
guantum transitions are shifted to lower temperatures than

those studied in the current work. At=15.3 K two groups ACKNOWLEDGMENTS
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