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Paramagnetism [tln58]

Paramagnetic salts contain localized ions with permanent magnetic dipole
moments associated with unpaired electron spins. The interaction between
the electron spins is negligibly small and there is no kinetic energy associated
with their orientational motion. Hence the internal energy vanishes: U = 0.

The microstate is specified by the instantaneous orientation of the magnetic
moments mi, i = 1, . . . , N relative to some coordinate system. The localized
moments can be treated as distinguishable particles. They do not need to
have a definite permutation symmetry. The macroscopic equilibrium state
in the canonical ensemble is characterized by random orientations of the
moments mi. It has no magnetisation: M =

∑
i〈mi〉 = 0.

An external magnetic field H causes a partial spin alignment. The interac-
tion of the magnetic moments with a field in z-direction is represented by
Hamiltonian (Zeeman energy) of the form:

H = −
N∑

i=1

mi ·H = −H
N∑

i=1

mz
i .

Classical model: The permanent atomic magnetic moment is described as
a 3-component vector of fixed length:

mi = (mx
i , m

y
i , m

z
i ) = m(sin θi cos φi, sin θi sin φi, cos θi).

Each mi represents one degree of freedom described by one pair of canon-
ical coordinates qi = φi, pi = m cos θi. The canonical partition function is
calculated in exercise [tex84].

Quantum model (spin 1/2): The permanent atomic magnetic moment
originates from a single electron spin. This is a two-level system, which
also has a host of realizations unrelated to paramagnetism. The magnetic
moment in appropriate units is quantized as follows:

mz
i = ±1

2
.

The canonical partition function is calculated in exercise [tex85].

Quantum model (spin s): The permanent atomic magnetic moment origi-
nates from an effective spin of quantum number s = 1

2
, 1, 3

2
, . . . The magnetic

moment in appropriate units is quantized as follows:

mz
i = −s,−s + 1, . . . , s− 1, s.

The canonical partition function is calculated in exercise [tex86].



Paramagnetic salts [tsl30]

Magnetization curves of paramagnetic salts
in comparison with Brillouin functions

[from Crangle 1977]



Fluctuations in a magnetic system [tln53]

Consider a system of N interacting magnetic moments mi positioned in an
external magnetic field of magnitude H.

Total magnetic moment: M =
N∑
i=1

mi.

Hamiltonian: H = Hint −HM.

Canonical partition function: ZN = Tr e−βH, β = (kBT )−1.

Gibbs free energy: G(T,H,N) = −kBT lnZN .

Magnetisation (average value of total magnetic moment):

〈M〉 =
1

ZN
Tr
[
M e−βH

]
= β−1

∂

∂H
lnZN

.
= M.

Enthalpy (average value of Hamiltonian):

〈H〉 =
1

ZN
Tr
[
H e−βH

]
= − ∂

∂β
lnZN = U −HM = E

Energy fluctuations and heat capacity [tex109]:

〈H2〉 − 〈H〉2 =
∂2

∂β2
lnZN = kBT

2CH .

Magnetisation fluctuations and susceptibility [tex109]:

〈M2〉 − 〈M〉2 = β−2
∂2

∂H2
lnZN = kBTχT .



[tex109] Fluctuations in a magnetic system

Consider a quantum magnet. The Hamiltonian is of the form H = Hint−hm, where Hint describes
the (unspecified) interaction between microscopic magnetic moments, h is the magnitude of the
external magnetic field (assumed constant) and m is the component of the total magnetic moment
in the direction of the field. Given the Gibbs free energy G(T, h,N) = −kBT lnZN as derived from
the canonical partition function ZN = Tr e−βH , where β = (kBT )−1, derive the following relations
(a) between energy fluctuations and heat capacity at constant field,

〈H2〉 − 〈H〉2 =
∂2

∂β2
lnZN = kBT

2Ch,

and (b) between magnetisation fluctuations and isothermal susceptibility,

〈m2〉 − 〈m〉2 = β−2 ∂
2

∂h2
lnZN = kBTχT .

Solution:



[tex84] Classical paramagnet (canonical ensemble)

Consider an array of N noninteracting localized magnetic dipole moments in the form of classical
3-component unit vectors mi = (mx

i ,m
y
i ,m

z
i ) = (sin θi cosφi, sin θi sinφi, cos θi). In the presence of

a magnetic field H pointing in z-direction, the Hamiltonian of this system represents the Zeeman
energy:

H = −
N∑

i=1

mi ·H = −H
N∑

i=1

mz
i .

(a) Calculate the canonical partition function ZN of this system.
(b) Calculate the Gibbs free energy G(T,H,N), the magnetization M(T,H,N) (Langevin func-
tion), the isothermal susceptibility χT (T,H,N), and the heat capacity CH(T,H,N).
(c) Plot M/N versus H for three values of T . Plot CH/N versus T for three values of H.
(d) Show that the leading term in an expansion of χT at small H is H-independent and represents
Curie’s law χT ' N/3kBT .

Solution:



[tex85] Quantum paramagnet (two−level system)

Consider an array of N noninteracting localized magnetic dipole moments mi produced by localized
electron spins in a paramagnetic insulator. In the presence of a magnetic field H pointing in z-
direction, the Hamiltonian of this system represents the Zeeman energy:

H = −
N∑

i=1

mi ·H = −H
N∑

i=1

mz
i , mz

i = ±1
2
.

(a) Calculate the canonical partition function ZN of this system.
(b) Calculate the Gibbs free energy G(T,H,N), the magnetization M(T,H,N), the isothermal
susceptibility χT (T,H,N), and the heat capacity CH(T,H,N).
(c) Show that the internal energy U is identically zero.
(d) Show that the leading term in an expansion of χT at small H is H-independent and represents
Curie’s law χT ' N/4kBT .

Solution:



[tex86] Quantum paramagnet (Brillouin function)

Consider an array of N noninteracting localized magnetic dipole moments mi produced by localized
effective atomic spins in a paramagnetic insulator. In the presence of a magnetic field H pointing
in z-direction, the Hamiltonian of this system represents the Zeeman energy:

H = −
N∑

i=1

mi ·H = −H

N∑
i=1

mz
i ,

where mz
i can assume the 2s + 1 values (−s,−s + 1, . . . , s− 1, s) for fixed s = 1

2 , 1, 3
2 , . . ..

(a) Calculate the canonical partition function ZN of this system.
(b) Calculate the Gibbs free energy G(T, H,N). Calculate the magnetization M(T, H,N) (Bril-
louin function).
(c) Set s = 1

2 to recover the result of [tex85]. Take the limit s → ∞ and recover the result of
[tex84] for the rescaled quantities M̃ = M/s, H̃ = Hs.

Solution:



[tex142] Ising trimer

Three spins at the corners of an equilateral triangle interact with each other and with a magnetic
field. The Hamiltonian is of the form

H = −J(s1s2 + s2s3 + s3s1)−H(s1 + s2 + s3),

where sn = ±1, n = 1, 2, 3, and J , H are energy units representing the interaction and the
magnetic field, respectively.
(a) Calculate the canonicl partition function Z and infer from it the Gibbs free energy G(T,H).
(b) Write detailed instructions for the derivation, from Z or G, of the magnetization M , the entropy
S, and the internal energy U .

Solution:



Negative temperatures [tsl31]

Consider N noninteracting 2-level systems with energies ±ε.

N = N++N−, U = (N+−N−)ε ⇒ N+ =
1

2

(
N +

U

ε

)
, N− =

1

2

(
N − U

ε

)
.

Degeneracy of state with energy U : NU(U,N) =
N !

N+!N−!
.

Entropy:

S(U,N) = kB lnNU(U,N) = kBN lnN − 1

2
kB

(
N +

U

ε

)
ln

[(
N +

U

ε

)]
− 1

2
kB

(
N − U

ε

)
ln

[(
N − U

ε

)]
.

Inverse temperature:

1

T
=

(
∂S

∂U

)
N

=
kB
2ε

ln

(
N − U/ε
N + U/ε

)
.

Inversion of level occupancy corresponds to negative temperature.

[from Greiner et al. 1995]

Applications: laser pumping to metastable states, nuclear magnetism.



Gases with internal degrees of freedom [tln59]

Assumptions: molecules are noninteracting; translational, rotational, and
vibrational degrees of freedom are independent:

H =
N∑
i=1

[
H

(i)
T +H

(i)
R +H

(i)
V

]
⇒ ZN =

1

N !
Z̃N , Z̃ = Z̃T Z̃RZ̃V .

Translational motion (classical):

H
(i)
T =

p2
i

2m
⇒ Z̃T = V

(
2πmkBT

h2

)3/2

⇒ C
(T )
V =

3

2
NkB [tex76].

Rotational motion (classical):

(a) NH3 (multi-atomic molecule):
Euler angles θ, φ, ψ; canonical conjugate momenta pθ, pφ, pψ.
Uniaxially symmetric inertia tensor with principal moments I1 = I2, I3.

Hamiltonian: H
(i)
R =

p2
iθ

2I1

+
p2
iψ

2I3

+
(piφ − piψ cos θi)

2

2I1 sin2 θi
.

Ranges: 0 ≤ θi ≤ π, 0 ≤ φi, ψi ≤ 2π, −∞ < piθ, piφ, piψ < +∞.

⇒ Z̃R =
1

π~3

√
(2πI1kBT )2(2πI3kBT ) ⇒ C

(R)
V =

3

2
NkB [tex87].

(b) HCl (two-atomic heteronuclear molecule):
The rotation about the molecular axis is suppressed due to quantum effect.

Hamiltonian: H
(i)
R =

p2
iθ

2I1

+
p2
iφ

2I1 sin2 θi
, 0 ≤ θi ≤ π, 0 ≤ φi ≤ 2π.

⇒ Z̃R =
2I1kBT

~2
⇒ C

(R)
V = NkB [tex88].

(c) N2 (two-atomic homonuclear molecule):
Minor modification: range of one variable (0 ≤ φ ≤ π).
This change does affect the entropy but not the heat capacity ⇒ [tex88].

1



Rotational motion (quantum):

Consider a two-atomic molecule.

Angular momentum operator: L. Hamiltonian operator: HR =
1

2I
L2.

Energy levels: Elm =
l(l + 1)~2

2I
; l = 0, 1, 2, . . . ; m = −l,−l + 1, . . . , l.

Degeneracy: (2l + 1)-fold.

⇒ Z̃R =
∞∑
l=0

+l∑
m=−l

e−βElm =
∞∑
l=0

(2l + 1)e−βl(l+1)~2/2I ⇒ [tsl32]

Characteristic temperature: kBΘR =
~2

2I
.

Low-temperature analysis (T � ΘR) ⇒ [tex89].

High-temperature analysis (T � ΘR) ⇒ [tex90].

Vibrational motion (quantum):

Hamiltonian: HV =

f∑
l=1

(
p2
l

2ml

+
1

2
mlω

2
l q

2
l

)
.

Here f is the number of vibrational normal modes, each expressed by a pair
(ql, pl) of canonical normal mode coordinates.

⇒ Z̃V =

f∏
l=1

[
e−β~ωl

1− e−β~ωl

]
⇒ C

(V )
V

T�ΘV−→ fNkB [tex82].

Characteristic temperature: kBΘV = ~ωl.

Vibrational modes require much higher temperatures to be activated:

ΘR =
~2

2IkB
∼ 10K, ΘV =

~ωl
kB
∼ 1000K ⇒ [tsl32].

2



Fine structure:

If the atomic ground state has zero orbital angular momentum (l = 0) and
nonzero spin angular momentum (s 6= 0), the entropy acquires an additive
constant, ∆S = NkB ln(2s+ 1). The heat capacity remains unaffected.

In the presence of an external magnetic field, this system is a paramagnetic
gas. The thermodynamics of dilute paramagnetic gases are the theme of
[tex22] and [tex133].

If the atomic ground state has l 6= 0 and s 6= 0, then the L-S coupling
produces a fine-structure splitting of the ground-state degeneracy:

Z̃FS =
∑
j

(2j + 1)e−βεj , |l − s| ≤ j ≤ l + s,

where j is the quantum number of the total angular momentum. If the lowest
level has j = j0, then the entropy of the atomic gas increases by

∆S = NkB ln
(2s+ 1)(2l + 1)

(2j0 + 1)

over a temperature range 0 < kBT . ∆ELS, where ∆ELS measures the total
L-S level splitting.

The contribution to the heat capacity, C
(FS)
V , is a function of T that rises

from zero exponentially, exhibits a smooth maximum at kBT ∼ ∆ELS, and
then dips back down to zero algebraically.1

The functional dependence of C
(FS)
V on T is very similar to that of the heat

capacity of a Langevin paramagnet as analyzed in [tex85] and [tex86].

1In practical reality, atomic gases with l 6= 0, s 6= 0 tend to form molecules or condense at
temperatures far above kBT ∼ ∆ELS .
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[tex87] Classical rotational free energy of NH3 gas

Under the assumption that the NH3 molecule is a rigid body with uniaxially symmetric inertia
tensor and principal moments I1 = I2 6= I3, the one-particle Hamiltonian of the free rotational
motion reads

HR =
p2
θ

2I1
+
p2
ψ

2I3
+

(pφ − pψ cos θ)2

2I1 sin2 θ
,

where (θ, pθ;φ, pφ;ψ, pψ) are the Euler angles and their conjugate generalized momenta. The range
of these canonical coordinates is 0 ≤ θ ≤ π, 0 ≤ φ, ψ ≤ 2π, −∞ < pθ, pφ, pψ < +∞.
(a) Show that the canonical partition function for the rotational motion of N molecules is

ZNR = π−N (2πkBT/~2)3N/2IN1 I
N/2
3 .

(b) Calculate the rotational Helmholtz free energy AR(T,N), the rotational entropy SR(T,N), and
the rotational internal energy UR(T,N).

Solution:



[tex88] Classical rotational entropies of HCl and N2 gases

Under the assumption (to be justified quantum mechanically) that only the rotational modes
perpendicular to the axis of a two-atomic molecule are activated, its classical rotational motion is
described by a Hamiltonian with two degrees of freedom,

HR =
p2
θ

2I1
+

p2
φ

2I1 sin2 θ
,

where 0 ≤ θ ≤ π, −∞ < pθ, pφ < +∞. The range of the other angle is 0 ≤ φ ≤ 2π for heteronuclear
molecules (e.g. HCl) and 0 ≤ φ ≤ π for homonuclear molecules (e.g. N2).
(a) Calculate the canonical partition function ZNR for the rotational motion of a gas of N HCl
molecules and a gas of N N2 molecules.
(b) Calculate the difference in rotational entropy and in rotational internal energy of the two gases
when both are at the same temperature.

Solution:



[tex89] Quantum rotational heat capacity of a gas at low temperature

The rotational spectrum of two-atomic molecules consists of energy levels

Elm =
l(l + 1)~2

2I
; l = 0, 1, 2, . . . ; m = −l,−l + 1, . . . , l.

Show that the leading term of the rotational heat capacity of a gas of N molecules at low temper-
ature (T � Θ) has the form

CR(T ) ' 12NkB

(
Θ
T

)2

e−2Θ/T , Θ =
~2

2IkB
.

Solution:



[tex90] Quantum rotational heat capacity of a gas at high temperature

The rotational spectrum of two-atomic molecules consists of energy levels

Elm =
l(l + 1)~2

2I
; l = 0, 1, 2, . . . ; m = −l,−l + 1, . . . , +l.

(a) Use the Euler-McLaurin summation formula

∞∑
n=0

f(n) =
∫ ∞

0

dx f(x) +
1
2
f(0)− 1

12
f ′(0) +

1
720

f ′′′(0) + . . .

to calculate the first three terms of a high-temperature expansion of ZR =
∑
lm e−βElm .

(b) Use the result of (a) to show that the first two terms in a high-temperature expansion of the
rotational heat capacity read

CR ' NkB

[
1 +

1
45

(
Θ
T

)2

+ . . .

]
, Θ =

~2

2IkB
.

Solution:



Rotational and vibrational heat capacities [tsl32]

Rotational heat capacity of two-atomic gas:

T � Θ : C ' 12NkB

(
Θ

T

)2

e−2Θ/T ; Θ ≡ ~2

2IkB

T � Θ : C ' NkB

[
1 +

1

45

(
Θ

T

)2

+ . . .

]

Rotational and vibrational heat capacities of hydrogen molecules:

H: 1H (hydrogen)

D: 2H (deuterium)

T: 3H (tritium)

[from Greiner et al. 1995]



Orthohydrogen and parahydrogen [tln81]

Molecular hydrogen (H2) comes in two (nuclear) spin isomers.

The electronic and nuclear wave functions must both be antisymmetric. The
electronic ground state has a symmetric space part and an antisymmetric
spin part (spin singlet). Electronic excited states have much higher energies.

Nuclear wave functions with symmetric spin part and antisymmetric space
part or vice versa are energetically close to each other. The space part is
described by rotational modes with orbital quantum numbers l = 0, 1, 2, . . .
Vibrational modes have much higher energies.

• Orthohydrogen: Nuclear spin part is symmetric (spin triplet) and
nuclear space part is antisymmetric (odd l).

• Parahydrogen: Nuclear spin part is antisymmetric (spin singlet) and
nuclear space part is symmetric (even l).

At high T , the H2 gas at equilibrium contains 75% orthohydrogen and 25%
parahydrogen. The 3:1 ratio is a reflection of the nuclear spin degeneracy.

The lowest parahydrogen level is lower than the lowest orthohydrogen level
by ∆E/kB = ~2/kBI ' 175K. Conversion is slow in the absence of catalysts.
Cooling and condensing hydrogen may leave the majority of molecules in a
metastable state. The transition to equilibrium at low T releases significant
amounts of energy.

Rotational factors of canonical partition function under two conditions:

• {eq} Slow temperature variation with catalysts present.

• {3:1} More rapid temperature reduction with catalysts absent.

Z̃eq
R =

(
Z̃o + Z̃p

)N
, Z̃3:1

R =
(
Z̃o
)3N/4(

Z̃p
)N/4

.

Z̃o = 3
∑
odd l

(2l + 1)e−βl(l+1)~2/2I , Z̃p =
∑
even l

(2l + 1)e−βl(l+1)~2/2I ,



[from Wikipedia]
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[tex91] Relativistic ideal gas (canonical partition function)

Consider a classical ideal gas of N atoms confined to a box of volume V in thermal equilibrium
with a heat reservoir at a very high temperature T . The Hamiltonian of the system,

H =
N∑
l=1

[√
m2c4 + p2

l c
2 −mc2

]
,

reflects the relativistic kinetic energy of N noninteracting particles. Here c is the speed of light
and pl = |pl| is the magnitude of the momentum of particle l.
(a) Show that the canonical partition function can be expressed in the form

ZN =
1
N !

[
4πV

(mc
h

)3 eu

u
K2(u)

]N
, u ≡ βmc2, Kγ(u) =

u

γ

∫ ∞
0

dx sinhx sinh(γx)e−u cosh x

where Kγ(u) is a modified Bessel function.
(b) Recover the result from [tex76] for ZN of the nonrelativistic ideal gas at kBT � mc2 by using
the asymptotic expression K2(u) '

√
π/2ue−u for u� 1.

(c) Recover the result from [tex77] for ZN of the ultrarelativistic ideal gas at kBT � mc2 by using
the asymptotic expression K2(u) ' 2/u2 for u� 1.

Solution:



[tex92] Relativistic ideal gas (entropy and internal energy)

(a) Derive from the result for the canonical partition function ZN of the relativistic classical ideal
gas as calculated in [tex91] the Helmholtz free energy A(T, V,N), the equation of state p(T, V,N),
the chemical potential µ(T, V,N), and the entropy S(T, V,N).
(b) Use the recursion relation, K ′n(u) = −Kn−1(u)−(n/u)Kn(u), for the modified Bessel functions
to derive the following expression for the internal energy:

U(T,N) = NkBTu

[
K1(u)
K2(u)

+
3
u
− 1

]
, u ≡ βmc2, β =

1
kBT

.

Solution:



[tex93] Relativistic ideal gas (heat capacity)

(a) Derive from the result for the internal energy U(T,N) of the relativistic classical ideal gas as
calculated in [tex92] the heat capacity in the form

CV (T,N) = NkBu

[
u+

3
u
− K1(u)
K2(u)

(
3 + u

K1(u)
K2(u)

)]
, u ≡ βmc2, β =

1
kBT

.

by using the recursion relations K ′n(u) = −Kn−1(u) − (n/u)Kn(u) and Kn−1(u) = Kn+1(u) −
(2/u)Kn(u) for modified Bessel functions.
(b) Use the asymptotic results

K1(u)
K2(u)

' 1− 3
2u

+
15
8u2

(u� 1),
K1(u)
K2(u)

' u

2
(u� 1)

to recover the the results CV = 3
2NkB and CV = 3NkB in the nonrelativistic and ultrarelativistic

limits, respectively.

Solution:



Relativistic classical ideal gas [tsl34]

Heat capacity:

CV = NkBu

[
u+

3

u
− K1(u)

K2(u)

(
3 + u

K1(u)

K2(u)

)]
Kn(u): modified Bessel function; u ≡ βmc2.

Nonrelativistic limit (u� 1):
K1(u)

K2(u)
= 1 − 3

2u
+

15

8u2
+ . . .

Ultrarelativistic limit (u� 1):
K1(u)

K2(u)
=
u

2
+ . . .

[from Greiner et al. 1995]
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