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On the white board:

 

 

Teacher: Look x2 is a double cheeseburger, and x is a cheeseburger. So how many 

double cheeseburgers do you have?  

Students: Four 

Teacher: How many double cheeseburgers do you add? 

Students: Three 

Teacher: How many double cheeseburgers do you have in all? 

Students: Seven. 

Teacher: Great! Get it? 

In introductory algebra courses (and later) students seem to struggle with the concepts of 

like terms and combining like terms with algebraic expressions.  These ideas appear to be 

unfamiliar to students and do not seem to relate to anything they have done in the past. In an 

attempt to link with something the students do know, teachers may resort to pseudo-explanations 

4x2 + 5x + 3
3x2 + 4x + 6
+ __________
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or contexts that are not mathematical in nature and which frequently are incorrect concretizations 

or contextualizations. These concretizations (e.g. different fruits, animals, and foods) incorrectly 

interpret part-part-whole structures of certain addition (and subtraction) problems and do not 

address the idea that an algebraic expression (or term) may contain variable quantities. In the 

above example, we can certainly join single cheeseburgers (part) and double cheeseburgers (part) 

in one collection of cheeseburgers (whole) for the given context, because the expressions x and 

x2 are used to identify names of an object and not for identifying variable quantities.  

While this approach of using letters to assign attributes of objects or the objects 

themselves may, at some point, get some students to combine like terms in limited 

circumstances, they will be misunderstanding what they are doing. It is not linked with any 

mathematical structure from their prior knowledge; rather a pseudo-mathematical explanation is 

given (Liping Ma, 1999). We are not advocating against using context. Proper employment of 

context has shown to be a fruitful bridge between arithmetic and algebra (Tabach and 

Friedlander, 2008). However, the context must help students develop structure sense, (Lichevski 

and Livneh, 1999; Lichevski and Herscovic, 1996). Developing structure sense is given an 

important place in both the process standards (NCTM, 2000) and the mathematical practices 

(CCSSI, 2010). In this article we wish to share the collaborative attempt of a student teacher and 

her supervisor to support instructing and learning the concept of combining like terms in algebra 

with the structural understandings of arithmetic. We realize that this is one of several choices. 

For a comprehensive treatise of the different perspectives that can be taken toward school 

algebra we recommend Chazan (2000). 

Building on What We Know 

The Common Core State Standards for Mathematics (CCSSI, 2010) explicitly point out 

in many places, especially in the K-8 standards, that the learning of new structures should be 

presented as an extension of prior (fundamental) structures. For example, the learning of 

fractions and rational numbers is built on the structure of whole numbers and integers, so that 

consistency with operations of numbers is preserved. Furthermore, the Standard for 

Mathematical Practice #7 makes looking for and making use of structure important at all grade 

levels within the Common Core. It is our contention in this article that secondary teachers of 

mathematics need to look for and make use of structures in the K-8 standards that can be 

extended to more generalized ideas in algebra. In this article we will present one example of how 
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we, a student teacher (Author 2) and her university supervisor (Author 1), considered this idea in 

teaching an introductory lesson on polynomial expressions and operations with polynomial 

expressions.  

  In this article we will present the phases of the lesson that we co-constructed during the 

pre-lesson discussion, share how this lesson panned out, and reveal parts of the student teacher’s 

reflection to represent her thinking and learning in hind-sight. It is our hope that the method 

described will be of use to teachers of algebra. The student teacher wrote a post-observation 

reflection of this lesson. In this reflection, she explains her initial concern expressed to her 

supervisor with regard to how students were learning about like terms in her algebra 1 class: 

I originally wanted to open my lesson on addition and subtraction of polynomials by 

referring back to solving systems of linear equations. I wanted to stress that when using 

the various solution methods one adds or subtracts like terms. During my lesson I was 

going to represent the different variables in the examples as different fruits. I knew this 

was not mathematically correct but this is what my cooperating teacher has always done 

in the past so I did not want to override her way of teaching addition and subtraction of 

polynomials. But it just did not feel right. 

To address this concern we began by finding a place of competence in Author 2’s students’ past 

experiences.  We determined that her students were comfortable and skilled with the base-10 

place-value system through which they learned the fundamental structure of numeric polynomial 

expressions and how to add and subtract these (i.e. combine like terms). We can consider a 

multi-digit number, e.g. 957 as a numeric polynomial expression by expanding it as 9 x 102  + 5 

x 10 + 7. Author 2 articulated this thinking in her post-lesson reflection as follows:  

Based on my misgivings, I decided to have a discussion with my supervisor about what 

addition and subtraction of polynomials actually meant. We talked about how students 

have been adding and subtracting polynomials since second grade by thinking of numbers 

as polynomials, i.e. objects that have “many names.” This idea of objects with more than 

one name became a big aha moment for me and I decided with my supervisor to 

completely change the launch phase of the lesson to establish this context for 

polynomials and operations with polynomials.  
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The context for this work was established by beginning with adding multi-digit numbers 

in an attempt to develop the idea that these can be written as numeric polynomial expressions 

providing an algebraic proto-structure for addition (and subtraction). We can write a multi-digit 

number in polynomial form by writing it in expanded scientific notation (see example for 957 

above). We will refer to multi-digit numbers as numeric polynomials in this article. Each of the 

steps of the instructional process that follows were recorded on the cue cards we generated in 

preparation. 

Step 1: Establishing competence 

The student teacher began by putting the three-digit number 576 on the board. She asked 

the students what the value was of each of the digits. She then emphasized that they identified 

the value by naming it, that each digit has its own name. She then asked the students to show 

how they would add 957 to 576. The students said that they needed to line up the digits and then 

add column by column. They used the traditional addition algorithm to complete the task. She 

then asked students why they did not add the two sevens together. Students said that those were 

not in the same column and that you can only add digits in the same column. Next she shifted the 

language to adding digits that have the same name: ones to ones, tens to tens, and hundreds to 

hundreds. She represented this on the board as demonstrated in figure 1. 

Figure 1. Establishing Competence. 

	
  
 

 

 

 

 

 

 

She guided the students to see that 6 ones and 7 ones added to 13 ones; that 7 tens and 5 

tens added to 12 tens; and that 5 hundreds and 9 hundreds added to 14 hundreds. Note that a) 

each partial sum moves up one place value as we go to each successive column, b) that it does 

not matter in what order we find the three partial sums, and c) that we add digits that have the 

  H T O  

  9 5 7  

+  5 7 6  

   1 3 O 

  1 2  T 

 1 4   H 

 1 5 3 3  
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same name. While this was a novel point of view for the students they found it easier than the 

traditional method.  

 

Step 2: Multi-digit integers as polynomial expressions via expanded notation. 

A multi-digit number does not yet look like a numeric polynomial expression. We found 

that some important misconceptions about polynomial expressions can be cleared up using the 

familiarity with the base-ten place-value number system. In the post-lesson reflection the student 

teacher stated:  

Many of the students were becoming involved with the lesson and started asking 

questions. We determined that polynomials are expressions with terms that have different 

names. Then one student asked me, “What about 444?” The student appeared to be 

thinking that since there are all fours in the expression, they cannot have different names. 

I then replied, “Well, in the number 444 we have 4 hundreds, 4 tens, and 4 ones. Do you 

see the difference? That was a great question!” 

This nicely motivated the next step by writing the addends in expanded notation. The above 

addition was now presented as shown in figure 2. 

Figure 2. Using Expanded Notation. 

	
  
 

 

 

 

Several students were able to connect the work in step one with step two. They realized 

that 12 tens is equivalent to 120 and that 14 hundreds is equivalent to 1400. They also began to 

articulate during the lesson that step 2 looked more like their prior work on solving systems of 

two linear equations in two variables, where they learned to add and subtract like terms with the 

elimination method. While adding polynomial expressions is not the same as adding linear 

combinations of equations, the concept of like terms is essential in both structures. Students 

began to intuitively notice this. They began to realize that naming is an important idea that 

occurs both with numbers and variables. 

   900 +   50 +   7 

+   500 +   70 +   6 

 1400 + 120 + 13 

= 1533 
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Step 3: Linking number as polynomial expression with place value 

In step three we attempted to connect the first two steps by explicitly naming each digit 

according to its place value. We must be careful not to interpret the names as a variable at this 

stage. Thus 9H represents nine units of hundred, 5T represents five units of ten, and 7O 

represents seven units of one. Note that we exchanged 10 ones for one ten and then 10 tens for 

one hundred in figure 3 after we did the addition according to the algebraic structure of adding 

same named quantities. Exchanging can also be thought of as renaming in a different unit. In 

algebra we do not do such renaming in a different unit, because the base is variable.  

Figure 3. Connecting with Place Value 

	
  
 

 

 

 

Several students started to notice that the H, T, and O seemed to function just like 

variables and some connected the distributive property to this process of addition. Connecting 

polynomials with place value clarifies the transition for students to visualize how the structure of 

a numeric polynomial is similar to that of an algebraic polynomial written with variables. The 

student teacher was careful to make sure that at this stage the letters H, T, and O represented 

names of units with fixed values. This thinking led to the next step.   

 

Step 4: Connecting scientific notation with numeric polynomial expressions, place value, and the 

distributive property 

We wanted to help students see the role of the distributive property more explicitly and 

then transition to helping them see that algebraic polynomial addition (and subtraction) is 

fundamentally the same in structure as numeric polynomial addition (and subtraction). To do this 

we decided to rewrite the expanded notation of step 2 in scientific notation. This was a crucial, 

but not a simple step in the development of the lesson. The student teacher described this process 

as follows in her post-lesson reflection: 

   9H +   5T +   7O 

+   5H +   7T +   6O 

 14H + 12T + 13O 

= 15H  +   3T +   3O 
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“Are you familiar with scientific notation?” was the transition question I asked my 

students when shifting from step three to step four. The students replied, “yes.” I then 

told the class I could rewrite the numeric polynomials using scientific notation, because 

this uses 10 as the base and connects directly to the base-10 notation system. The room 

quickly filled with panic, but this vanished when I informed the class that we would use it 

to discover something important. I explained to the students that if 900 = 9(100) and 100 

= (10²), then 900 = 9(10²). We concluded that the digit 9 in the hundreds place has a 

value of 9(10²). Likewise the digit 5 in the tens place has a value of 5(101), and the digit 7 

in the ones place has a value of 7(100). The students saw that the place of the digit was 

represented by the exponent of the base. Because of the consistency of adding terms in 

the same column, the students began seeing the pattern and relationship between a digit’s 

value according to its place and like terms. After I set up the addends with scientific 

notation the class began to see that we used the distributive property to add quantities 

with the same name, that are in the same place, that are like terms: 9(10²) + 5(10²) = (9 + 

5)(10²) = 14(10²). It was in this moment of the lesson that I started to really get it myself 

and I didn’t need my notes anymore. My language had changed to mathematical language 

and so had my students’. No more cheeseburgers for me. 

During this step of the lesson the student teacher and her students had changed their conceptions. 

It was at this point that she put the lesson notes on her desk. New thinking had become 

structurally clear and had become a strong foundation for moving forward. 

Figure 4. Connecting with Scientific Notation and the Distributive Property. 

	
  

 

 

 

While in step three we did include an exchange (renaming) of 10 tens for one hundred, 

we did not do this in step four. There we transitioned to the algebraic way of adding like terms 

using the distributive property and did not exchange anymore. Algebraically, base-10 is just one 

of many possible systems. In another base the coefficients 14, 12, and 13 from figure 4 will be 

        9x102 +        5x10 +   7 

+        5x102 +        7x10 +   6 

 (9+5)x102 + (5+7)x10 + (7+6) 

=      14x102  +      12x10 + 13 
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decomposed differently. Therefore algebraically we cannot exchange because the base is 

variable. Here is where adding algebraic polynomials departs from adding numeric polynomials. 

This is why step four is such a crucial transition.  

 

Step 5: Generalizing step 4 to addition with algebraic polynomial expressions 

Using the scientific notation allowed us to abandon the specific case of the base-10 

system and work toward the idea that in an algebraic polynomial the base of the system can be 

thought of as a variable. In Figure 5 you can see one of the many examples that were used, in this 

case a base-12 example.  

Figure 5. Generalizing to operations with algebraic expressions. 

	
  
 

 

 

 

It took a good number of examples for students to abstract the structure to that of an 

algebraic polynomial. In the days following this lesson the students looked at adding 

polynomials with a stronger structural perspective that was connected and deeply mathematical 

in nature. Note that the numeric polynomial sum above can be renamed to 10 x 122 + 1 x 12 + 1. 

For algebraic polynomial expressions we cannot accomplish such renaming in general since the 

base is variable according to this perspective on such expressions. To rename a multiple of x to 

x2 we will need x groups of x.  

In this article we have only considered situations in which the terms are all added. We 

realize that combining like terms of expressions with mixed signs is not addressed here. That will 

need to be placed in the context of adding and subtracting integers. For example, we can expand 

376 as 4 x 102 – 2 x 10 – 4 and then add or subtract this from another numeric polynomial.  

Conclusion 

 In this article we tried to accomplish two things. First we wanted to share our 

collaboration as student teacher and university supervisor during a student teaching experience. 

Second we wanted to share this experience in the context of linking important algebra concepts 

with fundamental structures from K-12 mathematics. The need for this collaboration was born 

        3x122 +       7x12 +   6 

+        6x122 +       5x12 +   7 

 (3+6)x122 + (7+5)x12 + (6+7) 

=        9x122  +      12x12 + 13 
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from a concern by the student teacher regarding the teaching of combining like terms in adding 

and subtracting algebraic polynomials. She agreed to take a risk by teaching an approach that 

was novel to her with the safety of her supervisor’s support. What appeared remarkable about 

this situation was that both the students’ and the student teacher’s mathematical language 

changed in the course of this and subsequent lessons, revealing a much deeper insight in the 

structural properties of algebraic polynomial addition and subtraction and its relationship with 

numeric polynomial addition and subtraction in a place value system. In addition the importance 

of the distributive property was amplified in this process. Translating polynomial to mean “many 

names” was not just a semantic device, but much more so a discovery that naming is our human 

way of distinguishing one place value from another and one term from another. We hope that 

you find equal promise in these ideas.  
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