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Abstract

Missing data are frequently encountered in longitudinal clinical

trials. To better monitor and understand the progress over time, one

must handle the missing data appropriately and examine whether the

missing data mechanism is ignorable or nonignorable. In this arti-

cle, we develop a new probit model for longitudinal binary response

data. It resolves a challenging issue for estimating the variance of the

random effects, and substantially improves the convergence and mix-

ing of the Gibbs sampling algorithm. We show that when improper

uniform priors are specified for the regression coefficients of the joint

multinomial model via a sequence of one-dimensional conditional dis-

tributions for the missing data indicators under nonignorable miss-

ingness, the joint posterior distribution is improper. A variation

of Jeffreys prior is thus established as a remedy for the improper

posterior distribution. In addition, an efficient Gibbs sampling algo-

rithm is developed using a collapsing technique. Two model assess-

ment criteria, the deviance information criterion (DIC) and the log-

arithm of the pseudomarginal likelihood (LPML), are used to guide

the choices of prior specifications and to compare the models under

different missing data mechanisms. We report on extensive simu-

lations conducted to investigate the empirical performance of the

proposed methods. The proposed methodology is further illustrated

using data from an HIV prevention clinical trial.

Keywords: Probit Model; Latent Variable; Jeffreys Prior; Collapsed Gibbs

Sampler; Identifiability; DIC; LPML.
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1 Introduction

Intermittent missingness and dropout are frequently encountered in longi-

tudinal studies. Intermittent missingness occurs when the subject returns

to the study after missing one or more visits and dropout refers to the

situation where the subject permanently withdraws from the study.

Little and Rubin (2002) classified the type of missingness into three

categories: “Missing Completely at Random ” (MCAR), the probability of

missingness does not depend on either the observed or unobserved data;

“Missing at Random” (MAR), the probability of missingness does not de-

pend on the unobserved data conditional on the observed data; “Missing

Not at Random” (MNAR), the probability of missingness depends on the

unobserved data. Under the assumption that the parameters of the missing

data mechanism are distinct from the parameters of the sampling model,

MCAR and MAR are referred to as ignorable missing data mechanisms

since the missing data mechanism does not need to be included in the like-

lihood specification, while MNAR is referred to as a nonignorable missing

mechanism for obtaining the maximum likelihood estimates. Nonignorable

missing data is most frequently encountered in longitudinal studies, where

data is gathered for the same subject repeatedly over time.

One approach for handling missing data is listwise deletion, in which all

cases with missing values are deleted. This approach, however, introduces

bias if the missingness is not MCAR. For MAR, inferential methods include

maximum likelihood (Rubin (1976); Ibrahim et al. (1999); Newman (2003);

Ibrahim et al. (2005)), multiple imputation (Rubin (2004); Royston (2004);

Sterne et al. (2009)) and weighted estimating equations (Robins and Rot-
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nitzky (1995); Preisser et al. (2002)). If the data are MNAR, one approach

is to specify a parametric model for the missing data mechanism, and then

to jointly model the response variables and the missing data mechanism by

incorporating them into the complete data log-likelihood. Three commonly

used joint models are selection (Glynn et al. (1986)), pattern-mixture (Little

(1993)), and shared-parameter models (Follmann and Wu (1995)).

Ibrahim et al. (2001) proposed a general joint multinomial model for

the missing data mechanism for longitudinal data, which nicely accommo-

dates nonignorable missing response data with nonmonotone missingness

patterns. They also devised a Monte Carlo EM algorithm, and derived the

analytical form of the E- and M-steps for the normal random effects model.

Huang et al. (2005) provided theoretical justifications of model identifiabil-

ity for generalized linear models with nonignorably missing covariates where

they mainly focused on missing covariates rather than missing response

measurements. Albert (2000) considered the transition model, which is ap-

propriate if one is interested in how the response and covariates are related

to the missingness path of each subject. He examined the setting of inter-

mittent missingness and proposed a transition model for longitudinal binary

data which allows for nonignorable intermittent missingness and dropout of

each subject. However, the model does not allow for correlations between

the response variable within each subject, and it also does not consider the

fact that an intermittent missing value at time t must be followed by an

observed value at some time point greater than t (otherwise, it would be a

dropout).

One challenge of the probit mixed-effects regression model for longitu-

dinal binary response data is the estimation of the variances of the random
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effects. In this paper, we propose a new reparameterization technique to

develop a probit model with latent variables. Our proposed model not

only makes the variance for the random effects more identifiable but it

also improves convergence and mixing of the Gibbs sampling algorithm,

particularly for the parameters involved in the covariance matrix of the

random effects. Following Ibrahim et al. (2001, 2005), we adopt a sequence

of one-dimensional conditional distributions for the missing data indica-

tors via a logistic regression model, and further show that the posterior

distribution is improper if improper uniform priors are specified for the re-

gression coefficients corresponding to the missing binary responses in the

logistic regression models. To overcome this non-identifiability issue, we

first specify normal priors for these regression coefficients and then use the

DIC and LPML criteria to guide the choice of “optimal” normal priors for

the regression coefficients. We further propose a variation of Jeffreys prior,

which circumvents the identifiability issue all together. The proposed Jef-

freys prior is attractive since it is relatively noninformative, guarantees that

the joint posterior distribution is proper, and has similar performance as

the “optimal” normal priors. Finally, the proposed joint model for the

longitudinal binary responses and the missing data mechanism (ignorable

or nonignorable) is computationally attractive since it allows us to conve-

niently sample missing binary responses and to apply the collapsed Gibbs

technique (Liu (1994)) within the Gibbs sampling framework.

The remainder of this article is organized as follows. A brief description

of the HIV prevention behavioral data is presented in Section 2. Section 3

introduces a probit model with latent variables, and presents a joint multi-

nomial model for the missing data indicators. In Section 4, we investigate
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and characterize the conditions for propriety of the joint posterior distribu-

tion, followed by a variation of Jeffreys prior as a remedy for impropriety

of the posterior. In addition, we develop an efficient Gibbs sampling al-

gorithm, and in the same section, provide a detailed formulation of the

partial DIC and conditional LPML criteria in the presence of missing data.

An extensive simulation is related in Section 5. In Section 6, we carry out a

detailed analysis of the HIV prevention behavioral data. We conclude the

paper with a brief discussion in Section 7.

2 HIV Prevention Behavioral Data

We consider data from an HIV prevention behavioral intervention clinical

trial (Fisher et al. (2014)) in South Africa, where people living with HIV

(PLWH) on antiretroviral therapy (ART) constitute a large population.

The goal of this trial was to understand if a brief counseling intervention can

significantly reduce HIV risk behavior among HIV-infected South Africans

on ART. The data were collected from sixteen urban, peri-urban, and ru-

ral primary healthcare clinics and community health centers in the uM-

gungundlovu and uMkhanyakude health districts of KwaZulu-Natal, South

Africa from June 2008 to May 2010. The sixteen health districts were then

randomized to intervention (8 clinics) and standard of care (8 clinics) arms.

The total number of HIV-infected participants on ART was 1891 (967 for

intervention and 924 for standard of care).

PLWH were invited to take part in the study and provided informed

consent. Participation consisted of completing audio computer- assisted

self-interviews (ACASI) and interviewer-administered questionnaires at base-
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line, 6, 12, and 18 months, of providing biological samples assessing sexually

transmitted infections (STIs) at baseline, 12, and 18 months, and of con-

senting to medical chart reviews for CD4 count, HIV viral load, STIs, and

health status. As part of routine clinical care, participants in the inter-

vention and standard of care arms received counseling from lay counselors

concerning issues relevant to PLWH on ART (e.g., adherence education and

counseling). Participants at the 8 intervention clinics received brief, theory

and evidence-based, tailored, one-on-one counseling sessions with trained

lay counselors concerning sexual risk behavior reduction. Standard of care

participants received standard of care safer sex promotion messages from

counselors, typically involving standard condom promotion messaging. As-

sessments were carried out by a different individual in a separate research

setting at the 4 specified time points within the 18-month study.

The longitudinal binary response variable is any ACASI-reported un-

protected penile-vaginal or penile-anal sex acts in the past 4 weeks with

partners of any HIV status, where 1 denotes the occurrence and 0 indi-

cates otherwise. We excluded subjects who had missing values for the

entire study, including baseline measurements from our analysis. We also

excluded four subjects who had missing baseline covariates, so that the

resulting number of subjects in our study cohort is 1875. Table 1 shows

the characteristics of these 1875 PLWH, and Figure 1 visually presents the

path diagram of the longitudinal binary response data (any unprotected sex

acts). Determining whether missing responses are ignorable or nonignor-

able is of great practical interest in HIV intervention clinical trials, which

motivates our proposed methodology.
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3 The Proposed Models

Suppose there are a total of T visits and K health districts in a clinical

trial. Let yt denote the measurement for a patient at visit t in the kth health

district (1 ≤ k ≤ K), and yt = (y0, y1, . . . , yt)
′ denote the vector containing

all the measurements up to and including visit t, for t = 0, . . . , T , where

y0 represents the baseline measurement. Also, denote by z the intervention

indicator such that z = 0 if the subject belongs to the control arm and

z = 1 if the subject belongs to the intervention arm.

3.1 The Model for Longitudinal Binary Measurements

According to Verbeke (2005), for longitudinal measurements, it is often

assumed that yt follows a pre-specified distribution F (β, εt), depending on

covariates and is parameterized through a vector β, common to all subjects,

and subject-specific random effects εt. When yt is binary, the probit mixed-

effects regression model is assumed and given by

P (yt = 1|z,x1, k,β
∗, τ ∗, ζk, ε

∗
t ) = Φ(zβ∗1t + x′1β

∗
2t + τ ∗ζk + ε∗t ), (1)

for t = 0, . . . , T , where Φ is the N(0, 1) cumulative distribution function,

x1 is a vector of baseline covariates, β∗ = (β∗1t,β
∗′
2t)
′ with β∗1t denoting the

regression coefficient corresponding to treatment condition and β∗2t is the

vector of regression coefficients corresponding to x1. Due to the design

of the HIV prevention behavioral data that sixteen health districts were

randomized instead of patients, we introduce random effects ζk
i.i.d.∼ N(0, 1)

with τ ∗2(τ ∗ > 0) being the variance, representing the random effect for all

the patients from the kth heath district, k = 1, . . . , K. We further assume
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that ε∗ = (ε∗0, ε
∗
1, . . . , ε

∗
T )′ ∼ N(0, σ2Σ), where Σ is a (T + 1) × (T + 1)

correlation matrix with (s, t)th entry ρ|t−s|. Under this formulation, the

variance σ2 of the random effects cannot be estimated.

To better see this identifiability problem, we obtain an equivalent rep-

resentation of the model given in (1) by introducing the latent variables

w∗ = (w∗0, . . . , w
∗
T ). Following Albert and Chib (1993), (1) can be reformu-

lated as

yt =

1 if w∗t ≥ 0,

0 if w∗t < 0,

(2)

w∗t | ε∗t ∼ N(zβ∗1t + x′1β
∗
2t + τ ∗ζk + ε∗t , 1) (3)

for t = 0, 1, . . . , T , where ε∗ = (ε∗0, ε
∗
1, . . . , ε

∗
T )′ ∼ N(0, σ2Σ).

First we note that yt modeled in (2) is invariant with respect to the scale

parameter (variance) of w∗t : if we replace w∗t in (3) by C ·w∗t , where C is any

nonnegative constant, (2) is still identical to (1). Therefore, the marginal

variance of w∗t and the marginal variance of ε∗t are not identifiable. Another

issue with this model is that the marginal variance of each individual w∗t

given health districts, which is 1 + σ2, is partially confounded with the

scale parameter σ2 in the binary response model (See Kim et al. (2008) for

a related discussion and Remark 3.1). These issues ultimately imply that

β∗ is essentially not identifiable and this leads to poor convergence of the

Gibbs sampling algorithm. To circumvent these problems, we consider the

reparameterization

wt =
w∗t√

1 + σ2
, βt =

β∗t√
1 + σ2

, τ =
τ ∗√

1 + σ2
, εt =

ε∗t√
1 + σ2

. (4)

After this reparameterization, we propose our equivalent but identifiable
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model as

P (yt = 1|z,x1, k,β, τ, ζk, εt) = Φ((zβ1t + x′1β2t + τζk + εt)
√

1 + σ2) = πt,

(5)

or

yt =

1 if wt ≥ 0,

0 if wt < 0,

(6)

wt | εt ∼ N(zβ1t + x′1β2t + τζk + εt,
1

1 + σ2
) (7)

for t = 0, 1, . . . , T , where ε = (ε0, . . . , εT )′ ∼ N(0, σ2

1+σ2 Σ). Under this

model, the marginal variance of wt equals 1, leading to a better separation

between β and σ2, and improving convergence and mixing of the Gibbs

sampling algorithm. For simplicity, we let α denote σ2

1+σ2 throughout.

The proposed model is attractive since (i) εt captures the dependence

of the longitudinal measures, yt, over time; (ii) the time-varying vector of

coefficients βt allows us to assess effectiveness of the intervention over time;

(iii) the random effect ζ adjusts for the effects of 16 health districts; and

most importantly (iv) all the parameters involved in the model given by (5)

or the model defined by (6) and (7) are identifiable.

Remark 3.1: After the reparameterization in (4), βt, as the ratio of β∗t and
√

1 + σ2 is now identifiable. This implies that, in the original formulation

of (3), a large value of σ2 corresponds to large absolute values of the ele-

ments in β∗ due to the dual role σ2 plays in the binary response and the

latent variable model. It thus becomes difficult to interpret the meaning of

β∗, and leads to poor convergence of the Gibbs sampling algorithm. This

phenomenon is also empirically observed in our analysis of the HIV data
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discussed in Section 2 by fitting the model defined by (2) and (3) without

reparameterization, which further confirms the necessity of the reparame-

terization technique.

3.2 Missing Data Mechanism

Let RT = (R0, . . . , RT )′ denote the vector of the missing data indicators,

where Rt at time t is 1 if yt is missing and Rt = 0 if yt is observed. With

P (Rt = 1|Rt−1,yt, z,x2,γt) , Pt, a logistic regression model is assumed

for Pt:

logit(Pt) = log
( Pt

1− Pt

)
= zγ1t + x′2γ2t + g(Rt−1,γ3t) + h(yt,γ4t), (8)

where x2 is a vector of baseline covariates, which may be different from

x1, while g and h are certain linear functions. We set g = 0 when t = 0

since there are no previous missing indicators (Rt−1). Following Ibrahim

et al. (1999, 2005), we construct the joint distribution of R via a sequence

of one-dimensional conditional distributions,

P (R0 = r0, . . . , Rt = rt|yt, z,x2,γ) =
T∏
t=0

Pt
1(rt=1)(1− Pt)1(rt=0). (9)

Remark 3.2: If we assume that P (Rt = m|Rt−1 = l,yt, z,x2,γt) depends

on the longitudinal measures only through the current and previous visits,

we simply take h(yt,γ4t) = γ4t1yt−1 +γ4t2yt in (8). The model in (9) implies

nonignorable missingness due to the existence of intermittent missingness

and dropout. We may also let h(yt,γ4t) = 0 if the missingness is ignorable.

(See Section 6 for further discussion.)

Remark 3.3: For t > 0, we may choose g(Rt−1,γ3t) = R′t−1γ3t, which

depends on all of the previous missingness indicators. In this paper, we
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set g(Rt−1,γ3t) =
∑t−1

j=0Rjγ3t. The new covariate
∑t−1

j=0 Rj captures the

cumulative number of missing response indicators, reduces the number of

nuisance parameters for modeling the missing data mechanism, and makes

the nonignorable missing data mechanism more identifiable (See Section

4.2).

4 Bayesian Inference

4.1 The Likelihood Function

Suppose there are n subjects and assume that (zi, ki,x1i,x2i) is completely

observed, for all i = 1, . . . , n. Let yobs = (y′1,obs, . . . ,y
′
n,obs)

′ and ymis =

(y′1,mis, . . . ,y
′
n,mis)

′, where yi,obs and yi,mis are the observed and missing binary

responses for the ith subject.

Let yi = (yi0, . . . , yiT ), and RiT denote the collection of all missing data

indicators RiT = (Ri0, . . . , RiT ). Denote by Dc = {yi, zi, ki,x1i,x2i, ζki , εi,

wi,Ri, i = 1, . . . , n} the set of complete data and Dobs = {yi,obs, zi, ki,x1i,

x2i,Ri, i = 1, . . . , n} is the set of observed data. Denote by fy and fR the

marginal densities of y and R, respectively. Let θ = (β,γ, α, τ, ρ) denote

the collection of all model parameters.

Let [A|B] denote the conditional distribution of A given B. We model

the observed data through the sequence of conditional distributions [y][R|y].
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The complete data likelihood function is therefore given by

L(θ|Dc) =
n∏
i=1

{
fy(yi|zi,x1i, ki, ζki , εi,wi,θ)fR|y(RiT |yi, zi,x2i,θ)

}

=
n∏
i=1

{ T∏
t=0

1(wit ≥ 0)yit1(wit < 0)1−yit 1√
2π(1− α)

exp{−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)
}

Pit
1(rit=1)(1− Pit)1(rit=0) 1√

2π
exp

(
−
ζ2
ki

2

)}
1√

2π|αΣ|
exp

{
− 1

2α
ε′iΣ

−1εi
}
.

(10)

After integrating out the missing longitudinal responses yi,mis, ζki , εi,

and the latent variables wi, the observed data likelihood function is given

by

L(θ|Dobs) =
∑
ymis

∫ n∏
i=1

{ T∏
t=0

1(wit ≥ 0)yit1(wit < 0)1−yit

1√
2π(1− α)

exp{−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)
}dwPit1(rit=1)

(1− Pit)1(rit=0) 1√
2π

exp

(
−
ζ2
ki

2

)
dζ

}
1√

2π|αΣ|
exp

{
− 1

2α
ε′iΣ

−1εi
}
dε.

(11)

4.2 Prior and Posterior Distributions

We assume that the joint prior density can be expressed as

π(θ) = π(β)π(γ)π(α)π(τ)π(ρ).

The joint posterior based on the observed data Dobs is written as

π(θ|Dobs) ∝ L(θ|Dobs)π(θ). (12)
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We first establish a useful proposition regarding the propriety of the

posterior distribution when an improper uniform prior is assumed for γ.

Proposition 4.1 Suppose we take π(γ) ∝ 1, the joint posterior in (12) is

improper regardless of whether π(β, α, τ, ρ) is proper or improper.

A sketch of the proof of the proposition is given in Appendix A. From

Proposition 4.1, the joint posterior distribution is improper if π(γ) ∝ 1.

The next proposition, based on Chen and Shao (2001), states that under

some mild conditions, the joint posterior is proper if π(γ) is proper, but

π(β, α, τ, ρ) ∝ 1.

Let Zi be the (T+1)×(T+1) diagonal matrix with diagonal elements zi,

X1i be the matrix with all the row vectors equal x′1i, and β = (β′1, . . . ,β
′
T )′

is a vector of length p. Denote by Ic = {i|Ri0 = 0, . . . , RiT = 0} the set

of observations with no missing visits, and ĩ = (i − 1)(T + 1) + (t + 1),

for 1 ≤ i ≤ n, 0 ≤ t ≤ T . Let ε = (ε′i, i ∈ Ic)
′, ui = (ui0, . . . , ui,T )′,

u = (u′i, i ∈ Ic)
′, where the uit’s are i.i.d N(0, 1) random variables. Let

X∗ = {(Zi,X1i)
′, i ∈ Ic}′ be the design matrix, where each row vector is

defined as x′i. We take X∗obs to be the matrix with rows equal (1 − yit)x′ĩ,

such that i ∈ Ic.

Proposition 4.2 Suppose π(γ) is a proper prior, π(τ) is a proper prior

with a finite pth moment, and that we specify improper uniform priors for

the other parameters. The joint posterior in (12) is proper if (C1) X∗ is

of full rank and (C2) there exists a positive vector a, i.e., each component

ai > 0, such that X∗obs
′a = 0.

Next, we consider Jeffreys prior (Jeffreys (1946)) regarding γ. Due to the

involvement of the missing data in the design matrix, the conventional Jef-
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freys prior is computationally infeasible. However, we observe that Jeffreys

prior based on a certain subset of the data is not only computationally fea-

sible, but also leads to a proper posterior distribution (Chen et al. (2008)).

Thus, we propose a variation of Jeffreys prior that is analytically attractive.

We select a certain observed subset, denoted by D̃obs, such that the likeli-

hood function of the parameters does not involve any missing data. The

logarithm of the joint likelihood function in (11) based on D̃obs is given by

`(θ|D̃obs) = log

∫ ∏
(i,t)∈D̃obs

1(wit ≥ 0)yit1(wit < 0)1−yit

1√
2π(1− α)

exp{−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)
}dw

1√
2π

exp

(
−
ζ2
ki

2

)
dζ

1√
2π|αΣ|

exp
{
− 1

2α
ε′iΣ

−1εi
}
dε

+ log
∏

(i,t)∈D̃obs

Pit
1(rit=1)(1− Pit)1(rit=0). (13)

For γt at visit t, we use a different observed subset to construct the prior,

aiming to utilize as many observations as possible. Indeed, the idea of using

a subset of the data is equivalent to selecting the corresponding terms from

the log-likelihood function: if we take h(yt,γ4t) = γ4tyt for t = 0, and

h(yt,γ4t) = γ4t1yt−1 + γ4t2yt for t > 0 in (8), the log-likelihood of γt based

on this subset of the data is given by

`(γt|Dc) =


∑n

i=1 log
{[
Pit

1(rit=1)(1− Pit)1(rit=0)
]1(rit=0)}

t = 0,∑n
i=1 log

{[
Pit

1(rit=1)(1− Pit)1(rit=0)
]1(rit−1=0)1(rit=0)}

t > 0,

=


∑n

i=1 1(rit = 0) log(1− Pit) t = 0,∑n
i=1 1(rit−1 = 0)1(rit = 0) log(1− Pit) t > 0.
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We specify the joint prior distribution for γt as

π(γt) ∝|X∗t
′DtX

∗
t |1/2, (14)

where

X∗t =


[
1(rit = 0)X∗it : i = 1, . . . , n

]′
t = 0,[

1(rit−1 = 0)1(rit = 0)X∗it : i = 1, . . . , n
]′

t > 0,

|.| represents the determinant of a matrix, X∗it = (z,x′2,yit)
′ if t = 0, and

X∗it = (z,x′2,
∑t−1

j=0 Rj,yit−1,yit)
′ for t > 1. For t = 1, since

∑t−1
j=0Rj = R0 =

0 for the subjects within this subset, an improper uniform prior is essentially

assumed for γ3t in π(γt) defined by (14) while Jeffreys prior is constructed

for the other parameters in γt such that X∗it = (z,x′2,yit−1,yit)
′. Also, in

(14), Dt is an n× n diagonal matrix with diagonal elements Pit(1−Pit). If

the design matrix X∗t is of full column rank (Chen et al. (2008)), the prior

for the corresponding parameters in γt is proper. In addition, we specify

improper uniform priors for (β, α, ρ), and a truncated normal prior for τ .

4.3 Computational Development

The joint posterior distribution of (θ,ymis) based on the observed data is

given by

π(θ,ymis|Dobs) ∝ L(θ|Dc)π(θ), (15)
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where L(θ|Dc) is defined in (10). Thus, the joint posterior distribution of

(β,γ, α, τ, ρ) is written as

π(β,γ, α, ρ, τ,ymis,w, ζ, ε, |Dobs)

∝
n∏
i=1

T∏
t=0

{
1(wit ≥ 0)yit1(wit < 0)1−yitPit

1(rit=1)(1− Pit)1(rit=0)

}
(1− α)−

n(T+1)
2

n∏
i=1

T∏
t=0

exp

{
−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

} n∏
i=1

T∏
t=0

exp

(
−
ζ2
ki

2

)
(α)−n(T+1)/2

n∏
i

|Σ|−1/2 exp
{
− 1

2α
ε′iΣ

−1εi
}
π(β)π(γ)π(α)π(τ)π(ρ).

(16)

The Gibbs sampling algorithm requires sampling from the following full

conditional distributions in turn:

(i) [ymis,γ|w,β, ζ, ε, α, τ, ρ,Dobs]; (ii) [w,β|ymis,γ, ζ, ε, α, τ, ρ,Dobs];

(iii) [α, ρ|ymis,w,β,γ, ζ, ε, τ,Dobs]; (iv) [ε|ymis,w,β,γ, ζ, α, τ, ρ,Dobs];

(v) [τ |ymis,w,β,γ, ζ, ε, α, ρ,Dobs]; (vi) [ζ|ymis,w,β,γ, ε, α, τ, ρ,Dobs].

(17)

For (i), we first collapse out the latent random variables w via the

identity

[ymis,γ,w,β|ζ, ε, α, τ, ρ,Dobs]

= [ymis,γ|β, ζ, ε, α, τ, ρ,Dobs][w,β|ymis,γ, ζ, ε, α, τ, ρ,Dobs]

= [ymis|β,γ, ζ, ε, α, τ, ρ,Dobs][γ|ymis, Dobs][w,β|ymis,γ, ζ, ε, α, τ, ρ,Dobs],

(18)

and then run a sub-Gibbs sampling algorithm to sample from the following

full conditional distributions in turn: (ia)[ymis|β,γ, ζ, ε, α, τ, ρ,Dobs] and

(ib)[γ|ymis, Dobs].
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Sampling w and β in (ii) are straightforward since the components of

w are conditionally independent truncated normal random variables, and

β, conditional on the other parameters and variables, follows a multivariate

normal distribution.

The posterior distribution of (α, ρ) in the binary response model is

highly dependent on the random effects ε. Directly sampling (α, ρ) from

their full conditional distributions leads to slow convergence and poor mix-

ing of the Gibbs sampling algorithm. Due to the introduction of the probit

link and the latent variables w, we are able to analytically integrate out ε.

For (iii), we again apply the collapsed Gibbs technique through the iden-

tity: [α, ρ, ε|ymis,w,β,γ, ζ, τ,Dobs] = [α, ρ|ymis,w,β,γ, ζ, τ,Dobs][ε|ymis,w,

β,γ, ζ, α, τ, ρ,Dobs].

Sampling ε in (iv) is also straightforward since the εt are independent

multivariate normal random variables conditional on the other parameters

and variables.

We briefly explain how to sample from these full conditional distributions.

Step (ia). For each missing response yit,mis, compute qit as

qit =

{
πit

T0∏
j=t

P (rij|rij−1,yij, yit = 1, z,x2,γ)+

(1− πit)
T0∏
j=t

P (rij|rij−1,yij, yit = 0, z,x2,γ)

}−1

πit

T0∏
j=t

P (rij|rij−1,yij, yit = 1, z,x2,γ),

where T0 = min(t+ 1, T ), it refers to the tth visit for the ith observa-

tion, πit is introduced in (5), and P (rij|rij−1,yij, z,x2,γ) is given in

(8). Sample yit from a Bernoulli(qit) distribution.
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Step (ib). Write the full conditional distribution of γ as

π(γt|ymis, Dobs) ∝
n∏
i=1

P
1(rit=1)
it (1− Pit)1(rit=0)π(γt),

where Pit is established in (8). Let π(γ) be the Jeffreys prior con-

structed in Section 4.2. As adaptive rejection sampling is not pois-

sible since Jeffreys prior is not log-concave (Chen et al. (2008)), use

the localized Metropolis algorithm to sample γ.

Step (iia). Draw wit from a truncated N(ziβ1t + x′1iβ2t + τζki + εit, 1−α)

distribution given yit, for i = 1, . . . , n, and t = 0, . . . , T .

Step (iib). Let X̃i = (zi,x
′
1i)
′. Assuming π(βt) ∝ 1, sample βt|ymis,

w, ζ, ε, α, τ, ρ,Dobs for t = 0, . . . , T from

N

(( n∑
i=1

X̃′iX̃i

)−1
n∑
i=1

X̃′i(wit − τζki − εit),
( n∑
i=1

X̃′iX̃i

)−1
(1− α)

)
.

Step (iii). Let µ1i = (wi0−ziβ10−x′1iβ20−τζki , . . . , wiT−ziβ1T−x′1iβ2T−

τζki)
′ and Σ1

−1 = 1
α

Σ−1 + 1
1−αI. The joint full conditional distribution

[α, ρ|ymis,w,β,γ, ζ, ε, τ,Dobs] is given by

π(α, ρ|ymis,w,β,γ, ζ, ε, τ,Dobs)

∝ {α(1− α)}−
n(T+1)

2 |Σ|−
n
2 π(α)π(ρ)

n∏
i=1

exp
{
−
ε′i(

1
α

Σ−1 + 1
1−αI)εi −

2
1−αµ

′
1iεi + 1

1−αµ
′
1iµ1i

2

}
∝ {α(1− α)}−

n(T+1)
2 |Σ|−

n
2 π(α)π(ρ)

n∏
i=1

exp(

1
(1−α)2

µ′1iΣ1µ1i − 1
1−αµ

′
1iµ1i

2
)

n∏
i=1

exp
{
−

(εi − 1
1−αΣ1µ1i)

′Σ1
−1(εi − 1

1−αΣ1µ1i)

2

}
.
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Integrate out ε, and the joint full conditional distribution simplifies

to

π(α, ρ|ymis,w,β,γ, ζ, τ,Dobs) ∝ {α(1− α)}−
n(T+1)

2 |Σ|−
n
2 |Σ1|

n
2

n∏
i=1

exp(

1
(1−α)2

µ′1iΣ1µ1i − 1
1−αµ

′
1iµ1i

2
)π(α)π(ρ).

(a). The full conditional distribution of α is given by

π(α|ymis,w,β,γ, ζ, τ, ρ,Dobs) ∝ {α(1− α)}−
n(T+1)

2 |Σ1|
n
2

n∏
i=1

exp(

1
(1−α)2

µ′1iΣ1µ1i − 1
1−αµ

′
1iµ1i

2
)π(α).

Since α is always between 0 and 1 exclusively, let

α =
1

1 + e−δ

with support on (−∞,∞) to indirectly sample α. Thus

π(δ|ymis,w,β,γ, ζ, τ, ρ,Dobs) = π(α|ymis,w,β,γ, ζ, τ, ρ,Dobs)
eδ

(1 + eδ)2
.

Under a uniform prior specified for α, use the localized Metropolis

algorithm to sample δ, and then convert it back to α.

(b). The full conditional distribution of ρ is given by

π(ρ|ymis,w,β,γ, ζ, α, τ,Dobs) ∝ |Σ|−
n
2 |Σ1|

n
2

n∏
i=1

exp(

1
(1−α)2

µ′1iΣ1µ1i

2
)π(ρ).

Since −1 < ρ < 1, use a “de-constraining” transformation to sample

ρ (Chen et al. (2000)):

ρ =
−1 + eξ

1 + eξ
−∞ < ξ <∞.
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Thus

π(ξ|ymis,w,β,γ, ζ, α, τ,Dobs) = π(ρ|ymis,w,β,γ, ζ, α, τ,Dobs)
2eξ

(1 + eξ)2
.

Assume that a Uniform(−1, 1) prior is specified for ρ. Since π(ξ|ε,β, α,

ymis, Dobs) is not log-concave, use the localized Metropolis algorithm

to sample ξ, and then convert it back to ρ.

Step (iv). Based on the derivation in Step (iii), draw εi from a

N

(
1

1−αΣ1µ1i,Σ1

)
.

Step (v). The full conditional distribution of τ is given by

π(τ |ymis,w,β,γ, ζ, ε, α, ρ,Dobs)

∝ exp

{
−
∑n

i=1

∑T
t=0(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

}
π(τ).

Assume τ follows the truncated normal prior τ ∼ N(0, 10)1(τ > 0).

Draw τ from the posterior distribution

N

∑n
i=1

∑T
t=0 ηitζki∑n

i=1

∑T
t=0 ζ

2
ki

1−α + 1
10

,
1∑n

i=1

∑T
t=0 ζ

2
ki

1−α + 1
10

1(τ > 0),

where ηit = wit − ziβ1t − x′1iβ2t − εit.

Step (vi). The full conditional distribution of ζk is given by

π(ζk|ymis,w,β,γ, ε, α, τ, ρ,Dobs)

∝ exp

{
−
∑
{i|ki=k}

∑T
t=0(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

}

exp

(
−
∑
{i|ki=k}

∑T
t=0 ζ

2
ki

2

)
.
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Draw ζk from a N

(∑
{i|ki=k}

∑T
t=0 ηit

τ
1−α

nk(T+1) τ2

1−α+nk(T+1)
, 1

nk(T+1) τ2

1−α+nk(T+1)

)
distribu-

tion for k = 1, . . . , 16, where nk is the total number of patients in the

kth health district, i.e., nk =
∑
{i|ki=k} 1.

4.4 Bayesian Model Assessment

It is of great practical interest to assess whether the missingness is ignorable

or nonignorable. In this section, several Bayesian model assessment criteria

are considered: the DIC relating to the missing data model (DICR|y)(Yao

et al. (2015);Mason et al. (2012)), and the LMPL relating to the missing

data model (LPMLR|y) (Zhang et al. (2014)).

Since our focus is on the missing data mechanism, these criteria are

applied only to the distribution of the missing data indicators. Both criteria

are computationally attractive, and can be implemented with any types of

priors, i.e., informative, noninformative, or even improper priors.

DICR|y. Let ψ = (γ,ymis) denote the vector of the missing data model

parameters of interest, where we view ymis as nuisance parameters. For the

missing model in (8), D(ψ) = −2
∑n

i=0

∑T
t=0[ritη

r
it− log(1 + exp(ηrit))]. For

computing D(ψ), we need to estimate several discrete parameters such as

the binary response ymis. The posterior mean of ymis, which is no longer

binary, may not be a desirable estimate to be applied in the DICR|y for-

mula. Instead, we may use the posterior mode, which maintains the binary

nature of these parameters. Another possible choice of Huang et al. (2005)

is that we apply the linear predictor ηrit directly to the DICR|y formula.

Therefore, we have DICR|y = D(ηr) + 2pD, where ηrit = E[ziγ1t + x′2iγ2t +

g(Rit−1,γ3t) + h(yit,γ4t)|Dobs], pD = D(ψ)−D(ψ) is the effective number
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of parameters in the model, and D(ψ) = E[D(ψ)|Dobs]. This modification

is appropriate since the model for the missing data indicators depends on

ψ only through the linear predictor ηr. Moreover, with the introduction

of ηr in the computation of DICR|y, we no longer need to worry about the

discreteness of the parameters since ηr is always continuous. Similar to

the traditional DIC, the model with the smallest DICR|y value is the most

optimal among all the models under consideration.

LPMLR|y. To assess the missing data mechanism, we adopt the condi-

tional LPML (Hanson et al. (2011)), where the pseudomarginal probabil-

ity,
∏n

i=1 P (RiT |yi, zi,xi,γ), is used to quantify the model’s predictive abil-

ity. Let D
(−i∗)
obs = {RjT , j = 1, . . . , i − 1, i + 1, . . . , n} ∪ {(yj,obs, zj,xj), j =

1, . . . , n} denote the observed data with RiT deleted. Letψ1 = (β, τ, ζ, α, ρ),

and ψ = (ψ1,γ). Then we have

π(ψ,ymis, ε|D(−i∗)
obs ) ∝

{
n∏
j=1

fy(yj|ψ, zj,xj, εj)f(εj|α, ρ)

}

×
∏
j 6=i

fR|y(RjT |γ,yj, zj,xj)π(ψ).

The simplified conditional predictive ordinate CPOi (Chen et al. (2000);

Hanson et al. (2011)) can be written as

CPOi =

∫ ∑
yi,mis

fR|y(RiT |γ,yi, zi,xi)π(ψ,ymis, ε|D(−i∗)
obs )dεdψ

=
1∫ ∑

ymis

1
fR|y(RiT |γ ,yi,zi,xi)π(ψ,ymis, ε|Dobs)dεdψ

,

and the logarithm of the pseudomarginal likelihood is given by

LPMLR|y =
n∑
i=1

log(CPOi).
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Let {(ψb,ymis,b, εb), b = 1, . . . , B} denote a Gibbs sample of (ψ,ymis, ε) from

(15) and let b represent the bth iteration. A Monte Carlo estimate of CPOi

is given by

CPOi =

(
1

B

B∑
b=1

1

fR|y(RiT |yi,obs, zi,xi,ψb,yi,mis,b, εi,b)

)−1

.

Similar to the conventional LPML, a larger value of LPMLR|y indicates a

more favorable model.

5 A Simulation Study

In this section, we report on a simulation study to investigate the em-

pirical performance of the proposed method. In the data generation, we

first generated n = 2000 baseline covariates as follows: x1i ∼ N(0, 1),

x2i|x1i ∼ Bernoulli(1/ (1 + exp(−0.2− 0.2x1i))), and the intervention indi-

cator zi ∼ Bernoulli(0.5). Similar to the HIV prevention behavioral data,

we set the total number of visits equal 4. Let ε∗ in (1) follow a N(0, σ2Σ)

distribution, where σ2 = 2 (α ≈ 0.667) and Σ is a 4× 4 AR(1) correlation

matrix with ρ = 0.8. The longitudinal binary response variable yit was

generated from a Bernoulli distribution with

P (yit = 1|zi, x1i, x2i,β
∗
t , ε
∗
it) = Φ(β∗0t + x1iβ

∗
1t + x2iβ

∗
2t + ziβ

∗
3t + ε∗it),

where β∗t = (β∗0t, β
∗
1t, β

∗
2t, β

∗
3t)
′ for t = 0, 1, 2, 3. To reproduce the longitu-

dinal binary response data pattern of the HIV prevention behavioral data,
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we set 
β∗0
′

β∗1
′

β∗2
′

β∗3
′

 =


−1.0 0.5 1.0 0.4

−1.0 0.5 1.0 −0.2

−1.0 0.5 1.0 −0.4

−1.0 0.5 1.0 −0.6

 . (19)

We then generated the missing data indicator Rit ∼ Bernoulli(Pit), where

Pit is given by

logit(Pit) = γ0t + x1iγ1t + x2iγ2t + ziγ3t +
t−1∑
j=0

Rijγ4t + yit−1γ5t + yitγ6t. (20)

The missing data mechanism is, therefore, nonignorably missing since Pit

in (20) depends on the unobserved data yit−1 and yit when Ri,t−1 = Rit = 1.

Let γt = (γ0t, γ1t, γ2t, γ3t, γ4t, γ5t, γ6t)
′ for t = 0, 1, 2, 3. We set

γ0
′

γ1
′

γ2
′

γ3
′

 =


−2.50 0.50 −0.50 −0.50 0.00 0.00 0.00

−2.00 0.50 −0.50 −0.25 −0.25 0.50 0.40

−2.80 0.50 −0.50 0.25 −0.60 1.30 1.70

−2.80 0.50 −0.50 0.50 0.60 −0.50 1.70

 . (21)

Under this setting, the average missingness percentages across the 250 sim-

ulated data sets were 5.37%, 10.52%, 11.94%, and 14.18% at t = 0, 1, 2, 3,

respectively.

To further examine the performance of the proposed method, we also

considered another scenario, in which the missingness percentage of the

last visit (t = 3) was set to 47.14% and the missingness percentages at the

other time points remained the same. This was achieved by setting γ03 in

(21) equal to -0.50. In the simulation, we assigned the true values to the

initial values for each parameter. After discarding the first 500 iterations
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of the sampler, we used the subsequent 5,000 iterations for computing the

posterior summaries.

We fit both the ignorable and nonignorable models to the simulated

data generated from the nonignorable model. For the ignorable model, we

set γ5t and γ6t in (20) equal to 0 so that Pit depends only on the intervention

indicator, the covariates x2, as well as the cumulative number of missing

visits, which all were observed. For the nonignorable model, we considered

Jeffreys prior for γt in (14), as well as a N(0, σ2
prior) prior for γ6t, where

σ2
prior = 1, 2, . . . , 10.

When the missingness percentage was low (similar to the data), the

median (IQR) of DICR|y under the ignorable model was 4562.49 (4490.64,

4641.60). The nonignorable model with a N(0, 10) prior had the smallest

median value of DICR|y (4473.76 (4381.28, 4465.02)). The median (IQR)

of LPMLR|y under the ignorable model was -2281.40 (-2320.90, -2245.39).

Among all the normal priors, the nonignorable model with a N(0, 6) prior

had the largest median value of LPMLR|y (-2273.04 (-2313.26, -2234.85)),

and the nonignorable model with the Jeffreys prior had the largest value

(-2272.85 (-2311.38, -2235.87)) of LPMLR|y among all the models under

consideration.

For the high missingness percentage scenario (47.14% missing at the

last visit), the median (IQR) of DICR|y under the ignorable model was

5673.07 (5605.66, 5741.60). The nonignorable model with a N(0, 10) prior

still had the smallest median value of DICR|y (5559.20 (5471.43, 5644.64)).

The median (IQR) of LPMLR|y under the ignorable model was -2836.63

(-2870.99, -2802.92). Among all the normal priors, the nonignorable model

with a N(0, 8) prior had the largest median value of LPMLR|y (-2816.79
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(-2858.90, -2781.31)), and the nonignorable model with the Jeffreys prior

had the largest value (-2815.01 (-2849.76, -2780.99)) among all the models

under consideration.

Let the “DIC Difference” be the DICR|y under the nonignorable model

minus the DICR|y under the ignorable model. Similarly, let the “LPML Dif-

ference” be the LPMLR|y under the nonignorable model minus the LPMLR|y

under the ignorable model. Figure 2 shows the plots of the DIC differences

and the LPML differences versus different priors (N(0, σ2
prior)’s or Jeffreys)

specified under the nonignorable model under the two scenarios with differ-

ent missingness percentages. From Figure 2, we see that the DIC differences

first decrease and then slightly increase as σ2
prior increases (Figure 2(a) and

Figure 2(c)) and that the LPML differences first increase and then slightly

decrease as σ2
prior increases (Figure 2(b) and Figure 2(d)) under both scenar-

ios. Based on Figure 2(a) and Figure 2(b), when the missingness percentage

is low, the nonignorable model with N(0, 6) seemed to have the best rel-

ative performance. For the high missingness percentage case (Figure 2(c)

and Figure 2(d)), the nonignorable model with N(0, 9) tended to perform

comparatively better. Moreover, all of the boxes for the “DIC Difference”

were below 0, and all of the boxes for the “LPML Difference” were above 0,

indicating that both DICR|y and LPMLR|y were in favor of the nonignor-

able model over the ignorable model. Also, as the missingness percentage

increases, the boxes for both “DIC Difference” and “LPML Difference” be-

come further away from the horizontal line (y = 0), implying that the power

of the two criteria increased as the missingness percentage increased.

Tables 2 and 3 show the true value of the parameter (True), the poste-
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rior mean (Est), the standard deviation of the estimate (SD), the average

of the posterior standard deviations (SE), the root of the mean squared

error of the posterior mean (RMSE), and the coverage probability (CP) of

the 95% highest posterior density (HPD) interval for each parameter across

250 simulations under the nonignorable models with the N(0, 6) prior and

Jeffreys prior for the low missingness percentage case and the nonignorable

models with the N(0, 8) prior and Jeffreys prior for the high missingness

percentage case. From these tables, all of the posterior estimates were close

to the true values, SDs, SEs, and RMSEs were close to each other, and

CPs for most of the parameters were approximately 95%, except for some

of the γ5t and γ6t. The posterior estimates under the other priors are given

in Tables S1 and S2 in the Supplemental Materials. From these tables, we

see that the posterior estimates were quite robust to the specification of the

N(0, σ2
prior) prior under the nonignorable model.

6 Analysis of the HIV Prevention Behav-

ioral Data

In this section, we consider a detailed analysis of the HIV prevention be-

havioral data discussed in Section 2. The baseline covariates in the re-

sponse model and missing data mechanism include Gender (1=female),

City (1=Lives in city or township), Cohabit (1=Cohabitates with sex part-

ner), Counselor (1=Meets with a counselor at least every 3 months), Drink

(1=Reported drinking alcohol weekly or more frequently), and Age. Except

for Age, which is continuous, all other covariates are binary. Due to the
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rare events of Drink in the “missing” group of patients, the Drink covariate

is not identifiable, and was therefore excluded in the missing data mecha-

nism. For the missing data mechanism, we also considered covariates yt,

and
∑t−1

j=0Rj at the tth visit. For the HIV prevention behavioral data, we

had K = 16 health districts and T = 3, where t = 0 denotes “baseline”, and

visits t = 1 to t = 3 correspond to the three follow-up visits at 6, 12, and

18 months. The continuous covariate Age was standardized for numerical

stability in the posterior computations.

In all the Bayesian computations, we used 20,000 MCMC samples,

taken from every fifth iteration, after a burn-in of 10,000 iterations for

each model to compute all posterior summaries, including posterior means

(ESTs), posterior standard deviations (SDs), 95% HPD intervals, DIC, and

LPML. The code was written in FORTRAN 95 using IMSL subroutines

with double-precision accuracy. The convergence of the Gibbs sampler was

checked by the R package “mcmcplots” using R version 3.3.0. Approximate

convergence was reached after 10,000 iterations.

We fit the ignorable and nonignorable models to the HIV prevention be-

havioral data. For the ignorable model, we simply set h(yt,γ4t) = 0 in (8).

For the nonignorable model, we assumed that h(yt,γ4t) = γ4t1yt−1 + γ4t2yt

in (8) and considered a N(0, σ2
prior) prior for γ4t2 as well as Jeffreys prior for

γt in (14). We specified uniform priors for all other parameters. We then

computed DIC and LPML under the ignorable model, the nonignorable

model using a N(0, σ2
prior) prior, and the nonignorable model using Jeffreys

prior. The values of DIC and LPML are shown in Table 4. As exhibited

in Table 4, the effective number of parameters under the ignorable model

(pD = 30.85) was the smallest among all the models we considered, and
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approximately equal to the number of parameters. Under the nonignor-

able model with a N(0, σ2
prior) prior, the effective number of parameters

increased with σ2
prior. Moreover, pD under the Jeffreys prior was midway

between pD under the N(0, 4) and N(0, 5) priors. We also see from Table 4

that the DIC value was 4793.16 under the ignorable model, that under the

nonignorable model with a N(0, σ2
prior) prior, the value of DIC first tended

to decrease and then increase as σ2
prior increased, and that the DIC attained

the local minimum with DIC=4737.61 at σ2
prior = 8 among all the models

under consideration (10 values of σ2
prior and Jeffreys Prior). The results

indicated by LPML were consistent with the results by the DIC criterion.

The nonignorable model with a N(0, 8) prior had the largest value of LPML

(LPML=-2396.32) among all the models under consideration. The nonig-

norable model with Jeffreys prior had the second largest value of LPML

(LPML=-2396.64). These results indicate that for the HIV prevention be-

havioral data, the missing longitudinal binary responses were potentially

nonignorably missing.

Tables 5-7 show the ESTs, SDs, and 95% HPD intervals under the

ignorable model, the nonignorable model with the N(0, 8) prior, and the

nonignorable model with Jeffreys prior. We took a posterior estimate to be

“statistically significant at a significance level of 0.05” if the corresponding

95% HPD interval did not contain 0. Under the ignorable model, based on

the posterior estimates of the intervention effect (z) in Table 5, the coun-

seling intervention significantly reduced HIV risk behavior after 6-Month.

The covariate Cohabit was always significant (at each visit), indicating that

people who cohabitated with their primary sex partner were more likely to

experience unprotected sex acts. Gender (at Baseline and 12-Month), Co-
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habit (at each visit), Counselor (at baseline, 6-Month, and 18-Month), and

Drink (at 6-Month) all had significant positive posterior estimates, which

means females, people visiting counselors more frequently, and people who

drank more often tended to have more HIV behavior risks. Age (at each

visit) had a strong negative effect on the HIV behavior risk, indicating that

older people may have better knowledge of safe sexual behavior. For the

missing data mechanism, the posterior estimates of Condition varied from

negative to positive values as time progressed, indicating that people in

the intervention arm tended to participate in the study at the very begin-

ning and then became more likely to leave the study later. This behavior

could possibly be explained by the conjecture that people who have already

accumulated enough behavioral knowledge may consider it unnecessary to

continue the risk prevention study. Females (at 6-Month, 12-Month and

18-Month) and older people (at 12-Month) were less likely to miss their

visits, while people who lived in a city or town (18-Month) were likely to

drop out at the last visit. Moreover, people who frequently skipped the

previous visits had higher odds of missingness in the future, as indicated

by the cumulative number of missing data indicators (
∑t

j=0Rj).

The posterior estimates in Table 6 were similar to those given in Table 5.

However, Gender (at 12-Month), which is a covariate in the response model,

was significant with 95% HPD interval=(0.051, 0.636) under the ignorable

model but not significant with 95% HPD interval=(-0.069, 0.525) under

the nonignorable model with a N(0, 8) prior. Similarly, Age (at 12-Month),

which is a covariate in the missing data mechanism, was significant with

95% HPD interval=(-0.309, -0.019) in the ignorable case but not significant

with 95% HPD interval=(-0.272, 0.072) in Table 6. However, the covariates
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in the missing data mechanism, y1 (95% HPD interval=(-1.239, -0.015))

and y2 (95% HPD interval=(0.035, 2.822)) at 12-Month, and y2 at 18-

Month (95% HPD interval=(0.043, 1.169)) were all significant, indicating

that missingness of the binary responses may be nonignorable. This result

was consistent with the DIC and LPML.

In addition, the posterior standard deviations in Table 6 were similar to

those given in Table 5 in the binary model. For the covariates in the missing

data mechanism shared in both the ignorable and nonignorable models, the

posterior standard deviations in Table 6 in the missing data mechanism,

were generally larger than those given in Table 5. The standard devia-

tion of γ4t2 corresponding to the missing response covariate yt increased as

σ2
prior increased, implying that γ4t2 could not be estimated under an im-

proper uniform prior. It is apparent that the posterior estimates under the

nonignorable model were different than those under the ignorable model.

The posterior estimates under the nonignorable model with Jeffreys prior

(in Table 7) were similar to those under the nonignorable model with a

N(0, 8) prior (in Table 6) for both the binary response model and missing

data mechanism, except that the standard deviations for the missing data

mechanism in Table 7 were slightly smaller. The posterior estimates of ρ,

α and τ were similar under the three models.

7 Discussion

In this paper, we developed Bayesian methods for resolving the challenges

in estimation and Bayesian computation of the longitudinal binary probit

model with nonignorably missing response data. An alternative longitudi-
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nal binary probit model is given by Chib and Greenberg (1998), in which

identifiability of the variance of random effects in (3) is avoided by set-

ting σ2 equal to 1. However, this approach requires integrating out the

high-dimensional truncated multivariate normal latent variables w when

sampling the missing responses. For the missing data mechanism in (8),

one can modify the model by relaxing the linear assumptions on g and h.

Even in the same formulation, the model can be extended by including in-

teraction terms between treatment and other covariates. If the missing data

mechanism has too many covariates, however, it may lead to the problem

of overfitting and may require a larger dataset to be identifiable. Thus, it

is more desirable to develop a simple and identifiable model that leads to a

good fit.

We constructed the Jeffreys prior in (14) using a subset of the data

that is completely observed. Based on our simulation study in Section 5,

the Jeffreys prior in (14) does yield quite good frequentist properties of the

posterior estimates. As empirically investigated in Wu et al. (2017), the

posterior estimates under the Jeffreys prior using the all available data are

similar to those under the Jeffreys prior using a subset of the data as long as

the design matrix is of full rank. We expect that the posterior estimates are

quite robust to the selection of the subset used in constructing the Jeffreys

prior.

We currently use the DIC (DICR|y) and conditional LPML (LPMLR|y)

criteria to assess fit of the missing data mechanism. Our DIC (DICR|y)

is a part of the “conditional DIC” in Mason et al. (2012); Zhang et al.

(2015), since the deviance function is defined based on the distribution of

the missing data indicators conditional on the missing responses. Since our
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interest lies in the missing data mechanism, DICR|y may be more suitable

in our application. As shown in Section 5, DICR|y has good empirical per-

formance according to our simulation study. We also investigated the DIC

and LPML of the joint model after integrating out the missing responses.

However, the DIC and LPML of the joint model failed to assess the fit

of the missing data mechanism in both the simulation study and the data

analysis. Similar results were also observed in Mason et al. (2012). Fu-

ture research, currently under investigation, involves extending the current

DIC and conditional LPML criteria to assess fit of the joint model via the

decomposition of DIC and LPML (Zhang et al. (2015)).

Supplementary Materials

The posterior summaries under the other priors are given in Tables S1 and

S2 in the online supplementary materials.
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Appendix: Proofs

Proof of Proposition 4.1. If we assume π(γ) = 1

π∗(θ|Dobs) = L(θ|Dobs)π(β, α, τ, ρ)

=
∑
ymis

n∏
i=1

K∏
k=1

{∫
fy(yi|zi,x1i, εi,θ)f(εi|α, ρ)dεf(ζk|τ)dζ

fR|y(RiT |yi, zi,x2i,γt)π(β, α, ρ)

}
.

Define y∗it = yit if rit = 0, and y∗it = 0 if rit = 1. If y∗i = (y∗i0, . . . , y
∗
iT ), it can

be shown that

π∗(θ|Dobs) ≥
n∏
i=1

K∏
k=1

{∫
fy(y

∗
i |zi,x1i, εi,θ)f(εi|α, ρ)dεf(ζk|τ)dζ

T∏
t=0

fR|y(Rit|Rit−1,y
∗
i , zi,x2i,γt)π(β, α, τ, ρ)

}
.

For each t, the unnormalized marginal posterior density of γt with π(γt) = 1

is
∏n

i=1 f(Rit|Rit−1,y
∗
i , zi,x2i,γt), which corresponds to a binary regression

model with response equal to Rit. Due to the construction of y∗i and Propo-

sition A.1 (Huang et al. (2005)), the posterior density of γt is improper and

thus the joint posterior π∗(θ|Dobs) is also improper.

Proof of Proposition 4.2. Because fR|y(RiT |yi, zi,x2i,γt) ≤ 1, π(γ) and

π(τ) are proper, and we assume π(β,α, ρ) = 1, it suffices to show that∫ ∑
ymis

n∏
i=1

K∏
k=1

∫
fy(yi|zi,x1i, εi,θ)f(εi|α, ρ)dεf(ζk|τ)dζπ(τ)dτdβdαdρ <∞.

(22)

Let y∗ = (yobs,y
∗
mis), where y∗mis is any combination of the possible values for

the missing responses. Due to the finite number of combinations of y∗mis,
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and by Tonelli’s theorem, it suffices to show that for each k∏
i∈Ic

∫
fy(y

∗
i |zi,x1i, εi,θ)dβf(εi|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ <∞.

By Chen and Shao (2001), and under (C1) and (C2), there exists a

constant K0 depending only on X∗obs such that∏
i∈Ic

∫
fy(y

∗
i |zi,x1i, εi,θ)dβf(εi|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

=Eu

(∫
1(X∗obsβ + τζ + ε ≤ u)dβf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

)
=Eu

(∫
K0‖u− τζ − ε‖pdβf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

)
≤Eu

(
K0‖u‖p

∫
f(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

)
+

K0

∫
‖ζ‖pf(ζk|τ)dζτ pπ(τ)dτf(ε|α, ρ)dεdαdρ+

K0

∫
‖ε‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ.

The first and second terms are finite since α ∈ (0, 1), ρ ∈ (−1, 1), π(τ) is

proper with a finite pth moment, ζk
i.i.d.∼ N(0, 1), and condition C3. Let Σ =

ΓΓ, where Γ = Γ′. To study the second term, we carry out a transformation
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on εi such that ε∗i = (
√
αΓ)

−1
εi, i ∈ Ic. Write the second term as

K0

∫
‖ε‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

≤K0

∫ ∑
i∈Ic

‖εi‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

=K0

∑
i∈Ic

∫
‖εi‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

=K0

∑
i∈Ic

∫
‖εi‖pf(εi|α, ρ)dεif(ζk|τ)dζπ(τ)dτdαdρ

=
K0√
2π

∑
i∈Ic

∫
‖εi‖p

1

|αΣ|1/2
exp

(
−ε
′
iΣ
−1εi

2α

)
dεif(ζk|τ)dζπ(τ)dτdαdρ

=
K0√
2π

∑
i∈Ic

∫ (
ε∗i
′αΣε∗i

)p/2
exp

(
−‖ε

∗
i ‖

2

2

)
dε∗i f(ζk|τ)dζπ(τ)dτdαdρ.

Let λmax denote the maximum eigenvalues of Σ and, when T + 1 = 4,

λmax < 4 given ρ ∈ (−1, 1). As ε∗i
′Σε∗i ≤ λmax‖ε∗i ‖

2,

LHS ≤ K√
2π

∑
i∈Ic

∫
αp/2

{
4‖ε∗i ‖

2}p/2 exp

(
−‖ε

∗
i ‖

2

2

)
dε∗i f(ζk|τ)dζπ(τ)dτdαdρ

≤K ′
∑
i∈Ic

T∑
t=0

∫
αp/2|ε∗it|p exp

(
−ε
∗
it

2

2

)
dε∗itf(ζk|τ)dζπ(τ)dτdαdρ,

where K ′ is some constant depending only on X∗obs. Again, since α ∈ (0, 1),

ρ ∈ (−1, 1), π(τ) is propoer, and ζk
i.i.d.∼ N(0, 1), the second term is also

finite, which together yields (22).
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Table 1: Characteristics of Study Participants (N=1875)

Characteristics Standard of Care Intervention

(N=1875) (N=915) (N=960) P

Lives in city or township 0.008

Yes 148 (16.17%) 202 (21.04%)

No 767 (83.83%) 758 (78.96%)

Cohabitates with sex partner 0.034

Yes 470 (51.37%) 445 (46.35%)

No 445 (48.63%) 515 (53.65%)

Meets with a counselor at 0.017

clinic every 3 months or less

Yes 768 (83.93%) 764 (79.58%)

No 147 (16.07%) 196 (20.42%)

Reported drinking alcohol <0.001

weekly or more frequently

Yes 47 (5.14%) 16 (1.67%)

No 868 (94.97%) 944 (98.33%)

Depressed (modified CESD 0.036

11 score of 9 or more)

Yes 480 (52.46%) 551 (57.40%)

No 435 (47.54%) 409 (42.60%)

Gender 0.924

Female 511 (55.85%) 533 (55.52%)

Male 404 (44.15%) 427 (44.48%)

Median Age (IQR) 36 (31, 42) 36 (31, 43) 0.447

The final column indicates the p-values from the Mantel-Haenszel Chi-squared test

(categorical covariates) and the Wilcoxon rank sum test (continuous covariates) for

equality of proportions.
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Figure 1: Path Diagram of the binary responses (any unprotected sex acts),

where 0 in circle indicates observed and 1 in circle indicates missing; and

the two numbers in parentheses indicate the number of zero counts (the

first, blue) and the number of ones (the second, red) of the binary response

variable at each visit on the specific path.
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Figure 2: Plots of the DIC differences (a) and the LPML differences (b)

when the missingness percentages were 5.37%, 10.52%, 11.94%, and 14.18%;

and plots of the DIC differences (c) and the LPML differences (d) when the

missingness percentages were 5.37%, 10.52%, 11.94%, and 47.14%.
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Table 2: Posterior Summaries under the Nonignorable Model with a N(0,
6) Prior and Jeffreys Prior When the Missingness Percentages Were 5.37%,
10.52%, 11.94%, and 14.18%

N(0, 6) Prior Jeffreys Prior

TRUE EST SD SE RMSE CP EST SD SE RMSE CP
t=0
β∗00 -1.000 -1.008 0.134 0.125 0.125 0.976 -1.011 0.135 0.125 0.125 0.972
β∗10 0.500 0.505 0.068 0.068 0.068 0.960 0.506 0.069 0.069 0.070 0.960
β∗20 1.000 1.002 0.132 0.129 0.129 0.952 1.006 0.133 0.129 0.129 0.952
β∗30 0.400 0.402 0.110 0.098 0.098 0.976 0.403 0.110 0.099 0.098 0.980

γ00 -2.500 -2.669 0.355 0.372 0.408 0.960 -2.666 0.354 0.495 0.521 0.960
γ10 0.500 0.502 0.125 0.120 0.120 0.960 0.499 0.125 0.120 0.119 0.964
γ20 -0.500 -0.485 0.250 0.245 0.245 0.960 -0.480 0.248 0.242 0.242 0.956
γ30 -0.500 -0.499 0.217 0.204 0.203 0.968 -0.493 0.215 0.200 0.200 0.968
γ60 0.000 -0.011 0.845 0.804 0.803 0.972 -0.004 0.878 0.921 0.919 0.960

t=1
β∗01 -1.000 -0.994 0.165 0.179 0.179 0.924 -1.002 0.163 0.169 0.169 0.940
β∗11 0.500 0.499 0.073 0.068 0.068 0.980 0.500 0.073 0.069 0.069 0.960
β∗21 1.000 0.982 0.143 0.145 0.146 0.940 0.988 0.143 0.140 0.140 0.932
β∗31 -0.200 -0.195 0.110 0.104 0.104 0.944 -0.196 0.110 0.105 0.105 0.940

γ01 -2.000 -2.173 0.340 0.358 0.397 0.956 -2.130 0.306 0.359 0.381 0.960
γ11 0.500 0.505 0.094 0.096 0.096 0.924 0.504 0.092 0.097 0.097 0.920
γ21 -0.500 -0.513 0.191 0.201 0.201 0.932 -0.508 0.188 0.193 0.192 0.940
γ31 -0.250 -0.262 0.163 0.157 0.157 0.964 -0.262 0.162 0.153 0.153 0.968
γ41 0.400 0.390 0.295 0.301 0.300 0.944 0.375 0.292 0.300 0.301 0.944
γ51 -0.250 -0.257 0.297 0.297 0.297 0.924 -0.246 0.290 0.288 0.287 0.940
γ61 0.500 0.550 0.874 0.918 0.917 0.932 0.495 0.848 0.937 0.935 0.956

t=2
β∗02 -1.000 -1.014 0.152 0.162 0.162 0.952 -1.024 0.152 0.156 0.158 0.956
β∗12 0.500 0.497 0.071 0.067 0.067 0.964 0.498 0.072 0.068 0.068 0.960
β∗22 1.000 1.004 0.145 0.141 0.141 0.956 1.012 0.145 0.138 0.138 0.960
β∗32 -0.400 -0.395 0.114 0.110 0.110 0.944 -0.398 0.115 0.110 0.110 0.944

γ02 -2.800 -2.952 0.323 0.382 0.411 0.932 -2.899 0.301 0.348 0.361 0.920
γ12 0.500 0.502 0.090 0.097 0.097 0.956 0.499 0.089 0.096 0.096 0.944
γ22 -0.500 -0.523 0.188 0.181 0.182 0.968 -0.515 0.186 0.177 0.177 0.960
γ32 0.250 0.268 0.165 0.179 0.179 0.932 0.262 0.163 0.175 0.175 0.932
γ42 1.700 1.761 0.180 0.195 0.204 0.936 1.738 0.176 0.188 0.191 0.944
γ52 -0.600 -0.616 0.270 0.316 0.316 0.916 -0.602 0.267 0.303 0.303 0.904
γ62 1.300 1.383 0.617 0.722 0.725 0.920 1.335 0.585 0.662 0.661 0.940

t=3
β∗03 -1.000 -1.004 0.142 0.142 0.141 0.948 -1.007 0.143 0.142 0.141 0.952
β∗13 0.500 0.502 0.076 0.080 0.080 0.936 0.504 0.077 0.081 0.081 0.936
β∗23 1.000 1.006 0.141 0.131 0.131 0.956 1.010 0.142 0.132 0.132 0.956
β∗33 -0.600 -0.604 0.122 0.121 0.121 0.948 -0.606 0.123 0.121 0.121 0.948

γ03 -2.800 -2.892 0.189 0.202 0.221 0.932 -2.865 0.186 0.197 0.207 0.940
γ13 0.500 0.500 0.092 0.098 0.098 0.940 0.496 0.091 0.096 0.096 0.936
γ23 -0.500 -0.499 0.174 0.171 0.171 0.956 -0.496 0.173 0.170 0.170 0.952
γ33 0.500 0.518 0.165 0.173 0.174 0.936 0.512 0.164 0.171 0.171 0.940
γ43 1.700 1.748 0.119 0.122 0.131 0.944 1.736 0.117 0.121 0.126 0.968
γ53 0.600 0.580 0.261 0.255 0.255 0.948 0.575 0.258 0.250 0.250 0.952
γ63 -0.500 -0.495 0.562 0.595 0.594 0.940 -0.485 0.548 0.581 0.580 0.916

ρ 0.800 0.795 0.038 0.036 0.037 0.948 0.794 0.038 0.036 0.036 0.948
α 0.667 0.662 0.046 0.044 0.044 0.956 0.663 0.046 0.044 0.044 0.956
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Table 3: Posterior Summaries under the Nonignorable Model with a N(0,
8) Prior and Jeffreys Prior When the Missingness Percentages Were 5.37%,
10.52%, 11.94%, and 47.14%

N(0, 8) Prior Jeffreys Prior

TRUE EST SD SE RMSE CP EST SD SE RMSE CP
t=0
β∗00 -1.000 -1.004 0.148 0.131 0.131 0.972 -1.012 0.146 0.134 0.134 0.972
β∗10 0.500 0.504 0.073 0.071 0.071 0.960 0.506 0.074 0.073 0.073 0.968
β∗20 1.000 1.000 0.143 0.135 0.135 0.952 1.006 0.143 0.137 0.137 0.968
β∗30 0.400 0.400 0.113 0.101 0.100 0.976 0.403 0.113 0.101 0.101 0.980
γ00 -2.500 -2.715 0.442 0.417 0.468 0.960 -2.648 0.348 0.411 0.436 0.960
γ10 0.500 0.499 0.128 0.118 0.118 0.972 0.501 0.125 0.118 0.118 0.972
γ20 -0.500 -0.490 0.255 0.247 0.246 0.952 -0.476 0.248 0.239 0.240 0.968
γ30 -0.500 -0.502 0.218 0.204 0.203 0.972 -0.492 0.215 0.202 0.202 0.972
γ60 0.000 0.041 0.960 0.835 0.834 0.964 -0.047 0.892 0.877 0.877 0.972

t=1
β∗01 -1.000 -0.982 0.182 0.192 0.193 0.924 -0.997 0.178 0.190 0.189 0.920
β∗11 0.500 0.499 0.078 0.074 0.074 0.972 0.500 0.078 0.076 0.076 0.956
β∗21 1.000 0.974 0.155 0.152 0.154 0.932 0.984 0.155 0.153 0.154 0.940
β∗31 -0.200 -0.197 0.111 0.105 0.105 0.944 -0.196 0.112 0.104 0.104 0.952

γ01 -2.000 -2.258 0.429 0.485 0.549 0.952 -2.173 0.346 0.395 0.430 0.952
γ11 0.500 0.501 0.096 0.100 0.100 0.912 0.503 0.094 0.100 0.100 0.916
γ21 -0.500 -0.525 0.196 0.208 0.209 0.936 -0.512 0.192 0.197 0.197 0.952
γ31 -0.250 -0.257 0.165 0.158 0.158 0.964 -0.260 0.163 0.155 0.155 0.968
γ41 0.400 0.396 0.300 0.305 0.304 0.948 0.377 0.295 0.302 0.302 0.944
γ51 -0.250 -0.278 0.310 0.324 0.324 0.924 -0.254 0.299 0.317 0.316 0.936
γ61 0.500 0.644 1.019 1.127 1.134 0.928 0.507 0.961 1.124 1.122 0.908

t=2
β∗02 -1.000 -1.010 0.169 0.167 0.167 0.948 -1.025 0.167 0.165 0.167 0.936
β∗12 0.500 0.496 0.077 0.071 0.071 0.960 0.496 0.078 0.075 0.075 0.956
β∗22 1.000 0.999 0.156 0.149 0.149 0.968 1.010 0.157 0.150 0.150 0.948
β∗32 -0.400 -0.395 0.117 0.112 0.112 0.948 -0.397 0.118 0.113 0.113 0.952

γ02 -2.800 -2.987 0.361 0.437 0.475 0.924 -2.920 0.331 0.402 0.418 0.924
γ12 0.500 0.501 0.092 0.101 0.101 0.932 0.500 0.090 0.098 0.098 0.940
γ22 -0.500 -0.527 0.195 0.186 0.187 0.964 -0.513 0.191 0.182 0.182 0.960
γ32 0.250 0.268 0.168 0.181 0.181 0.928 0.260 0.165 0.178 0.178 0.928
γ42 1.700 1.772 0.185 0.199 0.211 0.948 1.746 0.179 0.188 0.193 0.944
γ52 -0.600 -0.614 0.287 0.326 0.326 0.916 -0.589 0.282 0.324 0.323 0.912
γ62 1.300 1.404 0.710 0.829 0.833 0.940 1.321 0.668 0.781 0.780 0.916

t=3
β∗03 -1.000 -0.970 0.219 0.242 0.243 0.904 -0.973 0.219 0.234 0.236 0.908
β∗13 0.500 0.508 0.103 0.102 0.102 0.944 0.511 0.104 0.103 0.103 0.944
β∗23 1.000 0.988 0.174 0.165 0.165 0.952 0.994 0.177 0.167 0.167 0.956
β∗33 -0.600 -0.598 0.152 0.156 0.156 0.952 -0.599 0.153 0.157 0.157 0.948

γ03 -0.500 -0.547 0.133 0.147 0.155 0.912 -0.545 0.132 0.139 0.146 0.936
γ13 0.500 0.503 0.064 0.065 0.065 0.960 0.500 0.063 0.064 0.064 0.968
γ23 -0.500 -0.504 0.118 0.127 0.127 0.924 -0.504 0.118 0.124 0.124 0.940
γ33 0.500 0.511 0.109 0.115 0.115 0.936 0.509 0.109 0.113 0.113 0.948
γ43 1.700 1.733 0.137 0.142 0.146 0.952 1.727 0.137 0.141 0.143 0.956
γ53 0.600 0.578 0.188 0.203 0.204 0.952 0.573 0.187 0.199 0.200 0.940
γ63 -0.500 -0.466 0.443 0.511 0.511 0.888 -0.452 0.438 0.480 0.482 0.916

ρ 0.800 0.796 0.044 0.041 0.041 0.948 0.796 0.044 0.041 0.041 0.952
α 0.667 0.658 0.052 0.048 0.049 0.964 0.660 0.052 0.049 0.049 0.968
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Table 4: Values of DICR|y (pD) and LPMLR|y under Ignorable Missingness

and Nonignorable Missingness with Various Priors for the HIV Prevention

Behavioral Data

Fitted Model pD DICR|y LPMLR|y

Ignorable 30.85 4793.16 -2397.24

Nonignorable N(0, 1) 89.82 4769.73 -2398.26

Nonignorable N(0, 2) 107.06 4755.71 -2397.44

Nonignorable N(0, 3) 114.95 4757.82 -2397.86

Nonignorable N(0, 4) 112.99 4751.86 -2397.70

Nonignorable N(0, 5) 126.66 4748.78 -2397.28

Nonignorable N(0, 6) 132.95 4746.74 -2397.23

Nonignorable N(0, 7) 132.67 4747.22 -2397.23

Nonignorable N(0, 8) 132.94 4737.61 -2396.32

Nonignorable N(0, 9) 133.47 4745.62 -2397.29

Nonignorable N(0, 10) 140.61 4749.97 -2398.21

Nonignorable Jeffreys Prior 120.18 4750.08 -2396.64
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Table 5: Posterior Summaries under the Ignorable Model for the HIV Pre-
vention Behavioral Data

Binary Response Model Missing Data Mechanism

EST SD 95% HPD Interval EST SD 95% HPD Interval
Baseline Baseline

Intercept -0.694 0.196 (-1.063, -0.291) Intercept -3.490 0.411 (-4.296, -2.689)
Gender 0.379 0.132 (0.114, 0.634) Gender 0.115 0.237 (-0.336, 0.591)
City 0.123 0.157 (-0.186, 0.432) City -0.334 0.328 (-0.986, 0.290)
Cohabit 0.720 0.140 (0.455, 1.002) Cohabit 0.229 0.227 (-0.242, 0.654)
Counselor 0.433 0.158 (0.127, 0.749) Counselor 0.664 0.367 (-0.057, 1.380)
Drink 0.435 0.350 (-0.243, 1.129) Age 0.083 0.111 (-0.129, 0.305)
Age -0.372 0.073 (-0.516, -0.234) — — — —

6-Month 6-Month
Intercept -1.756 0.268 (-2.274, -1.246) Intercept -2.101 0.227 (-2.537, -1.651)
Gender 0.151 0.137 (-0.124, 0.415) Gender -0.397 0.149 (-0.690, -0.107)
City 0.112 0.167 (-0.211, 0.445) City 0.030 0.183 (-0.314, 0.395)
Cohabit 0.638 0.145 (0.354, 0.923) Cohabit 0.220 0.144 (-0.065, 0.500)
Counselor 0.574 0.179 (0.227, 0.917) Counselor 0.274 0.196 (-0.080, 0.691)
Drink 0.987 0.372 (0.273, 1.726) Age -0.101 0.075 (-0.252, 0.042)
Age -0.463 0.083 (-0.630, -0.310) R0 0.364 0.302 (-0.234, 0.949)

12-Month 12-Month
Intercept -1.811 0.281 (-2.371, -1.289) Intercept -1.953 0.211 (-2.351, -1.522)
Gender 0.331 0.150 (0.051, 0.636) Gender -0.482 0.144 (-0.760, -0.199)
City -0.005 0.173 (-0.337, 0.345) City -0.117 0.183 (-0.465, 0.249)
Cohabit 0.638 0.151 (0.344, 0.935) Cohabit -0.107 0.141 (-0.385, 0.167)
Counselor 0.275 0.182 (-0.078, 0.627) Counselor -0.249 0.175 (-0.591, 0.094)
Drink 0.594 0.366 (-0.131, 1.293) Age -0.160 0.074 (-0.309, -0.019)

Age -0.488 0.088 (-0.662, -0.323)
∑1
j=0Rj 1.644 0.140 (1.369, 1.918)

18-Month 18-Month
Intercept -1.750 0.275 (-2.273, -1.219) Intercept -2.641 0.238 (-3.111, -2.187)
Gender 0.241 0.148 (-0.046, 0.534) Gender -0.381 0.153 (-0.676, -0.079)
City -0.143 0.182 (-0.510, 0.201) City 0.403 0.181 (0.051, 0.763)
Cohabit 0.493 0.146 (0.209, 0.786) Cohabit 0.081 0.149 (-0.212, 0.370)
Counselor 0.408 0.185 (0.047, 0.771) Counselor 0.076 0.194 (-0.310, 0.452)
Drink 0.585 0.379 (-0.148, 1.327) Age -0.127 0.078 (-0.282, 0.021)

Age -0.398 0.084 (-0.563, -0.237)
∑2
j=0Rj 1.776 0.103 (1.575, 1.976)

z z
Baseline 0.086 0.122 (-0.154, 0.328) Baseline -0.633 0.231 (-1.080, -0.173)
6-Month -0.155 0.130 (-0.410, 0.100) 6-Month -0.073 0.141 (-0.357, 0.198)
12-Month -0.427 0.140 (-0.702, -0.158) 12-Month 0.456 0.142 (0.175, 0.736)
18-Month -0.372 0.141 (-0.654, -0.105) 18-Month 0.133 0.148 (-0.149, 0.430)

ρ 0.792 0.036 (0.722, 0.860) — — — —
α 0.742 0.046 (0.652, 0.831) — — — —
τ 1.074 1.241 (0.000, 3.661) — — — —
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Table 6: Posterior Summaries under the Nonignorable Model with a N(0, 8)
Prior for the HIV Prevention Behavioral Data

Binary Response Model Missing Data Mechanism

EST SD 95% HPD Interval EST SD 95% HPD Interval
Baseline Baseline

Intercept -0.678 0.193 (-1.062, -0.305) Intercept -3.632 0.740 (-4.870, -2.450)
Gender 0.375 0.129 (0.129, 0.639) Gender 0.114 0.239 (-0.357, 0.578)
City 0.118 0.152 (-0.187, 0.409) City -0.329 0.325 (-0.986, 0.290)
Cohabit 0.702 0.139 (0.438, 0.980) Cohabit 0.226 0.248 (-0.254, 0.719)
Counselor 0.422 0.157 (0.108, 0.724) Counselor 0.655 0.369 (-0.056, 1.379)
Drink 0.416 0.345 (-0.252, 1.104) Age 0.085 0.122 (-0.146, 0.333)
Age -0.359 0.070 (-0.491, -0.217) y0 0.117 0.979 (-1.567, 1.934)

6-Month 6-Month
Intercept -1.630 0.288 (-2.225, -1.099) Intercept -2.209 0.332 (-2.820, -1.600)
Gender 0.111 0.142 (-0.180, 0.383) Gender -0.390 0.150 (-0.673, -0.083)
City 0.101 0.162 (-0.215, 0.415) City 0.032 0.186 (-0.333, 0.396)
Cohabit 0.628 0.142 (0.344, 0.900) Cohabit 0.190 0.160 (-0.127, 0.505)
Counselor 0.573 0.176 (0.226, 0.914) Counselor 0.238 0.207 (-0.174, 0.634)
Drink 0.967 0.355 (0.301, 1.690) Age -0.069 0.095 (-0.248, 0.126)
Age -0.451 0.081 (-0.606, -0.293) R0 0.344 0.313 (-0.278, 0.950)
— — — — y0 -0.262 0.333 (-0.938, 0.347)
— — — — y1 0.521 0.952 (-1.404, 2.367)

12-Month 12-Month
Intercept -1.501 0.304 (-2.093, -0.905) Intercept -2.331 0.385 (-3.060, -1.646)
Gender 0.216 0.152 (-0.069, 0.525) Gender -0.574 0.160 (-0.884, -0.255)
City -0.037 0.170 (-0.369, 0.291) City -0.121 0.194 (-0.505, 0.255)
Cohabit 0.609 0.148 (0.318, 0.896) Cohabit -0.194 0.158 (-0.501, 0.117)
Counselor 0.263 0.178 (-0.080, 0.611) Counselor -0.260 0.187 (-0.615, 0.113)
Drink 0.518 0.356 (-0.177, 1.208) Age -0.100 0.089 (-0.272, 0.072)

Age -0.493 0.087 (-0.667, -0.330)
∑1
j=0Rj 1.765 0.183 (1.408, 2.120)

— — — — y1 -0.653 0.317 (-1.239, -0.015)
— — — — y2 1.437 0.714 (0.035, 2.822)

18-Month 18-Month
Intercept -1.705 0.275 (-2.250, -1.192) Intercept -2.726 0.258 (-3.243, -2.234)
Gender 0.243 0.148 (-0.043, 0.535) Gender -0.403 0.156 (-0.699, -0.093)
City -0.145 0.175 (-0.497, 0.196) City 0.404 0.185 (0.046, 0.770)
Cohabit 0.472 0.144 (0.188, 0.752) Cohabit 0.049 0.152 (-0.251, 0.344)
Counselor 0.387 0.179 (0.031, 0.736) Counselor 0.087 0.197 (-0.296, 0.478)
Drink 0.569 0.364 (-0.127, 1.301) Age -0.107 0.082 (-0.269, 0.053)

Age -0.386 0.082 (-0.551, -0.229)
∑2
j=0Rj 1.754 0.111 (1.532, 1.966)

— — — — y2 0.604 0.291 (0.043, 1.169)
— — — — y3 -0.4944 0.5608 (-1.562, 0.640)

z z
Baseline 0.084 0.119 (-0.147, 0.326) Baseline -0.637 0.233 (-1.111, -0.202)
6-Month -0.158 0.127 (-0.410, 0.090) 6-Month -0.049 0.149 (-0.349, 0.235)
12-Month -0.372 0.140 (-0.646, -0.100) 12-Month 0.579 0.166 (0.269, 0.917)
18-Month -0.357 0.137 (-0.631, -0.100) 18-Month 0.147 0.153 (-0.158, 0.443)

ρ 0.789 0.037 (0.716, 0.860) — — — —
α 0.727 0.048 (0.635, 0.825) — — — —
τ 1.117 1.280 (0.000, 3.825) — — — —
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Table 7: Posterior Summaries under the Nonignorable Model with Jeffreys
Prior for the HIV Prevention Behavioral Data

Binary Response Model Missing Data Mechanism

EST SD 95% HPD Interval EST SD 95% HPD Interval
Baseline Baseline

Intercept -0.675 0.195 (-1.059, -0.300) Intercept -3.559 0.639 (-4.880, -2.446)
Gender 0.373 0.130 (0.113, 0.623) Gender 0.106 0.236 (-0.348, 0.568)
City 0.123 0.151 (-0.161, 0.431) City -0.301 0.319 (-0.939, 0.314)
Cohabit 0.704 0.141 (0.430, 0.973) Cohabit 0.214 0.246 (-0.252, 0.711)
Counselor 0.422 0.155 (0.119, 0.723) Counselor 0.608 0.355 (-0.074, 1.313)
Drink 0.430 0.345 (-0.236, 1.109) Age 0.093 0.120 (-0.142, 0.327)
Age -0.363 0.068 (-0.497, -0.230) y0 0.147 0.907 (-1.615, 2.037)

6-Month 6-Month
Intercept -1.650 0.287 (-2.223, -1.120) Intercept -2.147 0.280 (-2.690, -1.603)
Gender 0.117 0.142 (-0.169, 0.385) Gender -0.391 0.147 (-0.690, -0.114)
City 0.103 0.160 (-0.218, 0.406) City 0.038 0.185 (-0.326, 0.393)
Cohabit 0.630 0.147 (0.353, 0.921) Cohabit 0.191 0.159 (-0.117, 0.504)
Counselor 0.570 0.181 (0.210, 0.924) Counselor 0.230 0.206 (-0.166, 0.641)
Drink 0.983 0.361 (0.277, 1.697) Age -0.073 0.092 (-0.250, 0.110)
Age -0.454 0.079 (-0.610, -0.303) R0 0.333 0.311 (-0.288, 0.930)
— — — — y0 -0.237 0.304 (-0.814, 0.363)
— — — — y1 0.431 0.901 (-1.262, 2.011)

12-Month 12-Month
Intercept -1.546 0.313 (-2.172, -0.964) Intercept -2.243 0.313 (-2.864, -1.657)
Gender 0.232 0.153 (-0.066, 0.532) Gender -0.556 0.159 (-0.861, -0.235)
City -0.030 0.173 (-0.362, 0.303) City -0.112 0.192 (-0.491, 0.260)
Cohabit 0.616 0.151 (0.337, 0.921) Cohabit -0.183 0.156 (-0.487, 0.123)
Counselor 0.268 0.182 (-0.091, 0.621) Counselor -0.263 0.186 (-0.621, 0.112)
Drink 0.541 0.363 (-0.175, 1.255) Age -0.103 0.087 (-0.270, 0.071)

Age -0.500 0.085 (-0.672, -0.339)
∑1
j=0Rj 1.731 0.171 (1.399, 2.067)

— — — — y1 -0.602 0.301 (-1.182, -0.002)
— — — —, y2 1.2918 0.6383 (0.011, 2.532)

18-Month 18-Month
Intercept -1.732 0.288 (-2.288, -1.191) Intercept -2.688 0.252 (-3.190, -2.191)
Gender 0.248 0.151 (-0.046, 0.553) Gender -0.396 0.154 (-0.684, -0.082)
City -0.140 0.182 (-0.494, 0.217) City 0.408 0.184 (0.047, 0.766)
Cohabit 0.471 0.141 (0.194, 0.750) Cohabit 0.055 0.152 (-0.233, 0.359)
Counselor 0.401 0.182 (0.054, 0.771) Counselor 0.083 0.199 (-0.310, 0.475)
Drink 0.582 0.378 (-0.141, 1.352) Age -0.108 0.082 (-0.267, 0.052)

Age -0.388 0.081 (-0.545, -0.228)
∑2
j=0Rj 1.741 0.109 (1.528, 1.955)

— — — — y2 0.563 0.289 (-0.010, 1.111)
— — — — y3 -0.473 0.550 (-1.554, 0.573)

z z
Baseline 0.084 0.120 (-0.149, 0.322) Baseline -0.623 0.227 (-1.085, -0.194)
6-Month -0.155 0.125 (-0.406, 0.084) 6-Month -0.052 0.147 (-0.336, 0.237)
12-Month -0.379 0.136 (-0.657, -0.123) 12-Month 0.558 0.159 (0.245, 0.867)
18-Month -0.357 0.140 (-0.641, -0.093) 18-Month 0.145 0.153 (-0.150, 0.446)

ρ 0.788 0.036 (0.718, 0.859) — — — —
α 0.731 0.047 (0.640, 0.826) — — — —
τ 1.059 1.211 (0.000, 3.567) — — — —
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