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ABSTRACT
Coronary heart disease is the single largest killer of Ameri-
cans so improved means of detecting risk factors before arte-
rial obstructions appear are expected to lead to a improve-
ment in quality of life with a reduced cost. This paper in-
troduces a new approach to 3-D reconstruction of individual
particles based on statistical modeling from a sparse set of
2-D projection images. The method is in contrast to the cur-
rent state of practice where reconstruction is performed via
signal processing or Bayesian methods that use averaged im-
ages acquired from an ensemble of particles. As such, this
new approach has its impetus in use for novel diagnostic
tests such as LDL and HDL particle shape characterization.
The approach is also expected to have uses in areas such
as quality assurance for drug delivery nano-technologies and
for general proteomic studies.
The individual particle reconstruction algorithm is based

on hidden Markov models. Higher order Markov chain statis-
tics are generated from the a priori model of the target of in-
terest. This model can be generated from traditional meth-
ods such as single particle reconstruction and/or the under-
lying physical properties of the particle. The basic approach
can reconstruct simple models from a single image but can
be extended to include a sparse set of images taken at small
rotation angles. Reconstruction results from a simple model
and a sparse set (where n=1) of simulated projection images
are presented.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Fea-
ture Management—size and shape; I.4.8 [Image Process-

ing and Computer Vision]: Scene Analysis—object recog-
nition; I.4.10 [Image Processing and Computer Vi-

sion]: Image representation—volumetric; J.3 [Life and Med-

ical Sciences]: Biology and genetics
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1. INTRODUCTION
This paper presents initial results from research directed

towards creating a 3-D reconstruction of transparent objects
from a sparse set of 2-D images. Here, a limited number of
orthonormal projection images of an individual transparent
object is available to be used in the reconstruction process-
ing. A classic example of the reconstruction of transparent
objects is imaging of biological and nano-particles via cryo-
genic electron microscopy (cryo-em). See [30] for a histor-
ical and theoretical review of cryo-em. In this processing,
the targets are flash-frozen from their natural state so that
structure may be preserved. A cryo-em example from [28]
of a low density lipoprotein (LDL) particle (approximately
25 nm in diameter and 10 nm in height) imaged at relatively
large rotation angles is shown in Figure 1.

Figure 1: Example LDL Cryo-em Images of an individual
particle viewed from a) +45◦, b) 0◦, and c) −45◦.

This sparse projection image approach is in contrast to the
currently available 3-D reconstruction techniques for trans-
parent objects. These non-sparse methods, which include
acquisition and processing of many thousands [12, 3] of in-
dividual images taken at varying spherical angles around a
large population of targets, allow for a representation of the
target to be reconstructed. The two methods, however, are
somewhat symbiotic since the new method can provide ini-
tial models for the iterative processing for the multiple im-



age approaches while the prior methods can provide detailed
models to be used in the individual particle reconstruction
technique.
The remainder of this paper is organized as follows. The

rest of this section provides background information. Sec-
tion 2 describes the processing in the new approach. Initial
results and discussion are provided in sections 3 and 4.

1.1 Single Particle Reconstruction
The current three-dimensional reconstruction techniques

in electron microscopy have led to what is called “single par-
ticle reconstruction” (SPR). The visualization of biological
macromolecules via SPR utilizes a uniformity assumption
in order to achieve high-fidelity rendering of 3-D represen-
tations from multiple 2-D projection images. In essence,
these techniques align the images and average out the sam-
ple noise and variations in the population samples by pro-
cessing the various pictures of the“same”object into a single
result space. As noted by Frank [10], this SPR nomenclature
can be confusing since the reconstruction process tradition-
ally uses many thousands of projection images. The name
implies that a single particle class (e.g. a virus) is recon-
structed and not that pictures of a just single item, are used
to perform the reconstruction. It is a set of distinct images,
however, that are used to reconstruct a class average from a
representative ensemble of distinct particles.
While the problem of solving a SPR is a complex proce-

dure, there are solutions. “The problem of reconstructing a
3D object from a set of 2D projections was in principle solved
analytically by Radon at the beginning of the twentieth cen-
tury (Radon, 1917). The principles of 3D reconstruction
were re-invented in the late 1960s and early 1970s, with the
introduction of computerized tomography in medicine and
3D reconstruction techniques in electron microscopy.” [29].
SPR utilizes many aspects of Radon’s principles in order
to reconstruct nano-scale biological particles. See [16] for
a treatment of the Radon transform and its application to
electron microscopy processing. As is seen, the complexity
is not so much in the math, per se, but in the alignment
and filtering of all the images that are required to provide
coverage of the entire object 3-D spatial extent. The solu-
tions derived from SPR research allows for some simplifying
assumptions in the IPR approach.
A first consideration when processing cryo-em images is

alignment of the images. This alignment can be used in
many ways but two main objectives are orientation classi-
fication for averaging and angular coverage. Averaging is
used to reduce the tens of thousands of images to a subset
that has reduced noise characteristics. Angular coverage is
used in SPR to prevent“holes” in the reconstruction analysis
by ensuring that samples provide coverage across a suitable
portion of the full range of spherical angle space. Alignment
of such images can be handled via the Fourier-slice theorem.
A complete description of the underlying mathematics can
be found in [9] and other descriptions can be found in re-
sources such as [22]. Thus, the general alignment problem
has solutions that can be used for IPR.
A second issue with cryo-em images is correction for the

imaging modality. Images generated by transmission elec-
tron microscopy, regardless of whether or not the sample is
frozen, are not true 2-D projections of the 3-D sample space.
Various artifacts and noise are present that degrade the in-
formation in the projection images. Noise can be induced

from many sources but with appropriate care, these can be
ignored in the presence of other factors. The two largest
contributors to distortion are the contrast transfer function
(CTF) and the envelope function of the microscope [7, 11].
While the shape of the CTF (see, e.g., Figure 1 in [19])
depends on several parameters such as defocus, spherical
aberration coefficient, source size, and defocus spread, only
defocus is a parameter that changes between images [6]. De-
spite the fact that information is lost at the CTF’s zero
crossings, there are ways to overcome this effect. A sim-
ple method of correcting is to truncate the data at the first
zero crossing. However, many more robust techniques have
been developed [19, 15] to estimate the CTF so that the true
projection image can be recovered. Thus, for reconstruction
from a limited number of images, acquisition of the proper
defocus images should allow for recovery of the underlying
projections to be used in the reconstruction processing from
sparse images.

The several algorithms used in variations of SPR also offer
model generation support for IPR. Single particle tilt series
(SPTS) often do use just an individual particle as a target.
By utilizing a much lower electron beam energy, SPTS al-
lows for capture of 60 to 280 images of the same particle [8].
However, the lower energy restricts the achievable resolu-
tion so other means may be more applicable to providing an
a priori model for the IPR approach. The random conical
tilt (RCT) process takes advantage of the target’s preferred
orientation in the sample holder [21]. RCT only takes two
images of the sample space; one at some desired rotation an-
gle and the second one at a nominally untilted angle. Since
the particles are in the same basic orientation in the untilted
image, this image provides a “known” orientation angle for
alignment processing. With only two exposures, the electron
beam can be more energetic to achieve higher resolutions.
In fact, only the rotated image, which has but a single expo-
sure, is used for reconstruction so sample damage is vastly
minimized as an input into the reconstruction process. The
angular reconstitution (AR) method, which is summarized
in [24], uses the random nature of particles in suspension
in order to glean the requisite FT slices across a range of
spherical angles without requiring a physical tilting of the
cryo-em sample. An alternate version of this is the Albany
Zero Tilt (AZT), which uses but a single image of the sam-
ple. The alignment and further processing is performed via a
series of post processing steps. Thus, there are several exist-
ing techniques for gleaning a model of a target particle that
can be used in statistical-based reconstruction techniques.

1.2 Bayesian Reconstruction
Statistical methods may also be used for reconstruction of

particles from cryo-em images. A recent paper [13] utilizes
a Bayesian method for inferring macromolecular structure
from SPR-style microscopy images. Rather than modeling
the target itself, this method creates an estimation of the
3-D space by observing how the projection image pixels are
created by the electron beam passing through the material.
The vertices of the voxels are used as the definition points
of the coulomb density of the 3-D space. A trilateral inter-
polation of the vertices along each ray to the pixels is used
as a means of statistically connecting the pixel values to the
voxel densities. A probabilistic model for the pixel values
from the line integration along the rays is then used to feed
an iterative process for maximizing the probability that the



vertices give rise to the given pixel values.
The images used for this processing are averaged images,

much like those used for standard single particle reconstruc-
tion processing. This method also assumes that the align-
ment of the particles is sufficiently accurate to not unduly
influence the estimate of the 3-D space. As with SPR, the
averaging of the images implies a uniformity of all the parti-
cles in the ensemble class. But, the averaging can also affect
the statistics of the pixel values. A pure Bayesian approach
needs to understand the standard deviation of the pixel val-
ues in the images so that the probabilities of the voxels can
be estimated. The paper makes an assumption that the
standard deviation of the noise is the same for all pixels. As
with the rotational alignment, an assumption of images cor-
rected for microscope issues such as CTF makes sense since
these are well understood. But, an assumption of constant
sigma across all pixels does not seen plausible since the num-
ber of electrons received for each pixel changes based on the
voxels involved in the pixel. The electron flux will clearly
have an effect on the variance of the pixel values. As can be
easily measured, and was shown in [5], the variance of the
pixel values is not constant. Sigma of cryo-em pixel images
was shown to range from 1 to 14 gray levels for a 3×3 region
when the mean ranged from 50 to 200. As with the size of
the region over which the variance is computed, the number
of images in the average also plays an important role in the
measured variance. The study [13] notes that differing num-
bers of images used for averaging at various rotation angles
was a possible cause of errors in the estimates.
This approach also has other constraints that limit its ap-

plicability. The paper uses a constraint about there only
being small changes in intensity between neighboring grid
points [13] . From biological inference, we know that there
can be significant changes in coulomb density from voxel to
voxel as atoms and molecules with various densities exist
side by side. Independence is a primary concern in sim-
plifying statistical computations. While the results shown
in [13] were fairly good approximate reconstructions, from
the above constraints, it is not clear if this method can be
used in general practice. As with SPR techniques, it does
not provide details of individual particles and the above is-
sues may preclude the use of its reconstructed model as a
basis prior for the new approach.

1.3 LDL Particles
While the IPR method has applications in many areas,

the initial biologic targets of interest are lipoprotein parti-
cles. Thus, an understanding of the LDL particle and re-
lated research is provided to motivate the new sparse image
approach.
As coronary heart disease (CHD) is the single largest killer

of Americans [2], improved means of detecting risk factors
before arterial obstructions appear is expected to lead to a
improvement in quality of life with a reduced cost. Geo-
metric parameters other than average diameters or density
measurements may one day prove more important to achiev-
ing a better understanding of and prediction of heart disease
risk. By allowing for efficient generation of a histogram of
geometric parameters from LDL and HDL particles found
in blood samples, information derived from cryo-em im-
ages may be correlated to observed cardiovascular state in
order to assist in the determination of essential relation-

ships between lipoprotein geometry and overall cardiovascu-
lar health. Tools that can provide these parameters can also
be used for other proteomic and nano-particle studies.

The characteristic parameters of LDL and HDL packages
are important to a better understanding and prediction of
heart disease risk. Past research has suggested that geo-
metric parameters of lipoprotein macromolecules may bet-
ter correlate with cardiovascular risk than just the particle
counts and the associated density of particles in the serum.
In general, LDL particles that fall on the large end of the
LDL particle size spectrum are tied to better health while
smaller LDL particles correlate to worse health. In a study of
diabetics [26], changes in the LDL sizes and plasma lipid lev-
els accounted for part of the antiatherogenic effect of fenofi-
brate in type-2 diabetes. In this study, increases of only
0.98nm in average LDL diameters (which is in the range of
%5 to %10 of expected particle size) showed a detectable
change in atherogensis. LDL packages that are at the small
end of the overall LDL size spectrum are considered to be
an important cause of arterial plaque initiation that can
eventually lead to heart attacks and stroke. And somewhat
surprisingly, even though conventional wisdom states that
HDL is “good” cholesterol, another study [18] showed that
high concentrations of smaller sized HDL particles resulted
in a 15-fold increase in the risk of heart disease. Newer test
methods that are based upon Nuclear Magnetic Resonance
(NMR) spectroscopy can provide a count of the number of
LDL particles in presorted bin sizes but not actual sizes of
individual LDL particles [14]. These studies imply that more
is at play than just the size of the particles: shape and/or
other geometric properties may be important.

Initial cryo-em micrograph studies [27] reported that the
LDL particles may be more discoid in shape than spherical
as had been previously assumed. Figure 1 shows example
cryo-em images of an LDL particle at rotations of +45◦, 0◦,
and −45◦. This study measured the diameter and height of
the discs but did not measure the thickness of the wall as
seen in the projection in frame A of Figure 1. These studies,
however, were difficult to carry out since they did not apply
computer vision to provide a way to perform measurements
on samples from a large number of objects from each image.
Such a study is necessary to evaluate the effect of geometric
shape parameters on overall health in a statistically signif-
icant patient sample but, to date, the necessary processing
tools were not available.

Other studies have been performed in an attempt to re-
solve the LDL shape question, but these did not provide
actual metrics on the shapes. In one study [17], computer-
based analytical methods were applied to cryo-em images by
applying a homogeneity requirement on subclasses of LDL
particles. In this analysis, approximately 5600 individual
LDL particles were manually divided into subclasses. Fur-
ther classification reduced the data to approximately 4000
particles. These particles were further analyzed and were
determined to be generally ellipsoidal in shape. Another
study [25] used volume/mass ratios of High Performance
Gel Chromatography (HPGC) to indirectly determine LDL
shape. This study fitted data based on a geometric model
of a discoid object with varying heights rather than directly
from images of the macromolecules.

One of the more recent full-featured reconstructions of
LDL particles was reported in 2010 [23]. This study re-
ports a reconstructed 3-D volume that shows the shape of



LDL particles to be somewhat like a flattened walnut with
a slight bump on the narrow end. In this analysis, ≈ 8500
particle images were selected from a pool of ≈ 48000 par-
ticle images to be processed. The resultant reconstructed
shape is a slightly flattened ellipsoid and a size of approxi-
mately 250 Å by 240 Å by 166 Å. The detailed reconstruc-
tion from [23] (See Figure 2) also shows internal layers of
alternating cholesterol esters (CE) and fatty acyl chains.
The reconstruction shows a very advanced model of LDL

Figure 2: 2010 LDL Cryo-em Reconstruction

that can be used to understand the structure of the parti-
cle. But, this study also demonstrates a major concern with
heterogeneous sample sets: about ≈ 40000 (or 82%) of the
particles were not included since they were of different size
or shape. These studies all used large numbers of images
but resulted in but a single class average description of the
biological target of interest. They do not provide a path-
way to understanding the individual parameters of a large
sample of proteomic particles. But, the underlying model
maybe useful in processing of individual particles.

2. PROCESSING
The over-arching goals of processing with a limited set

of images are to provide spatial parameter information for
each individual particle and to do so in a reasonable process-
ing architecture. As noted above, SPR processing provides
a detailed ensemble average rather than details about each
particle. These methods also can require multiple passes of
O(Nlog(N)) computations for each image times the tens of
thousands of images processed. The statistical-based pro-
cessing shown below can provide details on each particle
within very reasonable computational constraints.

2.1 Software Framework
A software framework was developed to test and ana-

lyze various reconstruction methods. The software suite is
called ARTEMIS (A-priori Reconstruction from Transmission
Electron Microscope Image Sets). The major parts of this
framework are a projection simulation engine and the re-
construction processing. Both processing streams make use
of a common voxel space. The utility allows both the color
and opaqueness of each density to be specified so that the
target can be viewed showing the densities. A simple three
layer disc, which emulates a simplified version of the ex-
pected LDL shape from [28], is shown in the figure but this
simulated shape can be any set to any configuration pro-
grammatically or from a file. The 3-D space is then filled
with the expected density (transmission coefficient) for each

voxel based on the simulated target. Voxels that are not part
of the object can be left unfilled or can be set to a value to
simulate the expected statistics of the buffer solution in the
cryo-em setup. Examples of the target model and a simu-
lated projection image is shown later in Figure 5a. The voxel
space and resulting projection images are scale independent
to allow for reconstruction from images taken at any scale.

The images and statistics are created from rays passing
through the voxel space. The pixel value for each location in
the 2-D projection is computed from the transmission losses
“seen” at each pixel as the ray trace passes through the sim-
ulated target. Thus, as with the cryo-em equipment, darker
and lighter pixel values can be determined by the amount
of density in the target through which the ray passes. Like-
wise, the voxels intersected by the rays can be analyzed to
compute statistics.

The 2-D projections of the simulated 3-D targets are gen-
erated as orthonormal projections of the voxel space onto
the images. The center of the voxel space is mapped to the
rotated center of the projection image. Similarly, each ro-
tated pixel center location is projected through the target
voxel space. The projection ray for each pixel is used to
compute intersection lengths for each voxel that contributes
to the given pixel. This process is repeated for each desired
pixel in the projection image.

The computation of the simulated pixels accounts for the
voxel intersection lengths, camera gain, and camera DC off-
set. This allows the pixel values to be scaled to match the
camera output range. The computation treats each voxel
as a region of constant transmission medium. The length of
the intersection through a voxel is also used to adjust the
transmission loss so that shorter traversal lengths have less
effect than a long length. Each simulated pixel value, pj , is
expressed in Equation 1

pj = Ej

I
∏

i=0

(T
(Li/Lmax)
i ) + Cj (1)

where Li is the length of the intersection of the current
beam through the ith voxel and Lmax is the maximum pos-
sible voxel intersection for the overall voxel size (e.g. oppos-
ing corners). This approach follows the physics of cryo-em
where an intersection length that approaches 0 through a re-
gion of constant density results in a transmission coefficient
approaching 1 so that there is very little loss. And when the
intersection length nears the maximum intersection length,
a value nearer to the base transmission coefficient Ti of the
voxel is used. The constants Ej and Cj provide the camera
scale and offset adjustments. These constants are expected
to be the same for all pixels in a projection image but are
provided on a per-pixel basis in case camera distortions are
to be included in the projection images. Given the trans-
mission coefficients are all less than or equal to 1, the initial
energy coefficient, Ej , also helps prevent underflow from the
product of many small numbers. Additional issues such as
electron beam damage, imaging noise, and CTF issues can
be added to the model as required.

The utility uses projection images and reference data cre-
ated by the program and generates the sequence of obser-
vations required for reconstruction of the 3-D voxel space
via the HMM approach. By convention, stacks of the voxel
space are used as the state sequences for the HMM. These
stacks may be oriented along any of the three axes in either



the plus or minus direction. Since the most probable hidden
state sequence is dependent upon the direction, this provides
for six different renderings of the voxel space. Observation
generation follows the same basic idea as projection image
creation but the rays are based on the voxel centers rather
than the pixel centers. Once the intersection with the im-
age is determined, the observation is created from the pixel
values neighboring the intersection point.

2.2 Hidden Markov Models
Hidden Markov Modeling (HMM) methods of reconstruct-

ing 3-D voxel spaces offer algorithms that do not require the
exponentially scaled computations of correlation processing
nor the extensive collection of images required for averaging
methods such as SPR. Relationships between the observ-
ables and the underlying object can lead to estimates of the
3-D structure utilizing the relationship. Some methods, such
as Bayesian methods seek to determine the most probable
“explanation” of the observations given a physical model of
how the observed images are created. An example of this
is discussed in Section 1.2. Other methods, such as hidden
Markov models, utilize an understanding of the 3-D target
to help find the most probable set of states that explain the
observations. An example of this processing that uses tree
ring sizes to infer the most probable weather is discussed
in [1].
A HMM is a form of a Bayesian network that has been

in use since the late 1960’s for a variety of state-machine
modeling applications. See [20] for a seminal paper that pro-
vides a tutorial on HMM processing and its use in speech
recognition. In a HMM, the system is modeled as a state
machine that gives rise to a set of observed measurements.
A representation of an HMM system is shown in Figure 3.
The Markov process is denoted by the sequence of unknown

Figure 3: Representative Hidden Markov System

states st and the corresponding T observations are denoted
by Ot. While the representation of a Markov system is
shown as states and observations versus time, this could just
as easily be a spatial relationship so the T subscript could
be K, a traditional spatial or wave number index. The prob-
abilities of the process transitioning from state to state are
denoted by Asi,sj and the probability of a given state giv-
ing rise to an observation is shown as Bsi,Ot . A first order
HMM (FOHMM) must also satisfy additional requirements
of a) each current state only depends on prior state, b) time
independence (stationary) of the model, and c) observation
independence.
Note that the model as given does not account for all

things that could affect the hidden states. In the given ex-
ample [1] of tree ring widths used to infer prior weather, the
tree ring sizes could be affected by the density of the forest,

or rainfall, or cloudiness. While this could be a limitation of
the technique, it can also be an asset. By ignoring the other
factors, the most probable state sequence is the sequence
that is best explained by the factors of concern. Stamp [1]
alludes to this in the example he presents based on [4]. In
this example, a set of characters from the English language
is modeled with just two states. As may be expected, a
50000 character sample of text is divided into vowels and
consonants. But, the work in [4] was able to decipher re-
sults for models with up to 12 hidden states. Thus, other
factors do not necessarily affect the results when a smaller
number of factors are considered.

2.3 3-D Reconstruction via HMM
HMM processing was in investigated because of the inher-

ent match between the requirements of the HMM processing
and the desired goals of the individual particle reconstruc-
tion. These models are based on an underlying state to
state relationship. The nature of biological particles im-
plies some sort of order. For the example target particle,
the well-known“states” of phosphate head group (red), lipid
(green), protein (blue), and buffer (white) were chosen as a
first set of states. The shape was deduced from the origi-
nal images in [28]. Assuming the sample is not imaged to
the point where damage occurs, the frozen nature of the im-
aged samples ensures that the states do not change. Due
to the structure of HMM processing, state and observation
independence is needed. The construction of the problem
space can guarantee the necessary constraints while the effi-
cient nature of HMM processing leads to a computationally
tractable solution for reconstructing individual particles.

Basic first order Markov sequences, however, are not use-
ful for this 3-D reconstruction. The greedy statistical na-
ture of a FOHMM means that, in general, the voxel state
that fills the majority of voxels in a stack will most likely
dominate for a given observation even if the projection im-
age is at an angle to the voxel stack. As can be seen in
Figure 2, a current model of the LDL particle consists of
several layers of alternating fat and cholesterol encased in
the phospholipid head group shell. Which ever density pre-
vails in a voxel stack will dominate the simple first order
statistics processing. This results in a reconstruction that
cannot determine the height of the particle. The reconstruc-
tion is simply a cylinder where the top slice is red then the
remaining slices of the middle region are green since the
green statistics dominate. It is this internal structure, how-
ever, that helps make use of higher order HMM (HOHMM)
processing feasible.

HOHMM systems generally rely on additional state to
state information while a FOHMM only uses the prior state;
both use the observation statistics. HOHMM’s can utilize
more than just the prior state and have also included the
chain’s duration in a given state to provide more robust re-
sults. From the basic model provided, it is obvious that just
using the prior two states will not provide any additional
information. For example, the white to red transition in
figure 5a would simply result in requiring a white-white-red
sequence in order to make the jump from the white state to
the red state at the top of the reconstructed particle. But
this will only result in the top two reconstruction slices be-
ing white then the same pattern cylindrical will continue as
before. Likewise, if a red-red-green sequence is required to



get from red to green, the top band of red will now be two
rows high instead of just one. Given the preponderance of
green in the middle, the green-green-green sequence will be
more probable so the same resulting stack of green in the
middle will result. Even higher order models can be con-
jured up but this defeats the purpose of the HMM. Another
metric is needed in order to help the hidden Markov chain
be found.
The external buffer as well as the shell and internal lay-

ers of the simple model can be reconstructed by using a
HOHMM that includes state duration in addition to prior
state information. Thus, the HMM A matrix is not sim-
ply a probability that a state transitions to another state
but it also includes an extent or duration component. This
HMM denotes the elements of state transition matrix A by
Equation 2.

A(St, St−1, St−2) =

P (St−1 → St |St−1 is length L1 and St−2 is length L2)

(2)

For this model, the two prior state sequence lengths pro-
vide sufficient detail to allow the HMM to determine the
structure of the particle. By including external unknown
states (which is effectively the vacuum outside of the frozen
buffer) of length 1, the white buffer sequence is statistically
determined by the top of the particle model (red). As can
be seen in Figure 2, the top of the particle is not truly flat
so a statistical model of the buffer lengths to the top of the
particle needs to be deduced from the model. Likewise, all
internal sections (states) of the particle can be described sta-
tistically by the preceding hidden state layer lengths. For
our simple model, the two preceding state lengths were used
but more complicated structures may require a higher order
model.
The second order HMM that included state duration that

was found to be effective in reconstructing the simple dis-
coid target uses an extended A matrix. In this schema, the
elements of the A matrix were defined as

A
′

f ′,sn = P{sf , Lf , sp, Lp → sn}, (3)

where f ′ is the 4-tuple of the from node that is defined as
sf , the from state, Lf , the length the chain was in the from
state, sp, the previous state, Lp,the length the chain was in
the previous state, and sn, which is the next state (next = n

is used instead of to = t in order to prevent confusion with
the observation step t). The new a(f ′ = {f, Lf , p, Lp}, n)
values can be easily computed from the model voxel space.
As with the originalAmatrix, the elements of A′ are normal-
ized so that the probability of transitions from each prior-
state tuple state is row stochastic.
Using the state identifiers of next state :: n = j and

set of states :: s = i and converting the A subscripts to
generic array indicies, the basic α-pass equation [1, 20] can
be rewritten as

αt+1(n) =

[

N
∑

s=1

αt(s)a(s, n)

]

bn(Ot+1), (4)

for 1 ≤ t ≤ T − 1 and 1 ≤ n ≤ N . The summation part of
the equation processes all of the edges of the nth trellis sub-
structure and the loop over the set of n states computes all
of the fans in the trellis to the next step. Thus, the alpha
term for each possible state at the next step in the chain

(αt+1(n)) is given by the probability that the possible next

state gives rise to the observation at the next step in the
chain (bn(Ot+1)) times the sum of all the α terms from the
prior step in the chain multiplied by the probability that the
chain can transition from state s = f to the nth state. Note
that while not changed here, the s index is really the from

index given the trellis structure, which can be converted to
make the processing a HOHMM.

The α pass processing was modified to include the from

and previous information. Figure 4 shows how this can
be flattened to convert the HOHMM into a FOHMM. This
expansion occurs since there now is a node for each tuple
of {from state, from length, previous state, and previous

length} instead of just the N basis states. The left side of

Figure 4: Expanded HOHMM Trellis Structure

the single trellis fan shows example from, previous nodes
as 4-tuples denoted by {from, previous} state and length
information. Note that some 4-tuples cannot coexist at each
step in the overall trellis. For example, the first state-tuple
shown cannot occur concurrently with the second state-tuple
since S1 cannot be of length 1 and 2 at the same time step.
However, the A probability may exist since in one area of the
voxel space the (S1, 1, S2, 1) → (S3, 1, S4, 1) transition may
occur and in another area the (S1, 2, S2, 1) → (S3, 1, S4, 1)
transition may happen. The f, p state node listed at the
bottom of the from side of the sub-trellis represents the
extra “unknown” states beyond the voxel space. Here, Sn+1

and Sn+2 represent the states outside of the known voxel
space and these are expected to only have lengths of 1 so
there are no further 4-tuples needed for these states.

3. RESULTS
A test of this processing was performed that reconstructed

the example target exactly. Figure 5 shows the original
model (rotated at 45◦ and zoomed in to show the internal
structure) in the left panel, the simulated projection im-
age (not rotated) in the center panel, and the reconstructed
particle (also rotated and zoomed) in the right panel. The
HMM statistics for matrix Amodeled the fact that the white

buffer region was of length T , Ttop, or Tbottom states. These
statistics also captured the effect that the sequence of un-
known of length 1 followed by a white buffer region of length
Ttop gave rise to a transition to the red state. Likewise, a
sequence of white to red with appropriate lengths predicted



a transition to either blue or green, where the selected state
depended upon the associated observation value. Similarly
the blue or green regions transitioned back to red then white

based on the modeled sequence lengths.
This test shows that the basic processing is functioning

but it does not provide any significant insights into the over-
all reconstruction issue for arbitrary angles. This single-pass
reconstruction relies on the fact that the target was square to
the reconstruction voxel space. The statistics match exactly
“from the top”and there is no ambiguity of observations and
states.
Additional reconstruction results were obtained by per-

forming the HMM processing in four orthogonal directions as
depicted in Figure 6. In effect, the reconstruction space was

Figure 6: Extended HOHMM Processing Directions

rotated around the z axis. The reconstruction voxel space
was constructed at ±45◦ to the orientation of the modeled
target in order to produce independent observations for each
step in the chains (yellow boxes). The directions were chosen
so as to keep the reconstruction space aligned to the rows
and columns of the projection images. This artificial con-
straint was chosen to help with analysis; a rotation around
the y axis could have also been performed. The same HMM
model parameters, which were deduced from the +y to −y

direction for all 4 images, were used for the 4 reconstruction
passes. Thus, the HMM state chains followed the directions
of the black arrows.
The results of these 4 reconstructions are shown in Fig-

ure 7. As is shown, the basic particle shape is also recon-
structed but with a “tail” in the trailing direction of the
HMM chain. There is no “tail” on the leading edge since
the statistics of the “white space” say that there can be no
particle states until at least the minimum distance from the
edge has been traversed by the state chain. On the trailing
edge, however, the state to state probabilities can result in
particle states, thus the tails when the observations support
it. As with the external tails, the internals are also subject
to distortion along the HMM state chain since the view is
at an angle to the direction of the state-to-state probabili-
ties. The detailed voxel to voxel comparison is provided in

Table 1. As is shown, the reconstruction space matches the
original space to 98.76%.

Orginial / Recon Blue Green Red White
Blue 7770 420 0 30
Green 150 10365 0 0
Red 0 0 12470 20
White 1665 0 1110 240625

Table 1: 45◦ Reconstruction Voxel Accuracy

Since the 4 reconstructions share the same aligned voxel
space, the separate results can be easily combined without
the need for state interpolation or other schemes. Given
the orthogonal method by which the reconstructions were
generated, a simple majority scheme can be employed to
deduce the final reconstruction. Since, for the most part, the
tails extend along the trailing edge, each voxel is defined by
the three images that are not being affected by the trailing
effect. Figure 8 shows an example projection image with
noise. Figure 9 shows the reconstruction merged with a

Figure 8: Projection image at 45◦ with noise added .

simple majority scheme. This reconstruction also matches
the original model better than 98% but the tail artifacts
have been reduced.

While the similar results with non-averaged noise may
seem counter-intuitive, a look at the state-to-observation
statistics gives insight into why HMM processing works. Fig-
ure 10 shows the observation to state probabilities. The left
side shows the base statistics for no rotation of the voxel
space. The peak at the right is for the pure buffer case; all
observations are high in the gray level space. The lower two
peaks are for the combined projection pixels. Thus, only
a handful of observation values are allowed. The spread
denotes the noise level added; if there was no noise, the
allowable regions would be delta functions at the resulting
projection gray levels. The right side of the figure shows the
effects of rotating the voxel space. The buffer region stays
clearly separated but the two peaks for the particle voxels
start to merge. The HMM processing, however, uses both



(a) (b) (c)

Figure 5: a) Original Discoid model, rotated to 45◦ and sliced to show internal structure, b) Resulting projection image taken
along the Y axis, and c) HMM reconstruction results, also rotated to 45◦ and sliced.

(a) (b)

(c) (d)

Figure 7: Reconstruction results for the four rotated and non-rotated cases of a) X +45◦, b) X −45◦, c) Z +45◦, and d) Z
−45◦ as viewed from the +y axis.



(a) (b)

Figure 10: State (color) to observation probabilities for a) aligned voxel space and b) rotated voxel space.

Figure 9: Merged reconstruction results shown at 45◦ and
sliced open to show the internals.

the state-to-state and state-to-observation statistics so the
effect of noise is minimized.

4. CONCLUSIONS
There are many classes of problems that need individ-

ual particle reconstruction. The presented approach offers
promise that a simple method that requires significantly less
computational processing than the current state-of-practice
methods exists. The processing shown requires on the order
of a minute of processing on a modest laptop computer ver-
sus the hours of computations for existing methods. Even
processing of 50, 000 separate images would require only a
half day or so of computing and the results would be for each
individual particle, not the ensemble average. The method
described in this paper can provide reconstruction results
from modeled targets and simulated projection images that
match the original target better then 98% on a voxel to
voxel basis. The individual particle reconstruction shown
here also has an ability to work through the noise found in
non-averaged images and with care in setting the contrast
range of the images, it is expected that even better per-

formance can be achieved. For problems such as medical
diagnostics and quality assurance for drug delivery vesicles,
the proposed IPR approach may lead to better quality and
new understandings in various proteomic studies.

Further study is needed to achieve these goals. A partial
list of topics for further study includes angle dependencies,
size scaling, and merging schema. These, and other issues,
are currently being investigated.
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