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RESEARCH ARTICLE Open Access

Molecular characterization of novel
sulfotransferases from the tick, Ixodes scapularis
Sivakamasundari Pichu1*, Emine B Yalcin2, José MC Ribeiro3, Roberta S King2 and Thomas N Mather1

Abstract

Background: Ixodes scapularis, commonly known as the blacklegged or deer tick, is the main vector of Lyme
disease in the United States. Recent progress in transcriptome research has uncovered hundreds of different
proteins expressed in the salivary glands of hard ticks, the majority of which have no known function, and include
many novel protein families. We recently identified transcripts coding for two putative cytosolic sulfotransferases in
these ticks which recognized phenolic monoamines as their substrates. In this current study, we characterize the
genetic expression of these two cytosolic sulfotransferases throughout the tick life cycle as well as the enzymatic
properties of the corresponding recombinant proteins. Interestingly, the resultant recombinant proteins showed
sulfotransferase activity against both neurotransmitters dopamine and octopamine.

Results: The two sulfotransferase genes were coded as Ixosc SULT 1 & 2 and corresponding proteins were referred
as Ixosc Sult 1 and 2. Using gene-specific primers, the sulfotransferase transcripts were detected throughout the
blacklegged tick life cycle, including eggs, larvae, nymphs, adult salivary glands and adult midgut. Notably, the
mRNA and protein levels were altered upon feeding during both the larval and nymphal life stages. Quantitative
PCR results confirm that Ixosc SULT1 was statistically increased upon blood feeding while Ixosc SULT 2 was
decreased. This altered expression led us to further characterize the function of these proteins in the Ixodid tick.
The sulfotransferase genes were cloned and expressed in a bacterial expression system, and purified recombinant
proteins Ixosc Sult 1(R) and 2(R) showed sulfotransferase activity against neurotransmitters dopamine and
octopamine as well as the common sulfotransferase substrate p-nitrophenol. Thus, dopamine- or octopamine-
sulfonation may be involved in altering the biological signal for salivary secretion in I. scapularis.

Conclusions: Collectively, these results suggest that a function of Ixosc Sult 1 and Sult 2 in Ixodid tick salivary
glands may include inactivation of the salivation signal via sulfonation of dopamine or octopamine.

Background
Ticks are hematophagous arthropods, notorious as vec-
tors of human and animal pathogens [1]. Diseases trans-
mitted by ticks are global medical and veterinary public
health problems [2]. Ixodes scapularis, known com-
monly as the deer tick or blacklegged tick, is the major
vector for Lyme disease, babesiosis, and granulocytic
anaplasmosis to humans and domestic animals in the
United States. Ticks and other blood-feeding arthropod
vectors manipulate host hemostatic and immune
responses by secreting molecules from their multifunc-
tional salivary glands. Blood feeding by ticks requires

prolonged contact with host tissues and blood, and it
has been suggested that the adaptation of ticks to their
natural host has resulted in evolution of an appropriate
set of salivary components allowing the tick to evade
host immunity and prevent coagulation at the feeding
site to successfully obtain its blood meal [3]. The blood
feeding cycle of larval and nymphal Ixodes scapularis
typically extends for three to four days, while that of the
adult female blacklegged tick lasts approximately six
days; during this time the tick alternately secretes sali-
vary fluid into the host and takes up blood from the
host [4]. Successful blood feeding must require endo-
genous signalling molecules within the tick to turn on
and off salivation and control the release of some 300
secreted salivary proteins into the saliva [5]. One possi-
ble strategy for reducing tick-transmitted disease
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incidence could involve manipulating tick salivary secre-
tion so as to interrupt or shorten the duration of host
attachment or blood feeding. Accordingly, this research
is focussed on elucidating biochemical pathways of two
sulfotransferase genes that may be involved in tick sali-
vation and pathogen transmission.
Sulfotransferases catalyze transfer of a sulfonyl moiety

(-SO3) from the universal donor 3’-phosphoadenosine-
5’-phosphosulfate (PAPS) to an oxygen or nitrogen
acceptor, resulting in production of a sulfate ester. His-
torically, sulfotransferases have been classified by their
sub-cellular localization as either cytosolic or membrane
bound [6]. In general, cytosolic sulfotransferases accept
relatively small molecules as substrates, while the mem-
brane bound sulfotransferases utilize macromolecules
[6-9].
Although a number of sulfotransferase genes are

registered in various invertebrate genome databases,
only a few invertebrate sulfotransferases have been
characterized. Cytosolic sulfotransferases have been
characterized from the nematode Caenorhabditis ele-
gans [10] and from the arthropods Bombyx mori [11],
Spodoptera frugiperda [12], and Drosophila melanoga-
ster [13,14]. C. elegans contains a glycosaminoglycan
membrane bound sulfotransferase with heparan-2-O-
sulfotransferase activity [15]. Membrane bound tyrosyl-
protein sulfotransferases have been characterized from
Drosophila melanogaster and from C. elegans [16].
Specifically in salivary glands, tyrosylprotein sulfotrans-
ferases have been characterized from human saliva [17]
and rat salivary gland tissue [16,18-20]. Thus, prece-
dent exists for both cytosolic and membrane-localized
sulfotransferases in arthropods, and in mammalian
salivary glands.
Sulfotransferase enzymes modulate the activity of

many hormones and proteins; in humans and other
mammalian species, some are involved in regulating
immune responses and blood coagulation [6,9,21-25].
Recently, we predicted that dopamine and octopamine
could serve as substrates for tick-derived sulfotrans-
ferases [26]. Dopamine is known to stimulate secretion
of tick saliva through a neurochemical mechanism. Tick
salivary fluid secretion is controlled via a dopamine D1
receptor and cAMP dependent protein phosphorylation
cascade following salivary gland stimulation by dopa-
mine released from nerve endings [27]. Moreover, endo-
genous dopamine has been identified in salivary glands
of the ticks Rhipicephalus microplus and Amblyomma
hebraeum [28,29]. Octopamine also exhibits neuromo-
dulatory functions in arthropods [30]. Thus, precedent
exists for sulfotransferase enzymes to impact host
hemostasis as well as modulate tick salivary or host
components which regulate salivation, immune
response, or blood coagulation.

Our recent report showed the three dimensional
structural conservation of two novel tick sulfotrans-
ferases (Ixosc Sult 1 and Sult 2) and its ligand docking.
Predictions from the modelling were tested and con-
firmed using native tissue enzyme homogenates from
larval and nymphal stage blacklegged ticks [26]. In this
present study, we identify the genetic expression of two
cytosolic sulfotransferases throughout the tick life cycle
and characterize the expressed recombinant proteins.
Interestingly, we observed differential gene expression
between the two sulfotransferases during blood feeding,
and that their recombinant enzymes effectively sulfate
neurotransmitters dopamine and octopamine. Taken
together, the observed differential expression of these
two sulfotransferase genes and the resulting protein affi-
nity for neurotransmitters involved in tick salivation
suggests that Ixosc Sult 1 and Sult 2 may play roles in
tick salivation and pathogen transmission processes.

Results
Amino acid sequence comparison
The sequence alignment of the two Ixodes sulfotrans-
ferases (Ixosc Sult 1 and 2) and related mammalian cyto-
solic sulfotransferases are shown in Figure 1. The
SULT_MOTIF on Figure 1 indicates the residues which
make up the cytosolic sulfotransferase amino acid
sequence motif regions. Thus, the amino acid sequence
comparison confirms that there is presence of conserved
domains of cytosolic sulfotransferases on both Ixosc Sult
1 and 2.

Transcriptional expression of Ixosc SULT 1 and SULT 2
genes and gene products
To shed light on the transcriptional control of the two
genes during different life stages of I. scapularis, we
used real-time quantitative RT-PCR to amplify RNA iso-
lated from pooled unfed and blood-fed whole larvae and
nymphs, as well as the salivary glands and midguts dis-
sected from both unfed and blood-fed adult stage ticks.
Usually, the feeding time varied between 48 to 72 hours.
Expression levels were normalized using the constitu-
tively expressed b-actin transcript as a standard. Results
showed that the SULT 1 was increased during feeding
1.5 fold in larvae and 1.4 fold in nymphs. In contrast,
SULT 2 was decreased during feeding by 1.5 fold in lar-
vae and 2.6 fold in nymphs as shown in Figure 2A and
2B. Furthermore, the difference in transcript abundance
for SULT 1 and SULT 2 were statistically significant, p
< 0.03 for SULT 1 and p < 0.01 for SULT 2 during lar-
val stages between unfed and fed, where as p < 0.008
and p < 0.03 for SULT 2 during nymphal stages between
unfed and fed, respectively (data not shown). Briefly, as
feeding initiated in larval ticks, SULT 1 expression
increased whereas SULT 2 expression decreased during
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feeding in both larval and nymphal stages. During the
adult tick feeding, there was no significant difference in
SULT 1 or SULT 2 transcript abundance (unfed salivary
gland: 3120 ± 310; fed salivary gland: 3510 ± 260; unfed
midgut: 3350 ± 320; fed midgut: 3620 ± 310, copy num-
ber/reaction respectively).
Similar results were observed at the protein level using

Western blot probed with antibodies raised against
expressed and affinity-purified Ixosc Sult 1 or Sult 2. Band
intensities were quantified using Kodak Digital Science 1D
Image Analysis Software and plotted against different tick
stages (Figure 3A and 3B; Figure 4A and 4B). Values are
expressed as mean ± SD for three replicated experiments
and show significant differences between blood-fed and
unfed states, respectively, at both the nymphal and larval
stages. Similar to the quantitative PCR results, the Ixosc
Sult 1 and 2 protein levels in the adult stage showed no
difference on feeding (data not shown).
Full length Ixosc SULT 1 and SULT 2 were cloned

into the pTrcHis2 TOPO TA expression vector. The
expressed proteins were purified using a HIS-Select
ILAP (Sigma) column. The purified Ixosc Sult 1(R) and
Sult 2(R) showed molecular weights of 36 and 38 kDa,
respectively (Figure 5A &5B), and the purified proteins
were sequenced using liquid automatic sequencing. The
resulting sequences from the Expert Protein Analysis
System (ExPASy) confirmed that the expressed proteins
are from tick sulfotransferase genes (data not shown).

Enzymatic characterization of Ixosc Sult 1 (R) and Sult 2
(R)
We tested whether expressed purified Ixosc Sult 1 (R) or
Sult 2 (R) could sulfonate selected potentially relevant
substrates. The rationale for including p-nitrophenol,
17b-estradiol, pregnenolone, and dopamine was that
they are prototype substrates for the mammalian sulfo-
transferases. The rationale for including octopamine and
an additional rationale for including dopamine was
based on the relevance of these compounds as arthro-
pod neuromodulators and on the previous structure
modelling study [26] which predicted these monoamines
as potential substrates for the I. scapularis sulfotrans-
ferases. Arthropod steroids such as ecdysone were not
tested as substrates, as the previous structure modelling
study indicated that these steroid structures are not
complimentary to the binding pocket of the I. scapularis
sulfotransferases and should not be substrates [26]. Each
potential substrate was added to 4 μM PAP35S (in
water) and purified enzyme (0.03-0.04 mg/mL in 20
mM potassium phosphate pH 7.0), and was incubated at
37°C. Because of the zwitterionic nature of two of the
expected products (dopamine-sulfate, octopamine-sul-
fate) at acidic pH, we used cellulose thin-layer chroma-
tography under strongly basic conditions for the
separation. As shown in Figure 6 and quantified in
Table 1, p-nitrophenol, dopamine, and R,S-octopamine
were substrates for both Ixosc Sult 1 (R) and Sult 2 (R).

Figure 1 Sequence Alignment of Ixosc Sult 1 and 2 with selected known cytosolic sulfotransferases. Ixosc Sult 1 and 2 are designated as
q4pma2_Ixosc_Sult1_307aa and q4pma1_Ixosc_Sult2_320aa, respectively. Human sulfotransferases are listed with a protein data bank (PDB) code
for a matching x-ray crystal structure. C. elegans and B. mori sulfotransferases are listed with their UniProt code. SULT_MOTIF indicates the
residues which make up the cytosolic sulfotransferase amino acid sequence motif regions.
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The enzyme activity of expressed Ixosc Sult 1 (R) was
found to be 1.3-1.5 nmol min-1 mg-1 and Ixosc Sult 2
(R) to be 0.3-0.4 nmol min-1 mg-1, respectively, when
incubated with 10 μM of each potential substrate. Pro-
duct formation in the absence of enzyme (PAP35S plus
substrate) was found to be zero. 17b-estradiol and preg-
nenolone showed no product formation under the con-
ditions tested (data not shown). Because the 35S-labeled
products of dopamine, octopamine, and p-nitrophenol
migrated with a similar retention factor (Rf), their indivi-
dual formation was confirmed by mass spectral analysis.
The sulfated product of dopamine and octopamine,

respectively, were positively identified by mass spectral
detection under negative ionization conditions ([dopa-
mine-SO3 - H

+ + Na+], 255.2 m/z; [octopamine-SO3 - H
+ + Na+], 255.2 m/z) (Figure 7 A, B, C, D, E, F). p-Nitro-
phenylsulfate ion was detected in parallel incubations
with both Ixosc Sult 1 and 2 (R) ([p-nitrophenol-SO3 -
H+], 217.9 m/z] Additional file 1. Kinetics of the native
blacklegged tick sulfotransferases for dopamine and
octopamine were recently published separately [26].

Discussion
In this study, we describe the expression of novel Ixodes
scapularis sulfotransferase genes throughout the black-
legged tick life cycle and different states of blood feed-
ing, and characterize their expressed recombinant

Figure 2 Quantitative analysis of Ixosc SULT 1 and SULT 2
mRNA Expression. Total RNA was extracted from different
developmental stages and PCR amplified with gene specific primers.
Quantitative transcriptional expression was determined as described
in Materials and Methods. The PCR rates of SULT 1 (A) and SULT 2
(B), in various stages of the tick life cycle were normalized to the
rate of synthesis of b-actin, included as the endogenous control.
Data were plotted as copy numbers per reaction to samples at
various level of feeding. Bars indicate PCR values as the Mean ± SD
of three replicated experiments. Abbreviations: UL - Unfed Larvae,
FL - Fed Larvae, UN - Unfed Nymph, FN - Fed Nymph.

Figure 3 Analysis of Ixosc Sult 1 protein expression during
feeding. (A) Ixosc Sult 1 detected by Western blot, (B) Quantitation
of band intensity. Tissue homogenates from different
developmental stages were analyzed by Western blot using anti-Sult
1 (R) raised antibody. Lanes: 1. Magic Marker, 2. Unfed larvae, 3. Fed
larvae, 4. Unfed nymph, 5. Fed nymph. SULT 1 gene products were
quantified using Kodak Digital Science 1D image analysis software
and the net intensity/band intensity was plotted against the
different tick stages.
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proteins. Ixosc Sult 1 and Sult 2 are expressed during
every life stage of blacklegged ticks, and interestingly,
mRNA and protein levels are moderately but signifi-
cantly changed (1.5 - 2.6 fold) upon blood-feeding at the
nymphal and larval stages. We find it especially interest-
ing that the process of feeding has an opposite effect on
relative expression of the Ixosc Sult 1 and Sult 2 during
both the larval and nymphal life stages, although no
change in expression levels could be detected in the
adult stage salivary gland or midgut (Figures 2, 3, 4).
Thus, these two proteins seem to have different roles in
the tick salivation and feeding process. Ixosc SULT 1
mRNA and protein were increased upon feeding from a
low basal level at the larval and nymphal stage. In con-
trast, Ixosc SULT 2 mRNA and protein were decreased
upon feeding from a high basal level at the larval and
nymphal stage. Quantitative RT-PCR and quantification

of band intensities by Kodak Digital Analyser confirmed
the statistical increase of SULT 1 and decrease of SULT
2 as well as their gene products during feeding. Our
recent publication [26] on homology modelling, molecu-
lar docking and enzyme kinetic studies of sulfotransfer-
ase activity from native tick tissues showed similar
findings using specific tick homogenates. It should be
noted that these results were obtained from three pools
of tissue derived from multiple ticks, and that the
blood-fed ticks were sampled after being attached to
hosts for 48 - 72 hours. Because tick salivation and
secretion is a dynamic process throughout the multi-day
feeding, experiments are in progress to profile the

Figure 4 Analysis of Ixosc Sult 2 protein expression during
feeding. (A) Ixosc Sult 2 detected by Western blot, (B) Quantitation
of band intensity. Tissue homogenates from different
developmental stages were analyzed by Western blot using anti-Sult
2 (R) raised antibody. Lanes: 1. Magic Marker, 2. Unfed larvae, 3. Fed
larvae, 4. Unfed nymph, 5. Fed nymph. SULT 2 gene products were
quantified using Kodak Digital Science 1D image analysis software
and the net intensity/band intensity was plotted against the
different tick stages.

Figure 5 SDS-PAGE of expressed Ixosc Sult 1 (R) (A), Sult 2 (R)
(B). The expressed purified recombinant proteins were analyzed and
stained with Coomassie brilliant blue. Lanes: 1. Prestained molecular
weight marker, 2. Purified protein.

Figure 6 Dopamine, octopamine, and p-nitrophenol as
substrates for Ixosc Sult 1 (R) and Sult 2 (R). TLC separation of
35S-labeled product from PAP35S (4 μM) after incubation of 10 μM
of noted compounds with expressed purified Ixosc Sult 1 (R) or Sult
2 (R)as described in Experimental Procedures.
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expression during more exact time periods. While there
is evidence for altered expression of multiple genes dur-
ing tick feeding [31], surprisingly little is known about
the mechanism of gene expression in tick salivary
glands. Furthermore, the exact tissue localization of the
sulfotransferases in the nymphal and larval stage has not
yet been determined; whole homogenates were used of
unfed and blood-fed ticks at these life stages.
The related sulfotransferase (ceST) isolated from C. ele-

gans catalyzed sulfonation of a variety of phenols at the
rate of 0.1-0.5 nmol min-1 mg-1, but no endogenous sub-
strate was identified [10]. The sulfotransferase (bmST)
isolated from Bombyx mori was found to catalyze sulfo-
nation of 4-nitrocatechol at 0.2 nmol min-1 mg-1,
although no endogenous substrate was identified [11].
The cytosolic sulfotransferases from D. melanogaster cat-
alyzed sulfonation of vanillin, 1-naphthol, p-nitrophenol,
ecdysone, and dopamine [13] at rates of 0.2-1 μmol min-1

mg-1. The published rates of sulfonation by bmST and
ceST are similar to those measured for Ixosc Sult 1 and 2.
The well-characterized human sulfotransferases cata-

lyze sulfonation of a variety of endogenous hormones
and neurotransmitters, as well as dietary phenols and
environmental contaminants. In general, the sulfotrans-
ferases responsible for sulfonating endogenous substrates
have high affinity for these substrates. Human SULT1A3,
which is also called dopamine sulfotransferase, has a Km
of 4 μM for dopamine, while human SULT1A, generally
called phenol sulfotransferase, has a Km of 130 μM for
dopamine. Human SULT1E1, which is also called estro-
gen sulfotransferase, has a Km of 1-20 nM for 17b-estra-
diol, while human SULT1A1 and SULT2A1 can
sulfonate 17b-estradiol with Km of 1-30 μM. In our ear-
lier findings, dopamine was found to be a good substrate
(Km of 0.1-0.4 μM) for the native tick sulfotransferases
irrespective of their feeding stage where as octopamine
served as a substrate only after feeding [26].

Interestingly, in this present study, we found that both
dopamine and R,S-octopamine could serve as substrates
for purified Ixosc Sult 1 (R) and Sult 2 (R) at a concen-
tration of 10 μM. We chose 10 μM as a test concentra-
tion because of our detection method’s limit of
sensitivity. Further studies are needed to explore the
physiological relevance of Ixosc Sult 1 and Sult 2 sulfo-
nation of tick neuroeffectors dopamine and octopamine,
and to identify possible additional sulfotransferases in
Ixodes scapularis.
We find the sulfonation of dopamine and octopamine

to be noteworthy because salivary secretion in feeding
ticks is under neuronal control. Tick salivary gland
secretion is stimulated by dopamine in the neuroeffector
junction via dopamine D1 receptor activation of adeny-
late cyclase and an increase in intracellular cAMP
[27,32]. Dopamine also opens a voltage-gated Ca2+

channel allowing an influx of extracellular calcium that
stimulates a cytosolic phospholipase A2, effecting release
of sequestered arachidonic acid in tick salivary glands
that is subsequently converted to prostaglandins [33].
Prostaglandins are secreted at extremely high (μM)
levels into tick saliva for export to the host [27] where
they exhibit anti-hemostatic, vasodilatory, immuno-sup-
pressive, and anti-inflammatory activities [34-36]. Thus,
dopamine could modulate salivation and/or prostaglan-
din production in the tick salivary gland. Octopamine
acts as a neuromodulator in arthropods with a similar
mechanism to dopamine [30]. In insects, octopaminergic
neurons modulate a variety of target tissues, which
include skeletal muscles, heart and oviduct [37]. How-
ever, the exact tissue localization of the sulfotransferases
in nymphal and larval blacklegged ticks has not yet been
determined; whole homogenates were used of unfed and
blood-fed ticks at these life stages.
In contrast to vertebrates, invertebrates use a variety

of enzymatic routes to metabolise monoamines. These
routes include sulfonation, N-acetylation, gamma-gluta-
myl conjugation, sugar conjugation, b-alanyl conjuga-
tion, as well as oxidative deamination [38]. Catabolism
is one of the effective mechanisms for dopamine inacti-
vation. In humans, this involves multiple pathways that
include oxidative deamination by monoamine oxidase
(MAO), O-methylation by catechol-O-methyltransferase
(COMT) and conjugation by sulfotransferase [39].
Regarding ticks, reports from Atkinson et al. [40] con-
firm the presence of monoamine oxidase (MAO) in the
homogenates of B. microplus larvae, and MAO inhibi-
tion potentiated the dopamine effect on fluid secretion
from salivary glands of A. hebraeum in vitro [41,42].
According to in vivo experiments by Kaufman and Slo-
ley [42], it is clear that MAO is not the only means for
disposing of biogenic amines in ticks. Octopamine N-
acetyltransferase (with a Km for octopamine of 4 μM)

Table 1 Quantitation of Ixosc Sult 1 (R) and 2 (R) activity.
a

Reaction mixture Rate of reaction
(nmol min-1 mg-1)

PAP35S + Sult 1 (R) (Control) 0.00

p-Nitrophenol + Sult 1 (R) + PAP35S 1.30 ± 0.01

Dopamine + Sult 1(R) + PAP35S 1.52 ± 0.01

Octopamine + Sult 1(R) + PAP35S 1.34 ± 0.01

PAP35S + Sult 2 (R) (Control) 0.00

p-Nitrophenol + Sult 2 (R) + PAP35S 0.43 ± 0.01

Dopamine + Sult 2 (R) + PAP35S 0.39 ± 0.01

Octopamine + Sult 2 (R) + PAP35S 0.35 ± 0.01
a Substrates (10 μM) were incubated with PAP35S (4 μM) and purified Ixosc
Sult 1 (R)(0.04 mg/mL) or Ixosc Sult 2 (R)(0.03 mg/mL) for 30 min. Product
formation in the absence of enzyme (PAP35S + substrate) was found to be
zero.
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has been demonstrated in the synganglion of B. micro-
plus [43]. Thus, multiple pathways may be available for
inactivating monoamines in tick species. Indeed, despite
the recent advances in tick neurobiology and the identi-
fication of key genes, tick neuroscience lags behind that
other invertebrates [44].

Ixosc Sult 1 or Sult 2 may serve as critical modulators of
the prostaglandin synthesis pathway or as modulators of
salivary secretion. Because all neuronally released biogenic
amines have relatively short half-lives to prevent their
action from continuing after the neuronal signal arrests,
we thus propose that the two tick sulfotransferases

Figure 7 Mass Spectra of dopamine-sulfate and octopamine-sulfate formed by incubating Ixosc Sult 1(R) or Ixosc Sult 2 (R). A: Sult 1 (R)
with PAP35S (Control), B: Sult 1(R) + PAP35S + Dopamine, C: Sult 1 (R) + PAP35S + Octopamine, D: Sult 2 (R) + PAP35S (Control), E: Sult 2 (R) +
PAP35S + Dopamine, F: Sult 2 (R) + PAP35S + Octopamine.
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described herein could function by metabolically altering
the biological signal for salivary secretion in I. scapularis
even though both of these genes were expressed differ-
ently. We are currently following up on these studies to
explore their physiological relevance to tick feeding.

Conclusions
The salivary glands of ticks, in addition to their role in
feeding, serve a role in ion and water metabolism. In a
blood-feeding tick, production of saliva is the main
mechanism of water excretion, ie. ticks alternate blood
ingestion and salivation. Therefore, interrupted or inap-
propriate sulfation of neurotransmitter molecules
involved in salivation could negatively affect a tick’s abil-
ity to alternate the cyclic salivation and blood sucking
process, potentially inhibiting blood feeding and patho-
gen transmission. In this study, we observed that expres-
sion of Ixosc Sult 1 is up-regulated, while expression of
Ixosc Sult 2 is down-regulated during blood feeding at
both the larval and nymphal stages, suggesting that
these sulfotransferases have different functions in the
salivation/feeding process of blacklegged ticks, even
though expressed recombinant proteins sulfonate both
dopamine and octopamine. Further experiments, per-
haps using sulfotransferase gene knockdown in these
ticks may help clarify the significance of our
observations.

Methods
Reagents
Restriction enzymes, Taq DNA polymerase, Plasmid
DNA and polymerase chain reaction (PCR) product pur-
ification kits, Block-iT T7 TOPO linker were purchased
from Invitrogen (Carlsbad, CA, USA) and Qiagen
(Valencia, CA, USA). Mouse IgG-HRP was purchased
from StressGen (Victoria, BC, Canada). The prokaryotic
expression vector pTrc His2 Topo TA was purchased
from Invitrogen, CA, USA. Enzyme chemiluminescent
detection system was obtained from KPL laboratories.
[35S]-3’-phosphoadenosine-5’-phosphosulfate (PAP35S)
was purchased from Perkin Elmer Life and Analytical
Sciences (1.1 - 2.43 Ci/mmol, solution in 1:1 ethanol:
water). Unlabeled PAPS was purchased from Sigma
Chemical and was purified before use by HPLC
separation.

Amino acid sequence comparisons
The Ixosc Sult 1 and Sult 2 sequences were compared
with a set of known cytosolic sulfotransferase family.
Multiple sequence comparisons were conducted using
Accelrys SeqLab (GCG version 11.1). Human sulfotrans-
ferases are listed with a protein data bank code for a
matching x-ray crystal structure. C. elegans and B. mori
sulfotransferases are listed with their UniProt code.

Tick collection and feeding
Ixodes scapularis ticks collected as unfed adults from
forests in southern Rhode Island were allowed to blood
feed on New Zealand white rabbits under controlled
laboratory conditions [45]. A restraining collar was
placed around the neck of each rabbit, and their ears
were covered with cotton socks prior to tick exposure.
These engorged adult ticks laid eggs, and hatched larvae
were reared in the laboratory by blood feeding on
golden hamsters to produce nymphs. To produce par-
tially engorged experimental ticks, larvae and nymphs
were allowed to feed on mice and adult ticks fed on
New Zealand white rabbits [45]. The length of feeding
of the larvae and nymphs was 48-72 hr, and the feeding
time of the adults was 72 hr. All animal studies were
approved by the Institutional Animal Care and Use
Committee (protocol number AN01-12-014).

Tick tissue samples
Three pooled samples from eggs, larvae and nymphs
(~30 - 50) were homogenized and used for the studies.
Three tissue pools from salivary gland or midguts were
dissected from adult ticks (~30 adults). Adult tick sali-
vary gland or midgut tissue was dissected in ice-cold
100 mM 3-(N-morpholino)-propanesulfonic acid
(MOPS) buffer containing 20 mM EGTA, pH 6.8. When
used for isolating total RNA, tissues were washed gently
in MOPS/EGTA buffer and immediately stored in RNA
later. For Western blotting, tick tissues were used imme-
diately after being dissected or were stored at -70°C in
0.5 M piperazine-N,N-bis-2-ethane sulfonic acid, pH
6.8, containing 20 mM EGTA, 1X Complete Mini-Pro-
tease™ Inhibitor Cocktail (Roche) and 40% glycerol (v/
v). All manipulations were carried out at 4°C.

Quantitative Expression of Ixosc SULT 1 and SULT 2
genes-qRT-PCR
Gene specific primers [GenBank: DQ066225.1 and Gen-
Bank: DQ066226.1] of Ixosc SULT 1 and SULT 2 genes
[5] were designed. Total RNA was isolated using an
RNAqueous@ total RNA isolation kit (Ambion) from
eggs, unfed larvae, unfed nymphs, unfed adults, 48-72 hr
fed larvae, 48-72 hr fed nymphs, and 72 hr fed adults.
Concentration and purity of total RNA was determined
spectrophotometrically at 260 and 280 nm, aliquoted
and stored at -80°C until use.
Real-time quantitative PCR was performed using the

Mx4000 or Mx3005P Multiplex Quantitative PCR sys-
tem and the Brilliant SYBR Green Single Step QRT-
PCR Master Mix Kit (Stratagene, La Jolla, CA) accord-
ing to the manufacturer’s instructions. A standard curve
of 100-107 copies per reaction were generated using pur-
ified Ixosc SULT 1 and SULT 2 PCR products as the
template. The following primers were used for all
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reactions: SULT 1 Forward 5’ACATGATCTGGGGC-
GACTAC3’ and Reverse 5’GTCAAGGGTGCTCT
CGTCTC3’, SULT 2 Forward 5’GTTATGCTCTGCGA-
CACGAA3’ and Reverse 5’ACTCACGTCGAACG
TCCTCT3’. Reactions contained 10 ng of RNA were
run under the following conditions: 1 cycle of 50°C for
30 min and 90°C for 15 min followed by 40 cycles of
95°C for 30 s and 51°C for 30 s. Fluorescence was mea-
sured every cycle at the end of the 51°C step. The copy
number of SULT 1 and SULT 2 mRNA in each sample
was determined using the Mx4000 or Mx3005P data
analysis software based on the standard curve. The rela-
tive quantity of target mRNA in each sample was nor-
malized to b-actin mRNA. All the reactions were done
in triplicate.

Cloning, sequencing and expression of Ixosc SULT 1 and
Ixosc SULT 2 in E. Coli
After PCR amplified full-length Ixosc SULT 1 and Ixosc
SULT 2, gel-purified fragments were cloned into the
pTrcHis2 TOPO TA expression vector. Standardized
methods were followed to insert plasmid into Top10 E.
coli (Invitrogen), and the proper insertion was con-
firmed. The pTrcHis2 TOPO TA expression vector con-
tains an ampicillin resistance gene, IPTG promoter, and
six-residue histidine tag. Expression was induced with
IPTG treatment (0.3 mM) for 3 hrs. Cells were treated
with 0.3 mg/mL lysozyme for 30 min, washed twice
with homogenization buffer, and homogenized by soni-
cation. Homogenization buffer consisted of 20 mM
potassium phosphate pH 7.0 with 1 mM dithiothreitol,
and 1 mM PMSF. Cytosolic fractions were isolated by
preparation of 100,000 × g supernatant. For purification
of expressed Ixosc Sult 1 and Ixosc Sult 2, cytosol was
loaded onto a HIS-Select ILAP (Sigma) immobilized
metal affinity chromatography resin, and eluted with 50
mM imidazole and 500 mM NaCl. Eluted protein was
passed through the desalting column (Zeba Desalt Spin
columns, Pierce, USA) to remove imidazole and sodium
chloride before being used for enzyme assays. Protein
purity was assessed using denaturing gel electrophoresis
with Coomassie blue staining or Western blot detection.
Hereafter the purified recombinant proteins were
referred as Ixosc Sult 1 (R) and Sult 2 (R). The expressed
enzyme was detected using Anti-His (C-term) antibody
(Invitrogen, USA).

Polyclonal antibody to expressed purified Ixosc Sult 1 (R)
or Sult 2 (R)
Expressed and purified Ixosc Sult 1 (R) and Sult 2 (R)
were used separately to immunize BALB/c female mice
(4 to 6 weeks old, Charles River, three mice per each
purified protein). Mice were injected intra muscularly
four times over six weeks (at two week intervals) with

20 μg of purified protein in each treatment. Antibody
production was assessed by sampling venous blood and
using it as probe for Western blots.

Western blotting
Pooled salivary glands, midgut or whole tissue (3 differ-
ent pooled samples) from each tick life stage (unfed lar-
vae, unfed nymph, unfed adult, 48-72 hr fed larvae, 48-
72 hr fed nymph, and 72 hr fed adult) were homoge-
nized (1 min sonication) in ice-cold extraction buffer
(PBS, 1 mM dithiothreitol, 2.5 mM EGTA, and 1X
Complete Mini-Protease™ Inhibitor Cocktail (Roche)).
Additionally, affinity-purified Ixosc Sult 1 (R) and Sult 2
(R) were used as positive controls. Protein concentration
was estimated by the Bradford method [46]. Tick sali-
vary gland protein extracts (20-30 μg each life stage or
tissue) were separated by 10% SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) [47] and then transferred
onto nitrocellulose membranes in a Transblot cell (Bio-
Rad) following the manufacturer’s instructions [48].
Nonspecific protein binding sites were blocked with 5%
skim milk, and the membranes were incubated with
polyclonal Ixosc Sult 1 (R) or Ixosc Sult 2 (R) antibodies
at a dilution of 1:2000. Antigen-antibody complexes
were visualized with horseradish peroxidase-conjugated
anti-mouse IgG (StressGen) at a dilution of 1:10,000
and detected with SuperSignal chemiluminescent perox-
idase substrate (Pierce, Rockford, IL, USA) on a Bio-Rad
ChemiDoc XRS imaging system. All reactions were
done in triplicates. The net intensity/band intensity was
quantified using Kodak digital 1D image analysis
software.

Sulfotransferase activity
Ability of expressed Ixosc Sult 1(R) and Sult 2(R) to cat-
alyze sulfonation of test chemicals was assessed using
expressed purified enzyme preparations (in 20 mM
potassium phosphate pH 7.0) and PAP35S (in water).
For these assays, the ethanol: water solvent of the com-
mercial PAP35S was evaporated in vacuum and the resi-
due reconstituted in water. Potential substrates
(dopamine, R,S-octopamine, p-nitrophenol, 17b-estradiol
and pregnenolone) were dissolved in water and diluted
into the incubation mixture to the final concentration of
10 μM. Assays generally contained 0.03-0.08 mg/mL
purified expressed protein and 0.01 mCi/mL (4-9 μM)
PAP35S. After 30 min at 37°C, reactions were stopped
by heat inactivation and pelleting of denatured protein.
Sulfated metabolites were identified by mass spectrome-
try as described below. For quantification, supernates
were spotted onto the cellulose thin-layer chromato-
graphic (TLC) paper, and components were separated
by capillary movement of the mobile phase (2-propanol:
ammonium hydroxide: water, 6:3:1) up the paper [49].
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Radiolabeled components were visualized and quantified
after phosphor transfer (Kodak TR storage phosphor
screen #9715) with subsequent phosphor imaging on a
Typhoon 9410. All experiments were done with at least
three replications.
The sulfated metabolites were identified by mass spec-

trometry on a QSTAR® Elite LC/MS/MS-TOF (Applied
Biosystems, USA) in the negative ion mode. Incubation
supernates were directly injected through a syringe filter
(0.45 μm) and ionized by turbo-electrospray. Ions were
scanned over a region of 50-1000 m/z. Background
scans were collected just before injection of sample. All
experiments were done at least in triplicates.

Statistical Analysis
Where indicated, values were expressed as mean ± SD
of three determinations. Statistical differences were car-
ried out by Sigma Stat version 3.5 (Systat Software Inc.
San Jose, CA) student’s t-test. p values of < 0.05 were
considered statistically significant.

Additional material

Additional file 1: Mass Spectra of p-nitrophenyl sulfate. Mass Spectra
of p-nitrophenyl sulfate formed by incubating Ixosc Sult 1(R) or Ixosc Sult
2 (R). a) Sult 1(R) + PAP35S + p-nitrophenol, b) Sult 2 (R) + PAP35S + p-
nitrophenol.
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