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ABSTRACT 

Operating temperatures in the hot sections of modern gas turbine engines reach as 

high as 1500°C, making in situ monitoring of the severe temperature gradients on the 

surface of components rather difficult. Therefore, there is a need to develop 

thermocouples which can stably measure temperature in these harsh environments. 

Refractory metal and ceramic thin film thermocouples are well suited for this task 

since they have chemical and electrical stability at high temperatures in oxidizing 

atmospheres, they are compatible with thermal barrier coatings employed on engine 

components, have higher sensitivity than conventional wire thermocouples, and they 

are non-invasive to the engine environment. In this masters thesis, thin film 

combinatorial chemistry for materials discovery and characterization was the primary 

tool used to optimize thermo-element materials for thin film thermocouples. The 

resulting sensors based on ceramics, such as indium oxide and indium tin oxide, as 

well as others based on refractory metals, such as platinum and palladium, exhibited 

remarkable stability for many cycles at temperatures above 1000°C. 
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PREFACE 

The work presented in this thesis is the continuation of the high temperature 

sensors research pioneered by Dr. Gregory and his research group for the past thirty 

years at URI. This thesis is presented in manuscript format with an introductory 

chapter one, three manuscripts as chapters two through four, and a fifth chapter 

highlighting ideas for the future continuation of this work. Chapters two present a 

manuscript on the stability of indium tin oxide based thermocouples. Chapter three 

contains a manuscript on the use of thin film combinatorial chemistry techniques for 

optimizing the thermoelectric properties of Cu-In-O based thermocouples. The fourth 

chapter presents an investigation of platinum-palladium thin film thermocouples. 

Lastly, chapter five elaborates on the future work which can be performed to further 

develop the work presented in this thesis. 

Chapter one gives an introduction to thin film instrumentation of gas turbine 

engines, an overview of thin film combinatorial chemistry and how it was developed 

for the work in this thesis, and an elaboration on how the thermocouples in the three 

manuscripts were tested. 

Chapter two presents the first manuscript, “Stability and Microstructure of Indium 

Tin Oxynitride Thin Film Thermocouples” by Otto J. Gregory, Matin Amani, Ian M. 

Tougas, and Alvin J. Drehman which discusses improvements to the thermoelectric 

stability of thin film thermocouples based on indium oxide and indium tin oxide and 

the resulting microstructures of the films. More specifically, reactive sputtering of 

indium oxide and indium tin oxide in nitrogen was used to metastably retain nitrogen 

in the films to form indium oxynitride or indium tin oxynitride. The slower sintering 
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kinetics of nitrides relative to oxides was utilized to inhibit microstructural changes 

during thermal cycling, which often leads to sensor instability. This manuscript is 

currently published in the Journal of the American Ceramic Society (Volume 95, Issue 

2, pages 705-710 February 2012). 

Chapter three contains the second manuscript, “Thermoelectric Properties and 

Microstructure of Cu-In-O Thin Films” by Otto J. Gregory, Ian M. Tougas, Matin 

Amani, and Everett E. Crisman. It presents the thermoelectric properties of hundreds 

of thin films in the CuO-In2O3 system using combinatorial sputtering techniques. 

Optimized p-type and n-type semiconducting materials were rapidly identified, a 

characteristic that is difficult to achieve using any technique in a single binary oxide 

system. Furthermore, it demonstrates the merits of using thin film combinatorial 

chemistry to identify ideal thermoelectric materials, such as a p-type and n-type 

material, to produce stable, high output thermocouple junctions. This manuscript is 

currently being reviewed by the Journal of Electronic Materials for publication. 

Chapter four presents the third manuscript, “Thin film platinum-palladium 

thermocouples for gas turbine engine applications” by Ian M. Tougas and Otto J. 

Gregory where the thermoelectric properties and microstructures of platinum-

palladium thin film thermocouples are presented. These sputtered thermocouples were 

found to be more stable than any other metal thin film thermocouple to date, including 

the type-S thin film thermocouple (platinum-platinum/10% rhodium) that is currently 

the aerospace industry standard. Furthermore, the stability of these thin film 

thermocouples was on the same order as conventional wire thermocouples (type-K) 

operating in the same temperature range (above 1000°C). This manuscript is currently 
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being reviewed by Thin Solid Films for publication. Additionally, a provisional filing 

for a United States patent based on this technology has been filed. 

Chapter five discusses future ideas for the continuation of the work presented in 

this thesis. Research using both ceramic and metal thin film thermocouples in terms of 

modern gas turbine engine requirements is elaborated on as well as the current state of 

the ongoing work involving thermoelectric Cu-In-O thin films. 

A provisional United States patent based on the implementation of thin film 

sensors, such as those studied in this thesis, on the surface of SiC-SiC ceramic matrix 

composites (CMC) has been filed. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Thin Film Instrumentation of Gas Turbine Engines 

 The next generation of gas turbine engine technology, used for propulsion and 

energy generation systems, is utilizing increasingly advanced materials which are 

designed to handle the harsh environments inside these engines. With advances in 

engine materials comes the need for developing new instrumentation which can handle 

the harsher environment and monitor the operating conditions inside the engine during 

testing. Designers must gain an understanding of the operating conditions and perform 

diagnostics in order to ensure an engine is safe for use in an aircraft or other 

application. More specifically, technological advancement in gas turbine engine 

technology brings several improvements such as lighter engine components with 

superior thermomechanical properties, more advanced thermal barrier coatings (TBC) 

for components such as the turbine blades, and higher operating temperatures to 

improve overall combustion efficiency and reduce harmful emissions. Therefore, 

design and implementation of sensors which will be used to monitor operating 

conditions and perform diagnostics in these modern engines is becoming an 

increasingly difficult task. 

Many issues arise when attempting to integrate sensors inside modern gas 

turbines, especially since they operate with severe conditions such as supersonic 

nozzle velocities, rotational forces exceeding fifty thousand g, and temperatures which 
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reach as high as 1500°C in the hot section. Conventional wire sensors cannot reliably 

withstand these conditions due to their geometrical interference with combustion gas 

flow patterns and vibrational modes of rotating parts. Furthermore, they also require 

high temperature adhesives to integrate them into engine components. As an 

alternative, research efforts have focused on thin film sensors to replace conventional 

wire sensors. Thin films not only avoid many of the issues invoked by wire sensors 

but also introduce other advantages. They do not interfere with gas flow patterns 

because their thicknesses, on the order of micrometers, lie below the boundary layer 

thickness formed on instrumented engine component surfaces, which is below 1 mm, 

and with masses on the order of micrograms, they do not affect the vibrational modes 

of rotating parts. In addition, their properties are not affected by the rotational forces 

inside the engine and they also have much faster signal response times due to low 

thermal mass relative to wire sensors. Thin films can be directly deposited onto the 

surface of components without surface preparation and the need for high temperature 

adhesives. In this way, more accurate surface measurements can be made. 

Temperature measurements on the surface of gas turbine engine components 

during operation is an integral part of the testing effort which goes into each gas 

turbine engine prior to implementation on an aircraft or in a power generation 

application. Thin film thermocouples have been developed to provide stable 

temperature measurements during engine testing and diagnostics. A thermocouple is 

comprised of a metallurgical junction of two dissimilar materials which produces a net 

voltage output as a function of the applied temperature difference along the 

thermoelements. This concept is illustrated in figure 1. Additionally, figure 2 shows a 
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J85 engine testing setup using thin film thermocouples and figure 3 shows a thin film 

thermocouple like those developed for the work in this thesis. Thermo-element 

materials based on refractory noble metals and semiconducting ceramics are 

promising candidates for instrumentation of modern gas turbine engines. These 

materials have high melting temperature and chemical and electrical stability at high 

temperatures in oxidizing atmospheres. Additionally, they have excellent thermal 

expansion coefficient compatibility with TBCs which are applied to the surface of 

engine components. The work in this thesis presents further enhancements to the 

current state of thin film thermocouple technology for gas turbine engines, using both 

ceramic and metal based thin film thermocouples by improving stability. Additionally, 

thin film combinatorial chemistry techniques were developed as a materials discovery 

method for optimizing the thermoelectric properties of thin film thermocouples in a 

particular material system of interest. 

 

1.2 Thin Film Combinatorial Chemistry 

 Thin film combinatorial chemistry techniques were developed for the 

manuscripts in this thesis to screen potential candidate thermo-element materials for 

use in thin film thermocouples. Specifically, these techniques involved the 

simultaneous deposition of hundreds of thermocouples, each with a unique 

composition, in a material system of choice. It was done in such a way that the 

thermoelectric properties of each could be rapidly screened and optimized 

compositions for thermo-element materials could be identified quickly. Traditionally, 

hundreds of sputtering targets with unique compositions would have been required to  
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Figure 1. Thermocouple measurement circuit showing the junction of two dissimilar 

materials subject to a temperature difference along its length. The resulting 

thermoelectric voltage is measured as a function of the applied temperature difference. 
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Figure 2. General Electric J85 engine test setup instrumented with thin film 

thermocouples. Lead wires were embedded in the root of the parts containing 

thermocouples to retrieve voltage signals during thermal cycling. (Image provided by 

MesoScribe Technologies, Inc.) 

  



 

6 

 

 

 

 

 

 

 

 

 

 

Figure 3. Two thin film thermocouples fabricated by radio frequency sputtering onto a 

ceramic substrate. Length of beam is 7 inches. 
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test the individual properties of each thermocouple material, which in this case was 

completed in a single sputtering run. 

In order to accomplish this, a ceramic substrate was covered with a photoresist 

film and hundreds of windows in the shape of thermoelectric junctions were created 

using photomasking, exposure, and development. The substrate was then placed 

between two simultaneously energized sputtering targets separated by 27.3 cm, which 

represented the end members of a particular material system of interest. Then a single 

sputtering run resulted in the deposition of hundreds of thermocouples in that material 

system to form a combinatorial library. Each library element had a slightly different 

composition relative to its nearest neighbor as a result of the composition gradient 

formed between the two end members. The spatial dependence of each window in the 

photoresist film dictated the composition of a particular sputtered thin film, whereby if 

it was closer to one sputtering target it would be richer in that material and vice versa. 

A typical combinatorial library fabricated using this method is shown in figure 4 and 

the sputtering environment developed for this thin film combinatorial chemistry 

procedure is shown schematically in figure 5. The thermoelectric properties of each 

thermocouple in the library were then rapidly screened to find the most promising 

compositions in the material system. This was done by establishing a temperature 

difference along the length of the thermocouple using a hot probe and measuring the 

thermoelectric voltage using a data acquisition system instrumented with probes. 

Compositions of the thermocouples with promising or optimized thermoelectric 

properties were determined using energy dispersive spectroscopy or Auger electron 

spectroscopy. Typically, not every library thermo-element composition of interest was 
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determined; however a statistically sufficient number of thermocouple compositions 

were measured to model the full range of interest. Custom sputtering targets of the 

most promising materials could then be made using powder processing techniques. 

Powders of each end member material were combined in the appropriate ratio, mixed 

in a ball mill for 24 h, uniaxially pressed, and sintered in a high temperature furnace. 

The thermocouple geometry shown in figure 4 could be scaled up to something more 

comparable to the dimensions of a gas turbine blade (figure 3). A flow chart of the 

combinatorial chemistry procedure developed for the work in this thesis is shown in 

figure 6. The combinatorial chemistry techniques detailed above were fundamental to 

the success of optimizing thermocouple materials in the In2O3-SnO2 and CuO-In2O3 

systems. 
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Figure 4. Combinatorial library fabricated by simultaneous sputtering from CuO and 

In2O3 targets. A composition gradient (note the color change of the thermoelements 

from left to right) was formed between the two targets resulting in the fabrication of 

several hundred thermocouples with unique compositions in a single sputtering run. 
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Figure 5. Schematic of the thin film combinatorial sputtering setup. Both targets are 

simultaneously energized with equal radio frequency power and the patterned 

substrate is placed equidistant from each target. The pattern contains hundreds of 

windows in a photoresist film, each with a different position relative to each target. 

This results in a unique, position dependent composition formed in each window. 
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Figure 6. Flow chart of the thin film combinatorial chemistry procedure developed for 

the work in this thesis. 
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1.3 Thermocouple testing 

 The thermocouples used to collect data for the manuscripts in chapters two and 

four in this thesis were fabricated on ceramic beams using radio frequency sputtering 

and tested using a custom tube furnace rig. The rig simulates the temperature gradient 

impose along the length of the components inside the hot section of a gas turbine 

engine. The rig use for the work in this thesis could achieve peak temperatures of 

1400°C and differences as high as 1200°C along the length of the test beam. The hot 

junction of the thin film thermocouple was placed inside the hot zone of a tube 

furnace, a heat shield was placed just outside the hot zone and the cold junction was 

clamped to an aluminum cooling block just outside the furnace. The aluminum block 

was cooled with room temperature water to maintain the cold junction temperature 

during thermal cycling of the furnace. Additional insulation of the cold junction was 

provided by high temperature packing material. The custom tube furnace rig for 

thermocouple testing is shown in panels of figure 7. This testing rig effectively placed 

a temperature difference, from 0°C to 1200°C, along the length of the 7” beam, which 

could be controlled by altering the 8” hot zone temperature of the furnace. The hot and 

cold junction temperatures were monitored with commercial type-S and type-K wire 

thermocouples, respectively, to continuously measure the temperature difference along 

the beam. The thermoelectric voltage of each thin film thermocouple was collected 

using a data acquisition system by attaching copper extension wires to the platinum 

bond pads of each thermocouple using a conductive silver paste. 

The thermoelectric properties of thermocouple library elements fabricated 

using combinatorial chemistry were tested using a hot probe method. A temperature 
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Figure 7. Custom tube furnace testing rig for thin film thermocouples deposited on 

ceramic beams, which applied a horizontal temperature difference along the length of 

the thermocouple measured with type-K and type-S wire thermocouples. This setup 

simulated the severe temperature gradients on the surface of components inside gas 

turbine engine hot sections. 
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difference of several degrees Celsius was placed along the length of the approximately 

centimeter long thermocouples by applying a hot probe at the hot junction of the 

thermocouple and letting the cold junction cool in air at room temperature. The 

thermoelectric voltage of each thermocouple was measured using the same data 

acquisition system as the tube furnace rig. Figure 8 shows the thermocouple library 

with probes applied to the thermocouples being tested (hot probe not shown). The area 

between the two probed thermocouples would be the location of the hot probe used to 

apply a temperature difference. Additionally, the electrical resistivity of each 

thermocouple is computed by measuring the thickness (each has constant area) using 

surface profilometry and resistance using a multimeter. 
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Figure 8. Combinatorial library thermocouples being tested for thermoelectric 

properties. A hot probe was positioned at the hot junction of each thermocouple to 

apply a temperature difference along its length and the thermoelectric voltage was 

recorded. Hot probe not shown in image. 
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CHAPTER 2 

 

*STABILITY AND MICROSTRUCTURE OF INDIUM TIN OXYNITRIDE THIN 

FILMS 

 

2.1 Abstract 

Indium oxide (In2O3) and indium tin oxide (ITO) thin films have been 

investigated for high temperature thermocouple and strain gauge applications. 

Reactive sputtering in nitrogen-rich plasmas was used to improve the high temperature 

stability of indium oxide-based films in air and scanning electron microscopy was 

used to follow the microstructural changes in the nitrogen-processed films. When 

thermally cycled at temperatures above 800°C, a partially sintered microstructure 

comprised of nanometer-sized crystallites was revealed. A densified layer was also 

formed on the surface, which acted as an oxygen-diffusion barrier in the bulk film. 

This combined with a network of partially sintered oxynitride crystallites lead to 

considerable open porosity and a stabilizing effect on the ensuing electrical properties. 

In this article, the thermoelectric properties of nitrogen-processed films were evaluated 

at temperatures up to 1400°C. To study the effect of nitrogen plasma processing on the 

sintering kinetics and associated densification, the constrained sintering of the 

resulting films was followed as a function of time and temperature. Based on the 

measured thermoelectric properties of the nitrogen processed films, drift rates on the 

same order of magnitude as commercial type K wire thermocouples were realized for 

these all-ceramic thermocouples. 

*Gregory, Amani, Tougas, and Drehman, J. Am. Ceram. Soc., 95 [2], 705-710 (2012). 
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2.2 Introduction 

Surface temperatures as high as 1500°C have been estimated for hot section 

components in modern gas turbine engines, and when combined with the severe 

thermal gradients often observed in these environments, modeling and simulation of 

the thermo-mechanical behavior of these components becomes very difficult. 

Therefore, direct temperature measurements are often necessary and thin film 

thermocouples, in particular, offer a significant advantage over wire thermocouples in 

such applications. Wire thermocouples are difficult to use for these measurements, 

since they cannot be easily incorporated onto the surfaces of thermal barrier coatings 

(TBC) deposited onto turbine blades, without affecting gas flow patterns.
1
 Thin film 

thermocouples on the other hand can be directly deposited onto the surface of 

components without the need for adhesives or surface preparation which can alter the 

properties of the blades.
2
 Furthermore, thin films add negligible mass (micrograms) to 

smaller turbine blades (grams) and have very fast response times (less than 1 μs).
3
 

However, the materials used in traditional metallic thermocouples, including those 

based on platinum and rhodium, suffer from reliability issues at temperatures above 

900°C, such as selective rhodium oxidation. At these temperatures, the films are 

susceptible to a variety of problems including selective rhodium oxidation, which can 

cause the output of these devices to drift due to changes in composition. Furthermore, 

this can result in thinning and poor adhesion due to dewetting of the film-to-oxide 

surfaces. Platinum rhodium-based thermocouples also have very low output (on the 

order of 12 μV/°C) and the output can be affected by the catalytic nature of platinum 
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in the presence of certain hydrocarbons, leading to measurement errors as large as 

50°C.
4,5

  

Due to the limitations of platinum and platinum:rhodium thermocouples, 

several researchers have considered alternative materials for temperature measurement 

in harsh environments. Studies using TiC–TaC thin film thermocouples by Bhatt et 

al.
6
 yielded some promising results at temperatures as high as 1080°C however; these 

devices were limited to operation in inert atmospheres or under vacuum conditions. 

Devices based on MoSi2 and TiSi2 films have shown promise in air at temperatures as 

high as 1200°C. The formation of a natural oxide with parabolic growth kinetics over 

these silicide films protects them to very high temperatures, which is essential due to 

the volatile nature of MoO3.
7
 However, to compensate for the loss of Si during 

oxidation, an extra layer of Si must be deposited under the thermo-element. With the 

added compensating layers, MoSi2 films were stable enough to be considered for RTD 

applications. Unfortunately, the output of both silicide- and carbide-based 

thermocouples is low, even compared to type S thermocouples.  

Commonly used as transparent conducting electrodes in many electronic and 

optoelectronic applications, In2O3 and In2O3:SnO2 (ITO) are wide band gap, oxide 

semiconductors. At low concentrations of extrinsic dopants, charge carriers in these 

transparent conducting oxides are usually attributed to oxygen vacancy defects 

according to Eq. (1) below, 

  
          

        
     (1) 

where   
          

        
 are doubly charged oxygen vacancies. Tin-doping of 

In2O3 films has been used to dramatically improve the electrical conductivity, where 
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the substitution of two tin atoms and oxygen interstitial form a charge neutral carrier 

site, in addition to self-doping caused by intrinsic defects. Since grain boundaries act 

as impurity sinks, they play a critical role in the electrical conduction mechanism in 

these films. Therefore, any changes in the grain boundary area per unit volume due to 

sintering in these semiconductors will result in changes in the charge carrier 

concentration and will eventually lead to drift.
8
  

Aperathitis et al.
9
 have deposited films of indium oxynitride (InON) and 

indium tin oxynitride (ITON) by reactively sputtering from oxide targets in Ar/N2 

plasmas for optoelectronic applications. They concluded that increasing nitrogen 

content in the plasma reduces the transparency and the carrier concentration in these 

films. The ITON films have also been used for very high temperature thin film strain 

gauges,
10

 which exhibited excellent piezoresistive response and very low drift rates at 

temperatures above 1500°C. Recently, we demonstrated a stable, all-ceramic 

thermocouple with a maximum operating temperature of 1250°C and an average 

Seebeck coefficient of 170 μV/°C, which is more than an order of magnitude higher 

than the output associated with metallic thermocouples that operate in the same 

temperature range.
11

 In this study, thin film thermocouples were produced by reactive 

sputtering from In2O3 and ITO targets in a nitrogen rich plasma, which dramatically 

improved the stability, as indicated by the reduced hysteresis (upon heating/cooling) 

and drift rates of these thermocouples at temperatures approaching 1400°C. The effect 

of reactive sputtering on the stability of these films was monitored by measuring the 

thermoelectric response, electrical resistivity, and the densification or shrinkage of the 

film as a function of time and temperature. 
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2.3 Experimental Procedure 

Thin film ceramic thermocouples were deposited by r.f. sputtering onto 190 

mm 9 25 mm alumina substrates from In2O3, 95 wt% In2O3, 5 wt% SnO2 (ITO 95-5), 

and 90 wt% In2O3, 10 wt% SnO2 (ITO 90-10) targets (Umicore Indium Products, 

Providence, RI). The films were deposited using a MRC model 8667 and a MRC 

model 822 sputtering system, where a total gas pressure of 1.33 Pa was maintained 

during film deposition. The films were patterned by using conventional 

photolithography techniques whereby windows were formed in a negative photoresist, 

which have been used to pattern non-planar substrates such as turbine blades, and thus 

all depositions were performed at room temperature. Platinum bond pads and 

reference electrodes were sputtered from a high purity (99.99%) 100 mm diameter 

platinum target at an r.f. power of 300 W, resulting in 1.5 μm thick films. All 

thermoelectric testing done at temperatures in excess of 1200°C was performed using 

platinum ink to form the hot junctions instead of platinum films, due to dewetting of 

platinum under these conditions. All oxide films were deposited using the sputtering 

parameters shown in Table 1 and had nominal thicknesses of 10–12 μm. Prior to 

sputtering, a background pressure of less than 1 x 10
-4

 Pa was maintained in the 

vacuum chamber, the respective targets were pre-sputtered onto shutters for 10 min to 

remove surface contamination and release adsorbed water.  

The thin film thermocouples were annealed at 500°C for 5 h in nitrogen, 

followed by a second 2 h anneal at 1200°C. During testing in air, one end of the 

thermocouples was placed into the hot zone of a tube furnace, to apply a temperature 

difference along the length of the substrate. The temperature at the cold junction was  
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Sputtering 

parameters 
Pt In2O3 InON ITON 95/5 

ITON 

90/10 

Target diameter 

(mm) 
100 150 150 125 150 

Power (W) 300 350 350 350 350 

Power density 

(W/cm
2
) 

3.85 1.98 1.98 2.85 1.98 

Sputtering gas 

pressure 

(Pa) 

Ar: 

1.33Pa 

Ar: 1.33 

Pa 

Ar: 1.07 Pa 

N2: 0.27 Pa 

Ar: 1.07 Pa 

N2: 0.27 Pa 

Ar: 1.07 

Pa 

N2: 0.27 

Pa 

Deposition rate 

(μm/hr) 
0.6 1.2 1.1 0.9 1.4 

Film thickness 

(μm) 
1.5 

10.0 to 

12.0 
10.0 to 12.0 10.0 to 12.0 

10.0 to 

12.0 

 

Table 1. Sputtering conditions of platinum, indium oxide and ITO films. 
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maintained at 20°C using an ethylene glycol coolant circulated through an aluminum 

cooling block connected to a chiller. Both the hot and cold junction temperatures were 

continuously monitored using type S and type K thermocouples, respectively. The 

furnace was thermally cycled from room temperature to 1400°C at a heating/cooling 

rate of 3°C/min. Long-term stability tests of the thermocouples were obtained by 

testing the thermocouples for 200 h across a thermal difference of 1200°C. The 

temperature coefficient of resistivity of the oxide and oxynitride films was determined 

using the van der Pauw method. The sintering and growth kinetics of In2O3 films 

sputtered in varying argon, oxygen and nitrogen partial pressures was measured using 

a Dektak surface profilometer to determine the change in thickness of films, deposited 

on highly polished alumina wafers as a function of time and temperature. These oxide 

films were also grown on sapphire substrates and characterized using with grazing 

incidence X-ray diffraction (GI-XRD) utilizing a CuKα radiation source. 

 

2.4 Results and Discussion 

 The Seebeck coefficient in both degenerate and non-degenerate 

semiconductors is highly dependent on the charge carrier concentration, ND.
8
 To 

fabricate thermocouples with low drift rates, variations in ND must be minimized. As 

grain boundaries act as impurity sinks, they play a critical role in the conduction 

mechanism associated with transparent conducting oxides such as ITO.
8
 To obtain 

stable thermoelectric responses, all thermocouples were heat-treated in N2 for 5 h at 

500°C to eliminate point defects in the films, such as trapped argon and to improve the 

electrical conductivity. Because the cold junction of the thermocouple is never 
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exposed to the peak operating temperatures of the device, inhomogeneities in the film 

caused by compensation of oxygen vacancies in the hot junction can lead to noise, 

drift and even voltage spikes. These were eliminated by heating the entire 

thermocouple for 2 h in air at 1200°C. However, heat treatments cannot reduce drift in 

the Seebeck coefficient caused by sintering of the materials in the hot junction. 

Therefore, reduced sintering kinetics and oxygen diffusion barriers were employed to 

improve the long-term performance of these ceramic thermocouples.  

As nitride ceramics exhibit much slower sintering kinetics compared to oxide 

ceramics,
10

 oxynitride thermoelements were prepared by reactively sputtering in 

nitrogen-rich plasmas from In2O3 and ITO targets. This technique has been described 

in the literature for ITO films heat-treated under various nitrogen partial pressures and 

can lead to significant nitrogen incorporation into the films as well as a reduction in 

the optical band gap and carrier concentration.
12

 Figure 9 shows the microstructure of 

thermally cycled InON and In2O3 films. A network of submicrometer pores, capped 

with a densified oxynitride layer was observed in the nitrogen processed films [Fig. 

9(b)] which was not evident in the densified Ar processed film [Fig. 9(d)]. When 

InON films were grown on a sapphire substrate (Fig. 10), relatively large (2–5 μm) 

faceted crystallites were formed over a network of submicrometer grains. While this 

also occurred to a lesser extent in InON films prepared on alumina substrates, these 

features were only observed on the surface of the InON films and were not present in 

any of the tin doped samples. The X-ray diffraction patterns of the In2O3-based films 

grown on sapphire are shown in Fig. 11. When the In2O3 films were prepared in pure 

argon, the (400) peak dominated the XRD pattern, suggesting that the films are highly  
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Figure 9. SEM micrographs of (a) InON film (b) fracture surface, (c) In2O3 film and 

(d) fracture surface on compact alumina after annealing in air at 1250°C for ten hours. 

Note the dense layer formed on the surface of the InON film and the porosity 

contained beneath (b). The In2O3 film (d) had less porosity than the InON film. 
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Figure 10. SEM micrograph of InON film prepared on c-axis sapphire after annealing 

in air at 1250°C for ten hours. Note the faceted particles and porosity. Less porosity is 

seen here relative to the fracture surface of the same film (Figure 9b). 
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Figure 11. X-ray diffraction patterns of In2O3 and InON films after annealing in air at 

1250°C for ten hours. Peaks corresponding to In2O3 and InN were present in the InON 

film indicating that metastable nitrogen was retained in the film as part of a indium 

nitride phase. 
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oriented. In the nitrogen-processed films, XRD peaks corresponding to both In2O3 and 

InN were identified, and no preferred orientation was observed in these films. We 

believe that the isolated crystallites observed on the surface were formed by a 

vaporization–condensation mechanism, whereby the growth of InON was triggered by 

the instability of sub-oxides of indium at low temperatures and oxygen-partial 

pressures.
13

 This led to the formation of a densified, nonporous layer that can be seen 

in the SEM fractographs in Fig. 9(b). A slight increase in the lattice spacing was also 

observed in the InON films relative to the In2O3 films. A shift of 2.530 to 2.546 Å was 

calculated for the (400) peak in these films. This shift has been previously documented 

for ITON and other oxynitrides,
9,14

 and suggests that nitrogen was present in the 

“bulk” film as well as in the densified layer.  

Studies performed on the rapid heating of ITO ceramics by Kim et al. suggest 

that rapid densification of the surface grains constrains the sintering in the bulk 

material.
15

 It is believed that the nitrogen incorporated into the film during sputtering 

was metastably retained and trapped in the pores and grain boundaries in the film. 

Upon heating in air, the reduced sintering kinetics and oxygen diffusion into grains 

resulted in pore growth and expansion, a phenomenon which has been previously 

observed in the sintering of submicrometer Si powders and in several oxides including 

MgO, ZnO, and SnO2.
16,17

 The constrained volume shrinkage ([V0 – V]/V0) and 

sintering, which was first investigated by Garino and Bowen, was monitored as a 

function of time at temperature.
18

 Figure 12 shows the results from the constrained 

sintering of In2O3 films at 1300°C and the associated effect of different sputtering 

gasses on densification. In the more stoichiometric In2O3 films (prepared in Ar/O2  
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Figure 12. Isothermal constrained shrinkage ((V0-V)/V0) of In2O3 films prepared in Ar 

(blue square), Ar/O2 (green circle) and Ar/N2 (red triangle) plasmas at 1300°C as a 

function of time. 
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plasmas), sublimation was observed during heat treatments after rapid densification, 

while no significant thickness changes were observed in films prepared in argon 

plasmas. On the other hand, a 12% increase in volume was observed in the oxynitride 

film after 2 h at temperature, consistent with a pore growth mechanism during 

sintering.
17

  

Prior to heat treatment in air, the In2O3 and ITO films behave like degenerate 

semiconductors due to the very high concentration of defects in the film. After the 

material had been heated in air, thermally activated oxygen diffusion resulted in partial 

compensation of the doubly charged oxygen vacancies in the film. However, thermally 

cycled In2O3 films remain relatively conductive at room temperature (with resistivities 

as low as 0.02 Ω·cm) despite the compensated charge carriers. This is a result of the 

film’s complex bixbyite crystal structure which contains unoccupied oxygen 

interstitial positions.
19

 The temperature dependence of the electrical resistivity in ITO 

films after heat treatments in air has been well documented and is known to have a 

distinct transition corresponding to the excitation of all dopant species to the 

conduction band, which occurs at temperatures between 600°C and 700°C.
20

 

Thermally activated electrical conductivity was observed in these semiconductors and 

is described by the following equation:  

                      (2) 

where k is Boltzmann’s constant, T is the absolute temperature, and ΔEa is the 

activation energy, which is the energy gap between the conduction band edge and the 

Fermi level. Arrhenius plots showing the electrical conductivity and activation energy 

of both argon and nitrogen processed In2O3 and ITO films are displayed in Fig. 13.  
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Figure 13. Electrical resistivity of In2O3 and ITO films prepared in Ar and Ar/N2 

plasmas. 
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The activation energies corresponding to temperatures above and below the transition 

temperature are listed in Table 2. These results indicate that the oxynitride films have 

significantly higher activation energies (~70% increase) than their oxide counterparts, 

supporting the XRD results, that nitrogen is present in the bulk film, as well in the 

densified layer. Nitrogen acts as a valence band acceptor in oxide semiconductors and 

incorporation of nitrogen into the films results in a reduction of the Fermi energy, 

which explains the shift in activation energy. In all cases, the oxynitride films were 

more resistive than their oxide counterparts when measured at room temperature.  

To investigate the effects of reactive sputtering on the thermoelectric power of 

In2O3, several thermocouples were prepared in various argon, oxygen and nitrogen 

partial pressures. These thermocouples were tested relative to platinum reference 

electrodes, as shown in Fig. 14. Here, it was found that the films prepared in pure 

argon and in oxygen rich plasmas had larger magnitude Seebeck coefficients than 

those deposited in nitrogen-rich plasmas. For non-degenerate semiconductors such as 

In2O3, the Seebeck coefficient described by, 

       
  

 
 

 

 
   

     
       

    
 
     (3) 

where S is Seebeck, k is the Boltzmann constant, e is the electron charge, me
*
 is the 

effective mass, ħ is Planck’s constant, and A is a transport constant (typically 0 ≤ A ≤ 

4).
21

 For non-degenerate semiconductors, a decrease in the carrier concentration 

increases the magnitude of the Seebeck coefficient. It is expected that the oxynitride 

films will have a significantly reduced Seebeck coefficient since nitrogen acts as a 

valence band acceptor in conducting oxides, making the thermoelectric power more  
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Target Material Oxide Film Oxynitride Film 

 T < 950 K T > 950 K T < 950 K T > 950 K 

In2O3 5.86 meV 115 meV 8.68 meV 169 meV 

ITO 95/5 16.1 meV 205 meV 25.1 meV 313.8 meV 

ITO 90/10 13.5 meV 212 meV 21.3 meV 286 meV 

 

Table 2. Activation energies associated with the electrical conductivities of various 

oxide and oxynitride films as a function of thermal cycling. 
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Figure 14. Seebeck coefficient of In2O3 films prepared in Ar, Ar/N2, and Ar/O2 

plasmas. 
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positive (smaller magnitude). The Seebeck coefficient of ITO on the other hand is 

given by, 

        
 

   
 
 
        

    
   

 

 
 
     (4) 

which is identical to the expression used for metals and is valid because the free 

electron-like behavior observed in degenerate semiconductors, where A is a transport 

constant that describes the predominant scattering process.
8
 Incorporation of nitrogen 

into ITO has been shown to cause a reduction in carrier concentration as well as the 

Fermi level due to an increase in activation energy and will therefore increase the 

Seebeck coefficient of ITO.
11

 In the In2O3–ITO thermocouples fabricated by Chen et 

al.,
11

 a degenerately doped n-type semiconductor with a very low Seebeck coefficient 

was combined with a non-degenerate n-type semiconductor having a relatively high 

Seebeck coefficient, which yielded thermoelectric powers greater than 150 μV/°C. 

During the lifetime of these devices, significant changes in the microstructure were 

observed, which led to large drift rates, which is defined according to Eq. (5) as, 

      
     

       
 
 

        (5) 

By introducing nitrogen into the films, the thermoelectric powers of the non-

degenerate material were reduced and those of the degenerate material were increased. 

This resulted in a reduction in the overall Seebeck coefficient of the oxynitride based 

thermocouples. However, despite their lower thermoelectric output, the oxynitride 

thermocouples had lower drift rates (Table 3). The long-term stability of these thin 

film thermocouples was compared by computing their drift rates after 200 h of testing 
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V (ΔT) = A(ΔT)

3
 + 

B(ΔT)
2
+C(ΔT) 

 
 

Thermocouple 

Pair 

A 

(mV/°C
3
) 

B 

(mV/°C
2
) 

C 

(mV/°C) 

Seebeck 

Coefficient at 

1200°C (μV/°C) 

Drift 

Rate 

(°C/hr) 

In2O3 vs. ITO 

(95/5) 

-6.90 

× 10
-7

 

1.44 

× 10
-4

 

7.27 

× 10
-2

 
170 3.76 

In2O3 vs. ITO 

(90/10) 

-7.78 

× 10
-7

 

1.41 

× 10
-4

 

6.33 

× 10
-2

 
162 20.4 

InON vs. ITON 

(95/5) 

-1.43 

× 10
-8

 

4.66 

× 10
-5

 

2.17 

× 10
-2

 
68 0.57 

InON vs. ITON 

(90/10) 

-1.61 

× 10
-8

 

5.47 

× 10
-5

 

2.54 

× 10
-2

 
56 0.63 

 

Table 3. Thermoelectric response and drift rate of In2O3 vs. ITO and InON vs. ITON 

thin film thermocouples. 
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at a hot junction temperature of 1200°C. For comparison, a 0.5 mm diameter type K 

wire thermocouple had a drift rate of 0.18 K/h at operating temperatures of 1100°C.
22

 

Furthermore, the hysteresis in the thermoelectric output observed during rapid heating 

and cooling cycles of the ceramic thermocouples (Fig. 15) was further reduced 

through nitrogen processing. At temperatures above 1400°C, a loss of tin in the ITON 

films was observed, ultimately resulting in device failure. However, the nitrogen-

processed InON films survive temperatures greater than 1500°C. The significant 

improvements observed in the stability and hysteresis of the InON versus ITON 

thermocouples make them much more suitable for high temperature measurements, 

despite their relatively small thermoelectric outputs. 

 

2.5 Conclusion 

Ceramic thermocouples based on porous indium oxynitride and indium tin 

oxynitride thin films were developed to replace noble metal thermocouples used to 

measure temperatures in the hot section of gas turbine engines. Metastably retained 

nitrogen was introduced into the films by reactive sputtering in nitrogen-rich plasmas 

where, upon heating, the nitrogen becomes trapped in isolated pores with grain 

boundaries affecting the solid/vapor equilibrium. Due to the reduced sintering kinetics 

of nitride ceramics relative to oxide ceramics, the grain boundaries were stabilized to 

very high temperatures. Since the Seebeck coefficient for both nondegenerate and 

degenerate semiconductors is a function of the charge carrier concentration, a 

significant reduction in the drift rate was observed for these oxynitride-based 

thermocouples compared to thermocouples prepared in argon plasmas. 
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Figure 15. Thermoelectric output and hysteresis (heating: red, cooling: blue) of 

ceramic thin film thermocouples. 
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CHAPTER 3 

 

*THERMOELECTRIC PROPERTIES AND MICROSTRUCTURE OF Cu-In-O 

THIN FILMS 

3.1 Abstract 

 Combinatorial chemistry techniques were used to study the thermoelectric 

properties of sputtered thin films in the system copper oxide (CuO) and indium oxide 

(In2O3). Hundreds of thin film thermocouples or combinatorial library elements were 

simultaneously deposited, each with a unique spatially dependent chemistry. The 

resulting thermoelectric properties of each element were determined along with 

electrical resistivity as a function of composition. Energy dispersive spectroscopy was 

used to identify the composition of each thermo-element and electron and x-ray 

diffraction were used to determine the degree of crystallinity and phases present. 

Transmission electron microscopy was used to characterize the microstructure of 

selected thermo-elements. A change in sign of the thermoelectric voltage was 

observed in the thermo-element containing 40 atomic percent indium, which suggests 

a change in the dominant carrier type occurred, from p-type to n-type. Based on this 

finding, the fabrication of thermoelectric p-n junctions using the same base Cu-In-O 

semiconductor appears feasible. 

 

*Gregory, Tougas, Amani, and Crisman, J. Electron. Mater., in press (2013). 
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3.2 Introduction 

Transparent conducting oxides (TCO) based on the material system Cu-In-O 

have been considered for applications such as flat panel displays, solar cells, and thin 

film transistors [1, 2]. However, there have been relatively few studies of the 

thermoelectric properties of such materials to date [3]. Recently, considerable efforts 

have focused on the thermoelectric properties of oxides for applications such as 

energy harvesting, and power generation [4-7]. Compared with more conventional 

thermoelectric materials, oxides offer dramatically improved chemical stability in air, 

inherently higher carrier concentrations, and can be used at significantly higher 

temperatures. Both, indium oxide (In2O3), an n-type semiconductor, and In2O3 doped 

with +4 cations has shown promise as a thermoelectric material [3, 4]. Copper oxide 

(CuO), a p-type semiconductor, has been considered for thermoelectric applications 

but has a relatively small band gap (1.2 eV) compared to In2O3 [8], which limits its 

use in high temperature thermoelectric applications. Furthermore, CuO changes 

oxidation state as a function of temperature [9, 10]. However, alloys comprised of 

CuO and In2O3 typically exhibit larger band gaps (on the order of 3eV) than the stand-

alone materials, making them more suitable for thermoelectric applications. 

The delafossite (Cu
+1

In
+3

O2) phase in the Cu-In-O system has received 

considerable attention for TCO applications [11-13]. This material can be “tuned” in 

such a way that either p-type or n-type carriers can dominate; e.g. by substituting Sn
+4

 

for indium or Ca
+2

 for copper [12, 14]. The formation of this phase, or this phase with 

the inclusion of dopants, requires careful processing routes. These routes have been 

demonstrated successfully in previous studies [14, 15]. However, few if any studies 
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have focused on tuning the composition of the Cu-In-O compounds to achieve p-type 

or n-type dominant carriers in the base compound without the need for doping. 

In this study, combinatorial chemistry techniques were used to fabricate thin 

film thermo-elements based on Cu-In-O prepared by sputtering from CuO and In2O3 

targets. By combining a p-type semiconductor (CuO) with an n-type semiconductor 

(In2O3), thin film thermo-elements with either p-type or n-type character could be 

produced without relying on synthesizing the p-type or n-type auto-doped CuInO2 

phase. The library thermo-elements were largely amorphous and each was catalogued 

according to the atomic percentage of indium in the film. The relation between the 

library element composition and the dominant carrier type was characterized using the 

hot probe method. A transition from p-type to n-type conduction in the Cu-In-O 

system was observed at a film composition of 40 at% indium. Energy dispersive 

spectroscopy (EDS) was used to determine the composition of each thermo-element 

and the microstructures of as-deposited and annealed thermo-elements were 

characterized using transmission electron microscopy (TEM). Electron diffraction in 

conjunction with TEM and x-ray diffraction (XRD) were used to determine the extent 

of crystallinity and the distribution of phases in select library thermo-elements. 

 

3.3 Experimental Procedure 

Cu-In-O films were deposited onto high purity alumina substrate and oxidized 

silicon wafer by co-sputtering from CuO and In2O3 targets to form a combinatorial 

library containing thermo-elements in the Cu-In-O system. Prior to deposition, 

reference electrodes (complementary thermocouple leg to Cu-In-O thermo-element) 
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were fabricated using photolithography in conjunction with lift-off.  Platinum, 

sputtered in ultra high purity (UHP) argon at 9 mT, was deposited as the reference 

electrode material. A photolithographic step was used to create 770 Cu-In-O thermo-

elements with each thermo-element at different position relative to the two sputtering 

targets. The sputtering targets were six inches in diameter and were spaced 27.3 cm 

apart. A radio frequency power of 200 W was fed continuously to each sputtering 

target during deposition. In this way, a chemical composition gradient was established 

in the thermo-elements along the axis between the targets and a thickness gradient was 

established in the orthogonal direction. The resulting thermocouples formed an array 

suitable for rapid thermoelectric property screening. 

All thermocouples were subsequently annealed in nitrogen at 400°C for five 

hours to release trapped argon and densify the thermo-elements. Final film thicknesses 

ranged from 1 to 2 μm. Thermoelectric data were obtained from the library 

thermocouples deposited on an alumina substrate, after a temperature difference was 

established between the hot and cold junctions. Each thermo-element was typed p- or 

n- based on the voltage sign relative to the platinum reference electrode. Voltages 

were recorded using an iOTech USB data acquisition system and Personal Daq View 

Plus© software. Thin film type-K thermocouples were deposited, by sputtering from 

alumel and chromel targets in 9 mT Ar, at the hot and cold junction of a thermocouple 

with the same geometry as the library thermocouples to calibrate the temperature 

difference across the junction. Electrical resistivity was measured on films deposited 

on the oxidized surface of a silicon wafer after the thermocouples were nitrogen 

annealing. The composition of each thermo-element in the library array was 



 

45 

 

determined with EDS measurements on a JEOL-5900 SEM. The microstructures of 

select library thermo-elements were examined in a JEOL JEM-2100 TEM by 

depositing films directly onto silicon nitride grids. The thin films were examined as-

deposited, after a 400 °C, 5 h nitrogen anneal, and after repeating the nitrogen anneal 

another 5 h at 400 °C. A Rigaku Ultima-IV XRD system was used to determine the 

degree of crystallinity and distribution of phases present in selected thermo-elements. 

 

3.4 Results and Discussion 

3.4.1 Thermoelectric Properties 

The thermoelectric voltages of the Cu-In-O combinatorial library thermo-elements are 

summarized in Figure 16, which shows thermoelectric voltage as a function of 

position. By comparing the thermoelectric voltage and spatial distribution of the 

chemical composition, maps of thermoelectric voltage and resistivity as a function of 

composition were generated (Figure 17). Figure 17a shows a continuous transition 

from n- to p- conduction occurring at a film composition of 40 at% indium. The CuO-

In2O3 phase regions were superimposed over the data in Figure 17a. It indicates that 

the n- to p- transition occurs in a copper rich film, which falls within a two phase 

region of CuO and Cu2In2O5. Since the films studied are largely amorphous, we 

suggest that a doping effect from the copper was responsible for the observed p-type 

behavior in the copper rich films rather than from the formation of different phases in 

the material as the copper content was increased. Figure 17b indicates that little 

variation in the electrical resistivity was observed for thermo-elements containing 
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Figure 16. Map of the thermoelectric voltage as a function of composition (at% 

indium) for nitrogen annealed combinatorial library (a temperature difference of T = 

7.7 °C was applied across individual thermocouples). 
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Figure 17. Plots of (a) thermoelectric voltage and (b) electrical resistivity of Cu-In-O 

films as a function of composition (at% indium) and phase region.   Dashed line 

presented is a guide for the eye to see the p-n transition composition indicated by a 

change in the sign of the thermoelectric voltage. Red line represents the single phase 

composition Cu2In2O5. The CuO and Cu2In2O5 phase region is to the left of the red 

line and the Cu2In2O5 and In2O3 phase region is to the right of the red line [10]. 
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25-45 at% indium. However, the thermoelectric response changed by nearly 3 mV 

over the same range. This phenomenon was likely due to the increased copper oxide 

content in the films as the indium content was varied from 45 at% to 25 at%. Also 

apparent in figures 17a and b are horizontal “flat” regions (<15 at% and >75 at% 

indium) over which reliable thermoelectric measurements could not be obtained 

because of the high electrical resistivity of the thermo-elements in these composition 

ranges. Peak thermoelectric voltages for the library thermo-elements exhibiting p-type 

behavior and n-type behavior occurred between 20-25 at% indium and 50-60 at% 

indium, respectively. Plots of resistivity as a function of composition (figure 17b) 

clearly show two minima at 25-30 at% indium and 55-60 at% indium, which are the 

same compositional ranges as the p-type and n-type materials with the largest 

thermoelectric responses. It is important to note here that the thermo-elements were 

not heated in air and thus the use of Cu-In-O thermoelectric materials in oxidizing 

ambient may be limited. 

3.4.2 Crystallography and Phases 

XRD patterns of four nitrogen annealed Cu-In-O thermo-elements grown on 

sapphire substrates are shown in Figure 18. The two copper rich films (35 at% In and 

28.5 at% In) exhibited a low intensity CuO {111} peak and no other peaks were 

observed. As the indium oxide content in the thermo-elements increased (61 at% In, 

45.5 at% In), the degree of crystallinity increased as determined by peaks 

corresponding to Cu2In2O5 and In2O3 phases. Typically, films in the Cu-In-O system 

grown at or near room temperature are largely amorphous or have significant 

amorphous regions [11], which was clearly evident in the copper rich films. However, 



 

49 

 

the indium oxide rich thermo-elements had well defined crystalline phases, although 

many of the additional peaks were low in intensity. The presence of CuO, Cu2In2O5, 

and In2O3 phases as a function of composition was in close agreement with the phase 

diagram for the CuO-In2O3 system [10]. The investigators established the phase 

diagram by combining CuO and In2O3 in various ratios, sintering them in air, and 

determining the resulting phase distribution by XRD. The thermo-elements fabricated 

in the present study were annealed in nitrogen and remained consistent with the phase 

diagram for this system up to high temperatures in an inert environment such as argon 

or nitrogen [10]. 

 

3.4.3 Microstructure 

TEM was used to follow microstructural changes of selected elements from the 

combinatorial library as a function of heat treatment. The TEM images of various Cu-

In-O elements are shown in figures 19 and 20. The electron diffraction patterns of the 

as-deposited films indicated they were amorphous with little or no fine structure 

(figure 19a). Annealing of the indium oxide rich films (> 40 at% In) resulted in the 

formation of small crystallites in an amorphous matrix. As the copper oxide content 

was systematically increased (< 40 at% In), relatively large, faceted particles were 

observed (figures 19e & 20a). EDS analysis of those dispersed particles indicated that 

they have increased oxygen and copper content relative to the surrounding matrix. At 

lower magnification, figure 20a shows phase separation of highly crystalline, copper 

oxide particles (dark) against a distinct lighter background matrix. The lighter phase 

was further magnified to disclose a copper oxide rich phase (light) and indium oxide  
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Figure 18. XRD patterns of four Cu-In-O films; three copper oxide rich at 28.5 at% In 

and 35 at% In and 45.5 at% In and one indium-rich at 61 at% In. 
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Figure 19. TEM micrographs and electron diffraction patterns for: (a, b) typical as 

deposited films showing totally amorphous and uniform structure, (c, d) at onset of 

crystallinity (after 400 °C, 5 h nitrogen anneal), and (e, f) after phase separation of the 

film into large copper-rich particles. 
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Figure 20. TEM micrographs and electron diffraction patterns showing phase 

separation in a Cu-In-O film (50 at% In): (a) low magnification image indicating 

copper-rich precipitates in an amorphous background, (b) high resolution image of 

copper-rich region with (c) corresponding electron diffraction pattern and (d) high 

resolution image of (nearly) amorphous background with (e) corresponding electron 

diffraction pattern. 
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rich phase (dark) as shown in figures 20b and 20d, respectively with corresponding 

electron diffraction patterns in figures 20c and 20e. Preferred orientation of the matrix 

tends to increase as the amount of copper in the thermo-element was increased (figures 

19f and 20c). This contrasts with the XRD spectra from above because these same 

copper rich thermo-elements were amorphous. This was due to the relative size scale 

at which these measurements were taken. The TEM images corresponded to a much 

smaller area of the thermo-elements than that examined using XRD. Therefore, 

variations in the thermo-element crystallinity are prevalent. 

3.5 Conclusion 

The Cu-In-O thermo-elements with the largest p-type and n-type response are 

promising candidates for further consideration as thermoelectric materials. Cu-In-O p-

n junctions can be fabricated for thermoelectric applications such as thermoelectric 

generators by sputtering thermo-elements from targets of the same compositions as the 

best performing p-type and n-type materials to form thermocouples. Additionally, the 

p-type and n-type thermo-elements will be compatible in terms of thermal expansion 

during thermal cycling since they are from the same materials system. 
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CHAPTER 4 

 

THIN FILM PLATINUM-PALLADIUM THERMOCOUPLES FOR GAS TURBINE 

ENGINE APPLICATIONS 

 

4.1 Abstract 

Thin film platinum:palladium thermocouples were fabricated on alumina and 

mullite surfaces using radio frequency sputtering and characterized after high 

temperature exposure to oxidizing environments. The thermoelectric output, 

hysteresis, and drift of these sensors were measured at temperatures up to 1100 °C. 

Auger electron spectroscopy was used to follow the extent of oxidation in each 

thermocouple leg and interdiffusion at the metallurgical junction. Minimal oxidation 

of the platinum and palladium thermoelements was observed after high temperature 

exposure, but considerable dewetting and faceting of the films was observed in 

scanning electron microscopy. An Arrhenius temperature dependence on the drift rate 

was observed and later attributed to microstructural changes during thermal cycling. 

The thin film thermocouples, however, did exhibit excellent stability at 1000 °C with 

drift rates comparable to commercial type-K wire thermocouples. Based on these 

results, thin film thermocouples based on platinum:palladium have considerable 

potential for use in the hot sections of gas turbine engines. 

Tougas and Gregory, Thin Solid Films, in press (2013). 

 



 

57 

 

4.2 Introduction 

Gas turbine engine components based on advanced ceramics such as ceramic 

matrix composites have superior thermomechanical properties at temperatures above 

1000 °C when compared to conventional superalloys [1]. Additionally, ceramic 

thermal barrier coatings have enabled gas turbine engine blades comprised of 

superalloys to operate at temperatures as high as 1500 °C [2], which translates into 

both improved fuel efficiency and reduced NOx emissions. Due to the severe 

temperature gradients that can exist in these advanced materials, there is a need to 

integrate sensors into these components to monitor their thermomechanical behavior.  

Thin film sensors can be directly deposited onto both stationary and rotating engine 

components for health monitoring as well as to verify existing models [1-3]. 

 Thin film thermocouples offer several advantages over conventional wire 

thermocouples or thermal spray instrumentation used in gas turbine engine 

applications. Thin film sensors do not adversely affect gas flow patterns through the 

engine since their thicknesses are well below the boundary layer thickness formed on 

rotating surfaces [3, 4]. Thin film sensors also have negligible mass and therefore have 

minimal effect on the vibrational modes of rotating components [5]. They are more 

accurate and have faster response times than conventional wire sensors (< 1 μs) due to 

their lower thermal mass. Additionally, thin films are not affected by the g forces 

acting on the blades which are rotating at high velocities [3, 6]. Furthermore, the films 

can be directly deposited onto the surface of engine components without the need for 

adhesives, permitting more accurate surface temperature measurements than wire 

based sensors [3]. 
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 Wire thermocouples have been employed in engine applications for more than 

30 years, however, the presence of oxygen can cause instability and drift at 

temperature in metallic thin film thermocouples due to the significantly reduced 

diffusional distances in these devices. For example, conventional type-S thin film 

(platinum:90 % platinum-10 % rhodium) thermocouples can suffer from selective de-

alloying of rhodium in the film due to the formation of rhodium oxides at temperatures 

between 600-800 °C [7]. This results in a progressive, time dependent degradation or 

drift in the thermoelectric output by as much as 5 °C/h as the platinum-rhodium 

thermocouple legs undergo microstructural and compositional changes due to this 

selective oxidation [3]. This effect can be mitigated by applying alumina overcoats to 

protect the thermocouple elements from oxidation [3, 7]. Therefore, there is a need for 

more stable thermocouple materials that do not experience detrimental microstructural 

changes and selective oxidation issues at high temperature without resorting to 

protective overcoats. 

 Platinum-rhodium alloys are currently being employed as complementary 

thermoelements for wire-based thermocouples and thin film-based thermocouples. 

However, noble metals such as gold, palladium, and platinum do not suffer from 

selective oxidation processes at elevated temperatures since they are not alloys. 

Unfortunately, the use of gold for high temperature thermocouple applications above 

1000 °C is limited due to its low melting point (1064 °C) and dewetting of the metal 

on oxide substrates at temperatures of 900 °C [8]. Wire thermocouples based on 

platinum and palladium have been investigated to some extent [9-13], however, 

investigations of thin film platinum:palladium thermocouples have been somewhat 
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limited. Kreider et al. has examined the use of thin film platinum:palladium 

thermocouples on oxidized silicon wafers for radiometric temperature measurements 

up to 1050 °C [14, 15]. However, these thermocouples could only measure 

temperatures up to 850 °C and required the use of a titanium bond coat between the 

silicon wafer and thermocouple elements due to dewetting issues [14, 15]. The use of 

thin film platinum:palladium thermocouples for higher temperature applications has 

not been previously investigated. 

 In this study, platinum:palladium thin film thermocouples were deposited onto 

ceramic substrates, including alumina and mullite, using r.f. sputtering. The 

thermoelectric output and drift were measured at temperatures up to 1100 °C and these 

thin film thermocouples exhibited remarkable stability at high temperature in an 

oxidizing environment. Auger electron spectroscopy (AES) was used to characterize 

the chemical composition of the metallurgical junctions as a function of depth and to 

monitor the extent of oxidation of the junction. The microstructure of the 

thermocouple legs and metallurgical junctions were examined using scanning electron 

microscopy (SEM). 

 

4.3 Experimental details 

Both alumina and mullite (CoorsTek, Inc.) were employed as the substrates for 

all thin film platinum:palladium thermocouples. The substrates (190 mm x 25 mm x  2 

mm) were cleaned with acetone, methanol, and deionized water. A dry film negative 

photoresist (DuPont
TM

 MX 5050
TM

) was applied to the surface of the substrates and 

was soft-baked prior to patterning thin film thermocouples.  After application of the 
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photoresist, the thin film thermocouple patterns were transferred to the resist using an 

Optical Associates, Inc. aligner (350 nm wavelength ultraviolet light) to expose the 

resist. The photoresist coated substrates were developed to reveal the desired pattern 

and placed inside a Materials Research Corporation model 8667 sputtering system to 

deposit the metal thermocouple legs. Platinum and palladium films were deposited in 

pure argon. A background pressure of 2.7x10
-4

 Pa was achieved in the sputtering 

chamber prior to sputtering and the stage (work piece) was maintained at temperatures 

below 100 °C using water-cooling. Table 4 lists the sputtering parameters employed to 

deposit the platinum and palladium films. Deposition resulted in 1.5 μm of platinum 

and 2 μm of palladium.  

All thin films were annealed in nitrogen for 5 h at 500 °C to remove point 

defects, including trapped argon, and densify the films. The thermoelectric output was 

measured as a function of time and temperature by placing the metallurgical junction 

(hot junction) in the hot zone of a tube furnace and attaching the cold junction to an 

aluminum chill block outside the furnace. In this way, a temperature difference was 

applied along the length of the beam and the cold junction was maintained at or below 

100 °C using chilled water. The thermocouples were thermally cycled in air to 900 °C  

at 4 °C/min for several cycles to determine the thermoelectric voltage and the drift rate 

was determined at 800 °C, 900 °C, 1000 °C, and 1100 °C over a 10 h period at each 

temperature. The temperature difference was continuously monitored using type-K 

(cold junction) and type-S (hot junction) wire thermocouples and copper extension 

wires were attached to the bond pads of the platinum:palladium thermocouples using a 

silver paste to acquire the voltage signals. All copper wires and wire thermocouples  
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Sputtering 

Parameters 

Target 

Diameter 

(cm) 

Target 

Power 

(W) 

Power 

Density 

(W/cm
2

) 

Sputtering 

Gas 

Pressure 

(Pa) 

Deposition 

Rate 

(μm/h) 

Film 

Thickness 

(μm) 

Platinum 10.16 200 3.88 1.20 Ar 0.6 1.5 

Palladium 12.70 200 2.49 1.20 Ar 1.0 2.0 

 

Table 4. Sputtering parameters used for the deposition of platinum and palladium. 
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were connected to an IOTech Personal Daq 54 USB data acquisition system with 

PDaq View Plus© software recording the temperature and voltage signals. AES depth 

profiles were used to determine the chemical composition of the metallurgical junction 

and identify oxidation products formed on the platinum and palladium thermocouple 

legs. AES was performed using a Perkin Elmer 5500 Multi-Technique Surface 

Analyzer. A background pressure of 6.0x10
-7

 Pa was established and a 1x1 mm area 

on the surface of each thermocouple sample was sputter cleaned for 10 seconds prior 

to acquiring each depth profile. SEM was performed on the same films to analyze the 

microstructure after thermal cycling using a JEOL JSM-5900LV SEM and a 20 kV 

accelerating voltage. 

 

4.4 Results and Discussion 

4.4.1 Thermoelectric measurements 

 The thermoelectric response of several platinum:palladium thin film 

thermocouples are shown in Fig. 21a and Fig. 21b. A peak temperature of 900 °C was 

employed at the hot junction during thermal cycling and a temperature difference as 

large as 750 °C was established along the length of the ceramic substrates. The 

maximum thermoelectric voltage of thin film thermocouples subjected to a 

temperature difference of 750 °C was 9.00 mV on alumina substrates and 9.52 mV on 

mullite substrates. This thermoelectric response was comparable to a conventional 

type-S wire thermocouple, which typically has a thermoelectric response of 8.45 mV, 

when a similar temperature difference is applied [16]. Remarkable stability was 

observed for the thin film platinum:palladium thermocouples when tested over several  
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Figure 21. Thermoelectric output of two different platinum:palladium thermocouples 

on alumina (a) and mullite (b). A peak hot junction temperature of 900 °C was used in 

each case. 
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thermal cycles. However, the peak thermoelectric voltage at 900 °C for the thin film 

thermocouples diminished slightly after each temperature ramp, which most likely 

results from microstructural changes such as grain growth, pore growth, and dewetting 

of the metallic films. Hysteresis upon heating and cooling to 900 °C is shown in Fig. 

22. Here, the thin film thermocouples on mullite exhibited greater hysteresis than 

those formed on alumina. However, the hysteresis was comparable to that of 

previously studied ceramic thin film thermocouples deposited on alumina [2]. 

Furthermore, ceramic films have inherently greater stability in air because they have 

all the oxygen that they can take in their structures. 

 The Seebeck coefficient and drift rates of the thin film thermocouples were 

determined as a function of hot junction temperature and time, respectively. The 

Seebeck coefficient defined in this study is given by Eq. 1 

   
   

  
    

       

     
 
     (1) 

where S is the Seebeck coefficient given in μV/°C,  is the voltage potential 

difference between the two thermocouple materials (  ), and  is the  

temperature difference between the hot junction (  ) and the cold junction (  ). Eq. 2 

gives the temperature dependence of the Seebeck coefficient for metal thermocouples 

         
 

   
 
 
  

 
      

    
    

 

 
 
    (2) 

where    is the carrier concentration,   is the Boltzmann constant,    is the effective 

electron mass,   is the absolute temperature,   is the electron charge, and   is a 

transport constant [2]. There is no appreciable change in the carrier concentration of 

these highly conductive platinum and palladium films over the temperature range of  
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Figure 22. Hysteresis upon heating/cooling platinum:palladium thermocouples on 

alumina and mullite. Corresponds to second cycle of thermoelectric data in Figure 21a 

and Fig. 21b. 
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interest, and it was observed that the Seebeck coefficient increased in a linear fashion 

over most of the temperature range investigated, as shown in Fig. 23. Therefore, the 

Seebeck coefficient, which was expected to be a linear function of temperature, was 

confirmed in this study. 

Thermocouple drift was defined according to Eq. 3 below 

       
     

       
 
 

        (3) 

where       is the drift rate given in °C/h,  is the change in voltage at constant 

temperature,  is the initial voltage, T is the temperature, and  is the elapsed 

time at temperature. Table 5 shows the drift rate of thin film platinum:palladium 

thermocouples on alumina and mullite surfaces at different temperatures. Table 6 

gives equation parameters for the relationship between temperature difference and 

voltage for the platinum:palladium thermocouples on alumina and mullite surfaces. 

The drift rates of these thin film thermocouples were less than 1 °C/h in magnitude at 

temperatures up to 1000 °C. Microstructural changes in the films during thermal 

cycling may have been responsible for drift since the drift rate had an apparent 

Arrhenius temperature dependence. Fig. 24 shows the Arrhenius temperature 

dependence on drift rate for thin film platinum:palladium thermocouples deposited on 

alumina. This Arrhenius temperature dependence was modeled according to Eq. 4 

below: 

              
  

  
 
     (4) 

where   is a constant,     is the activation energy,   is the gas constant (8.314 

J/mol·K), and   is the absolute temperature. The activation energy associated with the  
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Figure 23. Seebeck coefficient of platinum:palladium thermocouples on alumina and 

mullite as a function of temperature and substrate. 
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Drift Rate (°C/h) 800 °C 900 °C 1000 °C 1100 °C 

Alumina 0.18 -0.06 -0.76 -2.06 

Mullite -1.46 -0.83 - - 

 

Table 5. Drift rates of platinum:palladium thermocouples on alumina and mullite at 

various temperatures. 
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 V(ΔT) = A(ΔT)
3 
+ B(ΔT)

2 
+ C(ΔT) 

 A B C 

Alumina 2E-05 5E-04 0.8444 

Mullite 1E-05 4.9E-03 -0.0271 

 

Table 6. Equation parameters for the relationship of temperature difference to voltage 

for platinum:palladium thermocouples on alumina and mullite surfaces. 
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Figure 24. Drift rates of platinum:palladium thermocouples as a function of 

temperature. Note the Arrhenius temperature dependance of the drift rates. 
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drift rate of the platinum:palladium thin film thermocouples was 132.61 kJ/mol, as 

given by the slope of the log of drift rate versus 1/T. This activation energy falls 

between the activation energies for surface diffusion and volumetric diffusion of 

platinum and palladium, which suggests that a combination of surface driven forces 

and bulk microstructural changes were responsible for the observed drift [17]. 

Processes such as the constrained grain growth and dewetting, which reduce the 

surface free energy of the films, are the most likely the causes of drift.  Nonetheless, 

the drift rates of these platinum:palladium thermocouples were comparable to wire 

type-K thermocouples operating at temperatures up to 1100 °C, confirming that they 

have remarkable stability relative to current commercially available instrumentation. 

 

4.4.2 AES depth profiling and SEM imaging 

 The chemical composition of the thin film thermocouples, at the metallurgical 

junctions, was determined as a function of depth using AES. Oxide formation on 

platinum was limited to thicknesses less than 1 nm, regardless of the substrate used. 

Oxygen was present at no more than 5 atomic percent throughout the cross-section and 

was likely detected from the alumina or mullite substrates where dewetting of the 

metallic films had occurred. Oxygen solubility in platinum and palladium is very low 

(on the order of 0.035 atomic percent in palladium at 4.0 x 10
4
 Pa oxygen partial 

pressure and 850-900 °C) [18]. Platinum does not readily form an oxide at 

temperatures above 500 °C but instead experiences material loss through the 

evaporation of the metal or one of its volatile oxides, such as PtO2 [19, 20]. The loss 

of platinum due to evaporation is proportional to the oxygen partial pressure in the 
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ambient, and is appreciably higher at atmospheric pressure between 1000 °C and 1100 

°C, where PtO2 has a partial vapor pressure of 0.05 Pa [19]. Decomposition of the 

volatile oxides at high temperature can result in the redeposition of the metal onto the 

original surface, so the overall material loss is minimal compared to other noble 

metals [19]. Therefore, any oxides that were present on the surface of the platinum 

legs likely formed during cooling from elevated temperatures.  

 Oxide formation on palladium when deposited on alumina was limited to a 

thickness of less than 1 nm, which was comparable to that of platinum films formed 

on the same surface. Again, oxygen was still detected at greater film depths but was 

likely due to the exposed substrate in areas where the metal film had dewetted. 

Oxygen was detected at approximately 30 atomic percent to a depth of more than 25 

nm for palladium deposited on mullite. However, the formation of condensed oxide 

phases on the palladium is not likely; while material loss from evaporation of the 

metal or of its volatile oxide, PdO, is much more likely [19]. At temperatures greater 

than 850 °C, surface oxides on palladium typically decompose. The vapor pressure of 

palladium metal at temperatures above 1000 °C exceeds that of PdO, especially at 

atmospheric pressure, so material loss due to palladium metal evaporation likely 

dominates the material loss mechanism [19, 20]. Therefore, it is likely that the high 

atomic percentage of oxygen detected in the films is derived from the exposed mullite 

surface in the vicinity of the dewetted palladium films.  This dewetting phenomenon 

was much more prevalent in the palladium films than platinum, as given by the atomic 

percent oxygen detected for both thin films. 
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Considerable interdiffusion of platinum and palladium at the metallurgical 

junctions of the thin film thermocouples was verified by AES depth profiling. Since a 

complete solid solution of platinum and palladium will be formed at the junction, solid 

solutions containing approximately 90/10 atomic percent platinum/palladium on 

alumina and 78/22 atomic percent platinum/palladium on mullite were not surprising. 

The platinum-palladium phase diagram provided further evidence of solid solution 

formation in both metallurgical junctions [21]. Oxygen was detected at depths up to 15 

nm at both metallurgical junctions; however, the detection of oxygen was most likely 

from exposed substrate surfaces since it is not likely a metastable oxide film would 

form at these depths in either platinum or palladium [19]. A larger atomic percentage 

of oxygen in the metallurgical junction was detected on mullite because it experienced 

a greater amount of dewetting after thermal cycling than the same junction formed on 

alumina. 

 Dewetting in conjunction with faceting of both the platinum and palladium 

films were observed in SEM, and these microstructural changes were apparent in the 

thin film thermocouples deposited on both alumina and mullite. In all cases, dewetting 

resulted in recrystallization and pore growth where the pore edges were faceted, 

particularly at grain boundaries. Fig. 25 shows the microstructure of platinum and 

palladium films on alumina and mullite. When deposited on alumina, the palladium 

films contained larger pore sizes along with larger grains and more faceting, than 

observed in the platinum films due to differences in the melting temperature of the two 

metals. Furthermore, the surface recession rate of palladium is four orders of 

magnitude higher than platinum due to surface energy considerations [19]. 
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Figure 25. SEM micrographs using backscatter electron imaging (BSEI) of various 

thin film thermocouple legs after high temperature cycling: platinum on alumina (a); 

palladium on alumina (b); platinum on mullite (c); and palladium on mullite (d). Each 

film exhibited dewetting with distinctly different microstructures due to long term 

high temperature exposure. 
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When deposited on mullite, the platinum resembled a contiguous network of high 

aspect ratio crystals and faceted islands with discrete pores. Palladium films deposited 

on mullite appear to have similar dewetting characteristics relative to the palladium 

film formed on alumina. Due to differences in surface roughness, the topography of 

the palladium film appears different on mullite because it generally contains larger 

pores and randomly dispersed smaller islands, which were not observed in the films 

formed on alumina. The differences in the dewetting of these films results from 

dissimilar surface energy and surface roughness of the substrates, where the rougher 

surfaces tend to induce more residual stress on films, increasing their surface free 

energy. Therefore, there is a greater driving force for dewetting of platinum and 

palladium on mullite due to its relatively rougher surface. This is primarily responsible 

for the different microstructures observed on alumina. All microstructures here 

appeared to be similar to those formed via a vapor phase transport mechanism, in 

which continuous and fully faceted networks of metal were formed throughout the 

film due to the dewetting process [3]. Higher magnification revealed faceted striations 

in the thermocouple legs, which are also suggestive of the vapor phase transport. 

Various images of striations in the films are shown in Fig. 26a and Fig. 26b. 

The microstructure of the metallurgical junctions showed no evidence of phase 

separation since a complete solid solution was formed between platinum and 

palladium after thermal cycling. The formation of faceted pores was evident in the 

dewetted films; however, the extent to which this occurred in relation to platinum and 

palladium was minimal. This was due to the increased thickness of the overlapping 

platinum and palladium films at the junction relative to the individual legs. If more  
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Figure 26. SEM micrographs (BSEI) of the faceted striations in the thermocouple legs 

after high temperature cycling: palladium on alumina (a); platinum on mullite (b). 
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material is initially present, as in the case of the thermocouple junctions, the dewetting 

process has the same microstructural effect. Similar to the platinum and palladium 

films, faceted striations were observed at the metallurgical junction on both surfaces. 

Delamination of the film was also observed at the metallurgical junction/palladium 

interface where the junction had receded from the palladium film and was likely 

driven by dewetting of the palladium film during thermal cycling. Delamination and 

dewetting of these films would ultimately lead to device failure where, in the limit, the 

platinum and palladium films would debond completely, most likely at the 

junction/thermocouple leg interface. 

 

4.5 Conclusion 

Platinum:palladium thermocouples were developed to replace conventional 

thin film thermocouples based on platinum-rhodium alloys. These alloys suffer from 

high drift rates due to instability and degradation as a result of compositional changes 

and selective oxidation processes during thermal cycling. The platinum:palladium thin 

film thermocouples did not show the detrimental effects of selective oxidation and its 

adverse effect on the chemical stability of the metallurgical junction. Therefore, the 

drift rates observed for these thermocouples were comparable to conventional type-K 

wire thermocouples during thermal cycling. Thicker (thin film) thermocouples would 

prolong the stability of these sensors by inhibiting dewetting and unfavorable 

microstructural changes in the films during thermal cycling. The thermoelectric 

performance of these thermocouples at high temperature makes them promising 

candidates for implementation in the harsh environments of gas turbine engines, and 
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given their stability, long term sensing at temperatures in excess of 1100 °C will be 

possible. 
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CHAPTER 5 

 

FUTURE WORK 

 

5.1 Thin Film Thermocouples 

 Gas turbine engines consume immense amounts of energy from combusting 

fuels in order to produce thrust or energy for the generation of electricity. In order to 

meet increasing energy regulations, engine companies are putting tireless effort into 

improving the efficiency of gas turbine engines. One fundamental way in which this is 

being progressively achieved is through increasing the operating temperature of the 

hot section inside the engine. With higher temperatures comes increased efficiency 

which is defined simply by Carnot’s theorem given as η = 1 – TC/TH where TC is the 

cold reservoir temperature and TH is the hot reservoir temperature. Therefore, by 

increasing the hot section temperature relative to the surroundings, the thermodynamic 

efficiency of these engines will increase. 

As a result, gas turbine engine manufacturers are met with new challenges to 

design materials and sensors which can handle the increasingly harsh high temperature 

environment inside the engine hot section of these more efficient engines. 

Conventional superalloy materials cannot withstand the 1500°C or higher hot section 

temperatures in these new engines, therefore ceramic matrix composite (CMC) 

materials are being developed and employed in these next generation engines. These 

materials can withstand the increased operating temperatures with superior 

thermomechanical properties and lower mass relative to superalloy materials. Silicon 
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carbide based CMCs are currently being developed for implementation inside engine 

hot sections as turbine blades and components of the combustion chamber. Other 

issues also arise with the implementation of these CMC materials, such as the need for 

alternative thermal barrier coatings (TBC) on the surface of parts. These TBCs must 

have similar thermal expansion coefficients to the CMC so that they exhibit great 

adhesion during thermal cycling. Additionally, there is a need to develop new sensors 

or modify existing sensors so they are with the TBCs implemented on CMC 

components, and they must be able to withstand the increased hot section 

temperatures. Research has already begun to instrument CMCs for gas turbine engine 

applications.
1
 The CMC, TBC, and thermocouples must be integrated in the following 

way: 

 The TBC must planarize the CMC material prior to the implementation of a 

thermocouple while also providing environmental protection. 

  The TBC must form a dielectric barrier between the CMC material and the 

thermocouple. 

 The thermocouple materials chosen should have similar thermal expansion 

coefficients to the TBC material and be able to withstand the extreme 

temperatures over long periods and many cycles. 

Based on the work in this thesis, the most promising thermocouple materials for the 

instrumentation of CMC materials are In2O3-ITO and Pt-Pd based. By sticking to the 

above guidelines carefully and designing experiments accordingly, the implementation 

of sensors inside next generation CMC-based gas turbine engines will be achievable. 
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 Thermoelectrics based on p-type and n-type films in the Cu-In-O system are 

currently being fabricated as the continuation of the research presented in chapter 3 of 

this thesis. Targets have been fabricated using powder processing techniques of the 

best performing p-type (22 at% In) and n-type (57 at% In) materials from the Cu-In-O 

system combinatorial library. It is anticipated that the combination of the p-type and n-

type Cu-In-O materials will enable the fabrication of a p-n junction for thermoelectric 

applications comprised of materials from the same system. Additionally, another 

compound in the Cu-In-O system (22 at% In) was found to exhibit a totally 

amorphous structure after the film was annealed in nitrogen at 400°C for 5h followed 

by annealing at 1000°C for 2h in air. Essentially, at this ratio of CuO to In2O3, the 

material maintains its amorphous structure to high temperature, even in the presence 

of oxygen. 
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