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Canonical Ensemble [tln51]

Consider a closed classical system (volume V , N particles, temperature T ).
The goal is to determine the thermodynamic potential A(T, V, N) pertaining
to that situation, from which all other thermodynamic properties can be
derived.

Maximize Gibbs entropy S = −kB

∫
Γ

d6NX ρ(X) ln[CNρ(X)]

subject to the constraints related to normalization and average energy:∫
Γ

d6NX ρ(X) = 1,

∫
Γ

d6NX H(X)ρ(X) = U.

Apply calculus of variation with two Lagrange multipliers:

δ

∫
Γ

d6NX{−kBρ ln[CNρ] + α0ρ + αUHρ} = 0

⇒
∫

Γ

d6NX δρ{−kB ln[CNρ]− kB + α0 + αUH} = 0.

⇒ {· · · } = 0 ⇒ ρ(X) =
1

CN

exp

(
α0

kB

− 1 +
αU

kB

H(X)

)
.

Determine the Lagrange multipliers α0 and αU :∫
Γ

d6NX ρ(X) = 1 ⇒ exp

(
1− α0

kB

)
=

1

CN

∫
Γ

d6NX exp

(
αU

kB

H(X)

)
≡ ZN .

∫
Γ

d6NX ρ(X){· · · } = 0 ⇒ S − kB + α0 + αUU = 0.

⇒ U +
1

αU

S =
kB

αU

ln ZN . Compare with U − TS = A ⇒ αU = − 1

T
.

Helmholtz free energy: A(T, V, N) = −kBT ln ZN .

Canonical partition function: ZN =
1

CN

∫
Γ

d6NX exp (−βH(X)) , β =
1

kBT
.

Probability density: ρ(X) =
1

ZNCN

exp (−βH(X)) .

Canonical ensemble in quantum mechanics:

ZN = Tre−βH =
∑

λ

e−βEλ , ρ =
1

ZN

e−βH , A = −kBT ln ZN .



[tex76] Classical ideal gas (canonical ensemble)

Consider a classical ideal gas of N atoms confined to a box of volume V in thermal equilibrium
with a heat reservoir at temperature T . The Hamiltonian of the system reflects the kinetic energy
of 3N noninteracting degrees of freedom:

H =
3N∑
i=1

p2
i

2m
.

(a) Show that the canonical partition function is ZN = V N/(N !λ3N
T ), where λT =

√
h2/2πmkBT

is the thermal wavelength.
(b) Derive from ZN the Helmholtz free energy A(T, V,N), the entropy S(T, V,N), the pressure
p(T, V,N), the internal energy U(T,N), and the chemical potential µ(T, V ).
(c) Show that the pressure is equal to two thirds of the energy density and that the adiabates
satisfy p3V 5 = const.

Solution:



[tex77] Ultrarelativistic classical ideal gas (canonical ensemble)

Consider a classical ideal gas of N atoms confined to a box of volume V in thermal equilibrium
with a heat reservoir at an extremely high temperature T . The Hamiltonian of the system,

H =
N∑

l=1

|pl|c,

where c is the speed of light, reflects the ultrarelativistic energy of N noninteracting particles:
(a) Calculate the canonical partition function ZN of this system.
(b) Derive from ZN the Helmholtz free energy A(T, V,N), the entropy S(T, V,N), the pressure
p(T, V,N), the internal energy U(T,N), and the chemical potential µ(T, V ).
(c) Show that the pressure is equal to one third of the energy density and that the adiabates satisfy
p3V 4 = const.

Solution:



[tex154] Ultrarelativistic classical ideal gas in two dimensions

Consider a classical ideal gas of N particles confined to a two-dimensional box of area V in thermal
equilibrium at extremely high temperature T . Most particles are moving at speeds close to the
speed of light c. We describe this system by a Hamiltonian of the form,

H =

N∑
l=1

√
p2x + p2y c.

(a) Show that the canonical partition function is

ZN =
1

N !

[
2πV

(
kBT

hc

)2
]N

.

(b) Find the Helmholtz free energy A(T, V,N), the entropy S(T, V,N), the pressure p(T, V,N),
and the internal energy U(T,N).
(c) Find the adiabate (for constant N) and express it in the form pνV = const.
(d) Infer from the given canonical partition function ZN (T, V ) an explicit expression for the grand
partition function Z(T, V, µ), where µ = kBT ln z is the chemical potential and z is the fugacity.
Use

∫∞
0
dxxne−ax = n!a−n−1, lnn! ' n lnn− n,

∑∞
n=0 x

n/n! = ex.

Solution:



[tex78] Array of classical harmonic oscillators (canonical ensemble)

Consider an array of N 3-dimensional classical harmonic oscillators, representing a system of 3N
uncoupled degrees of freedom:

H =
3N∑
i=1

(
p2

i

2m
+

1
2
mω2q2

i

)
.

(a) Calculate the canonical partition function ZN for this model.
(b) Derive from ZN the Helmholtz free energy A(T, N), the entropy S(T, N), the internal energy
U(T, N), and the heat capacity C ≡ (∂U/∂T )N .

Solution:



[tex136] Irreversible decompression

Consider an insulating box with two compartments. Each compartment initially contains N atoms
of a monatomic classical ideal gas in equilibrium at initial pressures p1 6= p2 and at the same initial
temperature T . Gas atoms are then allowed to leak through a hole in the dividing wall.
(a) Show that the temperature remains the same in the final equilibrium state.
(b) Find the uniform pressure p in the final equilibrium state as a function of p1 and p2.
(c) Find the increase in total entropy, ∆S, between the initial and final equilibrium states.

Solution:



[tex137] Irreversible heat exchange

Consider an insulating box with two compartments. Each compartment initially contains N atoms
of a monatomic classical ideal gas in equilibrium at initial temperatures T1 6= T2 and at the same
initial pressure p. Gas atoms are then allowed to leak through a hole in the dividing wall.
(a) Find the uniform temperature T in the final equilibrium state as a function of T1 and T2.
(b) Show that the pressure remains the same in the final equilibrium state.
(c) Find the increase in total entropy, ∆S, between the initial and final equilibrium states.

Solution:



[tex139] Reversible decompression

Consider a rigid, insulating box with two compartments of volumes V1 and V2 separated by an
internal wall. Each compartment contains N atoms of a monatomic classical ideal gas [pV =
NkBT, CV = 3

2NkB ] in equilibrium at the same temperature Tini.
(a) Find the maximum work, ∆W (Tini, V1, V2, N), that can be extracted from this system by any
means that keep the box rigid and insulating.
(b) Design a reversible process that employs the internal wall, which is movable by an external
agent in a controlled manner and which can be switched between heat-conducting and insulating
modes.

Solution:



[tex140] Reversible heat exchange

Consider a rigid, insulating box with two compartments of volumes V1 and V2 separated by an
internal wall. Each compartment contains N atoms of a monatomic classical ideal gas [pV =
NkBT, CV = 3

2NkB ] in equilibrium at the same pressure.
(a) Find the maximum work, ∆W (T1, T2, N), that can be extracted from this system by any means
that keep the box rigid and insulating.
(b) Design a reversible process that employs the internal wall, which is movable by an external
agent in a controlled manner and which can be switched between heat-conducting and insulating
modes.

Solution:



[tex141] Heavy piston

A cylinder of cross section A with insulating walls has two compartments separated by a disk of
mass m. The axis of the cylinder is vertical. A uniform gravitational field g is present. The disk is
initially held at a fixed position by an external agent. The upper compartment is evacuated and
the lower compartment contains 1 mol of a monatomic, classical, ideal gas [pV = RT , CV = 3

2R]
at temperature T0, volume V0, and pressure p0. When the disk is released, it moves without (wall)
friction and comes to rest at a lower position. Calculate the final values p1, V1, T1 of pressure,
volume, and temperature, respectively. The disk does not exchange heat. The only significant
action of the gravitational field is on the disk.

Hint: Use energy conservation and Newton’s third law. Assume thermal equilibrium for the inital
and final states.

m

p = 0

A

gp
0 V

0

T
0

Solution:



Ensemble averages [tln52]

All thermodynamic quantities of a closed system can be inferred from the
canonical partition function ZN via the associated thermodynamic potential:

ZN =
1

CN

∫
Γ

d6NX exp (−βH(X)) , β =
1

kBT
.

Further properties of the system can be obtained from the canonical proba-
bility density ρ(X) via equilibrium expectation values of arbitrary dynamical
variables f(X):

〈f〉 =

∫
Γ

d6NX ρ(X)f(X), ρ(X) =
1

ZNCN

exp (−βH(X)) .

From such expectation values, we can recover thermodynamic quantities and
calculate fluctuations thereof, which are related to response functions, i.e.
different thermodynamic quantities. Other expectation values, e.g. correla-
tion functions, cannot be inferred directly from ZN .

• Uncertainty about microstate and entropy:

S = −kB

∫
Γ

d6NX ρ(X) ln[CNρ(X)].

• Average value H and internal energy:

〈H〉 =

∫
Γ

d6NX ρ(X)H(X) =
1

ZNCN

∫
Γ

d6NX H(X) e−βH(X)

⇒ 〈H〉 = − 1

ZN

∂ZN

∂β
= − ∂

∂β
ln ZN =

∂

∂β
(βA)

Use
∂

∂β
=

(
∂T

∂β

)
∂

∂T
= −kBT 2 ∂

∂T
⇒ 〈H〉 = A− T

∂A

∂T
= A + TS = U.

• Energy fluctuations and heat capacity:

〈H2〉 − 〈H〉2 =
1

ZN

∂2ZN

∂β2
−

[
1

ZN

∂ZN

∂β

]2

=
∂

∂β

[
1

ZN

∂ZN

∂β

]

⇒ 〈H2〉 − 〈H〉2 =
∂2

∂β2
ln ZN = −∂U

∂β
= kBT 2 ∂U

∂T
= kBT 2CV .



Classical virial theorem [tln83]

Classical Hamiltonian system: H = T + V .
N interacting particles in 3D space represent 3N degrees of freedom.
Phase-space coordinates: {xi} = {(ql, pl)}, i = 1, . . . , 6N, l = 1, . . . , 3N .

Theorem in general form:〈
xi
∂H
∂xj

〉
.
=

1

Z

∫
d6Nx xi

∂H
∂xj

e−H/kBT = −kBT
Z

∫
d6Nx xi

∂e−H/kBT

∂xj
.

Integrate by parts:

⇒
〈
xi
∂H
∂xj

〉
=
kBT

Z

∫
d6Nxe−H/kBT δij = kBTδij.

Equipartition: average kinetic energy per degree of freedom

T =
3N∑
l=1

p2l
2m

⇒
〈
pl
∂H
∂pl

〉
= 〈mp2l 〉 ⇒

〈
1

2
mp2l

〉
=

1

2
kBT.

Virial: pair interactions

V =
1

2

∑
l 6=l′

v(|ql − ql′|). Set qll′
.
= ql − ql′ .

⇒ 1

6

∑
l 6=l′

〈
qll′

∂v

∂qll′

〉
= NkBT − pV.

Anharmonic crystal in 1D: average potential energy per bond

V =
N−1∑
l=1

1

2
u|ql − ql+1|ν with ν > 0. Set p = 0.

⇒
〈
1

2
u|ql − ql+1|ν

〉
=
kBT

ν
.

[adapted from Schwabl 2006]



Systems of noninteracting particles [tln54]

Consider a classical systems of N noninteracting particles.

Hamiltonian: H =
N∑

l=1

hl(ql,pl).

Canonical partition function of distinguishable particles:

ZN =
1

CN

∫
Γ

d6NX e−βH(X) =
N∏

l=1

Z̃l, Z̃l =
1

h3

∫
d3ql d

3pl e
−βhl(ql,pl).

Factorizing phase-space probability density:

ρ(X) =
1

ZNCN

e−βH(X) =
N∏

l=1

[
1

h3Z̃l

e−βhl(ql,pl)

]
.

Identical one-particle Hamiltonians:

h1 = · · · = hn ≡ h(q,p) ⇒ Z̃1 = · · · = Z̃N = Z̃ ≡ 1

h3

∫
d3q d3p e−βh(q,p).

⇒ ZN = Z̃N , ρ(X) =
N∏

l=1

[
1

h3Z̃
e−βh(ql,pl)

]
.

Indistinguishable particles:

ZN =
1

N !
Z̃N .

Note: It is important that we discriminate between noninteracting subsys-
tems that are identical but distinguishable (e.g. atoms vibrating about rigid
lattice sites) and noninteracting subsystems that are identical and indistin-
guishable (e.g. atoms of an ideal gas).



Further ensemble averages [tln55]

Probability density in one-particle phase space:

ρl(q,p) = 〈δ(ql − q)δ(pl − p)〉.

Position distribution and momentum distribution:

ρl(q) = 〈δ(ql − q)〉, ρl(p) = 〈δ(pl − p)〉.

Distribution of distances and relative momenta between pairs of particles:

flm(r) = 〈δ(r − |ql − qm|)〉, Flm(P ) = 〈δ(P − |pl − pm|)〉.

Average distance between pairs of particles:

〈rlm〉 = 〈|ql − qm|〉 =

∫ ∞

0

dr rflm(r).

Average magnitude of relative momentum between pairs of particles:

〈Plm〉 = 〈|pl − pm|〉 =

∫ ∞

0

dP PFlm(P ).

Applications to the classical ideal gas:

Noninteracting particles: h(q,p) =
p2

2m
⇒ Z̃ =

V

λ3
T

, λT =

√
h2

2πmkBT
.

⇒ ρl(q,p) = V −1(2πmkBT )−3/2e−p2/2mkBT .

⇒ ρl(q) =

∫
d3p ρl(q,p) =

1

V
.

⇒ ρl(p) =

∫
d3q ρl(q,p) = (2πmkBT )−3/2e−p2/2mkBT .

ρl(p)d3p = f(v)d3v ⇒ f(v) =

(
m

2πkBT

)−3/2

e−mv2/2kBT .

The spatial distribution of ideal gas particles in a uniform gravitational field
(law of atmospheres) is calculated in exercise [tex79].

The distribution of relative momenta between pairs of ideal gas particles is
calculated in exercise [tex80].



[tex79] Classical ideal gas in uniform gravitational field

Consider a column with cross-sectional area A of a classical ideal gas (N atoms of mass m) in a
uniform gravitational field of magnitude g. The gas is in thermal equilibrium at temperature T .
The Hamiltonian reads:

H =
N∑

l=1

(
p2

l

2m
+mgzl

)
,

where zl is the height of particle l above sea level.
(a) Find the probability density ρ1(z) for the vertical positions of individual gas atoms.
(b) Find the pressure distribution p(z).

Solution:



[tex135] Gas pressure and density inside centrifuge

Consider a hollow disk of width L and radius R filled with N particles of a dilute gas at temperature
T . The disk is in a state of rotation with angular velocity ω about its axis.
(a) Find the probability density ρ1(r) for the radial position of a gas particle and find the particle
density n(r). Note that the unit of ρ1(r) is [m−2] and the unit of n(r) is [m−3].
(b) Find the pressure p(r).
(c) In an experiment that measures p(0) and p(R) at various values of ω and fixed T , which two
quantities must be plotted against each other such that the data points are predicted to fall onto
a straight line with slope equal to the mass of the gas particles?

Solution:



[tex80] Relative momentum of two ideal gas particles

Consider a classical ideal gas of N atoms with mass m confined to a box of volume V in thermal
equilibrium with a heat reservoir at temperature T .
(a) Find the distribution Flm(P ) ≡ 〈δ(P − |pl − pm|)〉 of the magnitude of the relative momenta
of two ideal gas particles.
(b) Find the ratio of the average magnitudes 〈P 〉/〈p〉 of the relative momentum of two particles
and the momentum of a single particle.

Solution:



Partition function and density of states [tln56]

Why do the microcanonical and canonical ensembles yield the same results?

(a) Derivation of ZN from Ω(U, V,N).

Relation between the microcanonical phase-space volume Ω(U, V,N) and the
number of microstates Σ(U, V,N) up to the energy U :

Ω(U, V,N) ≡
∫

H(X)<U

d6NX = CNΣ(U, V,N).

Density of microstates:

g(U) =
∂Σ

∂U
.

The canonical partition function is then obtained via Laplace transform:∫ ∞

0

dU g(U)e−βU =
1

CN

∫
Γ

d6NX e−βH(X) = ZN .

Here the energy scale has been shifted such that U0 = 0.

(b) Derivation of Ω(U, V,N) from ZN .

Complex continuation of the canonical partition function:

ZN = Z(β) for β = β′ + iβ′′ with β′ > 0.

The microcanonical phase-space volume is the obtained via inverse Laplace
transform:

g(U) =
1

2πi

∫ β′+i∞

β′−i∞
dβ eβUZ(β), Ω(U, V,N) = CN

∫ U

0

dU ′ g(U ′).

Both calculations are carried out in exercise [tex81] for the classical ideal gas.



[tex81] Ideal gas partition function and density of states

(a) Starting from the result of [tex73] for the phase-space volume Ω(U, V,N) of a classical ideal gas
(N particles with mass m) in the microcanonical ensemble, calculate the density of microstates,
gN (u), and then, via Laplace transform, the result of [tex76] for the canonical partition function
ZN (β), where β = 1/kBT .
(b) Starting from the canonical partition function ZN (β) analytically continued into the complex
plane, calculate the density of state gN (U) via inverse Laplace transform.

Solution:



Vibrational heat capacities of solids [tln57]

The interaction between atoms is attractive at long distances and repulsive
at short distances. The lowest-energy configuration of a macroscopic system
of N atoms is a perfect lattice. This is the equilibrium state at T = 0. It
has zero entropy. Heat input δQ = CdT causes lattice vibrations. In the
following we study vibrational heat capacities in successively improved ap-
proximations.

Atoms bound to rigid lattice by harmonic force (classical model):

The theory of Dulong and Petit considers an array of N classical 3D harmonic
oscillators with identical angular frequencies. The resulting vibrational heat
capacity, C = 3NkB, is T -independent and is calculated in exercise [tex74] for
a microcanonical ensemble and in exercise [tex78] for a canonical ensemble.

The main insufficiency of the Dulong-Petit result is that C does not approach
zero in the low-temperature limit, in violation of the third law.

Atoms bound to rigid lattice by harmonic force (quantum model):

The theory of Einstein considers an array of N quantum 3D harmonic os-
cillators with identical angular frequencies ω. The resulting vibrational heat
capacity,

C =

(
ΘE

kBT

)2
3NkBeΘE/T

(eΘE/T − 1)
2 , kBΘE = ~ω,

goes to zero exponentially in the low-T limit, C ∼ e−ΘE/T , and approaches
the Dulong-Petit result, C = 3NkB, at high T . Einstein’s result is derived
in exercise [tex75] for the microcanonical ensemble and in exercise [tex82] for
the canonical ensemble.

The main insufficiency of Einstein’s result is that it contradicts experimental
evidence, which suggests C ∼ T 3 at low T .

1



Atoms interacting via harmonic force:

H =
3N∑
i=1

p2
i

2m
+

∑
ij

Aijqiqj =
3N∑
i=1

[
p2

i

2m
+

1

2
mω2

i Q
2
i

]
.

Here {Aij} is the dynamical matrix. The second equation results from a
transformation to normal-mode coordinates. In the present context the nor-
mal modes are sound waves (phonons).

Quantum mechanically, this system is an array of 3N independent harmonic
oscillators with normal mode frequencies ωi:

H =
3N∑
i=1

~ωi

(
ni +

1

2

)
, ni = 0, 1, 2, . . .

The resulting Helmholtz free energy (in generalization to the result derived
in [tex82]) reads:

A =
1

2

3N∑
i=1

~ωi + kBT
3N∑
i=1

ln
(
1− e−β~ωi

)
.

In Debye’s theory, the normal modes, which, in general, consist of multiple
branches of acoustic and optical phonons, are replaced by a single branch of
sound waves with linear dispersion ω = ck as is expected in a continuous
isotropic elastic medium.

Total number of modes: 3N (same as in original lattice model).

Density of modes in k-space: V/(2π)3.

Number of polarizations: 3 (2 transverse, 1 longitudinal).

Number of modes in dω: n(ω)dω =
V

8π3
(3)(4π)

ω2

c2

dω

c
=

3V

2π2c3
ω2dω.

Debye frequency:
3V

2π2c3

∫ ωD

0

dω ω2 = 3N ⇒ ω3
D =

6Nπ2c3

V
.

Density of modes: n(ω) =
9N

ω3
D

ω2.

The resulting vibrational heat capacity is calculated in exercise [tex83] and
does show the experimentally observed ∼ T 3 behavior as T → 0:

C = 9NkB

(
T

ΘD

)3 ∫ ΘD/T

0

dx
x4ex

(ex − 1)2 , ΘD = ~ωD/kB.

2



[tex82] Array of quantum harmonic oscillators (canonical ensemble)

Consider an array of N 3-dimensional quantum harmonic oscillators:

H =
3N∑
i=1

[
~ω

(
ni +

1
2

)]
, ni = 0, 1, 2, . . . .

(a) Calculate the canonical partition function ZN for this model.
(b) Derive from ZN the Helmholtz free energy A(T, N), the internal energy U(T, N), and the heat
capacity C = (∂U/∂T )N .
(c) Show that U(T, N) approaches the result of [tex78] for the classical oscillators.
(d) Calculate the quantity 〈ni〉 for a single degree of freedom. It reflects the average number of
elementary energy quanta that are excited in one oscillator when it is in thermal equilibrium at
temperature T .

Solution:



Vibrational heat capacities of solids [tsl29]

Density of vibrational modes in aluminum

Debye predicition for heat capacity
in comparison with experimental data

[from Garrod 1995]



Thermodynamic perturbation expansion [tln80]

Consider a classical dynamical system in the canonical ensemble.

H = H0 + V.

The term H0 represents the dominant contribution to the energy of the sys-
tem under the circumstances of interest. We assume that the Helmholtz free
energy, A0(T, V, N), for that part alone can be calculated exactly:

e−βA0 =

∫
dΓ e−βH0 , dΓ

.
= d6NX, β

.
=

1

kBT
.

We can then treat V perturbatively via the following expansion:

e−βA =

∫
dΓ e−β(H0+V ) '

∫
dΓ e−βH0

(
1− βV +

1

2
β2V 2

)
.

This expression is then further expanded by using ln(1− x) ' −x + x2/2:

−βA ' ln

(
e−βA0 − β

∫
dΓ V e−βA0 +

1

2
β2

∫
dΓ V 2e−βH0

)
' −βA0 + ln

(
1− β

∫
dΓ V eβ(A0−H0) +

1

2
β2

∫
dΓ V 2eβ(A0−H0)

)
.

⇒ A = A0 +

∫
dΓ

(
V − 1

2
βV 2

)
eβ(A0−H0) +

1

2
β

[∫
dΓ V eβ(A0−H0)

]2

.

With ensemble averages,

〈V 〉 .
=

∫
dΓ V e−βH0∫
dΓ e−βH0

=

∫
dΓ V eβ(A0−H0), 〈V 2〉 =

∫
dΓ V 2eβ(A0−H0),

and the relation
〈V 2〉 − 〈V 〉2 = 〈(V − 〈V 〉)2〉,

we can write

A = A0 + 〈V 〉 − 1

2
β〈(V − 〈V 〉)2〉.

The criterion of applicability for this expansion is 〈V 〉/N � kBT . Note that
if 〈V 〉 = 0 then the leading-order perturbation always reduces the Helmholtz
free energy.



[tex83] Vibrational heat capacity of a solid

The vibrational Helmholtz free energy of a harmonic crystal of N atoms in thermal equilibrium at
temperature T is

A =
1
2

3N∑
i=1

~ωi + kBT

3N∑
i=1

ln
(
1− e−β~ωi

)
,

where the ωi are the normal modes of transverse and longitudinal lattice vibrations (phonons). In
Debye’s theory, the density of modes is approximated by the functions n(ω) = 9Nω2/ω3

D, where
the Debye frequency ωD is an undetermined parameter.
(a) Show that the internal energy U = A+ TS in the Debye approximation reads

U =
9
8
N~ωD + 9NkBT

(
T

ΘD

)3 ∫ ΘD/T

0

dx
x3

ex − 1
,

where ΘD = ~ωD/kB is called the Debye temperature.
(b) Derive an expression for the heat capacity C = (∂U/∂T )N .
(c) At low temperatures the upper boundary ΘD/T in the above integral may be replaced by
infinity,

∫∞
0
dxx3/(ex − 1) = π4/15. Use this fact to determine the leading low-temperature term

of the heat capacity C.

Solution:



[tex104] Anharmonic oscillator and thermodynamic perturbation

Consider an array of N one-dimensional anharmonic oscillators,

H =
N∑

l=1

[
p2

l

2m
+ V (ql)

]
, V (q) = cq2 − gq3 + fq4.

(a) Evaluate the canonical partition function perturbatively by treating the quadratic term of V
exactly and considering only the leading nonzero corrections of the cubic and the quartic terms.
(b) Show that the heat capacity in this approximation is C/NkB = 1 + [15g2/16c3 − 3f/4c2]kBT .
(c) Show that the mean displacement in this approximation is 〈q〉 = (3g/4c2)kBT .

Solution:
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