
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Classical Dynamics Physics Open Educational Resources 

11-5-2015 

10. Scattering from Central Force Potential 10. Scattering from Central Force Potential 

Gerhard Müller 
University of Rhode Island, gmuller@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/classical_dynamics 

Abstract 
Part ten of course materials for Classical Dynamics (Physics 520), taught by Gerhard Müller at 

the University of Rhode Island. Entries listed in the table of contents, but not shown in the 

document, exist only in handwritten form. Documents will be updated periodically as more 

entries become presentable. 

Recommended Citation Recommended Citation 
Müller, Gerhard, "10. Scattering from Central Force Potential" (2015). Classical Dynamics. Paper 12. 
https://digitalcommons.uri.edu/classical_dynamics/12 

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in 
Classical Dynamics by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/classical_dynamics
https://digitalcommons.uri.edu/phys_course
https://digitalcommons.uri.edu/classical_dynamics?utm_source=digitalcommons.uri.edu%2Fclassical_dynamics%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/classical_dynamics/12?utm_source=digitalcommons.uri.edu%2Fclassical_dynamics%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


Contents of this Document [mtc10]

10. Scattering from Central Force Potential

• Scattering from stationary central force potential [msl2]

• Determination of the scattering angle [mln20]

• Total cross section for shower of meteorites [mex 58]

• Rutherford scattering formula [mex56]

• Scattering from hard spheres [mex55]

• Elastic scattering from hard ellipsoids [mex60]

• Scattering cross section for inverse square potential [mex59]

• Particle experiencing soft Coulomb kick [mex10]

• Scattering angle in the laboratory frame [msl3]

• Loss of kinetic energy in elastic collision [mex57]

• Elastic collision: angle between scattered particles [mex240]

• Elastic collision: velocities of scattered particles [mex241]

• Mechanical refraction [mex167]

• Scattering from a spherical potential well [mex168]

• Grazing collision between flat surfaces [mex219]

• Absorption cross section of power-law potential [mex242]

• Small-angle scattering [mln105]

• Small-angle scattering from-power-law potential [mex246]

• Classical inverse scattering [mln104]

• Classical inverse scattering problem I [mex243]

• Classical inverse scattering problem II [mex244]

• Classical inverse scattering problem III [mex245]

• Decay of particle I [mln102]

• Decay of particle II [mln103]

• Decay of particle: maximum kinetic energy [mex237]



• Decay of particle: directions in lab frame I [mex238]

• Decay of particle: directions in lab frame II [mex239]



Determination of scattering angle [mln20]

Orbital integral: ϑ =

∫ r

∞

dr
ℓ/mr2

√

2
m

[

E − V (r) − ℓ2

2mr2

]

.

Periapsis: ϑ(rmin)
.
= ψ ⇒ 2ψ + θ = π.

ψ
ψ

θ

⇒ ψ =

∫

∞

rmin

dr/r2

√

2m
ℓ2

[E − V (r)] − 1
r2

=

∫

∞

rmin

sdr/r2

√

1 −
V (r)

E
−

s2

r2

.

Substitute u = 1/r:

⇒ ψ =

∫ umax

0

sdu
√

1 − V (1/u)
E

− s2u2

.

Use energy conservation to determine umax:

E =
1

2
mṙ2 +

ℓ2

2mr2
+ V (r) =

ℓ2

2mr2
min

+ V (rmin) = Es2u2
max + V (1/umax).

⇒ s2u2
max + V (1/umax)/E = 1 ⇒ umax = umax(s, E).

Scattering angle: θ(s, E) = π − 2

∫ umax

0

sdu
√

1 − V (1/u)/E − s2u2
.

Total scattering cross section:

σT =

∫

σ(θ)dΩ = 2π

∫ π

0

s

sin θ

∣

∣

∣

∣

ds

dθ

∣

∣

∣

∣

sin θ dθ = 2π

∫ smax

0

s ds.

Note: In quantum mechanics σT can be finite even if smax is infinite.



[mex58] Total cross section for shower of meteorites

A uniform beam of small particles with mass m1 and velocity v0 is directed toward a planet of
mass m2 and radius R. Calculate the total cross section σT for the particles to be absorbed by the
planet.

Solution:



[mex56] Rutherford scattering formula

Derive the scattering cross section

σ(θ) =
( κ

4E

)2 1

sin4(θ/2)
, κ =

ZZ ′e2

4πε0

for elastic scattering of particles with electric charge Ze and energy E from stationary atomic
nuclei with charge Z ′e. Note that σ(θ) does not depend on whether the beam is positively or
negatively charged.

Solution:



[mex55] Scattering from hard spheres

(a) Calculate the scattering cross section σ(θ) for elastic scattering from hard spheres of radius a.
(b) Calculate the total scattering cross section σT =

∫
d2Ω σ(θ).

Solution:
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[mex60] Elastic scattering from a hard ellipsoid

Show that the cross section for elastic scattering from a hard ellipsoid described by the equation
x2/a2 + (y2 + z2)/b2 = 1 with the incident beam along the x-axis is

σ(θ) =
1

4
b2

a2b2

[a2 sin2(θ/2) + b2 cos2(θ/2)]2
.

z

x

s

ψ

b

a

Solution:



[mex59] Scattering cross section for inverse square potential

Show that the cross section for scattering from the stationary potential V (r) = κ/r2 with κ > 0 is

σ(θ) =
κπ2

E

π − θ

θ2(2π − θ)2 sin θ
.

Solution:



[mex10] Particle experiencing soft Coulomb kick

A particle with charge Q1 and mass m1 moves at very high velocity v1 along a (nearly) straight
line that passes at a distance b from a particle with charge Q2 and mass m2, which is initially at
rest. The assumptions are that the two particles interact via a Coulomb central force and that the
second particle does not change its position significantly during the encounter.
(a) Find the direction in which the second particle will move after the encounter.
(b) Find the energy ∆E transferrred from the first to the second particle during the encounter.

θ

r

b

1

2

v
1

Solution:



Scattering angle in the laboratory frame [msl3]

The scattering experiment is performed in the laboratory frame.
• observed scattering angle: θ̄,
• observed scattering cross section: σ̄(θ̄),
• projectile of mass m1 and target of mass m2.

The theoretical analysis is performed in the center-of-mass frame:
• problem reduced to one degree of freedom,
• total mass M = m1 + m2,
• reduced mass m = m1m2/(m1 + m2),
• calculated scattering angle: θ,
• calculated scattering cross section: σ(θ).

Task #1: establish the relation between θ and θ̄.

cm

1v
v

θ
θv 1

0

v−

−
−

−

.

m1v̄0 = (m1 + m2)v̄cm ⇒ v̄cm =
m1

m1 + m2
v̄0 =

m

m2
v̄0.

v̄1 sin θ̄ = v1 sin θ, v̄1 cos θ̄ = v1 cos θ + v̄cm.

1



Relative velocity after collision: v = v̄2 − v̄1 = v2 − v1 (frame-independent).

Linear momentum in center-of-mass frame: m1v1 + m2v2 = 0.

⇒ v1 = −
m2

m1 + m2

v, v2 =
m1

m1 + m2

v ⇒ m1v1 = mv.

⇒ tan θ̄ =
v1 sin θ

v1 cos θ + v̄cm
=

sin θ

cos θ + ρ
, ρ =

m

m2

v̄0

v1
=

m1

m2

v̄0

v
.

⇒ cos θ = −ρ(1 − cos2 θ̄) + cos θ̄
√

1 − ρ2(1 − cos2 θ̄).

Elastic scattering: T =
1

2
mv̄2

0 =
1

2
mv2 (in center-of-mass frame)

⇒ v̄0 = v ⇒ ρ = m1/m2.

Task #2: establish the relation between σ and σ̄.

Number of particles scattered into infinitesimal solid angle:

2πIσ(θ) sin θ|dθ| = 2πIσ̄(θ̄) sin θ̄|dθ̄|.

⇒ σ̄(θ̄) = σ(θ)
sin θ

sin θ̄

∣

∣

∣

∣

dθ

dθ̄

∣

∣

∣

∣

= σ(θ)

∣

∣

∣

∣

d cos θ

d cos θ̄

∣

∣

∣

∣

.

⇒ σ̄(θ̄) = σ(θ)

[

2ρ cos θ̄ +
1 + ρ2 cos(2θ̄)
√

1 − ρ2 sin2 θ̄

]

.

Special case: elastic scattering between particles of equal mass:

m1 = m2 ⇒ cos θ = cos(2θ̄) ⇒ θ̄ =
θ

2
, σ̄(θ̄) = 4 cos

θ

2
σ(θ).

2



[mex57] Loss of kinetic energy in elastic collision

Consider a particle of mass m1 and incident velocity v̄0 undergoing an elastic collision via central
force with a target of mass m2 that is initially at rest. The particle emerges with velocity v̄1 from
the collision as viewed in the laboratory frame. The figure shows this velocity in relation to the
center-of-mass velocity v̄cm and the final velocity v1 of the particle in the center-of-mass frame.
Also shown are the scattering angles θ (center-of mass frame) and θ̄ (laboratory frame). Show that
the ratio of the final and initial kinetic energies in the laboratory frame is

T1
T0

=
1 + 2ρ cos θ + ρ2

(1 + ρ)2
, ρ =

m1

m2
.

−

vcm

1v
v
1

θ
θ

−

−
.

Solution:



[mex240] Elastic collision: angle between scattered particles

A particle of mass m1 and incident velocity v̄0 undergoes an elastic collision via central force with
a particle of mass m2 that is initially at rest. Given the scattering angles θ1, θ2 = π − θ1 in the
center-of-mass frame, find the sum θ̄1 + θ̄2 of the scattering angles in the laboratory frame as a
function of θ1 and m1/m2. Show that if m1 = m2 then we have θ̄1 + θ̄2 = π/2 for 0 < θ1 < π.

Solution:



[mex241] Elastic collision: velocities of scattered particles

A particle of mass m1 and incident velocity v̄0 undergoes an elastic collision via central force with
a particle of mass m2 that is initially at rest. Show that the velocities of the scattered particles
depend on the scattering angles in the laboratory frmae as follows:

v̄2
v̄0

= 2
m

m2
cos θ̄2, m

.
=

m1m2

m1 +m2
,

v̄1
v̄0

=
m

m2

(
cos θ̄1 ±

√
m2

2

m2
1

− sin2 θ̄1

)
,

where two solutions (±) exist for m1 > m2 and one solution (+) for m1 < m2.

Solution:



[mex167] Mechanical refraction

A particle of mass m moving in the xy-plane is subject to a potential energy which assumes the
constant value V1 at y ≥ 0 and the constant value V2 at y < 0. Let us assume that V2 < V1. Use
conversation laws to show that if the particle approaches the x-axis with speed v1 at an angle θ1
as shown, it will proceed with a different speed v2 at a different angle θ2 after crossing the line
where the potential energy changes abruptly. Show in particular that the relation

n ≡ sin θ1
sin θ2

=

√
1 +

2

mv21
(V1 − V2),

between the two angles holds, where n plays the role of index of refraction.

1

y

x

θ2
V2

V
1

v
1

v
2

θ

Solution:



[mex168] Scattering from a spherical potential well

Consider a spherical potential well of depth U and radius a, decribed by the potential energy
V (r) = −UΘ(a − r). According to [mex167], the path of an incident particle with energy E
encountering this potential will then be that of a ray of light refracted from a sphere with refractive
index n =

√
1 + U/E. (a) Calculate the maximum scattering angle as a function of n. (b) Show

that the scattering cross section has the form

σ(θ) =
a2n2

4 cos(θ/2)

∣∣∣∣ [n cos(θ/2) − 1][n− cos(θ/2)]

[n2 + 1 − 2n cos(θ/2)]2

∣∣∣∣ .

s

β

β
α

α

a

Solution:



[mex219] Grazing collison between flat surfaces

Consider a cube of mass m in translational motion with velocity v on a frictionless airtrack. The
cube is approaching a wall at a grazing angle α with one of its sides parallel to the wall. The
coefficient of kinetic friction between the cube and the wall is µ. Determine the angle β describing
the direction of the velocity v′ the cube has after the collison. Assume that the recoil motion of
the wall is negligible.

y

x

m

β α

v’
v

Solution:



[mex242] Absorption cross section of power-law potential

A uniform beam of particles of mass m and velocity v0 is directed toward an attractive power-law
potential V (r) = −κ/rα with α > 2. Depending on the energy E and the angular momentum `
the orbit of the particle leads to the center of force or it passes by at a nonvanishing minimum
distance. Assume that all particles that arrive at the center of force are absorbed whereas all other
particles are scattered elastically. Calculate the total cross section σT for particle absorption as a
function of α,E, κ.

Solution:



Small-Angle Scattering [mln105]

Scattering angle from transverse momentum: sin θ =
py

p
⇒ θ =

py

mv0

+ . . .

Impact parameter: s.

Impulse and transverse momentum: py =

∫

+∞

−∞

dt Fy.

Transverse force: Fy = −
∂V

∂y
= −

dV

dr

∂r

∂y
= −

dV

dr

y

r
, r =

√

x2 + y2 + z2.

Amount of transverse motion during collision assumed negligible: Fy = −
dV

dr

s

r
.

Change in speed of particle during collision assumed negligible:

dt =
dx

v0

⇒ py = −
s

v0

∫

+∞

−∞

dV

dr

dx

r
.

Eliminate dx: x =
√

r2 − s2 ⇒
dx

dr
=

r
√

r2 − s2
.

Transverse momentum: py = −
2s

v0

∫

+∞

s

dV

dr

dr
√

r2 − s2
.

Scattering angle: θ(s) = −
s

E

∫

+∞

s

dV

dr

dr
√

r2 − s2
, E =

1

2
mv2

0.

Scattering cross section: σ(θ) =
s(θ)

θ

∣

∣

∣

∣

ds

dθ

∣

∣

∣

∣

with s(θ) from inversion of θ(s).

Application to power-law potential: [mex246]

θ
m

s

y

x

v0



[mex246] Small-angle scattering from power-law potential

Consider small-angle scattering from a repulsive power-law potential V (r) = κ/rα using the rela-
tions derived in [mln105].
(a) Find the scattering cross section θ(s).
(b) Find the scattering cross section σ(θ).
(c) Show that the small-angle results of σ(θ) for α = 1 and α = 2 are consistent with the general
results from [mex56] and [mex59], respectively.

Solution:



Classical inverse scattering [mln104]

Goal: reconstruction of potential V (r) from cross section σ(θ).

Assumptions: dV/dr < 0 (repulsive force), V (0) > E, V (∞) = 0.

Consequence: θ(s1) > θ(s2) if s1 < s2.

Calculate s(θ) from σ(θ): 2π

∫ π

θ

dθ sin θ σ(θ) = 2π

∫ s

0

ds′s′ = πs2.

Orbital integral from [mln20] with u
.
= 1/r:

π − θ(s)

2
=

∫ um

0

sdu√
1− V (1/u)

E
− s2u2

, s2u2
m + V (1/um)/E = 1.

Transformation with x
.
= 1/s2, θ̃(x) = θ(s), and w(u)

.
=
√

1− V (1/u)/E:

π − θ̃(x)

2
=

∫ um

0

du√
x[w(u)]2 − u2

, u2
m = x[w(um)]2 ⇒ um(x).

Transformation:
1

2

∫ α

0

dx
π − θ̃(x)√

α− x
=

∫ α

0

dx

∫ um

0

du√(
x[w(u)]2 − u2

)(
α− x

) .
⇒ π

√
α−

∫ α

0

dx θ̃′(x)
√

α− x = π

∫ um(α)

0

du

w(u)
. [mex243]

Set α = u2/w2, implying um(α)→ u, take d/du, and multiply by du:

π

w
dw = −d

( u

w

)∫ u2/w2

0

dx
θ̃′(x)√

u2/w2 − x
. [mex244]

Integrate differentials dw and d(u/w) with consistent boundary values:

⇒ w(u) = exp

(
1

π

∫ ∞

w/u

ds
θ(s)√

s2 − [w(u)]2/u2

)
. [mex245]

The solution w(u) of this integral equation for given θ(s) thus determines
V (r) from σ(θ).

[Landau and Lifshitz 1976]



[mex243] Classical inverse scattering problem I

The reconstruction of the (central force) scattering potential V (r) from the observed scattering
cross section σ(θ) as outlined in [mln104] involves the transformation of the orbital integral

π − θ(s)
2

=

∫ um

0

sdu√
1− V (1/u)

E − s2u2
, s2u2m + V (1/um)/E = 1,

where u
.
= 1/r and θ(s) is the scattering angle as a function of the impact parameter, into the

relation

π
√
α−

∫ α

0

dx θ̃′(x)
√
α− x = π

∫ um(α)

0

du

w(u)
, u2m = α[w(um)]2,

for the unknown function w(u)
.
=

√
1− V (1/u)/E, where x

.
= 1/s2 and θ̃(x) = θ(s). Carry out

the initial steps as indicated in [mln104]. Integrate by parts on the left and interchange the order
of integrations on the right.

Solution:



[mex244] Classical inverse scattering problem II

The reconstruction of the (central force) scattering potential V (r) from the observed scattering
cross section σ(θ) as outlined in [mln104] involves the conversion of the relation

π
√
α−

∫ α

0

dx θ̃′(x)
√
α− x = π

∫ um(α)

0

du

w(u)
, u2m = α[w(um)]2,

as derived in [mex243] into the differential relation

π
dw

w
= −d

( u
w

)∫ u2/w2

0

dx
θ̃′(x)√

u2/w2 − x

by setting α = u2/w2, taking the derivative with respect to uon both sides and multiplying back
by du. Show that the boundary value um(α) becomes the unrestricted u in the process.

Solution:



[mex245] Classical inverse scattering problem III

The final step in the reconstruction of the (central force) scattering potential V (r) from the observed
scattering cross section σ(θ) as outlined in [mln104] involves the integration of the differential
relation

π

w
dw = −d

( u
w

)∫ u2/w2

0

dx
θ̃′(x)√

u2/w2 − x
into the integral equation

⇒ w(u) = exp

(
1

π

∫ ∞

w/u

ds
θ(s)√

s2 − [w(u)]2/u2

)

for the quantity w(u)
.
=
√

1− V (1/u)/E with u = 1/r. Carry out this step by interchanging the
order of integration on the right.

Solution:



Decay of Particle I [mln102]

Particle at rest decays into two particles:

Decay energy: ǫ = E
(0)
int − E

(1)
int − E

(2)
int (change in internal energy).

Masses of decay products: m1, m2.

Momentum conservation: p1 + p2 = 0, p1 = p2
.
= p.

Energy conservation: E
(0)
int = E

(1)
int +

p2

2m1

+ E
(2)
int +

p2

2m2

.

⇒ ǫ =
p2

2m
= T1 + T2.

Reduced mass m =
m1m2

m1 + m2
.

Kinetic energies: T1 =
p2

2m1
=

ǫm2

m1 + m2
, T2 =

p2

2m2
=

ǫm1

m1 + m2
.

• Decay products move in opposite directions.

• All directions of p1 equally likely.

• Kinetic energies T1, T2 determined by conservation laws alone.

Particle at rest decays into three particles:

Decay energy: ǫ = E
(0)
int − E

(1)
int − E

(2)
int − E

(3)
int .

Masses of decay products: m1, m2, m3.

Momentum conservation: p1 + p2 + p3 = 0.

Energy conservation: E
(0)
int = E

(1)
int +

p2
1

2m1
+ E

(2)
int +

p2
2

2m2
+ E

(3)
int +

p2
3

2m3
.

• Relative directions between decay products constrained but not deter-
mined by conservation laws.

• Kinetic energies T1, T2, T3 constrained but not determined by conserva-
tion laws.

• Maximum kinetic energy Ti limited by ǫ, mi. →[mex237]



Decay of Particle II [mln103]

Particle in motion decays into two particles.

View from center-of-mass frame:

Momenta: m1v1 = −m2v2.

Directions of decay products: θ1 + θ2 = π.
θ1

1v

2
v θ2

View from laboratory frame:

Momentum of particle before decay: (m1 + m2)v0.

Directions of decay products: θ̄1, θ̄2.

v1

_

v1

v0

v1

v

v1

θ1
θ1

_
θ1

_

0

θ1

v  < v0 1 v  > v
0 1

_

Task #1: Find the relation between θ1 and θ̄1.

tan θ̄1 =
v1 sin θ1

v1 cos θ1 + v0

⇒ cos θ1 = −
v0

v1

sin2 θ̄1 ± cos θ̄1

√

1 −
v2
0

v2
1

sin2 θ̄1.

Task #2: Find the relation between θ̄1 and θ̄2. →[mex238]

Task #3: Find the range of the angle θ̄
.
= θ̄1 + θ̄2. →[mex239]



[mex237] Decay of particle: maximum kinetic energy.

A particle of mass M at rest decays into three particles of masses m1,m2,m3 by releasing a total
decay energy ε. Assume that mass-energy conversion is negligible (M = m1 +m2 +m3) and that
the resulting momenta of the decay products are nonrelativistic. What is the maximum kinetic
energy Tmax

1 of the emerging particle with mass m1?

Solution:



[mex238] Decay of particle: directions in lab frame I

A particle of mass M and velocity v0 (in the lab frame) decays into two particles of masses
m1,m2 by releasing a total decay energy ε. Assume that mass-energy conversion is negligible
(M = m1 +m2) and that the resulting momenta of the decay products are nonrelativistic. Show
that the angles of the directions of the decay products relative to the forward direction of the
original particle satisfy the following relation:

2ε sin2(θ̄1 + θ̄2)

(m1 +m2)v20
=
m1

m2
sin2 θ̄1 +

m2

m1
sin2 θ̄2 − 2 sin θ̄1 sin θ̄2 cos(θ̄1 + θ̄2).

Explain what this relation implies in the two limits v0 → 0 and v0 →∞.

Solution:



[mex239] Decay of particle: directions in lab frame II

A particle of mass M and velocity v0 (in the lab frame) decays into two particles of masses
m1,m2 by releasing a total decay energy ε. Assume that mass-energy conversion is negligible
(M = m1 +m2) and that the resulting momenta of the decay products are nonrelativistic.
(a) Calculate the angle θ̄

.
= θ̄1+θ̄2 between the two emerging particles in the lab frame as a function

of v0, v1, v2 and θ1, where θ1, θ2 = π− θ1 are the corresponding angles in the center-of-mass frame.
(b) Determine the range of θ̄ as a function of v0 under the assumption that v1 < v2 on a map as
follows:

_

θ

π

π/2

0

1

v
0

2
vv0

Solution:
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