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PHY204 Lecture 9 [rln9]

Electric Potential and Potential Energy: Application (1)

Consider a point charge Q = 2µC fixed at position x = 0. A particle with mass m = 2g and charge q = −0.1µC
is launched at position x1 = 10cm with velocity v1 = 12m/s.

x = 0

q = −0.1µCQ = 2µC

v1

m = 2g

x  = 10cm1 x  = 20cm2

(fixed)

• Find the velocity v2 of the particle when it is at position x2 = 20cm.

tsl73

We begin this lecture with applications of the concepts of electric potential
and electric potential energy to charged particles in various situations.

The problem statement of this exercise might remind us of what we discussed
in lecture 3: the motion of charged particles in uniform electric fields. Here,
however, the electric field is not uniform. Therefore, the electric force on the
particle changes with position.

We cannot use the familiar tools for motion with constant acceleration. We
must reason differently. We note that the electric force is conservative. The
sum of kinetic and potential energies of the particle is constant.

At the initial position of the particle we have,

E = K1 + U1 =
1

2
mv21 +

kqQ

r1
= 0.144J− 0.018J = 0.126J,

and at the final position,

E = K2 + U2 =
1

2
mv22 +

kqQ

r2
⇒ 0.126J =

1

2
mv22 − 0.009J.

Solving the last equation for the unknown final velocity yields the results,
v2 = ±11.6m/s. As the particle moves to the right, it slows down to +11.6m/s
when it reaches position x2, then continues, turns around, and accelerates to
velocity −11.6m/s as it revisits position x2.
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Electric Potential and Potential Energy: Application (5)

An electron and a proton are released from rest midway between oppositely charged plates.
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(a) Name the particle(s) which move(s) from high to low electric potential.
(b) Name the particle(s) whose electric potential energy decrease(s).
(c) Name the particle(s) which hit(s) the plate in the shortest time.
(d) Name the particle(s) which reach(es) the highest kinetic energy before impact.

tsl77

This little exercise does not require any mathematical analysis but a fair
conceptual understanding.

The space between the two oppositely charged plates is filled with a largely
uniform electric field in the direction shown. The electron will move to the
left and the proton to the right, both in the direction of the force they
experience.

(a) The electric potential (an attribute of space) is V (x) = −Ex+ const,
where we assume the x-direction to be horizontal. High potential is on the left
and low potential on the right. Only the proton moves toward low potential.

(b) The electric potential energy of each particle is U = qV (x). Given that q
is positive for the proton and negative for the electron, U decreases for both
particles as they move right and left, respectively.

(c) Both particles experience a (constant) force of the same magnitude F =
|q|E during their motion in opposite directions. The electron with its smaller
mass undergoes a larger acceleration, a = F/m, than the proton. It will reach
the plate first.

(d) The electron will hit the plate first and with higher speed. That does not
imply that it has more kinetic energy because it has smaller mass. Energy
conservation is in play here. Both particles experience the same drop in
potential energy, ∆U = −qE∆x. Hence their gain in kinetic energy must be
the same too: ∆K = −∆U .
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Electric Potential and Potential Energy: Application (8)

(a) Is the electric potential at points P1, P2 positive or negative or zero?
(b) Is the potential energy of a negatively charged particle at points P1, P2 positive or negative or zero?
(c) Is the electric field at points P1, P2 directed left or right or is it zero?
(d) Is the force on a negatively charged particle at points P1 and P2 directed left or right or is it zero?

3cm 6cm

2nC
P

3cm 6cm

2nC −4nC
P

2

1

4nC

tsl83

Here we have another exercise in the same spirit. Recall that electric potential
and electric field field are attributes of space whereas potential energy and
force are associated with a charged particle in that space.

The relevant expressions for questions (a) through (d) are

V =
kQ1

r1
+
kQ2

r2
, U = qV, E =

∣∣∣∣
kQ1

r21
+
kQ2

r22

∣∣∣∣ , F = |q|E,

where Q1, Q2 are the fixed charges left and right that generate the potential
and the field. The particle to be placed at points P1 or P2 has charge q.

The two expressions on the left are scalars, which can be positive, zero, or
negative. The two expressions on the right are magnitudes of vectors. They
have (non-negative) magnitude and direction (here left/right). The directions
are easy enough to determine. We have done it many times before.

Find your own answers before checking them against the tabulated answers
below.

P1 P2

(a) zero positive
(b) zero negative
(c) right right
(d) left left
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Electric Potential and Potential Energy: Application (10)

The charged particles 1 and 2 move between the charged conducting plates A and B in opposite directions.

From the information given in the figure...

(a) find the kinetic energy K1B of particle 1,
(b) find the charge q2 of particle 2,
(c) find the direction and magnitude of the electric field ~E between the plates.

KK

2m

V  = 19VA V  = 13V

J

= 2µC1q
= ?Jµ=31A

= ?2q

µ= 102AK K2B = 4µ J

B

1B1

2

tsl90

The emphasis of this exercise is on energy conservation. The two particles 1
and 2 travel the same distance between the plates but in opposite direction.
Each plate is a conductor at given potential, VA and VB, respectively.

(a) Particle 1 travels from high potential to low potential. The change in po-
tential between final and initial point is ∆V1 = −6V. Therefore, the change
in potential energy of particle 1 is ∆U1 = q1∆V1 = −12µJ. Energy conser-
vation then implies that the change in kinetic energy is ∆K1 = −∆U1 =
+12µJ. Given the initial kinetic energy K1A, the final kinetic energy must
be K1B = K1A + ∆K1 = 15µJ.

(b) The change in potential between final and initial point in the path of
particle 2 is ∆V2 = +6V. The change in kinetic energy can be inferred from
the given initial and final values: ∆K2 = K2A−K2B = 6µJ. Energy conserva-
tion requires that the change in potential energy is ∆U2 = −∆K2 = −6µJ.
The unknown charge of particle 2 can now be inferred from the relation
∆U2 = q2∆V2. The answer is q2 = −1µC.

(c) Particle 1 with positive charge travels toward the right because it expe-

riences an electric force ~F1 = q1 ~E to the right. Hence ~E must be pointing
to the right. This is consistent with the fact that the negatively charged
particle 2 is moving to the left. It experiences an electric force ~F2 = q2 ~E to
the left if the electric field ~E is pointing to the right.

We know from the previous lecture that in a uniform electric field the po-
tential changes linearly with position, downward in the direction of the field,
implying that ∆V = E∆x. We infer that E = (19V − 13V)/(2m) = 3V/m.
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Electric Potential and Potential Energy: Application (7)

Consider a region of nonuniform electric field. Charged particles 1 and 2 start moving from rest at point A in
opposite directions along the paths shown.

C

2

A

1

B

V  = 11VB

q  = +3C

V  = 17VA

q  = −1C
2

1

From the information given in the figure...

(a) find the kinetic energy K1 of particle 1 when it arrives at point B,
(b) find the electric potential VC at point C if we know that particle 2 arrives there with kinetic energy K2 = 8J.

tsl79

Knowing the electric potential at points of interest brings us a long way
toward answering important questions. If we do not know the potential up
front, we can often deduce it from other information.

Consider a region of electric field (not shown). If at point A we let go from
rest a particle with positive charge q1 = +3C, we observe that it moves along
some curved path that passes through point B.

The electric force that causes the particle to move along that particular curve
changes from point to point in both direction and magnitude. We can predict
the kinetic energy of the particle upon arrival at B without knowing all that.
It suffices to know the potential difference between the initial and final points:

K1 = −∆U1 = −q1 ∆V = −(3C)(11V − 17V) = 18J.

If instead we release from rest at point A a particle with negative charge
q2 = −1C, we observe that it moves along a different path that passes through
point C. In this case we do not know the potential at the destination but
we measure the kinetic energy of the particle upon arrival. Our chain of
reasoning is the same but used in reverse:

K2 = −∆U2 = −q2 ∆V ⇒ 8J = −(−1C)(VC − 17V) ⇒ VC = 25V.

Note that only differences in potential have any physical meaning. If we add
any number of volts to all the three potentials VA, VB, VC nothing measurable
will change.
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Intermediate Exam I: Problem #2 (Spring ’05)

Consider a point charge Q = 5nC fixed at position x = 0.

(a) Find the electric potential V1 at position x1 = 3m
and the electric potiential V2 at position x2 = 6m.

(b) If a charged particle (q = 4nC, m = 1.5ng) is released from rest at x1,
what are its kinetic energy K2 and its velocity v2 when it reaches position x2?

x = 0 x  = 3m1 x  = 6m2

Q = 5nC

Solution:

(a) V1 = k
Q
x1

= 15V, V2 = k
Q
x2

= 7.5V.

(b) ∆U = q(V2 −V1) = (4nC)(−7.5V) = −30nJ ⇒ ∆K = −∆U = 30nJ.

∆K = K2 =
1
2

mv2
2 ⇒ v2 =

√
2K2

m
= 200m/s.

tsl332

In this previous exam problem, I tested the skills acquired on page 1 of this
lecture. Understanding the difference between electric potential and electric
potential energy is important. Recognizing that energy is conserved during
the motion of the particle is the key to the solution.
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Unit Exam I: Problem #1 (Fall ’10)

Consider two point charges positioned as shown.

(a) Find the magnitude of the electric field at point A.
(b) Find the electric potential at point A.
(c) Find the magnitude of the electric field at point B.
(d) Find the electric potential at point B.

B

+7nC

−7nC
8m

6m A

5m

5m

Solution:

(a) EA = 2k
|7nC|
(5m)2 = 2(2.52V/m) = 5.04V/m.

(b) VA = k
(+7nC)

5m
+ k

(−7nC)

5m
= 12.6V− 12.6V = 0.

(c) EB =

√(
k
|7nC|
(6m)2

)2

+

(
k
|7nC|
(8m)2

)2

⇒ EB =
√
(1.75V/m)2 + (0.98V/m)2 = 2.01V/m.

(d) VB = k
(+7nC)

6m
+ k

(−7nC)

8m
= 10.5V− 7.9V = 2.6V.

tsl398

Here we have another previous exam problem. In this one, I tested the under-
standing of the difference, physically and mathematically, between electric
potential and electric field. The former is a scalar and the latter a vector.
The former can be positive, zero, or negative. The latter has magnitude and
direction.

Adding potentials means adding numbers, here a positive number and a
negative number.

Adding fields is a more complex task. ~EA is the sum of two vectors pointing
in the same direction, whereas ~EB is the sum of two vectors pointing in
perpendicular directions.
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Unit Exam I: Problem #1 (Spring ’14)
Consider two point charges positioned as shown.

• Find the magnitude of the electric field at point A.
• Find the electric potential at point B.
• Find the magnitude of the electric field at point C.
• Find the electric potential at point D.

+5nC

−9nC

D

B
8m

6m

3m

4m

A

C

8m

6m

3m

Solution:

• EA = k
|5nC|
(3m)2 + k

| − 9nC|
(7m)2 = 5.00V/m + 1.65V/m = 6.65V/m.

• VB = k
(+5nC)

6m
+ k

(−9nC)

8m
= 7.50V− 10.13V = −2.63V.

• EC = k
|5nC|
(6m)2 + k

| − 9nC|
(4m)2 = 1.25V/m + 5.06V/m = 6.31V/m.

• VD = k
(+5nC)

8m
+ k

(−9nC)

6m
= 5.63V− 13.5V = −7.87V.

tsl469

This is a variation of the exam problem on the previous page. The same
reasoning leads to the solution. The same set of skills are required.

There are countless variations of almost every theme. Learning physics is
not about collecting results for as many variations as possible. Learning
physics means acquiring the skills needed to solve any conceivable variation
of a theme.

The problems we need to solve in our professional lives as scientists and
engineers are almost always new in at least some aspects. Taking care of
those new aspects requires creativity, imagination, and skills. We can google
knowledge but we cannot google creativity, imagination, and skills.
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Electric Potential of Charged Rod

• Charge per unit length: λ = Q/L

• Charge on slice dx: dq = λdx ++++++++++ ++

x

d L

y

x

dq = λ dx

dV

• Electric potential generated by slice dx: dV =
kdq
x

=
kλdx

x
• Electric potential generated by charged rod:

V = kλ
∫ d+L

d

dx
x

= kλ
[

ln x
]d+L

d
= kλ [ln(d + L)− ln d] = kλ ln

d + L
d

• Limiting case of very short rod (L� d): V = kλ ln
(

1 +
L
d

)
' kλ

L
d
=

kQ
d

tsl330

We now shift gears and begin a discussion that we will continue in the next
lecture. The theme is the calculation of the electric potential generated
by charged objects. This endeavor parallels that in lecture 4, where we
calculated the electric field generated by some of the same objects.

We use the same strategy. We divide the object into parts for which we
already know how to determine the potential. Then we assemble the object
from such parts and add up the contributions of all parts to the potential.

We begin with a uniformly charged rod positioned in a coordinate system as
shown. We divide the rod into thin slices. The electric potential of each slice
at the point indicated is, effectively, that of a point charge, which we already
know. Adding up all contributions then amounts to performing a definite
integral.

The result depends on the distance d between the near end of the rod and
the point at which we have determined the potential. The distance d is a
parameter in the definite integral. We now reinterpret it as a variable and
say that we have determined the potential as a function of d.

In the last item we take a closer look at the behavior of that function for
the case of large distance or the case of a short rod. In both cases we
have L/d � 1 and can expand the natural-log function. We note that the
potential generated by the rod looks, unsurprisingly, like the potential of a
point charge.
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Electric Potential of Charged Ring

• Total charge on ring: Q

• Charge per unit length: λ = Q/2πa

• Charge on arc: dq

Find the electric potential at point P on the axis of the ring.

• dV = k
dq
r

=
kdq√

x2 + a2

• V(x) = k
∫ dq√

x2 + a2
=

k√
x2 + a2

∫
dq =

kQ√
x2 + a2

tsl81

Determining the electric potential generated by a charged ring at a point
located on its axis, a distance x from its center, is even simpler. All the
slices of charge now have the same distance from the point at which we
intend to find the potential. We are left with an integral over the charge dq
on the slice, which is the total charge Q on the ring.

The position x of point P , a parameter in that integral, becomes the variable
of the function V (x), the electric potential of the ring at an arbitrary point
on the x-axis.

It is common practice to refer to the point P as the “field point” even though
we actually calculate the potential, not the field. “Potential point” sounds
awkward and its meaning is easily misunderstood.

We shall see in the next lecture that the name “field point” is appropriate
because once we have the potential as a function of position, that function
also encodes information about the electric field.
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Electric Potential and Potential Energy: Application (6)

Three protons are projected from x = 0 with equal initial speed v0 in different directions. They all experience
the force of a uniform horizontal electric field ~E. Ultimately, they all hit the vertical screen at x = L. Ignore
gravity.

x = 0 x = L
x

E

p1

p2

p3

(a) Which proton travels the longest time?
(b) Which proton travels the longest path?
(c) Which particle has the highest speed when it hits the screen?

Two of the questions are easy, one is hard.

tsl78

This is the quiz for lecture 9.

Identify the hard question and answer the other two.
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