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Linear response and equilibrium dynamics [nln24]
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Many-body system perturbed by radiation field [nln25]

Quantum many-body system in thermal equilibrium.

Hamiltonian: H0.

Density operator: ρ0 = Z−10 e−βH0 with β = 1/kBT , Z0 = Tr[e−βH0 ].

Dynamical variable: A (describing some attribute of system).

Heisenberg equation of motion:
dA

dt
=
ı

~
[H0, A].

Time evolution: A(t) = eıH0t/~Ae−ıH0t/~ (formal solution).

Stationarity, [ρ0,H0] = 0, implies time-independent expectation values:

〈A(t)〉0 =
1

Z0

Tr
[
e−βH0eıH0t/~Ae−ıH0t/~

]
=

1

Z0

Tr
[
e−βH0A

]
= const.

Time-dependent quantities do exist in thermal equilibrium!

Dynamic correlation function: 〈A(t)A(0)〉0 =
1

Z0

Tr
[
e−βH0eıH0t/~Ae−ıH0t/~A

]

In an experiment the system is necessarily perturbed:

H(t) = H0 − b(t)B,

where b(t) is some kind of radiation field (c-number) and B is the dynamical
system variable (operator) to which the field couples.

Examples:

b(t) B
magnetic field magnetization
electric field electric polarization
sound wave mass density



Linear response [nln26]

Radiation field b(t) perturbs equilibrium state of the system H0 via coupling
to dynamical variable B.

System response to perturbation measured as expectation value of dynamical
variable A.

Linear response to weak perturbations is predominant under most circum-
stances (away from criticality).

Response function χ̃AB(t) (definition):

〈A(t)〉 − 〈A〉0 =

∫ ∞
−∞

dt′χ̃AB(t− t′)b(t′).

• Linearity: χ̃AB(t) is independent of b(t).

• Hermiticity: χ̃AB(t) is a real function.

• Causality: χ̃AB(t) = 0 for t < 0.

• Smoothness: |χ̃AB(t)| <∞.

• Analyticity: χ̃AB(t)→ 0 for t→∞.

Generalized susceptibility (via Fourier transform):

χAB(ζ) =

∫ +∞

−∞
dt eıζtχ̃AB(t) (analytic for ={ζ} > 0).

Complex function of real frequency:

χAB(ω) = lim
ε→0

χAB(ω + ıε) = χ′AB(ω) + ıχ′′AB(ω).

Linear response in frequency domain means no mixing of frequencies:

α(ω) = χAB(ω)β(ω),

where

χ̃AB(t) =

∫ +∞

−∞

dω

2π
e−ıωtχAB(ω), b(t) =

∫ +∞

−∞

dω

2π
e−ıωtβ(ω),

〈A(t)〉 − 〈A〉0 =

∫ +∞

−∞

dω

2π
e−ıωtα(ω).



Kubo formula for response function [nln27]

Interaction representation for time evolution of H(t) = H0 − b(t)B:

dA

dt
=
ı

~
[H0, A] ⇒ A(t) = eıH0t/~Ae−ıH0t/~,

dB

dt
=
ı

~
[H0, B] ⇒ B(t) = eıH0t/~Be−ıH0t/~,

dρ

dt
= − ı

~
[−b(t)B, ρ] ⇒ ρ(t) = ρ0 +

ı

~

∫ t

−∞
dt′b(t′)[B(t′), ρ(t′)].

Set ρ(t) = ρ0 + ρ1(t) with ρ0 = Z−10 e−βH0 .

Full response: 〈A(t)〉 − 〈A〉0 = Tr{ρ1(t)A(t)}

Leading correction to ρ0: ρ1(t) '
ı

~

∫ t

−∞
dt′b(t′)[B(t′), ρ0]

Linear response:

〈A(t)〉 − 〈A〉0 =
ı

~

∫ t

−∞
dt′b(t′)Tr{[B(t′), ρ0]A(t)}

=
ı

~

∫ t

−∞
dt′b(t′)Tr{ρ0[A(t), B(t′)]}

=
ı

~

∫ t

−∞
dt′b(t′)〈[A(t), B(t′)]〉0.

Compare with definition of response function in [nln26].

Kubo formula:

χ̃AB(t− t′) =
ı

~
θ(t− t′)〈[A(t), B(t′)]〉0.

• Causality requirement is ensured by step function θ(t− t′).
• Hermitian A,B imply Hermitian ı[A,B]. Hence χ̃(t) is real.

• Linear response depends only on equilibrium quantities.

• Response function only depends on time difference t− t′.

The Kubo formula establishes a general link between

- the dynamical properties of a many-body system at equilibrium,

- the dynamical response of that system to experimental probes.



Symmetry properties [nln30]

Response function for Hermitian A is real and vanishes for t < 0:

χ̃AA(t) =
ı

~
θ(t)〈[A(t), A]〉 = χ̃′

AA(t) + ıχ̃′′
AA(t).

Reactive part is real and symmetric:

χ̃′
AA(t) =

1

2

[
χ̃AA(t) + χ̃AA(−t)

]
=

ı

2~
sgn(t)〈[A(t), A]〉.

Dissipative part is imaginary and antisymmetric:

χ̃′′
AA(t) =

1

2ı

[
χ̃AA(t)− χ̃AA(−t)

]
=

1

2~
〈[A(t), A]〉.

Response function is determined by its reactive or dissipative part alone:

χ̃AA(t) = 2θ(t)χ̃′
AA(t) = 2ıθ(t)χ̃′′

AA(t).

χ
~

ΑΑ
χ~

t t

2

t

2’ΑΑ iχ~"ΑΑ

Generalized susceptibility is complex:

χAA(ω) = χ′
AA(ω) + ıχ′′

AA(ω).

Real part is symmetric:

χ′
AA(ω) =

1

2

[
χAA(ω) + χAA(−ω)

]
= χ′

AA(−ω).

Imaginary part is antisymmetric:

χ′′
AA(ω) =

1

2ı

[
χAA(ω)− χAA(−ω)

]
= −χ′′

AA(−ω).



Kramers-Kronig dispersion relations [nln37]

Use analyticity of χAA(ζ) for ={ζ} > 0.

Cauchy integral: χAA(ζ) =
1

2πı

∫
C
dζ ′

χAA(ζ ′)

ζ ′ − ζ
.

−R +R

ε ’

ζ

ζ

Im{  }

Re{  } 

ζ ’
. ζ

Integral converges for ζ ′ = ω′ + ıε′, ε′ → 0.
Integral along semi-circle vanishes for R→∞:
Sum rule implies χAA(ζ) . |ζ|−1 for |ζ| → ∞.

⇒ χAA(ζ) =
1

2πı

∫ +∞

−∞
dω′

χAA(ω′)

ω′ − ζ
.

Set ζ = ω + ıε and use lim
ε→0

1

ω′ − ω ∓ ıε
= P

1

ω′ − ω
± ıπδ(ω′ − ω).

χAA(ω) = lim
ε→0

χAA(ω + ıε) = lim
ε→0

1

2πı

∫ +∞

−∞
dω′

χAA(ω′)

ω′ − ω − ıε

=
1

2πı
P

∫ +∞

−∞
dω′

χAA(ω′)

ω′ − ω
+

1

2

∫ +∞

−∞
dω′χAA(ω′)δ(ω′ − ω)︸ ︷︷ ︸

1
2
χAA(ω)

.

⇒ χAA(ω)
.
= χ′AA(ω) + ıχ′′AA(ω) =

1

πı
P

∫ +∞

−∞
dω′

χAA(ω′)

ω′ − ω
.

Consider real and imaginary parts of this relation separately:

χ′AA(ω) =
1

π
P

∫ +∞

−∞
dω′

χ′′AA(ω′)

ω′ − ω
, χ′′AA(ω) = − 1

π
P

∫ +∞

−∞
dω′

χ′AA(ω′)

ω′ − ω
.

The Kramers-Kronig relations are a consequence of the causality property of
the response function.



[nex63] Causality property of response function.

The Kramers-Kronig dispersion relations

χ′AA(ω) =
1
π

∫ ∞
−∞

dω′
χ′′AA(ω′)
ω′ − ω

, χ′′AA(ω) = − 1
π

∫ ∞
−∞

dω′
χ′AA(ω′)
ω′ − ω

between the reactive part χ′AA(ω) and the dissipative part χ′′AA(ω) of the generalized susceptibility
χAA(ω) are a direct consequence of the causality property of the response function χ̃AA(t). Show
that χAA(ζ) for =(ζ) > 0 can be expressed in terms of χ′′AA(ω) as follows:

χAA(ζ) =
1
π

∫ ∞
−∞

dω
χ′′AA(ω)
ω − ζ

.

Solution:



Energy transfer [nln38]

Hamiltonian of system and interaction with radiation field:

H(t) = H0 +H1(t) = H0 − a(t)A.

Interaction between system and radiation field involves energy transfer.

Rate at which average energy of system changes:

d

dt
〈H0〉 =

1

ı~
〈[H0,H(t)]〉 = − 1

ı~
a(t)〈[H0, A(t)]〉.

Calculate linear response 〈[H0, A(t)]〉 − 〈[H0, A]〉0︸ ︷︷ ︸
0

.1

Application of Kubo formula [nln27]:

〈[H0, A(t)]〉 =
ı

~

∫ t

−∞
dt′a(t′)〈[[H0, A(t)], A(t′)]〉0.

⇒ d

dt
〈H0〉 = − 1

~2
a(t)

∫ t

−∞
dt′a(t′)〈[

−ı~dA/dt︷ ︸︸ ︷
[H0, A(t)], A(t′)]〉0

=
ı

~
a(t)

∫ t

−∞
dt′a(t′)

∂

∂t
〈[A(t), A(t′)]〉0

=

∫ +∞

−∞
dt′a(t)a(t′)

∂

∂t
χ̃AA(t− t′)

with response function

χ̃AA(t− t′) =
ı

~
θ(t− t′)〈[A(t), A(t′)]〉0.

The time-averaged energy transfer depends only on the absorptive part,
χ′′AA(ω), of the generalized susceptibility as demonstrated in [nex64] for a
monochromatic perturbation.

1We have 〈[H0, A]〉0 = Tr{e−βH0H0A− e−βH0AH0}/Z0 = 0 in thermal equilibrium.



[nex64] Reactive and absorptive parts of linear response.

In the framework of linear response theory for H = H0−a(t)A, the rate of energy transfer between
the system and the radiation field is

d

dt
〈H0〉 =

∫ ∞
−∞

dt′a(t)a(t′)
∂

∂t
χ̃AA(t− t′), (1)

where

χ̃AA(t− t′) =
i

~
θ(t− t′)〈[A(t), A(t′)]〉0 (2)

is the Kubo formula for the response function (see [nln38].)
(a) Evaluate this expression for a monochromatic perturbation,

a(t) =
1

2
am(eiω0t + e−iω0t) (3)

and express it in terms of the reactive part, χ′AA(ω), and the absorptive (dissipative) part, χ′′AA(ω),
of the generalized susceptibility χAA(ω) as defined in [nln26].
(b) Show that the time-averaged energy transfer depends only on the absorptive part of χAA(ω):

d

dt
〈H0〉 =

1

2
a2mω0χ

′′
AA(ω0). (4)

Solution:



Fluctuation-dissipation theorem [nln39]

Three dynamical quantities in time domain:1

B χ̃′′AA(t)
.
=

1

2~
〈[A(t), A]−〉 response function (dissipative part),

B Φ̃AA(t)
.
=

1

2
〈[A(t), A]+〉 − 〈A〉2 fluctuation function,

B S̃AA(t)
.
= 〈A(t)A〉 − 〈A〉2 correlation function.

Relations:

χ̃′′AA(t) =
1

2~

[
S̃AA(t)− S̃AA(−t)

]
, Φ̃AA(t) =

1

2

[
S̃AA(t) + S̃AA(−t)

]
.

Transformation properties under time reversal (for real t):

• χ̃′′AA(−t) = −χ̃′′AA(t) =
[
χ̃′′AA(t)

]∗
imaginary and antisymmetric,

• Φ̃AA(−t) = Φ̃AA(t) =
[
Φ̃AA(t)

]∗
real and symmetric,

• S̃AA(−t) = S̃AA(t− ı~β) =
[
S̃AA(t)

]∗
complex.2

To make the last symmetry relation more transparent we write

〈A(−t)A〉 = Tr
[
e−βH0e−ıH0t/~AeıH0t/~A

]
= Tr

[
e−βH0eıH0(t−ı~β)/~Ae−ıH0(t−ı~β)/~A

]
= 〈A(t− ıβ~)A〉.

The imaginary part of the correlation function vanishes if

• if β = 0 i.e. at infinite temperature,

• if ~ = 0 i.e. for classical systems.

1using [, ]− for commutators and [, ]+ for anti-commutators.
2with symmetric real part and antisymmetric imaginary part.



Three dynamical quantities in frequency domain:

B χ′′AA(ω)
.
=

∫ +∞

−∞
dt eıωtχ̃′′AA(t) dissipation function,

B ΦAA(ω)
.
=

∫ +∞

−∞
dt eıωtΦ̃AA(t) spectral density,

B SAA(ω)
.
=

∫ +∞

−∞
dt eıωtS̃AA(t) structure function.

Symmetry properties:

• χ′′AA(−ω) = −χ′′AA(ω) real and antisymmetric,

• ΦAA(−ω) = ΦAA(ω) real and symmetric,

• SAA(−ω) = e−β~ωSAA(ω) real and satisfying detailed balance.

Relations:

χ′′AA(ω) =
1

2~
(
1− e−β~ω

)
SAA(ω), ΦAA(ω) =

1

2

(
1 + e−β~ω

)
SAA(ω).

Fluctuation-dissipation relation (general quantum version):

ΦAA(ω) = ~ coth

(
1

2
β~ω

)
χ′′AA(ω).

Dissipation effects from an interaction with a weak external force as encoded
in χ′′AA(ω) are determined by natural fluctuations existing in thermal equi-
librium as encoded in ΦAA(ω).

Classical limit (no zero-point fluctuations):

ΦAA(ω)cl
~→0−→ 2kBT

ω
χ′′AA(ω).

Classical fluctuations of any frequency related to static susceptibility:

〈(A− 〈A〉)2〉 = φ̃AA(t = 0) = lim
t→0

∫ +∞

−∞

dω

2π
e−ıωtΦAA(ω)

= kBT

∫ +∞

−∞

dω

π
ω−1χ′′AA(ω) = kBT lim

ω′→0

1

π

∫ +∞

−∞
dω
χ′′AA(ω)

ω − ω′

= kBTχ
′
AA(ω′ = 0) = kBTχAA(ω′ = 0)

.
= kBTχAA.



Moment Expansion [nln78]

Correlation function and structure function:

S̃AA(t)
.
= 〈A(t)A〉 − 〈A〉2 =

∫ +∞

−∞

dω

2π
e−ıωtSAA(ω) =

∞∑
n=0

M̃n
(−ıt)n

n!
.

Frequency moments: use ˙̃SAA(t) = 〈Ȧ(t)A〉 = (−ı/~)〈[A(t),H]A〉.

M̃n
.
=

∫ +∞

−∞

dω

2π
ωnSAA(ω) = ın

[
dn

dtn
S̃AA(t)

]
t=0

= ~−n〈[[· · · [[︸ ︷︷ ︸
n

A,H],H], · · · ,H]A〉,

High-temperature limit T →∞:

M̃2k+1 = 0, M̃2k = ~−2k〈[· · · [︸︷︷︸
k

A,H], · · · ,H] [· · · [︸︷︷︸
k

A,H], · · · ,H]〉.

Classical limit ~→ 0: use ˙̃SAA(t) = 〈Ȧ(t)A〉 = 〈{A(t),H}A〉.

M̃2k+1 = 0, M̃2k = (−1)k〈{{· · · {{︸ ︷︷ ︸
2k

A,H},H}, · · · ,H}A〉,

Fluctuation function:

Φ̃AA(t)
.
=

1

2
〈[A(t), A]+〉 − 〈A〉2 =

∞∑
k=0

M̃2k
(−ıt)2k

(2k)!
,

M̃2k =
1

2~2k
〈[[· · · [[︸ ︷︷ ︸

2k

A,H],H], · · · ,H]A]+〉.

Dissipation function:

χ̃′′AA(t)
.
=

1

2~
〈[A(t), A]〉 = ~−1

∞∑
k=0

M̃2k+1
(−ıt)2k+1

(2k + 1)!
,

M̃2k+1 =
1

2~2k+1
〈[[· · · [[︸ ︷︷ ︸

2k+1

A,H],H], · · · ,H]A]〉.

Moment expansion not guaranteed to converge.
Convergence problem may be circumnavigated by recursion method.



[nex65] Spectral representation of dynamical quantities.

Consider a quantum Hamiltonian system with known eigenvalues and eigenvectors,

H|n〉 = En|n〉, n = 0, 1, . . . ,

in thermal equilibrium at temperature T . Express (a) the structure function SAA(ω), (b) the
spectral density ΦAA(ω), (c) the dissipation function χ′′AA(ω), and (d) the generalized susceptibility
χAA(ω + iε), all defined in [nln39], in terms of the temperature parameter β = 1/kBT , the energy
levels En, and the matrix elements 〈n|A|m〉. For simplicity assume that 〈A〉 .= Z−1Tr[e−βHA] = 0.
The last result reads

χAA(ω + iε) =
1

Z

∑
m,n

(
e−βEm − e−βEn

) |〈n|A|m〉|2

~ω − (Em − En) + iε
.

Solution:



[nex66] Linear response of classical relaxator.

The classical relaxator is defined by the equation of motion,

ẋ+
1

τ0
x = a(t), (1)

where τ0 represents a relaxation time and a(t) a weak periodic perturbation. The (linear) response
function is extracted from the relation

〈x(t)〉 − 〈x〉0 =

∫ t

−∞
dt′χ̃xx(t− t′)a(t′), (2)

where x(t) is the solution of (1).
(a) Solve (1) formally as in [nex53] and compare the result with (2) to show that the response
function must be

χ̃xx(t) = e−t/τ0θ(t). (3)

(b) Calculate the generalized susceptibility χxx(ω) via Fourier analysis of (1) as in [nex119]. Show
that the Fourier transform of (3) yields the same result, namely

χxx(ω) =
τ0

1− iωτ0
. (4)

(c) Extract from χxx(ω) its reactive part χ′xx(ω) and its dissipative part χ′′xx(ω) as prescribed in
[nln30] and verify their symmtry properties.
(d) Use the (classical) fluctuation-dissipation theorem from [nln39] to infer the spectral density
Φxx(ω) from the dissipation function χ′′xx(ω).
(e) Retrieve from the generalized susceptibility (4) the response function (3) via inverse Fourier
transform carried out as a contour integral.
(f) Retrieve χ′xx(ω) from χ′′xx(ω) and vice versa via a numerical principal-value integration of the
Kramers-Kronig relations as stated in [nln37]. Use τ = 1 and consider the interval −2 ≤ ω ≤ 2.
Plot the curves obtained via integration for comparison with the analytic expressions. Integrate
over the intervals −∞ < ω′ < ω − ε and ω + ε < ω′ < +∞ with 0 < ε� 1.

Solution:



Dielectric Relaxation in Liquid Water [nln76]

• H2O molecules have permanent electric dipole moment (polar molecules.)

• Alignment of dipole moments with external electric field E is energeti-
cally favorable.

• Alignment tendency is counteracted by thermal fluctuations.

• Turning E on/off initiates relaxation process toward equilibrium.

• P (t): instantaneous electric polarization (average dipole moment)

• χ0: static dielectric susceptibility

• τ0: characteristic relaxation time

• E(t): oscillating electric field

• d

dt
P (t) = − 1

τ0

[
P (t)− χ0E(t)

]
: dielectric relaxation process

• 〈P 〉 = χ0E: static (linear) response

• χPP (ω) =
χ0

τ0
χxx(ω): link to classical relaxator [nex66]

• 〈P (t)P 〉 − 〈P 〉2 = kBTχ0e
−t/τ0 : correlation fct. (from fluc.-diss. rel.)

• 〈P 2〉 .= 1

3
np20 = kBTχ0: zero-field limit

• n: number density of molecules

• p0: permanent molecular electric dipole moment

• χ0(T ) =
np20

3kBT
: T -dependence of dielectric susceptibility



[nex67] Linear response of classical oscillator.

The classical oscillator is defined by the equation of motion,

mẍ+ γẋ+mω2
0x = a(t), (1)

where γ is the attenuation coefficient, mω2
0 the spring constant, and a(t) a weak periodic pertur-

bation. The (linear) response function is defined by the relation

〈x(t)〉 − 〈x〉0 =

∫ t

−∞
dt′χ̃xx(t− t′)a(t′), (2)

where x(t) is the solution of (1).
(a) Calculate the generalized susceptibility χxx(ω) as well as its reactive part χ′xx(ω) and its
dissipative part χ′′xx(ω).
(b) Use the (classical) fluctuation-dissipation theorem to infer the spectral density Φxx(ω) from
the dissipation function χ′′xx(ω).

Solution:



Dynamic Structure Factor [nln89]

Inelastic scattering of particles (electrons, neutrons, photons,...) involves
momentum transfer, ~q = ~kf − ~ki, and energy transfer, ~ω = Ef − Ei,
between scattered particles and collective excitations in the system.

Scattering cross section is proportional to dynamic structure factor:

d2σ

dωdΩ
∝ SAA(q, ω).

Target system: H0|λ〉 = Eλ|λ〉.

Interaction with scattering radiation: A(q, t) =

∫
d3r e−ıki·rV (r, t)eıkf ·r.

Scattering events produce transitions |λ〉 → |λ′〉 in target system.

Transition rates: T (q, ω) = |〈λ|A(q)|λ′〉|2δ(~ω − Eλ′ + Eλ)δq−kλ′+kλ+Q.

Dynamic structure factor: SAA(q, ω) =
2π

Z

∑
λ,λ′

e−βEλT (q, ω).

Electron scattering (Coulomb interaction with target charge density):

V (r, t) =
eρ(R, t)

|r−R|
⇒ Sρρ(q, ω) =

∫ +∞

−∞
dt eıωt〈ρ(q, t)ρ(−q, 0)〉.

Nuclear neutron scattering (contact interaction with target particle density):

V (r, t) = aδ(r−R)n(R, t) ⇒ Snn(q, ω) =

∫ +∞

−∞
dt eıωt〈n(q, t)n(−q, 0)〉.

Magnetic neutron scattering (interaction with target magnetisation):

V (r, t) = Sµ(r)Vµν(r−R)Mν(R, t)

⇒ Sµν(q, ω) =

∫ +∞

−∞
dt eıωt〈Mµ(q, t)Mν(−q, 0)〉.

Light scattering (interaction with inhomogeneities in dielectric function):

ε(r, t) ⇒ Sεε(q, ω) =

∫ +∞

−∞
dt eıωt〈ε(q, t)ε(−q, 0)〉.



Scattering from Free Atoms [nln93]

Consider a dilute gas of atoms with mass M . Interaction between gas atoms
limited to (rare) collisions.

Hamiltonian: H =
p2

2M
(dominated by kinetic energy).

Contact interaction between gas atom at position R(t) and scattering radia-
tion (see [nln89]) defines dynamical variable relevant for scattering process:

A(q, t) =

∫
d3r eıq·rδ

(
r−R(t)

)
= eıq·R(t). (1)

Equation of motion (setting ~ ≡ 1):1

ı
∂A

∂t
= [A,H] =

1

2M

[
eıq·R, p2

]
= −A 1

2M

(
2q · p + q2

)
. (2)

Formal solution:

A(q, t) = eıq·R(0) exp

(
ıt
(
2q · p + q2

)
2M

)
. (3)

Correlation function: S̃AA(q, t)
.
= 〈A†(q, t)A(q, 0)〉.

⇒ S̃AA(q, t)
.
= e−ıtq

2/2M
〈

exp
(
− ıtq · p/M

)〉
= e−ıtq

2/2M 1

Z

∫
d3p e−βp

2/2Me−ıtq·p/M

= e−ıtq
2/2M 1

Z

∫
d3p exp

(
(
√
βp + ıtq/

√
β)2

2M

)
︸ ︷︷ ︸

Z

e−q
2t2/2Mβ

= exp

(
−
q2
(
t2/β + ıt

)
2M

)
. (4)

Third line: Gaussian integral is unaffected by a constant shift in p.

Note symmetry property from [nln39]: S̃AA(q,−t) = S̃AA(q, t− ıβ).

1Use [R,p] = ı, [A,p] = −qA, [A, p2] = [A,p] · p + p · [A,p] = −Aq · p − p · qA,
Aq · p− p · qA = −Aq2, ⇒ [A, p2] = −A(2q · p+ q2).



Dynamic structure factor via Fourier transform:

SAA(q, ω)
.
=

∫ +∞

−∞
dt eıωtS̃AA(q, t)

=

√
2πMβ

q2
exp

(
−Mβ

2q2
[
ω − q2/2M

]2)
. (5)

• Scattering is isotropic, only dependent on magnitude of q.

• Maximum intensity occurs when energy transfer ω and momentum
transfer q reflect energy momentum relation, ω = q2/2M , of free, non-
relativistic gas particle.

• Lineshape broadens with increasing temperature and/or decreasing mass
of gas atoms.

• Note detailed-balance condition from [nln39]:

SAA(q,−ω) = e−βωSAA(q, ω).

• In the limit M → ∞ at fixed temperature, the atoms slow down and
come to rest. The scattering becomes elastic in nature, still isotropic
and with zero energy transfer:

SAA(q, ω)
M→∞−→ 2πδ(ω).

2



Scattering from Atoms Bound to Lattice [nln94]

Consider array of atoms harmonically bound to sites of rigid lattice. We set
~ = 1 and atomic mass M = 1:

Hamiltonian: H =
1

2

(
p2 + ω2

0u
2
)

= ω0

(
a†a+

1

2

)
.

Displacement of atom from equilibrium position:1 u(t) =
1√
2ω0

(
ae−ıω0t + a†eıω0t

)
.

Dynamical variable: A(q, t) = eıqu(t).

Correlation function: S̃AA(q, t)
.
= 〈A†(q, 0)A(q,−t)〉.

Use Baker-Hausdorff expansion:2 eAeB = exp

(
A+B +

1

2
[A,B] + . . .

)
.

⇒ S̃AA(q, t) = 〈e−ıqueıqu(−t)〉 = 〈eıq[u(−t)−u]〉eq2[u,u(−t)]/2

= e−q
2〈[u(−t)−u]2/2〉eq

2[uu(−t)−u(−t)u]/2 = e−q
2[〈u2〉−〈uu(−t)〉]. (1)

Boson distribution: 〈a†a〉 = nB =
1

eβω0 − 1
⇒ 〈aa†〉 = 1 + nB.

Debye-Waller factor: W =
1

2
q2〈u2〉 =

q2

4ω0

coth
βω0

2︸ ︷︷ ︸
1+2nB

, ⇒ e−q
2〈u2〉 .= e−2W .

〈uu(−t)〉 =
1

2ω0

[
〈a†a〉eıω0t + 〈aa†〉e−ıω0t

]
=

1

4ω0

cosech
βω0

2

[
e−ıω0t+βω0/2 + eıω0t−βω0/2

]
. (2)

Use3 ey(s+1/s)/2 =
+∞∑

n=−∞

snIn(y) with y
.
=

q2

2ω0

cosech
βω0

2
, s

.
= e−ıω0t+βω0/2.

S̃AA(q, t) = e−2W
+∞∑

n=−∞

In

(
q2

2ω0

cosech
βω0

2

)
exp

(
1

2
βnω0 − ınω0t

)
. (3)

SAA(q, ω) = eβω/2−2W
+∞∑

n=−∞

In

(
q2

2ω0

cosech
βω0

2

)
δ(ω − nω0) (4)

1We consider component of displacement parallel to q
.
= kf − ki only.

2Use also 〈eA〉 = e〈A
2〉/2 for linear combinations of boson operators.

3In(y) are modified Bessel functions of the first kind. Note that I−n(y) = In(y).



Scattering from Harmonic Crystal [nln95]

Atoms of mass M are harmonically coupled via a bilinear form in displace-
ment coordinates. Spatial Fourier transform produces normal modes: nonin-
teracting collective excitations (phonons) representing oscillating patterns of
specific wave vectors k and excitation energies determined by a characteristic
dispersion relation ε(k).

H =
∑
l

p2l
2M

+
1

2

∑
l,l′

ul ·Dll′ · ul′ =
∑
k

ε(k)a†kak.

Correlation function:1

S̃(q, t) = 〈e−ıq·uleıq·ul′ (−t)〉

= exp

(
−1

2
〈[q · ul]

2〉 − 1

2
〈[q · ul′(−t)]2〉+ 〈[q · ul][q · ul′(−t)]〉

)

Debye-Waller factor from
1

2
〈[q · ul]

2〉 =
1

2
〈[q · ul′(−t)]2〉 = W .

Expansion into m-phonon processes:

exp
(
〈[q · ul][q · ul′(−t)]〉

)
=

∞∑
m=0

1

m!

(
〈[q · ul][q · ul′(−t)]〉

)m
.

Dynamic structure factor:

S(q, ω) = e−2W
1

N

∑
ll′

eıq·(Rl−Rl′ )

∫ +∞

−∞
dteıωt exp

(
〈[q · ul][q · ul′(−t)]〉

)
.

m = 0: Bragg scattering

S(q, ω)0 ∝ e−2W δ(ω)
∑
G

δq,G; G : reciprocal lattice vector.

m = 1: 1-phonon contributions2

S(q, ω)1 ∝ e−2W
[q · e(k)]2

2Mε(k)

(
[1 + nB(q)]δ

(
ω − ε(q)

)︸ ︷︷ ︸
phonon emission

+nB(q)δ
(
ω + ε(q)

)︸ ︷︷ ︸
phonon absorption

)
.

Harmonicity leaves phonon peaks sharp. Thermal fluctuations only affect
intensity via Debye-Waller factor.

1Use 〈eAeB〉 = e〈A
2+2AB+B2〉/2 for operators A,B that are linear in ul,pl.

2Calculate 〈[q · u0][q · uR(−t)]〉 with uR ∝
∑

k(2Mε(k))−1/2(ak + a†k)e
ık·Re(k)

and ak(t) = ake
−ıε(k)t.



Magnetic Resonance or Scattering [nln97]

Magnetic probe: H1(t) = −M · h(t). We set ~ = 1 throughout.

Linear response: 〈Mµ(r, t)〉 − 〈Mµ〉eq =
∑
ν

∫
d3r′

∫
dt χ̃µν(r− r′, t− t′)hν(r′, t′).

Response function: χ̃µν(r, t) = ıθ(t)〈[Mµ(r, t),Mν(0, 0)]〉 = ıθ(t)[Sµl+r(t), S
ν
l ]〉.

Generalized susceptibility: χµν(q, ω) =
∑
r

eıq·r
∫ +∞

−∞
dt eıωtχ̃µν(r, t).

Correlation function: S̃µν(r, t) = 〈Sµl+r(t)S
ν
l 〉.

Dynamic structure factor: Sµν(q, ω) =
∑
r

eıq·r
∫ +∞

−∞
dt eıωtS̃µν(r, t).

Relation from [nln39]: Sµν(q, ω) =
2χ′′µν(q, ω)

1− e−βω
.

Experimental techniques:

• Ferromagnetic resonance, EPR.

– Long wavelengths (long compared to lattice spacing) probed.

– Relevant quantitity: χ′′µν(q ' 0, ω).

• Inelastic neutron scattering.

– Interaction with magnetic dipole moment of neutron.

– Momentum transfer q and energy transfer ω of neutrons well
matched with energy-momentum relations ε(q) of typical collec-
tive magnetic excitations.

– Scattering cross section:
d2σ

dωdΩ
∝ Sµν(q, ω).

• Nuclear magnetic resonance, NMR.

– Localized probe (nuclear magnetic moment) interacts with elec-
tronic magnetism in immediate vicinity.

– Spin-lattice relaxation rate:
1

T1
∝

∑
q

Sµν(q, ωN).

– Nuclear Larmor frequency ωN is very small compared to typical
electronic magnetic excitations.
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