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We investigate the local stability and the global asymptotic stability of the difference equation 𝑥
𝑛+1

= (𝛼𝑥
2

𝑛
+ 𝛽𝑥
𝑛
𝑥
𝑛−1

+ 𝛾𝑥
𝑛−1

) /

(𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

+ 𝐶𝑥
𝑛−1

), 𝑛 = 0, 1, . . . with nonnegative parameters and initial conditions such that 𝐴𝑥2
𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

+ 𝐶𝑥
𝑛−1

> 0,
for all 𝑛 ≥ 0. We obtain the local stability of the equilibrium for all values of parameters and give some global asymptotic stability
results for some values of the parameters. We also obtain global dynamics in the special case, where 𝛽 = 𝐵 = 0, in which case we
show that such equation exhibits a global period doubling bifurcation.

1. Introduction

In this paper, we investigate local stability and global dynam-
ics of the following difference equation:

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛽𝑥
𝑛
𝑥
𝑛−1

+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

+ 𝐶𝑥
𝑛−1

, 𝑛 = 0, 1, . . . , (1)

where
𝛼, 𝛽, 𝛾, 𝐴, 𝐵, 𝐶 ∈ [0,∞)

with 𝛼 + 𝛽 + 𝛾, 𝐴 + 𝐵 + 𝐶 ∈ (0,∞)

(2)

and where the initial conditions 𝑥
−1

and 𝑥
0
are arbitrary

nonnegative real numbers such that𝐴𝑥2
𝑛
+𝐵𝑥
𝑛
𝑥
𝑛−1

+𝐶𝑥
𝑛−1

>

0, for all 𝑛 ≥ 0. Special cases of (1), such as the cases when
𝛼 = 𝐴 = 0 or 𝛾 = 𝐶 = 0 or 𝛽 = 𝛾 = 𝐶 = 0 or 𝛼 = 𝛾 = 𝐶 = 0,
were considered in the monograph [1] and in several papers
[2–5]. Equation (1) is the special case of a general second
order quadratic fractional equation of the form

𝑥
𝑛+1

=

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

+ 𝐶𝑥
2

𝑛−1
+ 𝐷𝑥
𝑛
+ 𝐸𝑥
𝑛−1

+ 𝐹

𝑎𝑥
2

𝑛
+ 𝑏𝑥
𝑛
𝑥
𝑛−1

+ 𝑐𝑥
2

𝑛−1
+ 𝑑𝑥
𝑛
+ 𝑒𝑥
𝑛−1

+ 𝑓

,

𝑛 = 0, 1, . . .

(3)

with nonnegative parameters and initial conditions such that
𝐴+𝐵+𝐶 > 0, 𝑎+𝑏+𝑐+𝑑+𝑒+𝑓 > 0, and 𝑎𝑥2

𝑛
+𝑏𝑥
𝑛
𝑥
𝑛−1

+𝑐𝑥
2

𝑛−1
+

𝑑𝑥
𝑛
+ 𝑒𝑥
𝑛−1

+ 𝑓 > 0, 𝑛 = 0, 1, . . .. Several global asymptotic
results for some special cases of (3) were obtained in [6–9].

The change of variable 𝑥
𝑛
= 1/𝑢

𝑛
transforms (1) to the

difference equation

𝑢
𝑛+1

=

𝐴𝑢
2

𝑛
+ 𝐵𝑢
𝑛
+ 𝐶𝑢
𝑛−1

𝛾𝑢
2

𝑛
+ 𝛽𝑢
𝑛
+ 𝛼𝑢
𝑛−1

, 𝑛 = 0, 1, . . . , (4)

where we assume that 𝛼 + 𝛽 + 𝛾 > 0 and that the nonnegative
initial conditions 𝑢

−1
and 𝑢
0
are such that 𝛾𝑢2

𝑛
+𝛽𝑢
𝑛
+𝛼𝑢
𝑛−1

>

0, for all 𝑛 ≥ 0. Thus, the results of this paper extend to (4).
First systematic study of global dynamics of a special

quadratic fractional case of (3) where 𝐴 = 𝐶 = 𝐷 = 𝑎 =

𝑐 = 𝑑 = 0 was performed in [2, 3]. Dynamics of some
related quadratic fractional difference equations was con-
sidered in the papers [6–9]. In this paper, we will perform
the local stability analysis of the unique equilibrium which is
quite elaborate and we will give the necessary and sufficient
conditions for the equilibrium to be locally asymptotically
stable, a saddle point, or a nonhyperbolic equilibrium. The
local stability analysis indicates that some possible dynam-
ics scenarios for (1) include period-doubling bifurcations
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and global attractivity of the equilibrium. Another possible
scenario includes global periodicity; that is, the possibility
that all solutions are periodic of the same period. This means
that the techniques we used in [5, 6, 10–14] are applicable.
We will also obtain the global asymptotic stability results for
(1). As we have seen in [1], an efficient way of studying the
dynamics of (1) is considering the dynamics of 49 special
cases of (1) which are obtained when one ormore coefficients
are set to be zero. It is interesting to notice that sometimes
the most complex dynamics can be one of the very special
cases of general equation, see [1]. Based on our results in [1],
it is difficult to prove global asymptotic stability results of
the unique equilibrium even for linear fractional difference
equations where there are still two remaining cases needed to
prove the general conjecture that local stability of the unique
equilibrium implies the global stability. This task is even
more challenging in the case of quadratic fractional difference
equation such as (3).

Some interesting special cases of (1) which were thor-
oughly studied in [1] are the following equations.

(1) Beverton-Holt difference equation, when 𝛼 = 𝛾 =

𝐴 = 0:

𝑥
𝑛+1

=

𝛽𝑥
𝑛

𝐵𝑥
𝑛
+ 𝐶

, 𝑛 = 0, 1, . . . , (5)

which represents the basic discrete model in popula-
tion dynamics; see [15].

(2) Riccati difference equation, when 𝛼 = 𝐴 = 0:

𝑥
𝑛+1

=

𝛽𝑥
𝑛
+ 𝛾

𝐵𝑥
𝑛
+ 𝐶

, 𝑛 = 0, 1, . . . . (6)

(3) Difference equation studied in [1, 4, 16], when 𝛾 = 𝐶 =

0:

𝑥
𝑛+1

=

𝛼𝑥
𝑛
+ 𝛽𝑥
𝑛−1

𝐴𝑥
𝑛
+ 𝐵𝑥
𝑛−1

, 𝑛 = 0, 1, . . . , (7)

which represents the discretization of the differential
equation model in biochemical networks; see [17].

The paper is organized as follows. The next section gives
the preliminary results on global stability of general quadratic
fractional difference equation (3) which are applicable to
some special cases of (1). This section contains also a
global period-doubling bifurcation result from [12], which
is applicable to one special case of (1), for which we obtain
the global dynamics. The third section gives local stability
result for (1) for all parametric values. The fourth section
gives global asymptotic stability results for several special
cases of (1). Finally, the fifth section gives global dynamics
for difference equation

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐶𝑥
𝑛−1

, 𝑛 = 0, 1, . . . , (8)

where all parameters are positive, which exhibits the global
period-doubling bifurcation. We pose a conjecture about
global asymptotic stability of the equilibrium solutions of (8)
in certain region of parameters.

2. Preliminaries

The global attractivity results obtained specifically for com-
plicated cases of (3) are the following theorems [18].

Theorem 1. Assume that (3) has the unique equilibrium 𝑥. If
the following condition holds:

((|𝐴 − 𝑎𝑥| + |𝐵 − 𝑏𝑥| + |𝐶 − 𝑐𝑥|)

× (𝑈 + 𝑥) + |𝐷 − 𝑑𝑥| + |𝐸 − 𝑒𝑥|)

× ((𝑎 + 𝑏 + 𝑐) 𝐿
2

+ (𝑑 + 𝑒) 𝐿 + 𝑓)

−1

< 1,

(9)

where 𝐿 and 𝑈 are lower and upper bounds of all solutions of
(3) and 𝐿 + 𝑓 > 0, then 𝑥 is globally asymptotically stable.

Theorem 2. Assume that (3) has the unique equilibrium 𝑥 ∈

[𝑚,𝑀], where 𝑚 = min{𝑥, 𝑥
−1
, 𝑥
0
} and𝑀 = max{𝑥, 𝑥

−1
, 𝑥
0
}

are lower and upper bounds of specific solution of (3) and𝑚+

𝑓 > 0. If the following condition holds:

(|𝐴 − 𝑎𝑥| + |𝐵 − 𝑏𝑥| + |𝐶 − 𝑐𝑥|) (𝑀 + 𝑥)

+ |𝐷 − 𝑑𝑥| + |𝐸 − 𝑒𝑥|

< (𝑎 + 𝑏 + 𝑐)𝑚
2

+ (𝑑 + 𝑒)𝑚 + 𝑓,

(10)

then 𝑥 is globally asymptotically stable on the interval [𝑚,𝑀].

In the case of (1), Theorems 1 and 2 give the following
special results.

Corollary 3. If the following condition holds:

(|𝛼 − 𝐴𝑥| +
󵄨
󵄨
󵄨
󵄨
𝛽 − 𝐵𝑥

󵄨
󵄨
󵄨
󵄨
) (𝑈 + 𝑥) +

󵄨
󵄨
󵄨
󵄨
𝛾 − 𝐶𝑥

󵄨
󵄨
󵄨
󵄨

(𝐴 + 𝐵) 𝐿
2
+ 𝐶𝐿

< 1, (11)

where 𝐿 > 0 and𝑈 are lower and upper bounds of all solutions
of (1), then 𝑥 is globally asymptotically stable.

Corollary 4. If the following condition holds:

(|𝛼 − 𝐴𝑥| +
󵄨
󵄨
󵄨
󵄨
𝛽 − 𝐵𝑥

󵄨
󵄨
󵄨
󵄨
) (𝑀 + 𝑥)

+
󵄨
󵄨
󵄨
󵄨
𝛾 − 𝐶𝑥

󵄨
󵄨
󵄨
󵄨
< (𝐴 + 𝐵)𝑚

2

+ 𝐶𝑚,

(12)

where 𝑚 = min{𝑥, 𝑥
−1
, 𝑥
0
} > 0 and 𝑀 = max{𝑥, 𝑥

−1
, 𝑥
0
}

are lower and upper bounds of specific solution of (1), then the
unique equilibrium 𝑥 is globally asymptotically stable on the
interval [𝑚,𝑀].

Corollary 3 can be used efficiently to obtain global
stability results for the special cases of (1), in particular,
for some equations of types (2, 2), (3, 2), and (3, 3), where
type (𝑘,𝑚) means that special case of (1) has 𝑘 terms in the
numerator and𝑚 terms in the denominator. See Section 4.

In this paper, we present the local stability analysis for
the unique equilibrium of (1) and then we apply Corollaries 3
and 4 to some special cases of (1) to obtain global asymptotic
stability results for those equations. The obtained results
will give the regions of parametric space where the unique
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positive equilibrium of (1) is globally asymptotically stable.
In the comingmanuscript wewill givemore precise dynamics
in some special cases of (1) such as the case where 𝛼 = 𝛽 =

0, where the theory of monotone maps will give the global
dynamics.

Our results on period-doubling bifurcation will be based
on the following theorem for a general second order differ-
ence equation in [19]:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑛 = 0, 1, 2, . . . . (13)

Theorem5. Let 𝐼 be a set of real numbers and let𝑓 : 𝐼×𝐼 → 𝐼

be a function which is nonincreasing in the first variable and
nondecreasing in the second variable. Then, for every solution
{𝑥
𝑛
}
∞

𝑛=−1
of the equation

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑥
−1
, 𝑥
0
∈ 𝐼, 𝑛 = 0, 1, 2, . . . , (14)

the subsequences {𝑥
2𝑛
}
∞

𝑛=0
and {𝑥

2𝑛−1
}
∞

𝑛=0
of even and odd terms

of the solution do exactly one of the following:

(i) eventually, they are both monotonically increasing;
(ii) eventually, they are both monotonically decreasing;
(iii) one of them is monotonically increasing and the other

is monotonically decreasing.

The consequence of Theorem 5 is that every bounded
solution of (14) converges to either equilibrium or period-
two solution or to the point on the boundary, and the
most important question becomes determining the basins
of attraction of these solutions as well as the unbounded
solutions.

The next result is the global period-doubling bifurcation
result from [5] which also gives precise description of the
basins of attraction of equilibrium points and periodic solu-
tions of the considered equation.

Theorem 6. Let A be a connected subset of R𝑘, and, for each
𝛼 ∈ A, let I

𝛼
⊂ R be an interval. Let Γ : A → R be a

continuous function. Consider a family of difference equations

𝑥
𝑛+1

= 𝑓
𝛼
(𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑥
−1
, 𝑥
0
∈ I
𝛼

(15)

with 𝑓
𝛼
(𝑥, 𝑦) being continuous onR

𝛼
:= I
𝛼
×I
𝛼
, for 𝛼 ∈ A.

Suppose that, for each 𝛼 ∈ A, the following statements are true.

(a1) 𝑓
𝛼

∈ (I0
𝛼
× I0
𝛼
) ⊂ I0

𝛼
, and 𝑓

𝛼
(𝑥, 𝑦) is strictly

decreasing in 𝑥 and strictly increasing in 𝑦 inI0
𝛼
×I0
𝛼
.

(a2) There exists a family of isolated equilibria 𝑥
𝛼
∈ I
𝛼
that

vary continuously in 𝛼.
(a3) 𝑓

𝛼
(𝑥, 𝑦) is continuously differentiable on a neighbor-

hood of (𝑥
𝛼
, 𝑥
𝛼
), with partial derivatives 𝐷

1
𝑓
𝛼
and

𝐷
2
𝑓
𝛼
being continuous in 𝛼.

(a4) Let 𝜂
𝛼
and ]
𝛼
be the roots of the characteristic equation

of (15) at 𝑥
𝛼
, ordered so that |𝜂

𝛼
| ≤ |]
𝛼
|:

(i) if Γ(𝛼) < 0, then −1 < ]
𝛼
< 0 < 𝜂

𝛼
< 1,

(ii) if Γ(𝛼) = 0, then −1 = ]
𝛼
< 0 < 𝜂

𝛼
< 1,

(iii) if Γ(𝛼) > 0, then ]
𝛼
< −1 < 0 < 𝜂

𝛼
< 1.

(a5) If Γ(𝛼) < 0, 𝑥
𝛼
is the unique equilibrium of (15) in

I
𝛼
and there are no prime period-two solutions in the

rectangle of initial conditions I
𝛼
× I
𝛼
. If Γ(𝛼) > 0,

there exist no prime period-two solutions in the region
of initial conditions (𝑄

1
(𝑥
𝛼
, 𝑥
𝛼
) ∪ 𝑄
3
(𝑥
𝛼
, 𝑥
𝛼
)) ∩I0

𝛼
×

I0
𝛼
, where 𝑄

1
(𝑎, 𝑎) (resp., 𝑄

3
(𝑎, 𝑎)) denotes the first

(resp., third) quadrant with respect to the point (𝑎, 𝑎).

(a6) For Γ(𝛼) < 0, statement 𝐴
7
of Theorem 4.1 in [12] is

true for the map 𝐹
2

𝛼
defined on R

𝛼
, where 𝐹

𝛼
(𝑢, V) =

(V, 𝑓
𝛼
(V, 𝑢)).

Then the following statements are true.

(i) For 𝛼 such that Γ(𝛼) < 0, the equilibrium 𝑥
𝛼
is a global

attractor onR
𝛼
.

(ii) For 𝛼 such that Γ(𝛼) > 0, the stable set of the
equilibrium W𝑠(𝑥

𝛼
, 𝑥
𝛼
) is a curve in I

𝛼
× I
𝛼
which

is the graph of a continuous and increasing function
that passes through (𝑥

𝛼
, 𝑥
𝛼
) and that has endpoints in

𝜕(I
𝛼
×I
𝛼
). Furthermore,

(ii.1) if R
𝛼
is compact or if there exists a compact set

K ⊂ I
𝛼
such that 𝑓(I

𝛼
× I
𝛼
) ⊂ K, then

there exist prime period-two solutions (𝜙, 𝜓) and
(𝜓, 𝜙);

(ii.2) if prime period two solutions (𝜙, 𝜓) and (𝜓, 𝜙)

exist in 𝑄
2
(𝑥
𝛼
, 𝑥
𝛼
) ∩I
𝛼
×I
𝛼
and 𝑄

4
(𝑥
𝛼
, 𝑥
𝛼
) ∩

I
𝛼
× I
𝛼
, respectively, and if they are the only

prime period-two solutions there, then every solu-
tion {𝑥

𝑛
}with initial condition in the complement

of the stable set of the equilibrium is attracted to
one of the period-two solutions; that is, whenever
𝑥
𝑛
󴀀󴀂󴀠 𝑥
𝛼
, either 𝑥

2𝑛
→ 𝜙 and 𝑥

2𝑛+1
→ 𝜓 or

𝑥
2𝑛

→ 𝜓 and 𝑥
2𝑛+1

→ 𝜙;
(ii.3) if there are no prime period-two solutions,

then every solution {𝑥
𝑛
} of equation 𝑥

𝑛+1
=

𝑓
𝛼
(𝑥
𝑛
, 𝑥
𝑛−1

), 𝑛 = 0, 1, . . . with initial condition
inW
−
is such that the subsequence {𝑥

2𝑛
} eventu-

ally leaves any given compact subset of I
𝛼
, and

every solution {𝑥
𝑛
} of 𝑥
𝑛+1

= 𝑓
𝛼
(𝑥
𝑛
, 𝑥
𝑛−1

), 𝑛 =

0, 1, . . . with initial condition in W
+
is such that

the subsequence {𝑥
2𝑛+1

} eventually leaves any
given compact subset ofI

𝛼
.

3. Linearized Stability Analysis

In this section we present the local stability of the unique
positive equilibrium of (1).

3.1. Equilibrium Points. In view of the above restriction on
the initial conditions of (1), the equilibrium points of (1) are
the positive solutions of the equation:

𝑥 =

𝛼𝑥
2

+ 𝛽𝑥
2

+ 𝛾𝑥

𝐴𝑥
2

+ 𝐵𝑥
2

+ 𝐶𝑥

, (16)



4 Discrete Dynamics in Nature and Society

or, equivalently,

(𝐴 + 𝐵) 𝑥
2

+ (𝐶 − 𝛼 − 𝛽) 𝑥 − 𝛾 = 0. (17)

When

𝛾 = 0, 𝛼 + 𝛽 > 𝐶, (18)

the unique positive equilibrium of (17) is given by

𝑥 =

𝛼 + 𝛽 − 𝐶

𝐴 + 𝐵

. (19)

When
𝛾 > 0, 𝐴 + 𝐵 = 0,

that is 𝐴 = 0, 𝐵 = 0, 𝐶 > 𝛼 + 𝛽,

(20)

the unique positive equilibrium of (17) is given by

𝑥 =

𝛾

𝐶 − 𝛼 − 𝛽

. (21)

Finally, when

𝛾 > 0, 𝐴 + 𝐵 ∈ (0,∞) , (22)

then the only equilibriumpoint of (17) is the positive solution

𝑥 =

𝛼 + 𝛽 − 𝐶 + √(𝛼 + 𝛽 − 𝐶)
2

+ 4𝛾 (𝐴 + 𝐵)

2 (𝐴 + 𝐵)

(23)

of the quadratic equation (17).
In summary, it is interesting to observe that when (1) has a

positive equilibrium𝑥, then𝑥 is unique and satisfies (17).This
observation simplifies the investigation of the local stability of
the positive equilibrium of (1).

3.2. Local Stability of the Positive Equilibrium. Now we inves-
tigate the stability of the positive equilibrium of (1). Set

𝑓 (𝑢, V) =
𝛼𝑢
2

+ 𝛽𝑢V + 𝛾V
𝐴𝑢
2
+ 𝐵𝑢V + 𝐶V

(24)

and observe that
𝜕𝑓 (𝑢, V)

𝜕𝑢

= 𝑓
𝑢
(𝑢, V)

=

V (𝐶 (2𝛼𝑢 + 𝛽V) − 𝐴𝑢 (𝛽𝑢 + 2𝛾) + 𝐵 (𝛼𝑢
2

− 𝛾V))

(𝐴𝑢
2
+ (𝐶 + 𝐵𝑢) V)2

,

𝜕𝑓 (𝑢, V)
𝜕V

= 𝑓V (𝑢, V) =
𝑢
2

(−𝛼𝐶 − 𝐵𝛼𝑢 + 𝐴 (𝛽𝑢 + 𝛾))

(𝐴𝑢
2
+ (𝐶 + 𝐵𝑢) V)2

.

(25)

If 𝑥 denotes an equilibrium point of (1), then the linearized
equation associated with (1) about the equilibrium point 𝑥 is

𝑧
𝑛+1

= 𝑝𝑧
𝑛
+ 𝑞𝑧
𝑛−1

, (26)

where

𝑝 = 𝑓
𝑢
(𝑥, 𝑥) , 𝑞 = 𝑓V (𝑥, 𝑥) . (27)

Theorem 7. Assume that

𝛾 = 0, 𝐴 + 𝐵 ∈ (0, +∞) , 𝛼 + 𝛽 > 𝐶. (28)

Then, the unique equilibrium point

𝑥 =

𝛼 + 𝛽 − 𝐶

𝐴 + 𝐵

(29)

of (1) is

(i) locally asymptotically stable, if𝐴(3𝐶+𝛼)+𝐵(𝐶+3𝛼+

𝛽) > 𝛽𝐴;
(ii) a saddle point, if 𝐴(3𝐶 + 𝛼) + 𝐵(𝐶 + 3𝛼 + 𝛽) < 𝛽𝐴;
(iii) a nonhyperbolic point, if𝐴(3𝐶+𝛼)+𝐵(𝐶+3𝛼+𝛽) = 𝛽𝐴

or (𝛽 = 0, 𝐴 = 0, 𝐵 > 0, 𝛼 > 0).

Proof. It is easy to see that

𝑝 = 𝑓
𝑢
(𝑥, 𝑥) =

𝐵 (𝐶 + 𝛼) + 𝐴 (2𝐶 − 𝛽)

(𝐴 + 𝐵) (𝛼 + 𝛽)

,

𝑞 = 𝑓V (𝑥, 𝑥) =
−𝛼𝐵 + 𝐴 (−𝐶 + 𝛽)

(𝐴 + 𝐵) (𝛼 + 𝛽)

.

(30)

Then, the proof follows fromTheorem 1.1.1 in [1] and the fact
that

1 − 𝑝 − 𝑞 = 1 −

𝐶

𝛼 + 𝛽

> 0,

𝑝 − 𝑞 + 1 =

𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽)

(𝐴 + 𝐵) (𝛼 + 𝛽)

,

𝑞 + 1 =

𝛽𝐵 + 𝐴 (−𝐶 + 𝛼 + 2𝛽)

(𝐴 + 𝐵) (𝛼 + 𝛽)

> 0.

(31)

Theorem 8. Assume that

𝛾 > 0, 𝐴 = 0, 𝐵 = 0, 𝐶 > 𝛼 + 𝛽. (32)

Then, the unique equilibrium point 𝑥 = 𝛾/(𝐶 − 𝛼 − 𝛽) of (1) is
locally asymptotically stable.

Proof. A straightforward calculation gives

𝑝 = 𝑓
𝑢
(𝑥, 𝑥) =

2𝛼 + 𝛽

𝐶

, 𝑞 = 𝑓V (𝑥, 𝑥) =
−𝛼

𝐶

. (33)

Then, the proof follows fromTheorem 1.1.1 in [1] and the fact
that

1 − 𝑝 − 𝑞 =

𝐶 − 𝛼 − 𝛽

𝐶

> 0,

𝑝 − 𝑞 + 1 =

𝐶 + 3𝛼 + 𝛽

𝐶

> 0,

𝑞 + 1 =

𝐶 − 𝛼

𝐶

> 0.

(34)
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We have previously mentioned that if

𝛾 > 0, 𝐴 + 𝐵 ∈ (0, +∞) , (35)

then the unique positive equilibrium of (17) is the positive
solution

𝑥 =

𝛼 + 𝛽 − 𝐶 + √(𝛼 + 𝛽 − 𝐶)
2

+ 4𝛾 (𝐴 + 𝐵)

2 (𝐴 + 𝐵)

(36)

of (17).
By using the identity

(𝐴 + 𝐵) 𝑥
2

= (𝛼 + 𝛽 − 𝐶) 𝑥 + 𝛾, (37)

we can see that

𝑝 = 𝑓
𝑢
(𝑥, 𝑥) =

(𝐵𝛼 − 𝐴𝛽) 𝑥 + 𝐶 (2𝛼 + 𝛽) − 𝛾 (𝐵 + 2𝐴)

((𝐴 + 𝐵) 𝑥 + 𝐶)
2

=

(𝐵𝛼 − 𝐴𝛽) 𝑥 + 𝐶 (2𝛼 + 𝛽) − 𝛾 (𝐵 + 2𝐴)

(𝐴 + 𝐵)
2

𝑥
2

+ 2𝐶 (𝐴 + 𝐵) 𝑥 + 𝐶
2

=

(𝐵𝛼 − 𝐴𝛽) 𝑥 + 𝐶 (2𝛼 + 𝛽) − 𝛾 (𝐵 + 2𝐴)

(𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶) 𝑥 + (𝐴 + 𝐵) 𝛾 + 𝐶
2

,

(38)

𝑞 = 𝑓V (𝑥, 𝑥) =
(𝐴𝛽 − 𝐵𝛼) 𝑥 + 𝛾𝐴 − 𝛼𝐶

((𝐴 + 𝐵) 𝑥 + 𝐶)
2

=

(𝐴𝛽 − 𝐵𝛼) 𝑥 + 𝛾𝐴 − 𝛼𝐶

(𝐴 + 𝐵)
2

𝑥
2

+ 2𝐶 (𝐴 + 𝐵) 𝑥 + 𝐶
2

=

(𝐴𝛽 − 𝐵𝛼) 𝑥 + 𝛾𝐴 − 𝛼𝐶

(𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶) 𝑥 + (𝐴 + 𝐵) 𝛾 + 𝐶
2

,

(39)

𝑝 − 𝑞 + 1

= (𝑥 (𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))

+𝐶 (𝐶 + 3𝛼 + 𝛽) − 2𝐴𝛾)

× ((𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶) 𝑥 + (𝐴 + 𝐵) 𝛾 + 𝐶
2

)

−1

,

1 − 𝑝 − 𝑞

=

𝑥 (𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶) + 2𝛾 (𝐴 + 𝐵) + 𝐶
2

− 𝐶𝛼 − 𝐶𝛽

(𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶) 𝑥 + (𝐴 + 𝐵) 𝛾 + 𝐶
2

,

(40)

𝑞 + 1

=

𝑥 (𝐴 (𝛼 + 2𝛽 + 𝐶) + 𝐵 (𝛽 + 𝐶)) + (2𝐴 + 𝐵) 𝛾 + 𝐶
2

− C𝛼
(𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶) 𝑥 + (𝐴 + 𝐵) 𝛾 + 𝐶

2

,

𝑞 − 1 = −

𝑥 (𝐴 (𝐶 + 𝛼) + 𝐵 (𝐶 + 2𝛼 + 𝛽)) + 𝐶
2

+ 𝐵𝛾 + 𝐶𝛼

(𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶) 𝑥 + (𝐴 + 𝐵) 𝛾 + 𝐶
2

.

(41)

Let

𝜌
1
=

𝐶 (−𝐶 − 3𝛼 − 𝛽) + 2𝛾𝐴

(𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))

,

𝜌
2
=

𝐶 (−𝐶 + 𝛼 + 𝛽) − 2𝛾 (𝐴 + 𝐵)

(𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶)

,

𝜌
3
=

𝐶 (−𝐶 + 𝛼) − 𝛾 (2𝐴 + 𝐵)

(𝐴 (𝛼 + 2𝛽 + 𝐶) + 𝐵 (𝛽 + 𝐶))

.

(42)

Set

𝐹 (𝑢) = (𝐴 + 𝐵) 𝑢
2

+ (𝐶 − 𝛼 − 𝛽) 𝑢 − 𝛾. (43)

It is clear that 𝐹(𝑥) = 0 and that

𝑥 > 𝜌 iff 𝐹 (𝜌) < 0, (44)

while

𝑥 < 𝜎 iff 𝐹 (𝜎) > 0, (45)

for some 𝜌, 𝜎 ∈ [0,∞). A straightforward computation gives
us that
𝐹 (𝜌
1
)

= ( ( − (𝐶 + 3𝛼 + 𝛽)

× (𝐴 (3𝐶 + 𝛼 − 𝛽)

+𝐵 (𝐶 + 3𝛼 + 𝛽)) + 4𝐴
2

𝛾)

× (−𝐶 (𝛼 + 𝛽) + (𝐴 + 𝐵) 𝛾) )

× ((𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))
2

)

−1

,

𝐹 (𝜌
2
)

= (− (𝐶𝛼 + 𝐶𝛽 − 𝐴𝛾 − 𝐵𝛾)

× (𝐶
2

− 2𝐶𝛼 + 𝛼
2

− 2𝐶𝛽 + 2𝛼𝛽 + 𝛽
2

+ 4𝐴𝛾 + 4𝐵𝛾))

× ((𝐴 + 𝐵) (𝛼 + 𝛽 + 𝐶)
2

)

−1

,

𝐹 (𝜌
3
)

= (− (𝐶𝛼 + 𝐶𝛽 − 𝐴𝛾 − 𝐵𝛾)

× (𝐴𝐶
2

− 2𝐴𝐶𝛼 + 𝐴𝛼
2

− 2𝐴𝐶𝛽 − 𝐵𝐶𝛽 + 2𝐴𝛼𝛽 + 𝐵𝛼𝛽

+4𝐴
2

𝛾 + 4𝐴𝐵𝛾 + 𝐵
2

𝛾))

× (𝐴 (𝛼 + 2𝛽 + 𝐶) + 𝐵 (𝛽 + 𝐶))
−1

.

(46)

Lemma 9. Let 𝑝 and 𝑞 be the partial derivatives given by (38)
and (39). Assume that

𝛾 > 0, 𝐴 + 𝐵 ∈ (0, +∞) . (47)

Then, 1 − 𝑝 − 𝑞 > 0 holds for all values of parameters.
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Proof. The inequality 1 − 𝑝 − 𝑞 > 0 is equivalent to

𝐶 (−𝐶 + 𝛼 + 𝛽) − 2𝛾 (𝐴 + 𝐵) ≤ 0

or (𝐶 (−𝐶 + 𝛼 + 𝛽) − 2𝛾 (𝐴 + 𝐵) > 0, 𝐹 (𝜌
2
) < 0)

(48)

which is equivalent to

𝐵 ≥

−𝐶
2

+ 𝐶𝛼 + 𝐶𝛽 − 2𝐴𝛾

2𝛾

or (𝐵 <

−𝐶
2

+ 𝐶𝛼 + 𝐶𝛽 − 2𝐴𝛾

2𝛾

, 𝐵 <

𝐶𝛼 + 𝐶𝛽 − 𝐴𝛾

𝛾

) .

(49)
Since

𝐶𝛼 + 𝐶𝛽 − 𝐴𝛾

𝛾

−

−𝐶
2

+ 𝐶𝛼 + 𝐶𝛽 − 2𝐴𝛾

2𝛾

=

𝐶 (𝐶 + 𝛼 + 𝛽)

2𝛾

≥ 0,

(50)

we have that 1 − 𝑝 − 𝑞 > 0 is always true.

Lemma 10. Let 𝑝 and 𝑞 be partial derivatives given by (38)
and (39). Assume that

𝛾 > 0, 𝐴 + 𝐵 ∈ (0, +∞) . (51)
Then, 𝑝 − 𝑞 + 1 > 0, if and only if

𝛾 <

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

.

(52)

Proof.
(i) Let 𝐴 = 0, then, from (40), 𝑝 − 𝑞 + 1 > 0.
(ii) Assume that 𝐵(𝐶 + 3𝛼 + 𝛽) + 𝐴(𝐶 + 𝛼 − 𝛽) > 0 and

𝐴 > 0. Then 𝑝−𝑞+1 > 0 is equivalent to 𝑥 > 𝜌
1
. One

can see that
𝐹 (𝜌
1
) < 0, (53)

if and only if

𝛾 ∈ (

𝐶 (𝛼 + 𝛽)

𝐴 + 𝐵

,

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

) ,

(54)

since
(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

−

𝐶 (𝛼 + 𝛽)

𝐴 + 𝐵

= ((𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))

× (3𝐴𝐶 + 𝐵𝐶 + 3𝐴𝛼 + 3𝐵𝛼 + 𝐴𝛽 + 𝐵𝛽))

× (4𝐴
2

(𝐴 + 𝐵))

−1

> 0.

(55)

In view of (42), we have that 𝑝−𝑞+ 1 > 0, if and only
if

𝛾 ≤

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

or (𝛾 >

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

, 𝐹 (𝜌
1
) < 0) ,

(56)

which is equivalent to

𝛾 ≤

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

or 𝛾 ∈ (

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

,

((𝐶 + 3𝛼 + 𝛽)

× (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽)))

× (4𝐴
2

)

−1

) ,

(57)

in view of

𝐶 (𝛼 + 𝛽)

𝐴 + 𝐵

−

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

=

−𝐶 (𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))

2𝐴 (𝐴 + 𝐵)

< 0,

(58)

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

−

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

=

(𝐶 + 3𝛼 + 𝛽) (𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))

4𝐴
2

> 0.

(59)

The conditions in (57) are equivalent to

𝛾 <

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

(60)

and from which the proof follows.
(iii) Assume that 𝐵(𝐶 + 3𝛼 + 𝛽) + 𝐴(𝐶 + 𝛼 − 𝛽) < 0 and

𝐴 > 0. Then 𝑝 − 𝑞 + 1 > 0 is equivalent to 𝑥 < 𝜌
1
. It is

easy to see that

𝐹 (𝜌
1
) > 0, (61)
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if and only if

𝛾 < ((𝐶 + 3𝛼 + 𝛽)

× (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽)))

× (4𝐴
2

)

−1

or 𝛾 >

𝐶 (𝛼 + 𝛽)

𝐴 + 𝐵

,

(62)

which implies that 𝑝 − 𝑞 + 1 > 0, if and only if

𝛾 <

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

, 𝐹 (𝜌
1
) > 0, (63)

which is equivalent to

𝛾 <

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

,

𝛾 <

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

(64)

since

𝐶 (𝛼 + 𝛽)

𝐴 + 𝐵

−

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

=

−𝐶 (𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))

2𝐴 (𝐴 + 𝐵)

> 0.

(65)

Since

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

−

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

=

(𝐶 + 3𝛼 + 𝛽) (𝐵 (𝐶 + 3𝛼 + 𝛽) + 𝐴 (𝐶 + 𝛼 − 𝛽))

4𝐴
2

< 0,

(66)

we have that (64) is equivalent to

𝛾 <

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

(67)

and from which the proof follows.
(iv) If 𝐵(𝐶 + 3𝛼 + 𝛽) + 𝐴(𝐶 + 𝛼 − 𝛽) = 0 and 𝐴 > 0, then

it is enough to see that

𝛾 <

𝐶 (𝐶 + 3𝛼 + 𝛽)

2𝐴

, (68)

which is equivalent in this case to

𝛾 <

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

. (69)

Lemma 11. Let 𝑞 be the partial derivative given by (39).
Assume that

𝛾 > 0, 𝐴 + 𝐵 ∈ (0, +∞) . (70)

Then, 𝑞 + 1 > 0 holds for all values of parameters.

Proof. Inequality 𝑞 > −1 is equivalent to

(2𝐴 + 𝐵) 𝛾 + 𝐶
2

− 𝐶𝛼 ≥ 0

or ((2𝐴 + 𝐵) 𝛾 + 𝐶
2

− 𝐶𝛼 < 0, 𝐹 (𝜌
3
) < 0) .

(71)

If 𝐶 ≥ 𝛼, then, from (41), we have that 𝑞 > −1.
Let 𝐶 < 𝛼.
Relation (71) is equivalent to

𝛾 ≥

𝛼𝐶 − 𝐶
2

2𝐴 + 𝐵

(72)

or

𝛾 <

𝛼𝐶 − 𝐶
2

2𝐴 + 𝐵

,

𝛾 ∈ (−

(𝐶 − 𝛼) (𝐴 (𝐶 − 𝛼 − 2𝛽) − 𝐵𝛽)

(2𝐴 + 𝐵)
2

,

𝐶 (𝛼 + 𝛽)

𝐴 + 𝐵

) .

(73)

It can be shown that

𝛼𝐶 − 𝐶
2

2𝐴 + 𝐵

−

𝐶 (𝛼 + 𝛽)

𝐴 + 𝐵

=

−𝐶 (𝐵 (𝐶 + 𝛽) + 𝐴 (𝐶 + 𝛼 + 2𝛽))

(𝐴 + 𝐵) (2𝐴 + 𝐵)

≤ 0.

(74)

Since

−

(𝐶 − 𝛼) (𝐴 (𝐶 − 𝛼 − 2𝛽) − 𝐵𝛽)

(2𝐴 + 𝐵)
2

< 0 for 𝐶 < 𝛼, (75)

we have that 𝐹(𝜌
3
) < 0, if and only if 𝛾 < 𝐶(𝛼 + 𝛽)/(𝐴 + 𝐵),

from which it follows that (73) is equivalent to

𝛾 <

𝛼𝐶 − 𝐶
2

2𝐴 + 𝐵

. (76)

In view of (76), we have that (72) and (73) are equivalent to
𝛾 > 0.

So, 𝑞 + 1 > 0 holds for all values of parameters.

Thus, we proved the following result.

Theorem 12. Assume that

𝛾 > 0, 𝐴 + 𝐵 ∈ (0, +∞) . (77)

Then, the unique equilibrium point

𝑥 =

𝛼 + 𝛽 − 𝐶 + √(𝛼 + 𝛽 − 𝐶)
2

+ 4𝛾 (𝐴 + 𝐵)

2 (𝐴 + 𝐵)

(78)
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of (1) is

(i) a locally asymptotically stable point, if and only if any
of the following holds:

(a)

𝐴 = 0, (79)

(b)

𝐴 > 0,

𝛾 <

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

;

(80)

(ii) a saddle point, if and only if the following holds:

𝐴 > 0,

𝛾 >

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

;

(81)

(iii) a nonhyperbolic point, if and only if the following holds:

𝐴 > 0,

𝛾 =

(𝐶 + 3𝛼 + 𝛽) (𝐴 (3𝐶 + 𝛼 − 𝛽) + 𝐵 (𝐶 + 3𝛼 + 𝛽))

4𝐴
2

.

(82)

Proof. The proof follows from Theorem 1.1.1 in [1] and
Lemmas 9, 10, and 11.

4. Global Asymptotic Stability Results

In this section we give the following global asymptotic
stability result for some special cases of (1).

Theorem 13. (i) Consider (1), where 𝐶 = 0 and all other
coefficients are positive, subject to the condition

(|𝛼 − 𝐴𝑥| +
󵄨
󵄨
󵄨
󵄨
𝛽 − 𝐵𝑥

󵄨
󵄨
󵄨
󵄨
) (𝑈 + 𝑥) + 𝛾

(𝐴 + 𝐵) 𝐿
2

< 1, (83)

where 𝐿 = min{𝛼, 𝛽, 𝛾}/max{𝐴, 𝐵} and 𝑈 = max{𝛼, 𝛽}/
min{𝐴, 𝐵} + (𝛾/𝐵𝐿). Then 𝑥 is globally asymptotically stable.

(ii) Consider (1), where all coefficients are positive, subject
to the condition (1) where 𝐿 = min{𝛼, 𝛽, 𝛾}/max{𝐴, 𝐵, 𝐶}
and 𝑈 = max{𝛼, 𝛽, 𝛾}/min{𝐴, 𝐵, 𝐶}. Then 𝑥 is globally
asymptotically stable.

Proof. In view of Corollary 3, we need to find the lower and
upper bounds for all solutions of (1), for 𝑛 ≥ 1.

(i) In this case, the lower and upper bounds for all
solutions of (1), for 𝑛 ≥ 1, are derived as

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛽𝑥
𝑛
𝑥
𝑛−1

+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

≥

min {𝛼, 𝛽, 𝛾}
max {𝐴, 𝐵}

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

+ 𝑥
𝑛−1

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

≥

min {𝛼, 𝛽, 𝛾}
max {𝐴, 𝐵}

= 𝐿 > 0,

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛽𝑥
𝑛
𝑥
𝑛−1

+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

=

𝛼𝑥
2

𝑛
+ 𝛽𝑥
𝑛
𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

+

𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

≤

max {𝛼, 𝛽}
min {𝐴, 𝐵}

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

+

𝛾

𝐵𝑥
𝑛

≤

max {𝛼, 𝛽}
min {𝐴, 𝐵}

+

𝛾

𝐵𝐿

= 𝑈.

(84)

(ii) In this case, the lower and upper bounds for all
solutions of (1), for 𝑛 ≥ 1, are derived as

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛽𝑥
𝑛
𝑥
𝑛−1

+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

+ 𝐶𝑥
𝑛−1

≥

min {𝛼, 𝛽, 𝛾}
max {𝐴, 𝐵, 𝐶}

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

+ 𝑥
𝑛−1

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

+ 𝑥
𝑛−1

=

min {𝛼, 𝛽, 𝛾}
max {𝐴, 𝐵, 𝐶}

= 𝐿 > 0,

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛽𝑥
𝑛
𝑥
𝑛−1

+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐵𝑥
𝑛
𝑥
𝑛−1

+ 𝐶𝑥
𝑛−1

≤

max {𝛼, 𝛽, 𝛾}
min {𝐴, 𝐵, 𝐶}

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

+ 𝑥
𝑛−1

𝑥
2

𝑛
+ 𝑥
𝑛
𝑥
𝑛−1

+ 𝑥
𝑛−1

=

max {𝛼, 𝛽, 𝛾}
min {𝐴, 𝐵, 𝐶}

= 𝑈.

(85)

A consequence of Theorem 13 is the following result.

Corollary 14. Consider (1), where 𝐴 = 𝐶 = 0 and all other
coefficients are positive, subject to the condition

(𝛼 +
󵄨
󵄨
󵄨
󵄨
𝛽 − 𝐵𝑥

󵄨
󵄨
󵄨
󵄨
) (𝑈 + 𝑥) + 𝛾

𝐵𝐿
2

< 1, (86)

where 𝐿 = min{𝛼, 𝛽, 𝛾}/𝐵, 𝑈 = max{𝛼, 𝛽}/𝐵 + (𝛾/𝐵𝐿). Then,
𝑥 is globally asymptotically stable.

By using similar method as in the proof of Theorem 13,
one can prove the following result.
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Theorem 15. Consider (1), where 𝐵 = 𝛽 = 0 and all other
coefficients are positive, subject to the condition

|𝛼 − 𝐴𝑥| (𝑈 + 𝑥) +
󵄨
󵄨
󵄨
󵄨
𝛾 − 𝐶𝑥

󵄨
󵄨
󵄨
󵄨

𝐴𝐿
2
+ 𝐶𝐿

< 1, (87)

where 𝐿 = min{𝛼, 𝛾}/max{𝐴, 𝐶}, 𝑈 = max{𝛼, 𝛾}/min{𝐴, 𝐶}.
Then 𝑥 is globally asymptotically stable.

Proof. Now, we have

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐶𝑥
𝑛−1

≥

min {𝛼, 𝛾}
max {𝐴, 𝐶}

𝑥
2

𝑛
+ 𝑥
𝑛−1

𝑥
2

𝑛
+ 𝑥
𝑛−1

=

min {𝛼, 𝛾}
max {𝐴, 𝐶}

= 𝐿 > 0,

𝑥
𝑛+1

=

𝛼𝑥
2

𝑛
+ 𝛾𝑥
𝑛−1

𝐴𝑥
2

𝑛
+ 𝐶𝑥
𝑛−1

≤

max {𝛼, 𝛾}
min {𝐴, 𝐶}

𝑥
2

𝑛
+ 𝑥
𝑛−1

𝑥
2

𝑛
+ 𝑥
𝑛−1

=

max {𝛼, 𝛾}
min {𝐴, 𝐶}

= 𝑈.

(88)

Remark 16. Equation (1), where 𝐶 = 𝛾 = 0 and all other
coefficients are positive reduces to well-known equation (7)
which was studied in great details in [1, 4] and for which
we have shown that the unique equilibrium is globally
asymptotically stable, if and only if it is locally asymptotically
stable; that is, if and only if the condition (i) of Theorem 7
holds.This result is certainly better than the global asymptotic
result we derive fromCorollaries 3 and 4.However, the results
where local stability implies global stability are very rare and
it seems to be limited only to second order linear fractional
difference equations; see [16, 19].

Remark 17. Equation (1), where either 𝐴 = 0 or 𝐵 = 0

and all other coefficients are positive can be treated with
Corollary 4 and global asymptotic stability of the equilibrium
(whenever it exists) follows from condition (12) in the interval
[min{𝑥, 𝑥

−1
, 𝑥
0
},max{𝑥, 𝑥

−1
, 𝑥
0
}] when min{𝑥, 𝑥

−1
, 𝑥
0
} > 0,

that is, when 𝑥
−1
𝑥
0
> 0. Similarly, (1), where exactly one of

the coefficients 𝛼, 𝛽, or 𝛾 is zero, and all other coefficients
are positive can be treated with Corollary 4 and global
asymptotic stability of the equilibrium follows from con-
dition (12) in the interval [min{𝑥, 𝑥

−1
, 𝑥
0
},max{𝑥, 𝑥

−1
, 𝑥
0
}]

when min{𝑥, 𝑥
−1
, 𝑥
0
} > 0, that is, when 𝑥

−1
𝑥
0

> 0.
In this case max{𝑥, 𝑥

−1
, 𝑥
0
} can be replaced by 𝑈 =

max{𝛼, 𝛽, 𝛾}/min{𝐴, 𝐵, 𝐶}.

5. Equation 𝑥
𝑛+1

= (𝛼𝑥
2

𝑛
+ 𝛾𝑥
𝑛−1

)/(𝐴𝑥
2

𝑛
+ 𝐶𝑥
𝑛−1

)

In this section we present the global dynamics of (8), which
exhibits a global period-doubling bifurcation introduced in
[5].

5.1. Local Stability Analysis. Equation (8), by the change of
variables

𝑥
𝑛
=

𝛼

𝐴

𝑢
𝑛
, (89)

reduces to the equation

𝑥
𝑛+1

=

𝑥
2

𝑛
+ 𝛾𝑥
𝑛−1

𝑥
2

𝑛
+ 𝐶𝑥
𝑛−1

, 𝑛 = 0, 1, . . . , (90)

where we left the old labels 𝛾 and 𝐶 for the parameters
and 𝑥 for variable. Equation (90) has the unique positive
equilibrium 𝑥 given by

𝑥 =

1 − 𝐶 + √(𝐶 − 1)
2

+ 4𝛾

2

.
(91)

The partial derivatives associated to (90) at the equilibrium 𝑥

are

𝑓
𝑥
=

2𝑥𝑦(𝐶 − 𝛾)

(𝑥
2
+ 𝐶𝑦)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥

=

8 (𝐶 − 𝛾)

(1 + 𝐶 + √(𝐶 − 1)
2

+ 4𝛾)

2
,

𝑓
𝑦
=

𝑥
2

(𝛾 − 𝐶)

(𝑥
2
+ 𝐶𝑦)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥

=

4 (𝛾 − 𝐶)

(1 + 𝐶 + √(𝐶 − 1)
2

+ 4𝛾)

2
.

(92)

The characteristic equation associated to (90) at the equilib-
rium point is

𝜆
2

−

8 (𝐶 − 𝛾)

(1 + 𝐶 + √(𝐶 − 1)
2

+ 4𝛾)

2
𝜆

−

4 (𝛾 − 𝐶)

(1 + 𝐶 + √(𝐶 − 1)
2

+ 4𝛾)

2
= 0,

(93)

which implies

𝜆
−
= 2𝐶 − 2𝛾 − √2

× ((𝛾 − 𝐶)

× (1 + 𝐶
2

+ 4𝛾

+ √1 − 2𝐶 + 𝐶
2
+ 4𝛾

+𝐶(−2 + √1 − 2𝐶 + 𝐶
2
+ 4𝛾)))

1/2

× (1 + 𝐶
2

+ 2𝛾 + √1 − 2𝐶 + 𝐶
2
+ 4𝛾

+𝐶√1 − 2𝐶 + 𝐶
2
+ 4𝛾)

−1

,

𝜆
+
= 2𝐶 − 2𝛾 + √2

× ((𝛾 − 𝐶)

× (1 + 𝐶
2

+ 4𝛾

+ √1 − 2𝐶 + 𝐶
2
+ 4𝛾
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+𝐶(−2 + √1 − 2𝐶 + 𝐶
2
+ 4𝛾)))

1/2

× (1 + 𝐶
2

+ 2𝛾 + √1 − 2𝐶 + 𝐶
2
+ 4𝛾

+𝐶√1 − 2𝐶 + 𝐶
2
+ 4𝛾)

−1

.

(94)

By applying the linearized stabilityTheorem 12, we obtain the
following result.

Theorem 18. The unique positive equilibrium point 𝑥 = (1 −

𝐶 + √(𝐶 − 1)
2

+ 4𝛾)/2 of (90) is

(i) locally asymptotically stable, when

𝛾 <

1

4

(3 + 10𝐶 + 3𝐶
2

) ; (95)

(ii) a saddle point, when

𝛾 >

1

4

(3 + 10𝐶 + 3𝐶
2

) ; (96)

(iii) a nonhyperbolic point, when

𝛾 =

1

4

(3 + 10𝐶 + 3𝐶
2

) . (97)

Lemma 19. If

𝛾 >

1

4

(3 + 10𝐶 + 3𝐶
2

) , (98)

then (90) possesses the unique minimal period-two solution
{𝑃(𝜙, 𝜓), 𝑄(𝜓, 𝜙)} ∈ (𝑄

2
(𝑥, 𝑥) ∪ 𝑄

4
(𝑥, 𝑥)) where the values 𝜙

and 𝜓 are the (positive and distinct) solutions of the quadratic
equation

𝑡
2

−

−1 + 𝐶
2

+ 𝛾 + √𝐾

2𝐶

𝑡

+

−1 + 𝛾 + √𝐾 + 𝐶 (𝐶
2

+ 𝐶 − 1 − 𝛾 + √𝐾)

2𝐶

= 0,

(99)

where

𝐾 = (𝐶
2

− 1)

2

− 2𝛾(𝐶 − 1)
2

+ 𝛾
2

> 0. (100)

Proof. Assume that {(𝜙, 𝜓), (𝜓, 𝜙)} is a minimal period-two
solution of (90). Then

𝜙 = 𝑓 (𝜓, 𝜙) , 𝜓 = 𝑓 (𝜙, 𝜓) with 𝜓, 𝜙 ∈ [0,∞) , 𝜙 ̸= 𝜓

(101)

which is equivalent to

𝜙 =

𝜓
2

+ 𝛾𝜙

𝜓
2
+ 𝐶𝜙

, 𝜓 =

𝜙
2

+ 𝛾𝜓

𝜙
2
+ 𝐶𝜓

with 𝜙 ̸= 𝜓 (102)

which is true, if and only if 𝜙 ̸= 𝜓,

𝜙 (𝜙𝜓
2

+ 𝐶𝜙
2

) = 𝜓
2

+ 𝛾𝜙, (103)

𝜓 (𝜓𝜙
2

+ 𝐶𝜓
2

) = 𝜙
2

+ 𝛾𝜓. (104)

By subtracting (103) and (104), we get

(𝜙 − 𝜓) ((𝐶 + 1) (𝜙 + 𝜓) − 𝜙𝜓 − 𝛾) = 0. (105)

By dividing (103) by 𝜙 ̸= 0 and (104) by 𝜓 ̸= 0 and subtracting
them and by using the fact that 𝜓 ̸= 𝜙, we get

(𝜓 + 𝜙)
2

− 𝜙𝜓 (𝜓 + 𝜙) + (𝐶 − 1) 𝜙𝜓 = 0. (106)

If we set

𝜙 + 𝜓 = 𝑥, 𝜙𝜓 = 𝑦, (107)

where 𝑥, 𝑦 > 0, then 𝜙 and 𝜓 are positive and different
solutions of the quadratic equation

𝑡
2

− 𝑥𝑡 + 𝑦 = 0. (108)

In addition to condition 𝑥, 𝑦 > 0, it is necessary that 𝑥2−4𝑦 >

0.
From (105) and (106), we obtain the system

(𝐶 + 1) 𝑥 − 𝑦 − 𝛾 = 0,

𝑥
2

− 𝑥𝑦 + (𝐶 − 1) 𝑦 = 0.

(109)

We obtain that solutions (𝑥
±
, 𝑦
±
) of system (109) are

𝑥
±
=

−1 + 𝐶
2

+ 𝛾 + √(𝐶
2
− 1)
2

− 2𝛾(𝐶 − 1)
2

+ 𝛾
2

2𝐶

,

𝑦
+
= (−1 + 𝛾 + √(𝐶

2
− 1)
2

− 2𝛾(𝐶 − 1)
2

+ 𝛾
2

+ 𝐶(𝐶
2

+ 𝐶 − 1 − 𝛾

+√(𝐶
2
− 1)
2

− 2𝛾(𝐶 − 1)
2

+ 𝛾
2
))

× (2𝐶)
−1

,

𝑦
−
= (−1 + 𝐶

2

+ 𝐶
3

+ 𝛾

− √(𝐶
2
− 1)
2

− 2𝛾(𝐶 − 1)
2

+ 𝛾
2

−𝐶(1 + 𝛾 + √(𝐶
2
− 1)
2

− 2𝛾(𝐶 − 1)
2

+ 𝛾
2
))

× (2𝐶)
−1

.

(110)

Since 𝑦
−
< 0, there is only one positive solution {𝑥

+
, 𝑦
+
} of

system (109). We have that 𝑥
+
, 𝑦
+
, and 𝑥

2

+
− 4𝑦
+
> 0, if and

only if

𝛾 >

1

4

(3 + 10𝐶 + 3𝐶
2

) . (111)
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Therefore, there is only one minimal period-two solution
{𝑃(𝜙, 𝜓), 𝑄(𝜓, 𝜙)} of (90) which is solution of equation

𝑡
2

−

−1 + C2 + 𝛾 + √𝐾

2𝐶

𝑡

+

−1 + 𝛾 + √𝐾 + 𝐶 (𝐶
2

+ 𝐶 − 1 − 𝛾 + √𝐾)

2𝐶

= 0,

(112)

where

𝐾 = (𝐶
2

− 1)

2

− 2𝛾(𝐶 − 1)
2

+ 𝛾
2

. (113)

It is easy to see that

𝜓 − 𝑥 > 0 iff 𝛾 >

1

4

(3 + 10𝐶 + 3𝐶
2

) ,

𝜙 − 𝑥 < 0 iff 𝛾 >

1

4

(3 + 10𝐶 + 3𝐶
2

) .

(114)

So, {𝑃(𝜙, 𝜓), 𝑄(𝜓, 𝜙)} ∈ (𝑄
2
(𝑥, 𝑥)∪𝑄

4
(𝑥, 𝑥)). It can be shown

that𝐾 > 0. Namely, if we consider 𝐾 as a function of 𝛾, then

𝛾
2

− 2𝛾(𝐶 − 1)
2

+ (𝐶
2

− 1)

2

> 0 (115)

always, because

𝐷 = 4(𝐶 − 1)
4

− 4(𝐶
2

− 1)

2

< 0. (116)

5.2. Global Results and Basins of Attraction. In this section,
we present global dynamics results for (90), in case 𝐶 < 𝛾.

Lemma 20. Every solution of (90) is bounded from above and
from below by positive constants.

Proof. Indeed

𝑥
𝑛+1

=

𝑥
2

𝑛
+ 𝛾𝑥
𝑛−1

𝑥
2

𝑛
+ 𝐶𝑥
𝑛−1

≥

min {1, 𝛾}
max {1, 𝐶}

(𝑥
2

𝑛
+ 𝑥
𝑛−1

)

(𝑥
2

𝑛
+ 𝑥
𝑛−1

)

=

min {1, 𝛾}
max {1, 𝐶}

= 𝐿,

𝑥
𝑛+1

=

𝑥
2

𝑛
+ 𝛾𝑥
𝑛−1

𝑥
2

𝑛
+ 𝐶𝑥
𝑛−1

≤

max {1, 𝛾}
min {1, 𝐶}

(𝑥
2

𝑛
+ 𝑥
𝑛−1

)

(𝑥
2

𝑛
+ 𝑥
𝑛−1

)

=

max {1, 𝛾}
min {1, 𝐶}

= 𝑈.

(117)

Theorem 21. The following statements are true.

(i) If 𝐶 < 𝛾 < (1/4)(3 + 10𝐶 + 3𝐶
2

), then (90)
has a unique equilibrium point 𝑥, which is locally
asymptotically stable and has no minimal period-two
solution. Furthermore, the unique positive equilibrium
point

𝑥 =

1 − 𝐶 + √(𝐶 − 1)
2

+ 4𝛾

2

(118)

is globally asymptotically stable.

(ii) If 𝛾 > (1/4)(3+10𝐶+3𝐶
2

), then (90) has a unique equi-
libriumpoint𝐸 = (𝑥, 𝑥)which is a saddle point and has
the minimal period-two solution {𝑃(𝜙, 𝜓), 𝑄(𝜓, 𝜙)}.
Global stable manifold W𝑠(𝐸), which is continuous
increasing curve, divides the first quadrant such that the
following holds:

(ii1) every initial point (𝑢
0
, V
0
) in W𝑠(𝐸) is attracted

to 𝐸;
(ii2) if (𝑢

0
, V
0
) ∈ W+(𝐸) (the region below W𝑠(𝐸)),

then the subsequence of even-indexed terms
{(𝑢
2𝑛
, V
2𝑛
)} is attracted to 𝑄 and the subsequence

of odd-indexed terms {(𝑢
2𝑛+1

, V
2𝑛+1

)} is attracted
to 𝑃;

(ii3) if (𝑢
0
, V
0
) ∈ W−(𝐸) (the region above W𝑠(𝐸)),

then the subsequence of even-indexed terms
{(𝑢
2𝑛
, V
2𝑛
)} is attracted to 𝑃 and the subsequence

of odd-indexed terms {(𝑢
2𝑛+1

, V
2𝑛+1

)} is attracted
to 𝑄.

(iii) If 𝛾 = (1/4)(3 + 10𝐶 + 3𝐶
2

), then (90) has a unique
equilibrium point 𝑥 which is nonhyperbolic and has
no minimal period-two solution.The equilibrium point
𝑥 = (3 + 𝐶)/2 is a global attractor.

Proof. Let

Γ (𝛾, 𝐶) = 𝛾 −

1

4

(3 + 10𝐶 + 3𝐶
2

) ,

R
𝛾,𝐶

= I
𝛾,𝐶

×I
𝛾,𝐶

,

where I
𝛾,𝐶

= [

min {1, 𝛾}
max {1, 𝐶}

,

max {1, 𝛾}
min {1, 𝐶}

] ,

A = {(𝛾, 𝐶) ∈ R
+

×R
+

: 𝛾 > 𝐶} .

(119)

(i) If 𝐶 < 𝛾 < (1/4)(3 + 10𝐶 + 3𝐶
2

), then appropriate
function of (90) is nonincreasing in the first variable
and nondecreasing in the second variable. From
Theorem 18, (90) has a unique equilibrium point
𝐸(𝑥, 𝑥), which is locally asymptotically stable and,
from Lemma 19, (90) has no minimal period-two
solution. All conditions of Theorem 6 are satisfied
from which follows that a unique equilibrium point
𝐸(𝑥, 𝑥) is a global attractor. So, 𝐸(𝑥, 𝑥) is globally
asymptotically stable.

(ii) From Theorem 18, (90) has a unique equilib-
rium point 𝐸(𝑥, 𝑥), which is a saddle point. From
Lemma 19, (90) has a unique minimal period-two
solution {𝑃(𝜙, 𝜓), 𝑄(𝜓, 𝜙)}. The map 𝑇 = 𝑇(𝑥, 𝑦) =

(𝑦, 𝑓(𝑦, 𝑥)) has neither fixed points nor periodic
points of minimal period-two in int(𝑄

1
(𝑥) ∪ 𝑄

3
(𝑥)).

All conditions of Theorem 6 are satisfied from which
follows that every solution {𝑥

𝑛
} with initial condition

in the complement of the stable set of the equilibrium
is attracted to one of the period-two solutions.That is,
whenever 𝑥

𝑛
󴀀󴀂󴀠 𝑥, either 𝑥

2𝑛
→ 𝜙 and 𝑥

2𝑛+1
→ 𝜓
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Figure 1: Visual illustration of Theorem 21.

or 𝑥
2𝑛

→ 𝜓 and 𝑥
2𝑛+1

→ 𝜙. It is not hard to see that
the map 𝑇 is anticompetitive (which means that 𝑇2
is competitive) and 𝑇

2 is strongly competitive from
which we have that conclusions (ii1), (ii2), and (ii3)
hold.

(iii) The proof follows from Theorem 5 and Lemmas 19
and 20.

For graphical illustration of Theorem 21, see Figure 1.
Based on our simulations, we pose the following conjec-

ture.

Conjecture 22. The equilibrium of (90) is globally asymptot-
ically stable for 𝛾 < 𝐶.

Clearly, if 𝛾 = 𝐶, then 𝑥
𝑛
= 1, 𝑛 = 1, 2, . . . and so every

solution is equal to the equilibrium solution. If 𝛾 < 𝐶, then

the function 𝑓(𝑢, V) = (𝑢
2

+ 𝛾V)/(𝑢2 + 𝐶V) is increasing in
𝑢 and decreasing in V. In addition, the interval I

𝛾,𝐶
is an

invariant interval for 𝑓. In order to apply Theorem 1.4.5 of
[1], we need to show that the only solution of the system

𝑀 =

𝑀
2

+ 𝛾𝑚

𝑀
2
+ 𝐶𝑚

, 𝑚 =

𝑚
2

+ 𝛾𝑀

𝑚
2
+ 𝐶𝑀

(120)

inI
𝛾,𝐶

is𝑚 = 𝑀.This system reduces to𝐶𝑀𝑚 = 𝑀
3

−𝑀
2

+

𝛾𝑀 = 𝑚
3

−𝑚
2

+𝛾𝑚.The polynomial𝐺(𝑢) = 𝑢
3

−𝑢
2

+𝛾𝑢with
𝐺(0) = 0 is increasing onI

𝛾,𝐶
, if 𝐺󸀠(𝑢) = 3𝑢

2

− 2𝑢 + 𝛾 ≥ 0,
which holds when 𝛾 ≥ 1/3. Thus Conjecture 22 is true for
𝛾 ≥ 1/3.
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