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8. Kinetic Theory II

• Ideal gas atoms escaping from a container. [tex62]

• Toward thermal equilibrium via particle transfer. [tex64]

• Isotope separation via diffusion. [tex65]

• Kinematic pressure and interaction pressure. [tln42]

• Interaction pressure produced by Gaussian interparticle potential. [tex66]

• Kinetic forces and mobility. [tln43]

• Average force of particle beam on heavy hard sphere. [tex68]

• Mobility of a hard sphere in a dilute gas. [tex69]

• Collision rate and mean free path. [tln44]

• Collision rate in classical ideal gas. [tex70]

• Mean free path of particle in classical ideal gas. [tex71]

• Rate of chemical reaction A + A→ A2 in gas phase. [tex67]

• Effect of escaping particles on temperature of 1D ideal gas. [tex72]



Classical Hamiltonian system [tln45]

Consider an autonomous classical dynamical system with 3N degrees of free-
dom (e.g. N particles in a 3D box with reflecting walls). The dynamics
is fully described by 6N independent variables, e.g. by a set of canonical
coordinates q1, . . . , q3N ; p1, . . . , p3N .

The time evolution of these coordinates is specified by a Hamiltonian function
H(q1, . . . , q3N ; p1, . . . , p3N) and determined by the canonical equations:

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

; i = 1, . . . , 3N

The time evolution of an arbitrary dynamical variable f(q1, . . . , q3N ; p1, . . . , p3N)
is determined by Hamilton’s equation of motion:

df

dt
=

3N∑
i=1

(
∂f

∂qi

q̇i +
∂f

∂pi

ṗi

)
=

3N∑
i=1

(
∂f

∂qi

∂H

∂pi

− ∂f

∂pi

∂H

∂qi

)
≡ {f, H}.

Conserved quantity:
df

dt
= 0 ⇔ {f, H} = 0.

Energy conservation is guaranteed:
dH

dt
= 0 because {H, H} = 0.

The microstate of the system is specified by one point in the 6N -dimensional
phase space (Γ-space): X ≡ (q1, . . . , q3N ; p1, . . . , p3N). As time evolves, this
point traces a trajectory through Γ-space.

The conservation law H(q1, . . . , q3N ; p1, . . . , p3N) = const confines the motion
of any phase point to a 6N − 1-dimensional hypersurface in Γ-space. Other
conservation laws, provided they exist, will further reduce the dimensionality
of the manifold to which phase-space trajectories are confined.

Note: Within the framework of kinetic theory, the microstate of the same
system was described by N points in the 6D space spanned the position and
velocity coordinates of a single particle, (x, y, z; vx, vy, vz).

Our knowledge of the instantaneous microstate of the system is expressed by
a probability density ρ(X, t) in Γ-space.

Normalization:

∫
Γ

d6NX ρ(X, t) = 1.

Instantaneous expectation value: 〈f〉 =

∫
Γ

d6NX f(X)ρ(X, t).

Maximum knowledge about microstate realized for ρ(X, 0) = δ(X−X0).



Classical Liouville operator [tln46]

To describe the time evolution of ρ(X, t) we consider a volume V0 with surface
S0 in Γ-space. The following equations relate the change of probability inside
V0 to the flow of probability through S0 and use Gauss’ theorem.

∂

∂t

∫
V0

d6NX ρ(X, t) = −
∮

S0

ds · Ẋρ(X, t) = −
∫

V0

d6NX ∇X · [Ẋρ(X, t)].

Balance equation:
∂

∂t
ρ(X, t) +∇X · [Ẋρ(X, t)] = 0.

Use ∇X · [Ẋρ] = ρ∇X · Ẋ + Ẋ · ∇Xρ and ∇X · Ẋ = 0.

⇒ ∂

∂t
ρ(X, t) + Ẋ · ∇Xρ(X, t) = 0.

Introduce convective derivative:
d

dt
≡ ∂

∂t
+ Ẋ · ∇X.

Liouville theorem:
d

dt
ρ(X, t) = 0.

Use Ẋ · ∇Xρ =
3N∑
i=1

(
q̇i

∂ρ

∂qi

+ ṗi
∂ρ

∂pi

)
=

3N∑
i=1

(
∂ρ

∂qi

∂H

∂pi

− ∂ρ

∂pi

∂H

∂qi

)
= {ρ, H}.

Liouville operator: L ≡ i{H, } = i
3N∑
i=1

(
∂H

∂qi

∂

∂pi

− ∂H

∂pi

∂

∂qi

)
.

Liouville equation: i
∂ρ

∂t
= i{H, ρ} = Lρ.

Formal solution: ρ(X, t) = e−iLtρ(X, 0).

L is a Hermitian operator. Hence all its eigenvalues are real. Hence ρ(X, t)
cannot relax to equilibrium in any obvious way. The Liouville equation
reflects the time reversal symmetry of the underlying microscopic dynamics.
Obtaining the broken time reversal symmetry of irreversible processes from
the Liouville equation is a central problem in statistical mechanics (topic of
ergodic theory).

Nevertheless: the thermal equilibrium is described by a stationary (time-
independent) probability density:

∂ρ

∂t
= 0 ⇒ Lρ = 0 ⇒ {H, ρ} = 0.

A stationary ρ is an eigenfunction of L with eigenvalue zero. If ρ = ρ(H)
then {H, ρ} = 0. Hence ρ is time-independent.



Quantum Liouville operator [tln47]

The density operator ρ(t) is a positive definite Hermitian operator. Like its
classical counterpart, the phase-space density ρ(X, t), it describes what we
know about the state of the system.

Normalization: Tr[ρ(t)] = 1. Expectation value: 〈A(t)〉 = Tr[Aρ(t)].

Diagonal representation: ρ(t) =
∑

i

pi|πi(t)〉〈πi(t)|.

pi: probability of finding the system in the state |πi(t)〉.

⇒ 〈A(t)〉 =
∑

i

pi〈πi(t)|A|πi(t)〉 =
∑
nn′

〈n|A|n′〉〈n′|ρ(t)|n〉.

{|n〉}: orthonormal basis. 〈n′|ρ(t)|n〉: elements of the density matrix.

Schrödinger equation: H|πi(t)〉 = i~
∂

∂t
|πi(t)〉.

⇒ i~
∂ρ

∂t
=

∑
i

pi [H|πi(t)〉〈πi(t)| − |πi(t)〉〈πi(t)|H] = Hρ− ρH = [H, ρ].

Liouville operator: L ≡ 1

~
[H, ].

Liouville equation: i
∂ρ

∂t
=

1

~
[H, ρ] = Lρ.

Formal solution: ρ(t) = e−iLtρ(0) = e−iHt/~ρ(0)eiHt/~.

Time evolution carried by density operator or by dynamical variable:

〈A(t)〉 = Tr[Ae−iHt/~ρeiHt/~] = Tr[eiHt/~Ae−iHt/~ρ].

von Neumann equation: i~
∂ρ

∂t
= [H, ρ] ⇒ ρ(t) = e−iHt/~ρ(0)eiHt/~.

Heisenberg equation: i~
∂A

∂t
= −[H, A] ⇒ A(t) = eiHt/~A(0)e−iHt/~.

Density matrix in energy representation H|λ〉 = Eλ|λ〉:

ρλλ′(t) =
∑
λλ′

〈λ|ρ|λ′〉e−i(Eλ−Eλ′ )t/~.

Stationarity of density operator: i~
∂ρ

∂t
= 0 ⇒ [H, ρ] = 0.

⇒ ρ is diagonal in the energy representation: ρ =
∑

λ pλ|λ〉〈λ|.



Gibbs entropy [tln48]

At thermal equilibrium: ∂ρ/∂t = 0. This condition is satisfied by ρ = ρ(H).

Q: What is the functional dependence of ρ on H?
A: ρ(H) must maximize the entropy S(ρ) subject to the constraints related
to whether the system is isolated, closed, or open.

Q: What is the functional dependence of S on ρ?
A: The Gibbs entropy can be motivated by Boltzmann’s H-function and by
Shannon’s concept of uncertainty:

• classical system: S = −kB

∫
d6NX ρ(X) ln[CNρ(X)],

• quantum system: S = −kB Tr[ρ ln ρ].

The additive constant CN in the classical expression allocates a certain phase-
space volume element to every microstate:

• distinguishable particles: CN = h3N , h ' 6.62× 10−34Js,
• indistinguishable particles: CN = h3NN !.

The factor N ! is needed to compensate for overcounting indistinguishable
permutations of identical particles. No correction is necessary in quantum
mechanics, where microstates have definite permutation symmetries.

Q: Why does one microstate require a nonzero phase-space volume element?
A: The Heisenberg uncertainty principle, ∆qi∆pi ≥ 1

2
~, must be satisfied to

accommodate quantum mechanical microstates.

Q: What is the precise size of that volume needed for one microstate?
A: The volume element is h3N for a system with 3N degrees of freedom.

Number of microstates in volume element d6NX:
1

h3N
d6NX =

3N∏
i=1

[
1

h
dqidpi

]
.

Illustration: harmonic oscillator (2D phase space).

Hamiltonian: H =
p2

2m
+

1

2
mω2q2 =

hω

2π

(
n +

1

2

)
.

Classical trajectories are concentric ellipses with axes 2qmax, 2pmax.

Energy quantization implies quantized amplitudes:

qmax =

√
h

πmω

(
n +

1

2

)
, pmax =

√
hmω

π

(
n +

1

2

)
.

Area of ellipse: A(n) = πqmaxpmax = h(n + 1/2) ⇒ A(n + 1)−A(n) = h.



Microcanonical ensemble [tln49]

Consider an isolated classical system (volume V , N particles, internal en-
ergy U). The goal is to determine the thermodynamic potential U(S, V, N)
pertaining to that situation, from which all other thermodynamic properties
can be derived.

Maximize Gibbs entropy S = −kB

∫
U≤H(X)≤U+∆

d6NX ρ(X) ln[CNρ(X)]

subject to the contraint

∫
U≤H(X)≤U+∆

d6NX ρ(X) = 1 (normalization).

Apply calculus of variation with one Lagrange multiplier:

δ

∫
d6NX{−kBρ ln[CNρ] + α0ρ} = 0

⇒
∫

d6NX δρ{−kB ln[CNρ]− kB + α0} = 0.

⇒ ρ(X) =
1

CN

exp

(
α0

kB

− 1

)
= const =

{
Ω−1

∆ U ≤ H(X) ≤ U + ∆
0 otherwise,

where Ω∆(U, V,N) =

∫
U≤H(X)≤U+∆

d6NX is the volume of the energy shell.

Thermodyn. potentials: S(U, V,N) = kB ln

[
Ω∆(U, V,N)

CN

]
⇒ U(S, V, N).

The dependence of S or U on the energy width ∆ is undesirable and can,
in fact, be avoided. If we replace the shell volume Ω∆(U, V,N) by the entire
volume inside the shell, Ω(U, V,N), the resulting expression for S(U, V,N)
differs only by a term ∝ ln N , which is negligible in macroscopic systems.

⇒ S(U, V,N) = kB ln

[
Ω(U, V,N)

CN

]
, where Ω(U, V,N) =

∫
H(X)≤U

d6NX.

Consider an isolated quantum system: H|n〉 = En|n〉.

Maximize S = −kB

∑
En<U

pn ln pn subject to the constraint
∑

En<U

pn = 1.

⇒ pn =
1

N<(U)
where N<(U) =

∑
En<U

. ⇒ S = kB ln[N<(U)].



[tex73] Classical ideal gas (microcanonical ensemble)

Consider a classical ideal gas of N atoms confined to an insulating box of volume V . The Hamil-
tonian of the system reflects the kinetic energy of 3N noninteracting degrees of freedom:

H =
3N∑
i=1

p2
i

2m
.

(a) Calculate the entropy S(U, V,N) in the microcanonical ensemble. Show that the result is the
Sackur-Tetrode equation:

S(U, V,N) =
5
2
NkB +NkB ln

[
V

Nh3

(
4πmU

3N

)3/2
]
.

(b) Derive the internal energy U = 3
2NkBT and the equation of state pV = NkBT from S(U, V,N).

Solution:



[tex74] Array of classical harmonic oscillators (microcanonical ensemble)

Consider an array of N 3-dimensional classical harmonic oscillators, representing a system of 3N
uncoupled degrees of freedom:

H =
3N∑
i=1

(
p2

i

2m
+

1
2
mω2q2

i

)
.

(a) Calculate the entropy S(U, V, N) of this system in the microcanonical ensemble.
(b) Derive the internal energy U(T, V,N), and the heat capacity C = (∂U/∂T )V N .

Solution:



[tex75] Quantum harmonic oscillators (microcanonical ensemble I)

Consider an array of N quantum harmonic oscillators:

H =
N∑

i=1

[
~ω

(
ni +

1
2

)]
, ni = 0, 1, 2, . . . .

(a) Calculate the entropy S(U, N) of this system in the microcanonical ensemble via combinatorics
as follows: Set U = U0 + M~ω, U0 = 1

2N~ω, M = n1 + · · · + nN . Next determine the number
N∆(M, N) of configurations (n1, · · · , nN ) for fixed values of M,N . Then relate S to N∆.
(b) Derive the internal energy U(T, N), and the heat capacity C = (∂U/∂T )N from S(U, N).

Solution:



[tex126] Quantum harmonic oscillators (microcanonical ensemble II)

Consider an array of N quantum harmonic oscillators:

H =
N∑

j=1

[
~ω
(
nj +

1
2

)]
, nj = 0, 1, 2, . . . .

(a) Calculate the entropy S(U,N) of this system in the microcanonical ensemble via saddle point
method as follows. Express the number of distinct microstate at energy U in the form N∆ =∑

n1
· · ·
∑

nN
δ(U−H) with the δ-function replaced by its Fourier integral. Then use the asymptotic

Laplace expression for the integral and evaluate it retaining only contributions that are significant
in the thermodynamic limit.
(b) Derive the internal energy U(T,N), and the heat capacity C = (∂U/∂T )N from S(U,N).

Solution:



[tex127] Quantum paramagnet (microcanoncal ensemble)

Consider an array of N noninteracting localized magnetic dipole moments mi produced by localized
electron spins in a paramagnetic insulator. In the presence of a magnetic field H pointing in z-
direction, the Hamiltonian of this system represents the Zeeman energy:

H = −
N∑
i=1

mi ·H = −H
N∑
i=1

mz
i = −h

N∑
i=1

σi.

where h = H/2 and σi = 2mz
i = ±1.

(a) Calculate the entropy S(E, h,N) of this system in the microcanonical ensemble via saddle
point method as follows. Express the number of distinct microstate at enthalpy E in the form
N∆ =

∑
σ1
· · ·

∑
σN

δ(E − H) with the δ-function replaced by its Fourier integral. Then use the
asymptotic Laplace expression for the integral and evaluate it retaining only contributions that
are significant in the thermodynamic limit.
(b) Calculate from S(E, h,N) an explicit expression for the enthalpy E(T, h,N) and derive from
it the magnetization M(T, h,N).

Solution:



Entropy of mixing revisited [tln50]

Consider two dilute gases in a rigid and insu-
lating box separated by a mobile conducting
wall as in [tln25]: N1 atoms on the left and
N2 atoms on the right.
At thermal equilibrium: N1/V1 = N2/V2.

pp T T

V1 V2N1 N2

The removal of the internal wall initiates the mixing of particles 1 and 2.

Is the process reversible or irreversible? The answer depends on whether
particles 1 and 2 are of the same kind (indistinguishable) or of a different
kind (distinguishable).

Mixing occurs without changes in any of the following quantities:

• total internal energy: U = U1 + U2,

• total volume: V = V1 + V2,

• total number of particles: N = N1 + N2.

Consider the Sackur-Tetrode formula for the entropy of an ideal gas [tex73]:

S(U, V,N) =
5

2
NkB + NkB ln

[
V

Nh3

(
4πmU

3N

)3/2
]

.

Distinguishable particles: irreversible process

Initial entropy: Sinit = S(U1, V1, N1) + S(U2, V2, N2)

Final entropy: Sfin = S(U1, V1 + V2, N1) + S(U2, V1 + V2, N2)

Entropy change: ∆S = N1kB ln
V1 + V2

V1

+ N2kB ln
V1 + V2

V2

> 0.

Indistinguishable particles: reversible process

Initial entropy: Sinit = S(U1, V1, N1) + S(U2, V2, N2)

Final entropy: Sfin = S(U1 + U2, V1 + V2, N1 + N2)

Entropy change: ∆S = 0.
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