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This paper reports the experimental demonstration of a coiled coaxial cable resonator capable of meeting the critical 

coupling condition using a reduced number of coils relative to previously reported coiled resonators. By introducing 

a second slot along the length of the device, a two-slot coiled coaxial cable resonator was fabricated and critical 

coupling observed at 22 turns. An additional device with one-slot, but otherwise identically constructed, was also 

fabricated. After 44 turns, the one-slot device had yet to reach critical coupling. An ultrahigh signal-to-noise ratio 

(greater than 70 dB) was observed at critical coupling of the two-slot device. This reduction in number of slots 

necessary to reach critical coupling, and the corresponding reduction of physical length of the device, makes this 

demonstration of the control of critical coupling a potentially important step towards the successful application of 

coiled coaxial cable resonators to microwave communication and robust sensing applications.  

 

I. INTRODUCTION 

Coaxial cable and optical fiber are two well-understood and ubiquitously utilized methods of 

guiding electromagnetic waves for telecommunication. These waveguides rely on identical 

fundamental electromagnetic theory. Engineering differences between the two technologies arise 

only as a result of the differing frequencies of the electromagnetic waves used by each 

technology, with infrared and microwave radiation guided by optical fiber and coaxial cable, 

respectively. As a consequence of these similarities, the recent application of established 

communication and sensing technologies within the optical regimes to analogous areas in 

microwave photonics have met with considerable success.
1-6

 

 

The fabrication of coaxial cables with periodic grating structures is a prime example of this 

trend.
1-4

 By adopting a structure similar to a fiber Bragg grating (FBG), coaxial cable Bragg 

gratings (CCBG) can be constructed with many of the same physical characteristics as their 



2 

 

optical counterparts, allowing for distributed strain and temperature sensing along the cable 

length, while avoiding problems of fragility inherent in optical fiber systems. Due to the fact that 

microwave wavelengths are orders of magnitude longer than those of infrared light, the size of 

these CCBG sensors must be significantly longer than a typical FBG (∼m vs. mm), limiting the 

number of reflection points that can be fabricated in a single CCBG. This constraint results in a 

substantially reduced signal-to-noise ratio (SNR) for a CCBG as compared to a FBG, limiting 

the technology’s utility as a multiplexed sensor or microwave filter.
6
 

 

A more recent breakthrough has significantly reduced this limitation. Using principles inspired 

by optical nanowire microcoil resonator (ONMR)
7
 and fiber ring resonator devices,

8, 9
 a coiled 

coaxial cable resonator (CCCR) has been shown to be capable of achieving an SNR hundreds of 

times greater that of a CCBG.
6
 A CCCR is constructed by coiling a length of coaxial cable in a 

spring-like geometry around a cylindrical core and milling a channel along one side of the coil, 

exposing the inner conductor core of the cable. This novel construction allows a fraction of the 

transmitted microwave energy within the device to couple to neighboring coils and has resulted 

in SNRs that rival those of an optical FBG. The critical coupling condition can be met by varying 

the number of coils of a CCCR. Using one slot to allow coupling between coils, it has been 

shown that critical coupling was achieved at 38 coils for a previously reported CCCR device.
6
 

 

While the overall size reduction from a CCCR over a CCBG is considerable, a reduction in the 

number of coils necessary to reach critical coupling, and thus overall length, will confer 

significant additional advantages to current CCCR technology. Chief among these benefits are 

reduced power loss per device, which allows a larger number of resonators to be multiplexed in 

series along a single cable, and the increased ease with which individual devices can be 
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integrated into microwave communication systems or embedded within larger structures for 

sensing applications. These are particularly important traits in structural health monitoring, an 

area where robust strain and temperature sensors would be particularly advantageous.
2, 3

 As a 

result, the development of CCCR devices with reduced geometries, while continuing to meet 

critical coupling conditions, is an important engineering goal. 

 

This manuscript describes a method of constructing a CCCR with this reduced geometry. By 

adding a second channel along the length of a CCCR, critical coupling is reached at a reduced 

number of cable turns relative to a similarly constructed one-slot CCCR, attributed to the fact 

that, equivalently, the coupling coefficient for a single turn in the two-slot CCCR increases. 

While changing the slot width of a one-slot CCCR device does result in a change in coupling 

coefficient, this change is periodic.
10

 Consequently, the addition of a second slot was 

investigated as a promising approach to increasing the effective coupling coefficient of a CCCR 

device. Experimental data from both a two-slot and a one-slot CCCR were collected and the 

results are presented below. Additionally, simulation data using a previously reported 

electromagnetic model for a CCCR device are in close agreement with experimentally observed 

device behavior. 

 

II. EXPERIMENTAL RESULTS 

In order to experimentally quantify the differing characteristics of a two-slot versus a one-slot 

CCCR, both types of devices were constructed and investigated. Figure 1 illustrates a general 

two-slot CCCR device schematic. The two-slot CCCR was constructed by wrapping a length of 

coaxial cable (RG-58) around an aluminum core 12.6 mm in diameter, creating a spring-like 

geometry 45 coils in length. A computer-controlled milling machine (Sherline Model 5400) 
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fitted with a 3/16 inch end mill was used to cut two slots along the length of the device. The two 

slots were positioned 180° apart across the coil diameter of the CCCR. This geometry allows the 

lengths between slots to be made approximately identical, avoiding the addition of a further 

phase-matching condition to the system. Differing relative slot positions will be systematically 

investigated in subsequent studies. Both slots were milled to approximately half of the cross-

sectional diameter of the coaxial cable, removing a portion of exterior insulator, outer conductor, 

interior dielectric layer, and exposing the inner conductor core. The two slots were milled 

incrementally; as the slot on side A was extended by a single coil length, the device was rotated 

and the slot on side B extended by the same distance. In this way, both slots advanced in step 

during fabrication and data collection, with the final slot lengths extending across 44 coils. 

 

FIG 1. Schematic of the two-slot CCCR device 
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A one-slot CCCR was constructed in a similar manner, using the same type and length of coaxial 

cable, metal core, number of coils, and slot depth and width. As with the two-slot CCCR, the slot 

along the one-slot CCCR device was milled to a length of 44 coils in total. 

 

Transmission spectral data were collected during the fabrication of both CCCR devices using a 

vector network analyzer (Agilent N3383A). At each coil-length slot extension, data were 

recorded across a span of 300 kHz to 6.0 GHz at 3201 linearly-spaced points with a 1.00 kHz 

intermediate frequency bandwidth (IFBW). 

 

FIG 2. Transmission spectra of both one-slot and two-slot CCCR devices as a function of slot length 

(number of turns) 

 

Figure 2 illustrates the transmission spectra recorded from each of the two CCCR devices as a 

function of slot length (number of turns) from 3.0 GHz to 4.2 GHz. Both CCCR devices exhibit a 

strong peak at approximately 3.6 GHz, which corresponds to the total linear distance of one 
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circulation around a single coil (5.6 cm). Critical coupling at this frequency was reached using 

the two-slot CCCR after 22 coils. Here, the peak at 3.606 GHz reached -72.01 dB relative to 

input power. At the same number of coils, the one-slot CCCR exhibited a peak at approximately 

the same frequency (3.583 GHz) but at only -27.76 dB relative to input power. Importantly, the 

peak level continued to drop for the one-slot CCCR as more coils were included, indicating 

continued undercoupling. In the case of the two-slot device, undercoupling was seen from 1 to 

21 slots, critical coupling at 22 slots, and overcoupling at ≥ 23 slots. Additionally, ripples are 

evident in the spectra of the two-slot CCCR device. These ripples are speculated to be the result 

of cable manufacturing artifact; by using higher-quality cable and increased manufacturing 

precision, these artifacts are anticipated to be reduced in further experimental tests. These results 

demonstrate that the introduction of a second slot during fabrication of a CCCR reduces the 

number of turns necessary to reach critical coupling. 

 

FIG 3. Power transmission ratios as a function of number of turns at both resonant frequency (3.606 GHz) 

and non-resonant frequency (3 GHz) of the two-slot CCCR 
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Importantly, power loss through the two-slot CCCR at non-resonance frequencies was only 

minimally increased as the slot number was increased. Figure 3 illustrates these results; as slot 

length increases, the loss at 3.000 GHz, a non-resonance frequency, increases by less than 1.4 dB 

over 26 coils (52 slot openings). Thus, cable transmission loss is the main contributor to loss 

through the CCCR, which is proportional to the length of the cable.  

 

III. THEORECTICAL MODELING AND SIMULATION RESULTS  

In order to theoretically justify the addition of a second slot as a method of reducing the overall 

length of a CCCR, a previously reported model by Huang et al. was adapted to simulate both 

one-slot and two-slot coiled resonator devices.
6
 This technique models the CCCR as an effective 

2 × 2 coupler and ring resonator in combination. The principal departure from the originally 

reported model that allows it to accommodate a two-slot device concerns the effective 

transmission coefficient. For a one slot model, 

���� �  ��,            (1) 

where teff is the effective transmission coefficient for a one-slot CCCR of n turns and t and is the 

transmission coefficient for a single coil turn. A two-slot CCCR contains two slots per coil turn. 

As a result, the equivalent coupling coefficient for one coil turn increases accordingly. 

Importantly, because the majority of microwave energy within the slot sections of the device 

remains within the dielectric material, the propagation velocity through both slot and connecting 

regions of the CCCR can be approximated as being identical, eliminating the need to model a 

propagation delay between the two slots. This approximation is further justified by the 

considerably smaller slot width relative to pitch length of the CCCR device. Therefore, in the 

case of a two-slot device, the effective transmission coefficient is defined as 

���� �  ���.           (2) 
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Using this modelling technique, simulation data for one-slot and two-slot CCCR devices were 

calculated. In the simulation, the transmission coefficient t was set to 0.995 at around 3 GHz, 

which was calculated by a commercial finite element EM software; the pitch, or linear distance 

of a single coil turn, was set to 5.6 cm; the loss per circulation was set as 0.9777; and the 

propagation velocity of the microwave energy in the coaxial cable was set to 2.0 × 10
8
 m/s. 

Modeling results were calculated for 3201 linearly-spaced frequencies from 300 kHz to 6 GHz 

and from 1 to 50 coils. 

 

FIG 4. Simulated transmission spectra for both one-slot and two-slot CCCR devices as a function of 

number of coil turns 

 

Figure 4 illustrates the simulated transmission spectra for the two CCCR devices as a function of 

number of coil turns. As expected, the two-slot CCCR reached critical coupling at a reduced 

number of slots (23 turns) as compared to the one-slot device (44 turns). The trend evidenced by 

the simulation results, that the critical coupling condition is met at fewer turns for a two-slot 
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CCCR relative to a one-slot device when all other characteristics are held constant, is in good 

agreement with experimental observation. 

 

IV. CONCLUSIONS AND DISCUSSION 

The experimental results and simulation data above indicate that the use of two slots in the 

fabrication of a CCCR reduces the number of coils necessary for the device to meet critical 

coupling condition relative to a single-slot CCCR, while maintaining ultrahigh SNR. This 

reduction in the number of coils, and the corresponding reduction in the overall length of the 

device, confers a number of considerable benefits to CCCR devices that make them increasingly 

attractive targets for further development and eventual application to communication and sensing 

applications in the microwave domain. 

 

Chief among these potential areas is the use of a CCCR device as an embedded, multiplexed 

strain and temperature sensor for structural health monitoring. Due to the substantially increased 

elasticity, and thus survivability, of coaxial cable as compared to optical fiber, CCCR devices 

hold particular promise as a method of monitoring elements of critical infrastructure. The 

practical benefit of this increased robustness is made particularly clear during times of natural 

disaster, when the need for accurate, real-time structural health information may be most acute. 

In this context, a reduction in the size of CCCR sensors confers two key advantages: 1) since loss 

along a coaxial cable is directly proportional to cable length, as evidenced by Figure 3, a 

reduction in the size of each CCCR allows for more devices to be multiplexed along the same 

cable while requiring no additional power to maintain a robust signal to noise ratio, and 2) 

reducing the dimensions of a CCCR allows it to be more easily embedded within a structural 

element without compromising that element’s structural integrity, a key benefit allowing CCCR 
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devices to be embedded within a greater variety of buildings and infrastructure. In this way, a 

reduction in the number of coils necessary to reach critical coupling within a CCCR has direct 

practical benefits to an area of sensing technology with considerable economic and societal 

benefit. 
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