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ASYMPTOTIC ANALYSIS AND REFLECTION PHOTOELASTICITY FOR THE
STUDY OF TRANSIENT CRACK PROPAGATION IN GRADED MATERIALS

NITESH JAIN AND ARUN SHUKLA

The behavior of a rapidly moving transient crack in functionally graded materials (FGMs) is investigated
theoretically and experimentally. First, a systematic theoretical analysis is presented for the development
of the transient elastodynamic local stress, strain, and displacement field expansions near a growing
mixed mode crack tip in FGMs. The crack propagation direction is assumed to be inclined to the di-
rection of the property variation. The displacement potential approach in conjunction with asymptotic
analysis is utilized to derive explicit expressions for stress, strain, and in-plane displacement fields. The
transient crack growth is assumed to include processes in which both the crack tip speed and the dynamic
stress intensity factor are differentiable functions of time. These stress fields are used to generate the
contours of constant maximum shear stress (isochromatics fringes) and the effect of transient crack
growth on these contours is discussed. To further understand the transient crack growth behavior, a
series of dynamic fracture experiments are performed with functionally graded material fabricated in-
house. The phenomenon of transition from a static crack to a dynamic mode I crack is examined in
these experiments. The full-field stress data around the crack is recorded using dynamic photoelasticity
and high-speed digital photography. Due to opaqueness of FGMs, birefringent coatings are employed
to obtain the full-field isochromatics around the crack tip. The stress field expansions developed in the
first part of the study are used to interpret the experimental observations. The results of the experiments
showed that the higher order transient expansion provides an accurate representation of crack tip fields
under severe transient conditions.

1. Introduction

Increasing multifunctional performance requirements in aerospace, power generation, microelectronics,
and bioengineering applications often demand properties that are unattainable with any single material.
Correspondingly, composite and layered materials are developed to invoke the desirable characteristic
of each constituent phase in order to meet such requirements. However, the internal stresses caused by
the elastic and the thermal property mismatch at an interface between two differing bulk materials can
mitigate the successful implementation of such composites. To address this problem, functionally gradi-
ent materials (FGMs) have been developed. FGMs accommodate a gradual transition of the properties
of different materials from one location to the other, such that the mismatch in mechanical and thermal
properties is minimized [Surendranath et al. 2003; Suresh and Mortensen 1998].

Keywords: functionally graded material, dynamic fracture, transient crack, asymptotic analysis, photoelasticity, high-speed
imaging.
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A fundamental understanding of the mechanics of crack formation, initiation, and growth is essential
for efficient design of critical components fabricated using FGMs. Several researchers have investigated
the behavior of embedded and edge cracks in graded materials subjected to quasistatic loading [Jin and
Noda 1994; Erdogan 1995; Gu and Asaro 1997; Chalivendra et al. 2003; Jain et al. 2004]. All these
studies concluded that the inverse square-root singularity at the crack tip is not affected by material
nonhomogeneities as long as the elastic modulus and Poisson’s ratio are sufficiently smooth functions of
spatial position. Although the stationary crack problem in FGMs has received considerable attention, less
is known about the behavior of a rapidly propagating crack in these materials. The problem of a crack
moving with a constant velocity in FGMs has been presented by [Atkinson and List 1978; Wang and
Meguid 1994; Nakagaki et al. 1998; Parameswaran and Shukla 1998; Marur and Tippur 2000; Rousseau
and Tippur 2001; Li and Weng 2002; Jain and Shukla 2004; Jain and Shukla 2006]. Recently, there has
been some work on the fracture mechanics of anisotropic functionally graded materials. Sladek et al.
[2005] proposed a meshless method based on the local Petrov–Galerkin approach for crack analysis in
anisotropic FGMs. Kim and Paulino [2004] presented an interaction integral formulation for evaluating
the elastic T-stress for a mixed mode crack in orthotropic nonhomogeneous materials. In most of these
investigations, it is presumed that the crack tip stress field depends upon the instantaneous crack velocity
and the instantaneous stress intensity factor. However, in many situations, reflecting stress waves pass
through the specimen constructively and destructively interfering with one another, and thus result in
a highly complex time-dependent stress intensity factor. Due to the nonhomogeneous nature of FGM
and resulting mathematical complexities, very few investigations on the transient dynamic response of
cracked FGMs have been reported in the literature [Zhang et al. 2003; Shukla and Jain 2004; Chalivendra
et al. 2003]. In all these investigations the crack is subjected to a single mode of loading, that is, either
an opening or a tearing mode. But from a practical viewpoint, strength-controlling flaws in load bearing
structures, in general, are expected to be inclined at random orientations to the applied principal stress.
Also, it has been reported in experimental and numerical studies that propagating cracks in FGMs can
follow inclined paths under various loading conditions due to spatial variation of properties in graded
materials [Li et al. 2000; Tilbrook et al. 2005; Abanto-Bueno and Lambros 2006]. The transient elasto-
dynamic solution for a crack growing in an arbitrary direction in FGMs is still not known. However, the
solution for a homogeneous material is presented in the work of [Freund and Rosakis 1992].

This paper provides a theoretical analysis for the derivation of transient, asymptotic, elastodynamic
near-tip fields for a crack growing in an arbitrary direction in an FGM. The transient elastodynamic
problem is formulated in terms of two displacement potentials, and an asymptotic analysis is performed to
develop explicit expressions for stress, strain, and in-plane displacement fields. In this context, transient
crack growth is understood to include processes in which both the crack tip speed and the dynamic
stress intensity factor are differentiable functions of time. These crack tip fields are needed to analyze
the full-field experimental data obtained from various experimental techniques such as photoelasticity,
Moiré interferometry, holographic interferometry, and coherent gradient sensing (CGS). The stress fields
developed in this paper are used to generate the contours of constant maximum shear stress (isochromatic
fringes) and the effect of the transient crack growth on these contours is discussed. This is followed by
a series of experiments to get further insight into the behavior of mode-I transient cracks in FGMs. The
full-field stress data around the propagating crack is recorded using dynamic photoelasticity and high
speed digital photography. Due to the opaqueness of FGMs, birefringent coatings are employed to obtain
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the full-field isochromatic fringes around the moving crack tip. A high speed camera capable of taking
200 million frames per second is used to record these isochromatic fringes. The stress field expansion
developed in the first part of the study is used to interpret these experimental observations, with the
conclusion that the higher order expansion provides an accurate representation of crack tip fields under
severe transient conditions.

2. Elastodynamic transient crack tip fields

2.1. Theoretical consideration. The variation of elastic and physical properties in FGMs is in general
limited to a single direction. At any given point in the material, the properties can be assumed to be the
same in all directions and hence, at a continuum level FGMs are isotropic nonhomogeneous solids. The
transient elastodynamic problem is formulated in terms of two displacement potentials and an asymptotic
analysis is performed to develop the stress, strain, and displacement fields around a propagating crack
in an FGM. The direction of transient crack propagation is assumed to be inclined to the direction of
property variation. The properties are assumed to vary exponentially with distance. When the crack is
inclined to the property gradation direction, the stress state near the crack tip is mixed mode, irrespective
of the far field loading.

2.2. Theoretical formulation. Consider a crack moving nonuniformly in an FGM as shown in Figure 1.
The original coordinate system is a spatially fixed Cartesian coordinate system X − Y . A moving co-
ordinate system x − y at the crack tip is now defined such that the crack velocity is in the x-direction.
Suppose that the crack propagates with a nonuniform speed, c(t), and the crack faces satisfy the traction
free boundary condition. Localized crack tip plasticity and three-dimensional effects are neglected in this
formulation. The shear modulus and mass density are assumed to vary exponentially in the X1 direction
as given in (1) and the Poisson’s ratio ν is assumed to be constant. The property gradation direction
forms an angle ϕ with the Y = 0 axis. We have

µ= µ0 exp(δX1), ρ = ρ0 exp(δX1), S =
λ

µ
, (1)

X

Y

X1

Y1
µ (X1)

?
x

y

c(t)

Figure 1. Propagating crack orientation with respect to the direction of property varia-
tion in a FGM.
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where µ and λ are the shear modulus and Lamé’s constant, µ0 and ρ0 are the shear modulus and mass
density at X = X1 = 0, and δ is the nonhomogeneity parameter, having the dimension of inverse length.
Equation (1) can be written in terms of (X, Y ) coordinates by using a simple transformation

µ(X, Y )= µo exp(αX +βY ), ρ(X, Y )= ρo exp(αX +βY ), (2)

α = δ cosϕ, β = δ sinϕ. (3)

The equations of motion for a plane problem in the absence of body forces in the fixed coordinate system
can be written as

σX X,X + σXY,Y = ρu,t t , σXY,X + σY Y,Y = ρv,t t , (4)

where σi j are in-plane stress components and u, v are in-plane displacements. The Hooke’s law for plane
elasticity problem can be written as

σX X = ((λ0 + 2µ0)u,X +λ0v,Y ) exp(αX +βY ),

σY Y = ((λ0 + 2µ0)v,Y +λ0v,Y ) exp(αX +βY ),

σXY = (u,Y +v,X )µ0 exp(αX +βY ).

(5)

Introducing the displacement potentials (8 and 9) as

u =8,X +9,Y , v =8,Y −9,X , (6)

substituting (6) into (5), and substituting the resulting equality into (4), the equation of motion can be
expressed in terms of displacement potentials 8 and 9 as

∂

∂X

(
(S + 2)∇28−

ρ0

µ0

∂28

∂t2

)
+
∂

∂Y

(
∇

29 −
ρ0

µ0

∂29

∂t2

)
+α

(
S∇

28+ 2
∂28

∂X2 + 2
∂29

∂X ∂Y

)
+β

(
2
∂28

∂X ∂Y
+
∂29

∂Y 2 −
∂29

∂X2

)
= 0,

∂

∂Y

(
(S + 2)∇28−

ρ0

µ0

∂28

∂t2

)
−

∂

∂X

(
∇

29 −
ρ0

µ0

∂29

∂t2

)
+α

(
∂29

∂Y 2 −
∂29

∂X2 + 2
∂28

∂X ∂Y

)
+β

(
(S + 2)

∂28

∂Y 2 − 2
∂29

∂X ∂Y
+ λ0

∂28

∂X2

)
= 0. (7)

Equations (7) can only be satisfied when (see [Jain and Shukla 2004])

(S + 2)∇28−
ρ0

µ0

∂28

∂t2 + (S + 2)
(
α
∂8

∂X
+β

∂8

∂Y

)
+

(
α
∂9

∂Y
−β

∂9

∂X

)
= 0,

∇
29 −

ρ0

µ0

∂29

∂t2 + S
(
α
∂8

∂Y
−β

∂8

∂X

)
+

(
α
∂9

∂X
+β

∂9

∂Y

)
= 0.

(8)

Now we introduce the moving crack tip coordinates x = X − ct and y = Y . The coordinate change
implies the substitutions

∂2

∂X2 =
∂2

∂x2 and
∂2

∂t2 = c2 ∂
2

∂x2 +
∂2

∂t2 − ċ
∂

∂x
− 2c

∂2

∂x∂t
, where ċ =

∂c
∂t
. (9)
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Using these transformations, Equation (8) becomes

α2
l
∂28

∂x2 +
∂28

∂y2 +

(
α
∂8

∂x
+β

∂8

∂y

)
−

1
S+2

(
α
∂9

∂y
−β

∂9

∂x

)
+

ρ0

µ0(S+2)

(
ċ
∂8

∂x
+ 2c

∂28

∂x∂t
−
∂28

∂t2

)
= 0,

α2
s
∂29

∂x2 +
∂29

∂y2 +

(
α
∂9

∂x
+β

∂9

∂y

)
+ S

(
α
∂8

∂y
−β

∂8

∂x

)
+

ρ0

µ0(S+2)

(
ċ
∂9

∂x
+ 2c

∂29

∂x∂t
−
∂29

∂t2

)
= 0,

(10)
where

αl =

(
1 −

ρ0c2

µ0(S + 2)

)1/2

, αs =

(
1 −

ρ0c2

µ0

)1/2

.

These equations reduce to the classical two-dimensional wave equations of motion if α and β equal zero.
In the case of nonhomogeneity, the equations lose their classical form and remain coupled in 8 and 9,
through the nonhomogeneity parameters α and β.

2.3. Asymptotic expansion of crack tip fields. At this point, we employ the standard asymptotic analysis
proposed in [Freund 1990]. We introduce coordinates η1 = x/ε, η2 = y/ε, where ε is a small arbitrary
positive parameter (0< ε < 1), used so that the region around the crack tip is expanded to fill the entire
region of observation. As ε becomes infinitely small, all the points in the x-y plane, except those very
near the crack tip, are pushed out of the field of observation in the η1-η2 plane, and the crack line occupies
the whole negative η1-axis. We assume that 8 and 9 can be expressed in powers of ε as

8(x, y)=8(εη1, εη2)=

∞∑
m=0

ε(m+3)/2φm(η1, η2),

9(x, y)=9(εη1, εη2)=

∞∑
m=0

ε(m+3)/2ψm(η1, η2).

(11)

The first term of series (m = 0) corresponds to the expected square root singular contribution proportional
to r−1/2 in the asymptotic near-tip stress field.

Substituting the assumed asymptotic form (11) into the governing Equation (10), we obtain two equa-
tions, in each of which the left-hand side is an infinite power series in ε and the right-hand side vanishes.
Since ε is an arbitrary number, the coefficient of each power of ε should vanish identically to satisfy
these resulting equations. Therefore, the governing equation reduces to a system of coupled differential
equations in 8 and 9. These equations have the general form

α2
l
∂2φm

∂η1
2 +

∂2φm

∂η2
2 +

(
α
∂φm−2

∂η1
+β

∂φm−2

∂η2

)
+

1
S + 2

(
α
∂ψm−2

∂η2
−β

∂ψm−2

∂η1

)
+

ρ0c1/2

µ0(S + 2)
∂

∂t

(
c1/2 ∂φm−2

∂η1

)
−

ρ0

µ0(S + 2)
∂2φm−4

∂t2 = 0,

α2
s
∂2ψm

∂η1
2 +

∂2ψm

∂η2
2 +

(
α
∂ψm−2

∂η1
+β

∂ψm−2

∂η2

)
+ S

(
α
∂φm−2

∂η2
−β

∂φm−2

∂η1

)
+
ρ0c1/2

µ0

∂

∂t

(
c1/2 ∂ψm−2

∂η1

)
−

ρ0

µ0(S + 2)
∂2ψm−4

∂t2 = 0, (12)
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where

φk, ψk =

{
φk, ψk for k ≥ 0,

0 for k < 0.

For m = 0 and m = 1, Equations (12) are not coupled in 8 and 9 and reduce to Laplace’s equation in
the coordinates η1, αlη2 or η1, αsη2 (similar to that for a homogeneous material having elastic properties
equal to the elastic properties of the FGM at the crack tip). Indeed, as will be seen, φ0 and ψ0 have the
same spatial structure in both transient and steady state cases. This is not so, however, for φm , ψm if
m > 1.

Since the crack is propagating at an angle to the direction of property gradation, the stress field near
the crack tip is a combination of both opening and shear modes (mixed mode). For the elastic solution,
the stress field related to the opening mode and the shear modes can be superposed to obtain the mixed
mode solution. The solutions for m = 0 and 1 are the same as for homogeneous material and can be
written as

φm(ρl, θl, t)= Am(t)ρ
(m+3)/2
l cos 1

2(m + 3)θl + Cm(t)ρ
(m+3)/2
l sin 1

2(m + 3)θl,

ψm(ρs, θs, t)= Bm(t)ρ(m+3)/2
s sin 1

2(m + 3)θs + Dm(t)ρ(m+3)/2
s cos 1

2(m + 3)θs

(13)

for m = 0, 1, where

ρl =
(
η2

1 +α2
l η

2
2

)1/2, tan θl =
αlη2

η1
, ρs =

(
η2

1 +α2
s η

2
2

)1/2, tan θs =
αsη2

η1
.

The solution (13) appears to be the same as for steady state crack growth. However, the two solutions
differ fundamentally in that the coordinates (ρl, θl) now depend upon time. It is the crack speed that
determines the degree of distortion of these coordinates, and the crack speed is now a function of time.
Also one should note that the coefficients of the series solution given in (13) are time dependent.

Using the definitions of dynamic stress intensity factors K ID and K IID for the opening and the shear
modes [Shukla and Chona 1987] and considering the crack face boundary conditions we get

A0(t)=
4(1 +α2

s )

3
(
4αsαl − (1 +α2

s )
2
) K ID(t)

µc
√

2π
, B0(t)= −

2αl

1 +α2
s

A0(t),

C0(t)=
8αs

3
(
4αsαl − (1 +α2

s )
2
) K IID(t)

µc
√

2π
, D0(t)=

1 +α2
s

2αl
C0(t).

(14)

The solution for higher orders of m can be obtained recursively (see [Jain and Shukla 2004]):

φ2 = A2(t)ρ
5/2
l cos 5

2θl −
1
4α

−2
l ρ

5/2
l

(
cos 1

2θl(αA0(t)+βC0(t))+ sin 1
2θl(αC0(t)−βA0(t))

)
−

2
5

αs

(k + 2)(α2
l −α2

s )
ρ5/2

s
(
cos 5

2θs(αB0(t)−βD0(t))− sin 5
2θs(αB0(t)+βD0(t))

)
+ ρ

5/2
l

(
1
6

(
Dl(A0(t))+ 1

2 B A
l (t)

)
cos 1

2θl −
1
8 B A

l (t) cos 3
2θl

+
1
6

(
Dl(C0(t))+ 1

2 BC
l (t)

)
sin 1

2θl +
1
8 BC

l (t) sin 3
2θl

)
,
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ψ2 = B2(t)ρ5/2
s sin 5

2θs −
1
4α

−2
s ρ5/2

s
(
cos 1

2θs(αB0(t)+βD0(t))+ sin 1
2θs(αB0(t)−βD0(t))

)
+

2
5

kαl

(α2
l −α2

s )
ρ

5/2
l

(
cos 5

2θl(αC0(t)−βA0(t))− sin 5
2θl(αA0(t)+βC0(t))

)
+ ρ5/2

s

(
1
6

(
Ds(B0(t))+ 1

2 B B
s (t)

)
sin 1

2θs +
1
8 B B

s (t) sin 3
2θs

+
1
6

(
Ds(D0(t))+ 1

2 B D
s (t)

)
cos 1

2θs −
1
8 B D

s (t) cos 3
2θs

)
. (15)

The coefficients appearing in this solution are defined in the Appendix.

2.4. Stress, strain, and displacement fields. The stress, strain, and displacement fields around the crack
tip can now be obtained using displacement potentials (8 and 9) found in the previous section. Detailed
expressions for the stress, strain, and displacements are not included here for brevity, but they are provided
in an online supplement to this paper. The authors can supply these expressions in machine readable
form upon request.

2.5. Discussions of solutions. To get an insight into the effects of transient terms on the dynamic fracture
process, contours of constant maximum shear stress (isochromatics) and contours of constant first stress
invariant (isopachics) are generated for mixed mode loading conditions. The asymptotic representation
of crack tip stress and displacement fields contain coefficients An(t), Bn(t), Cn(t), and Dn(t), which can
be related to fracture parameters such as stress intensity factor and nonsingular stress components as in
(14). The contours are generated for assumed values of the dynamic stress intensity factors (coefficient
A0 and C0), whereas the higher order coefficients A1, A2, C1, C2, B1, B2, D1 and D2 are assumed to be
zero. However, the nonhomogeneity and transient specific parts of the higher order terms, that have A0,
B0, C0 and D0 as the coefficients, are retained. The typical values of material properties and material
thickness used in generating contours are as follows: Poisson’s ratio = 0.3, shear modulus at the crack tip
µc = 1.5 GPa, density at the crack tip ρc = 1200 kg/m3, and thickness t = 0.01 m. The nonhomogeneity
parameter α for plotting these contours is obtained by fitting an exponential curve to the property variation
profile of the laboratory-fabricated FGMs [Jain and Shukla 2006]. The nonhomogeneity parameter α for
FGM fabricated in this study is 0.57. The crack velocity used in generating all the contours is 650 ms−1.
This choice of velocity is made on the basis of available experimental data on velocities that are typically
observed for this FGM [Jain and Shukla 2006].

2.5.1. Isochromatic fringe patterns. Isochromatic fringe patterns obtained in photoelasticity represent
contours of constant maximum shear stress and their generation is governed by the stress-optic law

N fσ
2h

= τmax =
σ1 − σ2

2
=

√(σx − σy

2

)2
+ τ 2

xy, (16)

where fσ is the material fringe value, N is the isochromatic fringe order and h is the thickness of the
specimen. Equation (16) is used to generate the isochromatic fringe patterns around the crack tip in
FGMs. In generating these contours the crack is assumed to be on the negative x-axis and the crack
tip is located at (0, 0). Also, the direction of crack propagation is assumed to be towards the positive
x-axis. Figure 2 shows the effect of the rate of change of mode-I stress intensity factor (d K ID(t)/dt) on
contours of constant maximum shear stress for mixed mode loading around the crack tip corresponding



602 NITESH JAIN AND ARUN SHUKLA

Rf

Rb

d K ID/dt = 0 d K ID/dt = 105 MPa m1/2 s−1

d K ID/dt = 106 MPa m1/2 s−1

Figure 2. Effect of the rate of change of mode-I stress intensity factor on the contours
of constant maximum shear stress around the crack tip in an FGM (α = 0.57, K ID(t)=
1 MPa m1/2, K IID(t)= 1 MPa m1/2, c = 650 ms−1, dc/dt = 0). The front and rear apogee
radii are marked in part (a) with R f and Rb, respectively.

to α = 0.57, K ID = K IID = 1.0 MPa m1/2, and c = 650 ms−1. As observed in [Dally and Shukla 1979]
the rate of change of K ID at crack initiation could be of the order of 105 MPa m1/2 sec−1, the values
of d K ID(t)/dt are varied over six orders of magnitude for generating the contours. The fringe order
increases as the crack tip is approached, with very high fringe orders in the close vicinity of the crack
tip. This is a direct consequence of the stress singularity that exists at the crack tip. As d K ID(t)/dt
increases, the fringes in front of the crack tip decrease in size and number, and the reverse happens for
fringes behind the crack tip. This effect can be quantified in terms of increase in apogee radius (see
Figure 2a) of a given fringe.
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Figure 3. Variation of apogee radii of the third order isochromatic fringe as a function
of (a) rate of change of mode-I stress intensity factor, and (b) crack tip acceleration.

The front and rear apogee radii of the third fringe order are determined from isochromatic fringe
patterns and are plotted in Figure 3a as functions of d K ID(t)/dt . The front apogee radius decreases from
20.7 mm to 5.7 mm as d K ID(t)/dt increases from 0 to 106 MPa m1/2 s−1. The corresponding increase
in the rear apogee radius is from 8.2 mm to 19.1 mm. The dependence of the fringe radius on the rate of
change of mode-I stress intensity factor is nonlinear; a rapid change in the front and rear apogee radii
are observed at higher values of d K ID(t)/dt .

An additional consequence of the variation of the rate of change of mode I stress intensity factor is
its effect on the tilt and shape of the isochromatic fringe contours surrounding the crack tip, as observed
in Figure 2. As d K ID(t)/dt increases the fringes on the front side of the crack tip bend towards the
direction of crack propagation and the fringes on the rear side bend away from the crack faces.

Figure 3b and Figure 4 show data obtained for a crack propagating in an FGM under different values
of crack acceleration. The value of dc/dt is varied over eight orders of magnitude. (Dally and Shukla
[1979] showed that the rate of change of velocity at crack initiation could be of the order of 107 ms−2 in
their work with homogeneous materials.) Figure 4 shows isochromatic fringes for dc/dt = 106, 107 and
108 ms−2. The changes in fringe size and shape until crack tip accelerations of 106 ms−2 are reached are
negligible. For dc/dt above 106 ms−2, as the crack acceleration increases, the front and rear fringe loops
decrease in size. Figure 3b shows the variation of the front and the rear apogee radii of the third order
fringe as a function of crack tip acceleration. It can be seen that the effect of dc/dt is more pronounced
at higher crack tip accelerations.

3. Experiments

To investigate the expediency of the analysis presented in this work, a sequence of dynamic fracture ex-
periments under mode-I conditions has been performed. In doing so, the phenomenon of transition from
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(a) dc/dt =1e6 m.s
-1 dc/dt = 106 m/s2 (b) dc/dt =1e7 m.s

-1dc/dt = 107 m/s2

(c) dc/dt =1e8 m.s
-1dc/dt = 108 m/s2

Figure 4. Effect of the crack tip acceleration on contours of the constant maximum
shear stress around the crack tip in an FGM (α = 0.57, K ID(t)= 1 MPa m1/2, K IID(t)=
1 MPa m1/2d K ID(t)/dt = 0, c = 650 ms−1).

a static crack to a dynamic crack is studied. Dynamic photoelasticity along with high-speed photography
is utilized to get the full field data around the crack tip during the transition.

3.1. Materials. The FGMs for this study were prepared as a particulate composite with continuously
varying particle volume fraction along a single dimension. An unsaturated polyester resin (MR 17090,
Ashland Chemical Company) was used as the matrix material. This highly cross-linked thermosetting
polymer is ideal for fracture studies due to its relatively brittle nature. Cenospheres (LV01-SG, Sphere
Services Inc.) particles with an average diameter of 127µm were used as the filler material in the
fabrication of the FGMs. These cenospheres, obtained from the fly ash of thermal power plants, are
hollow spheres made of aluminum silicates.
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FGM specimens were fabricated using a procedure developed in [Parameswaran and Shukla 2000].
The cenospheres have a low specific gravity of 0.67, compared to 1.18 for the resin. When the resin-
cenosphere mixture is poured into the mold, the top layer of the mixture which is rich in cenospheres
gets poured first and fills the bottom layer of the mold. Subsequently, the cenospheres diffuse towards
the top of the mold due to buoyancy. The resin takes approximately 4 to 5 hours for gelation and once it
gels and starts curing, further movement of spheres is arrested by the increased viscosity. This results in
a casting with a resin rich region in the bottom, a cenosphere rich region at the top, and an intermediate
region with continuously varying cenosphere content.

Detailed mechanical and physical characterization of the FGMs fabricated by the above procedure can
be found in [Jain and Shukla 2004].

3.2. Specimen geometry and loading. A modified single edge notch tension (M-SENT) specimen as
shown in Figure 5 is employed in this study. A first crack tip (starter crack) was made such that the
subsequent crack propagation is increasing fracture toughness direction. An INSTRON 5585 apparatus
is used to load the M-SENT specimens to a predetermined K Q (static stress intensity factor) before
the first crack tip is initiated by drawing a sharp knife-edge across the tip. After initiation the crack
propagates across the ligament, breaking a crack detection gauge before coming to rest temporarily at
the second crack tip. Breaking the crack detection gauge triggers an electronic circuit that causes the
high-speed camera to commence taking a sequence of photographs of the isochromatics associated with
the moving crack. At the second crack tip, the value of the stress intensity factor begins to increase

150

Second

crack-tip

Coating

25

FGM

280

Coating

Ligament 

First

crack-tip

75

Figure 5. Specimen geometry for investigation of the transient nature of the crack tip.
All dimensions are in mm.
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Figure 6. Photoelastic configuration for testing FGM specimens.

until it becomes sufficiently large to produce reinitiation of the crack. The bluntness of the second crack
tip is controlled so that the crack remains at rest for a relatively long time (approximately 200µs) and
reinitiation occurs at high values of K Q .

3.3. Birefringent coatings. In this study we use a split birefringent coating technique [Der and Barker
1978], in which the coating is placed on both sides of the specimen, and a small distance (2 mm) away
from the anticipated crack path. Birefringent coatings consisted of 3 mm thick polycarbonate sheets with
vacuum deposited aluminum on the back surface. The sheets are cut to desired dimensions while using
liberal amounts of cooling fluid to ensure minimum development of residual stresses. Extra fast-setting
epoxy adhesive is used to bond the sheets to the specimens. Details on the validation of this technique
can be found in [Jain and Shukla 2004].

3.4. High speed real time imaging of the transition from a static to a dynamic crack. A schematic of
the experimental setup for testing M-SENT FGM specimens is shown in Figure 6. High speed digital
imaging is employed along with dynamic photoelasticity to obtain real time, full field quantification
of the transition from a static to a dynamic crack. A circular polarizer is placed in front of the split
birefringent coatings to form a dark field circular polariscope. Power Light 2500DR xenon flash lamps
were used as light sources to illuminate the specimen. The xenon flash lamps are a broadband source of
light and therefore a monochromatic filter was placed just before the camera to ensure that the imaged
isochromatic fringe patterns correspond to a single wavelength of light (546 nm). Due to stress-induced
birefringence in the photoelastic coatings, this arrangement results in the formation of isochromatic fringe
patterns during the failure process.
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Images of the isochromatic fringes are captured using an Imacon 200 ultra-high speed digital camera.
This CCD based camera provides 16 independently programmable digital images of dynamic events up
to a maximum framing rate of 200 × 106 frames/s. The camera is operated with interframe times of
6µsec (170,000 frames/sec) so as to record the increase in K at the stationary crack prior to initiation,
and the dynamic value of K (t) immediately after the initiation.

3.5. Photoelastic analysis. When the load is applied, the surface displacements of the specimen at the
specimen-coating interface are transmitted to the coating. Observing the coating in a reflection polar-
iscope generates a fringe pattern, which is related to the surface strains in the specimen. The method to
determine the stress intensity factor is based on strain optic law applied to photoelastic coating, and on
the fact that there is perfect strain transfer between specimen and coating (that is, εS

1 − εS
2 = εC

1 − εC
2 ).

We have

εS
1 − εS

2 = εC
1 − εC

2 = FC R
N fε
2hC = FC R

1 + νC

EC

N fσ
2hC , (17)

where fσ is the material fringe constant associated with the incident light wave length, N is the isochro-
matic fringe order, h is the thickness of the coating, ν is Poisson’s ratio, and superscripts S and C refer
to specimen and coating, respectively.

FC R is a reinforcement correction factor that accounts for the fact that the coating carries a portion of
the load, causing the strain on the specimen to be reduced by a certain amount. FC R essentially depends
upon the relative thickness and properties of the coating and specimen [Dally and Riley 2005].

In the derivation of the crack tip fields, the FGM is assumed to be an isotropic nonhomogeneous solid,
which is justified because the size of the three-dimensional zone at the crack tip (thickness/2 = 6.3 mm)
is orders of magnitude larger than the cenosphere diameter (127µm). The strain expressions obtained
in Section 2.4 are substituted in (17) and the resulting equation is solved using an over-deterministic
nonlinear least squares method to obtain the fracture parameters. This involves fitting of a six parameter
theoretical solution, which includes K I , K I I , and σox (T -stress) and so on, to field data taken from the
isochromatic loops.

4. Experimental results

A series of experiments were conducted with K Q ranging from 1.0 to 1.25 MPa m1/2. Figure 7 shows
a set of six frames recorded during the transition from a static to a dynamic crack. Isochromatics from
each of the frames are analyzed using the aforementioned photoelastic procedure to obtain the stress
intensity factor history. The crack remains stationary until frame 6 and starts moving afterwards. The
size of the isochromatics decreases substantially as soon as the second crack starts to move, indicating
the reduction in the value of stress intensity factor around the crack tip. These isochromatics are analyzed
using the procedure described in the previous sections to obtain the dynamic stress intensity factor. The
photoelastic fringes were regenerated using the calculated fracture parameters from data analysis. A
good agreement between the regenerated fringes and the experimental fringes were observed.

Figure 8 shows the extension of the second crack with time. Measurements were repeated five times
and the 95% confidence interval obtained using the Student’s t-distribution is also shown. As the crack
starts to move, the velocity of the crack continuously increases until it reaches a certain value and then
stays constant. The crack initiation time is estimated to be 26.1µsec, from curve fitting.
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Figure 7. Isochromatic fringe patterns during crack initiation at a second crack tip.
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Figure 8. Crack tip position as a function of time.
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Figure 9. Crack tip acceleration as a function of time.

The crack propagation profile and time of initiation are subsequently used for calculating crack acceler-
ation. The acceleration profile is plotted in Figure 9 and shows that crack acceleration is 1.4 × 107 m/sec2

just after initiation and decreases afterwards. It is plausible that crack acceleration is even higher as crack
extension occurs by void coalescence and the crack jumps from zero to finite velocity.

Figure 10 shows the variation of the stress intensity factor with time. The stress intensity factor
increases monotonically at the arrested crack until K Q becomes large enough to produce initiation at
the second crack tip. The first frame was captured after 4µsec, which is approximately the time for
the shear wave to clear the near field region (r = 5 mm). It can be seen that the stress intensity factor
decreases rapidly from K Q = 1.38 MPa m1/2 to K (t) = 0.97 MPa m1/2 in 4µsec. The stress intensity
factor decreases further to 0.88 MPa m1/2 after which it shows monotonic increase.
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Figure 10. Stress intensity factor as a function of time.
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To investigate the effect of transient higher order terms, analysis is also performed neglecting the
transient higher order terms. The stress intensity factor history thus obtained using the steady state
solution is also shown in Figure 10. The average error introduced by neglecting transient higher order
terms is as high as 20%. It is also observed that after 60µsec, when the crack tip acceleration decreases
considerably, the instantaneous stress intensity factor obtained with transient fields and steady state fields
are in good agreement. This suggests that it is essential to include transient higher order terms in the
stress field expansion in order to obtain an accurate value of the instantaneous stress intensity factor
during highly transient phenomena.

Figure 10 also shows the stress intensity factor history obtained using just the homogeneous stress
field expansion. As expected, the error induced by just using homogeneous terms for analyzing the
isochromatics in FGMs can be as high as 30% in the estimation of the stress intensity factor.

5. Concluding remarks

Motivated by the transient nature of the elastic fields in the vicinity of a growing crack tip, an approx-
imation of the near-tip field in the form of an asymptotic expansion has been introduced. The analysis
is performed for a crack growing in an arbitrary direction in an FGM. The higher order terms in the
expansions take into account the recent history of the stress intensity factor and crack motion. The
solution thus obtained is used to examine the effect of the transient terms on the near-tip stress fields.
This is accomplished by discussing the effect of crack tip acceleration and rate of change of the stress
intensity factor on synthetically generated contours of constant maximum shear stress and constant first
stress invariant. To investigate the expediency of the analysis presented in this work, a sequence of
dynamic fracture experiments has been performed. In doing so, the phenomenon of transition from a
static crack to a dynamic crack is utilized. It is found that during this transition the crack tip accelerations
can be as high as 108 m/sec2. The full field data obtained from these transition experiments were analyzed
using the analytically derived equations. It is found that not including the transient higher order terms in
the stress field expansion during highly transient phenomena might give rise to errors as high as 20% in
the estimation of the stress intensity factor.

Appendix: Coefficients occurring in the expressions of φ2 and ψ2, pages 600–601.

Dl(A0(t))= −
3c1/2ρ0
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d
dt
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2α4
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)2
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