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ABSTRACT 

 Hemlock forests in the eastern United States are threatened by two sessile 

invasive herbivores: the elongate hemlock scale, Fiorinia externa Ferris (Hemiptera: 

Diaspididae; ‘EHS’) and the hemlock woolly adelgid Adelges tsugae Annand 

(Hemiptera: Adelgidae; ‘HWA’). EHS and HWA occupy similar feeding guilds but 

have enormously different effects on tree health. EHS reduces hemlock growth and 

causes needle discoloration and loss, but only causes tree mortality under high EHS 

densities (McClure 1980b). In contrast, HWA has devastated stands of hemlocks on 

the east coast of the United States. Although EHS reduces fitness of the tree and can 

kill already stressed trees (McClure 1980), HWA is known to kill hemlocks in as few 

as four years (McClure 1991). The mechanism by which HWA and EHS kill trees is 

not yet elucidated and little is known as to the physiological effects each invasive has 

on hemlock. For the first part of my master’s research, I focused on differences in 

abnormal wood production among uninfested trees, EHS-infested trees and HWA-

infested trees at the branch level. Specifically, I measured false ring density, ring 

growth and earlywood:latewood ratios in the two most recently deposited growth 

rings. Branches from HWA-infested trees had 30% more false ring than branches from 

EHS-infested trees and 50% more than branches from uninfested trees. In contrast, 

growth and earlywood:latewood ratios did not differ among treatments. This result 

suggests that two invasive insects from similar feeding guilds have differing effects on 

false ring formation in eastern hemlock. These false rings may be the product of a 

systemic plant hypersensitive response to feeding by HWA on hemlock braches. If 

false rings are responsible for or symptomatic of hemlock water stress, this may 



 

 

 

provide a potential explanation for the relatively large effect of HWA infestations on 

tree health.  

 For the second part of my master’s thesis I looked at the impact of HWA on 

eastern hemlock anatomy and physiology. Specifically, I looked at growth and 

production of new buds on terminal and side branches in hemlock infested with and 

without HWA. We found that trees infested with HWA have significantly less new 

growth and fewer new buds. Additionally, I measured water potential, photosynthesis 

and stomatal conductance in trees infested with and without HWA during diapause 

and immediately after HWA resumes feeding. HWA undergoes summer diapause 

while still attached to eastern hemlock and it is unknown if this ‘inactive’ period 

affects tree health.  We found that actively feeding HWA exacerbate reductions in 

photosynthesis and stomatal conductance, but not water potential. The presence of 

HWA, irrespective of feeding activity, decreases eastern hemlock water potential, 

photosynthesis, and stomatal conductance. Additionally, water potential and stomatal 

conductance were negatively correlated with HWA density. These data indicate that 

HWA negatively impacts tree health even when not actively feeding and depleting 

carbon reserves. These results also suggest that HWA-infested trees are water stressed, 

shedding light on possible mechanisms behind HWA-induced death.
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PREFACE 

 

 The first chapter of this thesis is being submitted in manuscript form. Chapter 

one, “False ring formation in eastern hemlock branches: Impacts of hemlock woolly 

adelgid and elongate hemlock scale”, has been published in the journal Environmental 

Entomology with co-authors Laura Radville and Evan Preisser. Chapter two, “Impacts 

of hemlock woolly adelgid (Adelges tsugae) on eastern hemlock (Tsuga canadensis) 

physiology during and after diapause”, will be submitted to the journal Entomologia 

Experimentalis et Applicata with co-authors Sara Gomez and Evan Preisser.  
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ABSTRACT 

 

Herbivores can alter plant physiology through the induction of abnormal wood 

formation. Some insect herbivores induce the formation of false rings, a band of thick-

walled latewood cells within the earlywood portion of the tree ring that reduces water 

transport. Hemlock woolly adelgid (Adelges tsugae), and elongate hemlock scale 

(Fiorinia externa) are invasive insects that feed on eastern hemlock (Tsuga 

canadensis). Adelges tsugae has a greater effect on tree health than F. externa, but the 

mechanism underlying their differential effect is unknown. We explored their effects 

by assessing growth ring formation in branches of trees that had been experimentally 

infested for four years with A. tsugae, F. externa, or neither insect. We measured false 

ring density, ring growth, and earlywood:latewood ratios in the two most recently 

deposited growth rings. Branches from A. tsugae-infested trees had 30% more false 

rings than branches from F. externa-infested trees and 50% more than branches from 

uninfested trees. Branches from F. externa-infested trees and control trees did not 

differ in false ring formation. Radial growth and earlywood: latewood ratios did not 

differ among treatments. Our results show that two invasive herbivores with piercing-

sucking mouth parts have differing effects on false ring formation in eastern hemlock. 

These false rings may be the product of a systemic plant hypersensitive response to 

feeding by A. tsugae on hemlock stems. If false rings are responsible for or 

symptomatic of hemlock water stress, this may provide a potential explanation for the 

relatively large effect of A. tsugae infestations on tree health.  
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INTRODUCTION 

 

Herbivores can alter plant physiology directly through tissue and nutrient 

removal and indirectly through the induction of increased chemical (Bezemer et al. 

2003, Kaplan et al. 2008) and/or morphological defenses (Levin 1973). Although such 

responses vary between herbivores, alterations in plant physiology are especially 

likely with invasive or other species that reach high densities on their host plants 

(Sakai et al. 2001). Although herbivore-induced changes to plant structure are most 

commonly thought to involve architectural shifts resulting from bud/branch mortality 

or altered height/radial increments (Traw and Dawson 2002, Sopow et al. 2003), 

herbivory may also induce changes in woody plant tissues in the stems of conifers and 

other woody plants (Fernandes 1990).  

 In conifers, false rings are thick-walled xylem cells that appear as dark bands 

of latewood flanked on both sides with earlywood (Copenheaver et al. 2006). False 

rings occur within an annual ring but, although they resemble the end of an annual 

ring, do not occur on a yearly or seasonal basis. Normal rings are composed of large, 

thin-walled cells formed early in the growing season and small, thick-walled cells 

formed later in the year. These true rings are characterized by an abrupt increase in 

cell size at the start of the new growing season, while false rings are identified by a 

slow increase in cell diameter and decrease in cell wall thickness adjacent to the false 

ring (Copenheaver et al. 2006). Like compression wood, false rings have thick-walled 

xylem cells that increase resistance to water flow (Bolton and Petty 1978). False rings 

are associated with water stress and insect infestation, and have been observed in 
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conifers such as Pinus sylvestris and P. banksiana (Hollingsworth and Hain 1992, 

Cherubini et al. 2003, Copenheaver et al. 2006). Drought may induce false rings by 

reducing photosynthesis and stopping cambial activity during the summer (Cherubini 

et al. 2003). During periods of water stress, small, thick-walled cells are formed in the 

wood; if conditions become more favorable, subsequent cells will be larger with 

thinner walls (Wimmer et al. 2000). This alternation in cell size may appear as a false 

ring. In support of this, Wimmer et al. (2000) found that false rings were associated 

with periods of alternating wet and dry months. 

Although not all herbivores induce changes in ring formation (Priya and Bhat 

1997, Heijari et al. 2010), certain insects have been linked to their occurrence. 

Increased densities of the balsam woolly adelgid (Adelges piceae Ratz.) are correlated 

with the formation of rotholz rings, a type of abnormal wood similar to compression 

wood, in Fraser fir (Abies fraseri) (Hollingsworth and Hain 1992), and rotholz rings 

are only found near areas of adelgid feeding. Since these rings contain cells that do not 

conduct water and balsam woolly adelgid feeding is also associated with an increase in 

non-conducting heartwood (Arthur and Hain 1986), the resulting water stress may 

eventually kill the tree (Hollingsworth and Hain 1991). The formation of rotholz rings 

may defend against low-density adelgid infestations by forming necrotic tissue around 

the feeding site that isolates and starves the insects (Arthur and Hain 1985). With 

many points of adelgid feeding, however, so much of the stem may become non-

conductive that the increased water stress actually kills the tree (Arthur and Hain 

1985, McClure 1988). 
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The hemlock woolly adelgid (Adelges tsugae Annand (Hemiptera: Adelgidae)) 

is an invasive hemipteran herbivore that is causing high mortality of eastern hemlock 

(Tsuga canadensis) across the eastern United States (Orwig et al. 2002). Adelges 

tsugae was first reported in Virginia in the 1950’s (Souto et al. 1996) and has since 

spread rapidly along the east coast, now ranging from northern Georgia to Maine 

(McClure and Cheah 1999, USFS 2008). Adelges tsugae completes two generations 

per year in its invaded range (McClure 1989), and feeds on eastern hemlock at the 

base of the needle petiole by inserting its stylet bundle into xylem ray parenchyma 

tissue (Young et al. 1995). Feeding by Adelges tsugae devastates hemlock stands; 

mature hemlocks infested with A. tsugae can die within four years of infestation 

(McClure 1991), and seedlings appear similarly vulnerable (Preisser et al. 2011).  

The elongate hemlock scale (Fiorinia externa Ferris (Hemiptera: Diaspididae)) 

is another invasive sessile herbivore that feeds on eastern hemlock (McClure 1978). 

Fiorinia externa arrived in New York in the early 1900’s but remained in the mid-

Atlantic until the 1970’s, when its range and population density began rapidly 

increasing. It can now be found in over 14 states from northern Georgia to southern 

Maine (McClure 1978, Preisser and Elkinton 2008, Abell 2010). Fiorinia externa 

produces two generations per year (as it does in its native range) in southern states, but 

only one generation per year in New England (McClure 1978; Abell 2010). It feeds on 

mesophyll cells from its location on the underside of the needles and reduces hemlock 

growth while causing needle discoloration and loss (McClure 1980b). Although A. 

tsugae infestation is usually lethal to hemlocks, F. externa infestation only results in 

tree death with heavy, sustained infestations (McClure 1980b, 1991). Experimental 
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and survey work has confirmed that A. tsugae is much more harmful than F. externa to 

eastern hemlock (Preisser and Elkinton 2008, Preisser et al. 2008, Miller-Pierce et al. 

2010).  

Although little is known about why these species differ in their impact, there is 

evidence that A. tsugae induces an especially pronounced hypersensitive response in 

the tree (Radville et al. 2011). The hypersensitive response is a plant defense response 

that increases the levels of reactive oxygen species such as superoxide anions, 

hydroxyl radicals, and hydrogen peroxide (H2O2), thereby inducing cell death in 

herbivore-colonized areas in order to isolate and starve feeding organisms (Heath 

2000, Liu 2010). The cue for this response is often the presence of a foreign substance 

indicative of herbivore feeding (reviewed in (Cornelissen et al. 2002), and the ensuing 

localized tissue death is a particularly effective response to sessile herbivores (Karban 

and Baldwin 1997). This response has been shown to reduce plant damage caused by 

balsam woolly adelgids, bark beetles, and a host of other herbivore species (Fernandes 

1990, Ollerstam and Larsson 2003). In the case of A. tsugae, Radville et al. (2011) 

found that infestation caused a larger localized hypersensitive response (measured as 

an increase in H2O2 concentrations) than was present in either F. externa-infested or 

uninfested trees. Although both F. externa and A. tsugae produced a localized 

hypersensitive response, A. tsugae infestation also caused a systemic hypersensitive 

response not observed in the other treatments. Hypersensitivity has been linked to 

abnormal wood formation and water stress in other adelgid-conifer interactions 

(Arthur and Hain 1985), and Gómez et al. (2012a) found that A. tsugae-infested trees 

had increased levels of proline, an amino acid associated with drought conditions. 
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Recent research (Walker-Lane 2009) on mature hemlocks in the field found 

significantly more false rings in A. tsugae-infested hemlocks than in hemlocks treated 

with insecticide. Walker-Lane (2009) also determined that the A. tsugae-infested 

hemlocks were drought stressed, but was unable to establish whether A. tsugae caused 

this or was simply more abundant on drought-stressed trees. Because of the insects’ 

differing ability to induce a systemic hypersensitive response in eastern hemlock, we 

hypothesize that A. tsugae infestation will induce a greater degree of false ring 

formation than will infestation with F. externa or neither insect (control). Through this 

research, we hope to provide insight into why feeding by A. tsugae is much more 

damaging than feeding by F. externa. 

METHODS 

 

In April 2007, we collected uninfested T. canadensis saplings 0.7-1 m in 

height from Cadwell Forest (Pelham, MA), a forest research facility managed by the 

University of Massachusetts, Amherst. This site was past the northern range limit of 

both A. tsugae and F. externa at the time the plants were collected, and careful 

examination prior to collection confirmed that neither insect was present on any of the 

saplings or in the surrounding stand. The trees were planted at East Farm, a research 

facility managed by the University of Rhode Island (Kingston, R.I.), in a rectangular 

grid in an open field. The experiment utilized a randomized complete block design, 

with each row containing each treatment. The experimental grid originally contained 

eight rows (spaced 4 m apart) and thirteen trees per row (spaced 2 m apart); most of 

the trees in each row were utilized in an unrelated experiment (Miller-Pierce et al 
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2010). Within each row, the trees used in our experiment were randomly assigned to 

one of three treatments: A. tsugae only, F. externa only, or neither herbivore (control). 

Trees in the herbivore treatments were inoculated using hemlock foliage infested with 

A. tsugae or F. externa each spring from 2007-2011, a total of five yearly infestations, 

using standard protocols (Butin et al. 2007). Details on the experimental design, 

including the source locations of the herbivore populations used in the inoculation, the 

precise timing of infestation, and the infestation protocols are reported elsewhere 

(Miller-Pierce and Preisser 2010). Insect densities in each treatment were recorded in 

the fall and spring of each year in order to confirm that each insect was present 

throughout the experiment (Fig. 1). To minimize cross-contamination between 

treatments, each tree was enclosed in a 1 x 1 x 2 m (length x width x height) plastic 

PVC pipe frame cage covered with mosquito netting (100 holes/cm
2
 mesh size; Barre 

Army-Navy, Barre VT). Although the experiment began with a fully-balanced design, 

over the four-year study a combination of transplant shock, herbivore-induced 

mortality, and cross-contamination reduced the number of replicates per treatment to 

eight no-herbivore trees (controls), seven F. externa-only trees, and six A. tsugae-only 

trees, for a total of 21 experimental replicates.  

On May 31, 2011, we collected one branch (~0.6 cm diam) per cardinal 

direction from each of the 21 experimental trees (84 branches total). Following their 

removal from the tree, each branch was immediately submerged in DI water. After 24 

hours, we mounted the base of the branch on a sliding microtome and cut two 60µm 

sections per branch. Sections were placed in a 0.1% safranin O stain solution for three 

minutes, rinsed for two minutes and mounted on slides. We counted the number of 
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false rings formed in the last two years of branch growth (2009 and 2010) using a light 

microscope. Our decision to assess the most recent two years of branch growth was 

motivated by the fact that although branches varied in age, all of them had at least two 

distinct growth rings. Each growth ring consisted of both earlywood and latewood; the 

two wood types were easily distinguishable by their distinctive colors and by the 

smaller, thick-walled cells characteristic of latewood. False rings were easily 

identifiable using standard diagnostic characteristics; i.e., a gradual change from 

earlywood to a band of latewood with earlywood on the opposite side (Copenheaver et 

al. 2006). After counting the false rings in the 2009 and 2010 growth rings, we 

photographed each section (Fig. 2) and used imageJ 1.44 (Abràmoff et al. 2004) to 

measure the total number of annual growth rings, the branch radius, and the thickness 

of the earlywood and latewood in the 2009 and 2010 tree rings of each branch. 

Because every section was asymmetrical, we measured branch radius in three different 

axes and averaged them to calculate a mean branch radius. We followed the same 

procedure to calculate the mean thickness of the 2009 and 2010 growth rings and the 

mean thickness of latewood in the 2009 and 2010 tree rings of each branch. We 

calculated the width of each ring’s earlywood by subtracting the latewood thickness 

from the mean ring width, and the earlywood:latewood ratio by dividing the thickness 

of each ring’s earlywood by its latewood. 

Statistical analysis: The unit of replication for our analyses was the mean 

response per tree per treatment (21 replicates). Data were square-root transformed 

when necessary to improve normality; variances were homogenous between 

treatments. When analyzing data on branch diameter and total annual growth rings, we 
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used ANOVA to test for the main effects of treatment (A. tsugae-only, F. externa-

only, and control) and location within the experimental grid (included as a blocking 

variable), and for their two-way interaction. All other data were analyzed using 

repeated measures ANOVA to test for the main effects of treatment, location, time 

(either the 2009 or 2010 growth ring), and their interactions. We performed means 

separation tests, where appropriate, using Tukey’s HSD. Statistical analyses were 

performed using JMP 9.0.0 (SAS 2010). When initial p-values are significant, we 

report both the initial p-value as well as the p-value corrected for multiple 

comparisons at α=0.05 using step-up FDR, a sequential Bonferroni-type procedure 

(Benjamini and Hochberg 1995).  

RESULTS 

 

Branch size and age: There were no treatment-level differences in either 

branch radius or age, measured as the number of annual growth rings (Tables 1, 2A-

B). Branches averaged 0.61+0.036 [SE] cm in diameter and had similar numbers of 

annual growth rings. There was no effect of tree location within the experimental grid 

(Table 2A-B), and no significant treatment*location interactions. 

False ring density: Adelges tsugae-infested branches had significantly more 

false rings than either F. externa-infested or control branches (Table 3A; Fig. 3). 

Adelges tsugae-infested trees averaged 0.96 false rings/growth ring, significantly more 

than in either control or F. externa-infested trees (0.48 and 0.66, respectively; Tukey’s 

HSD, P < 0.05). In contrast, F. externa-infested trees did not differ from the 

uninfested controls (Fig. 3). There was a marginally significant effect of tree location 
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within the experimental grid (Table 3A), but no significant change in false ring density 

across time (Table 3A). All two- and three way interactions were nonsignificant 

(Table 3A). 

Earlywood, latewood, and ring width: There were no treatment-level 

differences in the width of earlywood (Tables 1, 3B), latewood (Tables 1, 3C), or the 

annual rings (Tables 1, 3D). There was also no effect of treatment on the 

earlywood:latewood ratio (Tables 1, 3E). These four variables did not change over 

time and were unaffected by tree location within the experimental grid (Tables 1, 3B-

E). There were no significant two- or three-way interactions (Tables 1, 3B-E).  

DISCUSSION 

 

While both insects have piercing-sucking mouth parts, infestation by F. 

externa and A. tsugae had markedly different effects on wood formation. Branches 

from A. tsugae-infested trees had a greater number of false rings than branches from 

uninfested trees (Fig. 3). Branches infested with A. tsugae had 50% more false rings 

than control branches and 30% more false rings than F. externa-infested trees. In 

contrast, infestation by F. externa did not significantly increase false ring formation. 

Despite the difference in false ring formation, there were no between-treatment 

differences in annual ring width or earlywood and latewood production. 

The presence of false rings in all three treatments suggests that environmental 

factors can influence false ring formation in eastern hemlock. Dry conditions and 

drought stress have been associated with the formation of false rings in several other 

conifer species (Wimmer et al. 2000, Copenheaver et al. 2006, Hoffer and Tardif 
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2009). Although our experiment was not set up to test this hypothesis, our results 

nonetheless suggest that eastern hemlock may respond similarly. The highest densities 

of false rings occurred in summer 2010, a period that was much warmer and drier than 

summer 2009 (NOAA 2011). In 2009, Kingston RI experienced its 3
rd

 wettest summer 

(43.1 cm of rainfall) since 1895, with an average temperature of 20.5 °C and seven 

days in which the temperature exceeded 30 °C. In contrast, summer 2010 had one-

third less rainfall (28.2 cm) but was the hottest summer since 1895, with an average 

temperature of 22.4 °C and seventeen days over 30 °C (NOAA 2011). Although it 

cannot be tested, the substantial climatic differences between the two summers 

provide a plausible explanation for the overall increase in the number of false rings in 

2010.  

Although environmental parameters are undoubtedly important, A. tsugae-

infested branches still contained significantly more false rings than branches from 

either F. externa or control trees. This finding corroborates observations made on 

mature eastern and Carolina hemlock (Walker-Lane 2009). Walker-Lane (2009) noted 

an association between false ring formation and A. tsugae infestation, but was unable 

to determine whether this association was correlative or causative. By experimentally 

infesting trees with A. tsugae and F. externa and observing the resulting changes in 

wood anatomy, our work confirms that A. tsugae infestation is responsible for an 

increase in false ring formation.  

Perhaps the most likely explanation for our findings is that the increased 

number of false rings in A. tsugae-infested branches is a consequence of plant 

hypersensitivity, a defense mechanism against sessile herbivores and pathogens 
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(Fernandes 1990). The hypersensitive response induces cell death by increasing the 

reactive oxygen species (Heath 2000), which isolates the herbivore or pathogen and 

prevents it from establishing a suitable nutritional site (Wong and Berryman 1977, 

Fernandes 1990, Bonello et al. 2006). At low herbivore densities, a successful 

hypersensitive response can increase plant resistance; if herbivores survive and 

increase to high densities, however, the response could become lethal to the host plant 

(Bi and Felton 1995, Bonello et al. 2006). Radville et al. (2011) demonstrated A. 

tsugae infestation stimulated both a localized and systemic hypersensitive response in 

needles adjacent to A. tsugae settlement, while F. externa infestation only induced a 

localized response. In North American fir trees, the formation of rotholz rings is 

associated with the hosts’ hypersensitive response to feeding by the balsam woolly 

adelgid (Arthur and Hain 1985). In such cases, the increased production of non-

conductive rotholz rings may serve to isolate the wounded tissue where the balsam 

woolly adelgid feeds. While this is an effective defense at low densities, high adelgid 

densities cause the stem to become non-conductive and can kill the tree (Arthur and 

Hain 1985). While the preceding applies specifically to rotholz and it is unknown 

whether false rings are related to rotholz formation, false rings are also known to be 

indicative of drought stress, and recent research suggests A. tsugae-infested hemlocks 

have lower transpiration rates and increases in δ
13

C, both symptoms of drought stress 

(Walker-Lane 2009). In addition, Gómez et al (2012a) showed that A. tsugae-infested 

trees contained higher levels of proline, an amino acid indicative of water stress, than 

uninfested control trees. In such a scenario, feeding by A. tsugae would cause a 

systemic hypersensitive response that alters wood anatomy, disrupting water transport 
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and increasing water stress. It is also possible that A. tsugae infestation may directly 

(i.e., without the involvement of plant hypersensitivity) increase water stress in eastern 

hemlocks. If A. tsugae infestation intensifies the degree of water stress experienced by 

hemlocks, the resulting drought-like conditions may increase false ring formation.  

The most likely explanation for the fact that F. externa did not induce false 

ring formation involves this species’ feeding location. While A. tsugae feeds at the 

base of the needle petiole on xylem ray parenchyma cells (Young et al. 1995), F. 

externa feeds directly on the underside of the needle on mesophyll cells (McClure 

1980b). Although located in close physical proximity to each other, F. externa is thus 

a foliar feeder while A. tsugae is a stem feeder. While defensive responses to F. 

externa could be confined to foliar tissue, similar responses to A. tsugae feeding would 

be much more likely to affect cambial growth (and thus water transport). This 

argument is compatible with the idea that, by virtue of its role as a stem feeder, A. 

tsugae induces a systemic hypersensitive response in cambial tissue that ultimately 

affects false-ring formation and water transport. The decreased response of the plant to 

F. externa feeding could also be due to species-specific differences in A. tsugae and F. 

externa densities. Adelges tsugae has two generations per year in New England, while 

F. externa has only one (McClure 1978). It should be noted, however, that whole-tree 

A. tsugae densities were consistently lower than F. externa densities for the duration 

of the study (Figure 1), a fact that suggests even low A. tsugae densities induce a 

greater degree of false ring formation than higher F. externa densities. Although 

unproven, it has also been suggested that a component of A. tsugae saliva is ‘toxic’ 

(Young et al. 1995) and that it injects chemicals during feeding that adversely affect 
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plant health (Preisser and Elkinton 2008). If true, this toxic substance could also help 

explain why A. tsugae induces false ring formation and F. externa does not. 

Despite finding differences in the number of false rings, we did not find 

differences in other variables. This fact may be due to our relatively low degree of 

within-treatment replication; although we began our experiment with a higher degree 

of replication, sapling mortality and cross-contamination over the four-year course of 

the experiment reduced our numbers. Another issue concerns microclimate: although 

all of our hemlocks were enclosed in fine-mesh mosquito netting that acted as shade 

cloth, it is nonetheless likely that they experienced hotter and drier conditions than 

hemlocks growing in the shaded forest understory. While our decision to grow the 

trees at East Farm was motivated by the need for deer fencing and accessibility to a 

water source (trees were watered in the summer of 2007 to reduce transplant-related 

mortality), our findings highlight the need for similar experiments under closed-

canopy conditions.  

The occurrence of false rings in A. tsugae-infested trees may provide insight 

into the detrimental effect of A. tsugae on tree health. Regardless of the mechanism 

behind the false ring formation, their presence restricts water flow. False rings are 

anatomically similar to compression wood in that they both have thick-walled xylem 

cells which increase resistance to the flow of water through xylem tissue (Bolton and 

Petty 1978). Compression wood conducts water less efficiently than does normal 

wood (Spicer and Gartner 1998), and there is also evidence that insect-induced false 

rings impede water transport. Mitchell (1967) found that trees infested by the balsam 

woolly adelgid absorbed and transported less dye (a proxy for water) than uninfested 
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subalpine and grand fir trees. Rotholz rings appeared to inhibit dye transport and 

infested trees had half as many conducting tree rings (Mitchell 1967). Puritch (1971) 

showed that balsam woolly adelgid interfered with the water conduction in grand fir, 

evident in the reduced permeability of sapwood in balsam woolly adelgid-infested 

trees. Since balsam woolly adelgid and its hosts are closely related to A. tsugae and 

eastern hemlock, it seems reasonable to assume that false rings formed in A. tsugae-

infested eastern hemlock will correlate with changes in water transport efficiency (an 

idea first suggested by Walker-Lane 2009). If the false rings produced in A. tsugae-

infested trees are indicative of water stress, this may explain why A. tsugae has such a 

severe impact on tree mortality.  
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TABLES 

Table 1. Mean branch radius, number annual growth rings, earlywood width in 2009 

and 2010 growth rings, latewood width in 2009 and 2010 growth rings, ring width and 

earlywood: latewood ratio in 2009 and 2010 growth rings (± 1 SD) of uninfested trees, 

F. externa-infested trees, or A. tsugae-infested trees. There were no significant 

differences across treatments in all variables.  

  Control F. externa A. tsugae 

Branch radius (cm) 0.313 (0.074) 0.296 (0.050) 

0.290 

(0.078) 

Number of annual growth 

rings 4.792 (2.340) 5.097 (1.777) 

4.964 

(1.666) 

Earlywood width 2009 (cm) 0.041 (0.023) 0.034 (0.015) 

0.037 

(0.023) 

Earlywood width 2010 (cm) 0.054 (0.029) 0.050 (0.018) 

0.052 

(0.029) 

Latewood width 2009 (cm) 0.050 (0.022) 0.039 (0.020) 

0.037 

(0.017) 

Latewood width 2010 (cm) 0.063 (0.030) 0.056 (0.025) 

0.055 

(0.027) 

Ring width 2009 (cm) 0.091 (0.033) 0.073 (0.024) 

0.074 

(0.031) 

Ring width 2010 (cm) 0.117 (0.035) 0.105 (0.025) 

0.108 

(0.037) 

Earlywood: Latewood 2009 0.956 (0.751) 1.171 (0.958) 

1.110 

(0.626) 

Earlywood: Latewood 2010 1.100 (0.859) 1.190 (0.852) 

1.233 

(0.864) 
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Table 2: ANOVA table for the treatment effects on branch size (Panel A) and age 

(Panel B). 

 

A. Branch radius         

Test 

Exact 

F 

Numerator 

DF 

Denominator 

DF Prob>F 

Treatment 0.287 2 15 0.755 

Location 0.026 1 15 0.874 

Treatment*Location 0.181 2 15 0.836 

       

B. Annual growth 

rings         

Treatment 0.099 2 15 0.906 

Location 3.039 1 15 0.102 

Treatment*Location 0.735 2 15 0.496 
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Table 3: rm-ANOVA table for the effects of treatment, location, and time on false 

ring density (Panel A), earlywood width (Panel B), latewood width (Panel C), radius 

width (Panel D), and earlywood: latewood ratio (Panel E).  

      

A. False Ring Density         

Test 

Exact 

F NumDF DenDF Prob>F 

Treatment 7.125 2 15 0.007 

Location 3.430 1 15 0.084 

Treatment*Location 0.892 2 15 0.431 

Time 0.276 1 15 0.607 

Time*Treatment 0.129 2 15 0.880 

Time*Location 0.040 1 15 0.844 

Time*Treatment*Location 0.042 2 15 0.959 

       

B. Earlywood Width         

Treatment 0.208 2 15 0.815 

Location 1.443 1 15 0.248 

Treatment*Location 1.391 2 15 0.279 

Time 1.488 1 15 0.241 

Time*Treatment 0.025 2 15 0.976 

Time*Location 0.603 1 15 0.450 

Time*Treatment*Location 0.472 2 15 0.633 

       

C. Latewood Width         

Treatment 0.692 2 15 0.516 

Location 0.049 1 15 0.828 

Treatment*Location 1.132 2 15 0.348 

Time 2.317 1 15 0.149 

Time*Treatment 0.279 2 15 0.760 

Time*Location 0.787 1 15 0.389 

Time*Treatment*Location 1.639 2 15 0.227 

       

D. Annual Ring Width         

Treatment 0.596 2 15 0.564 

Location 0.364 1 15 0.556 

Treatment*Location 0.206 2 15 0.816 

Time 1.894 1 15 0.189 

Time*Treatment 0.151 2 15 0.861 

Time*Location 1.286 1 15 0.275 

Time*Treatment*Location 1.482 2 15 0.259 
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E. Earlywood:Latewood 

Ratio         

Treatment 0.125 2 15 0.884 

Location 1.267 1 15 0.278 

Treatment*Location 2.086 2 15 0.159 

Time 0.154 1 15 0.700 

Time*Treatment 0.419 2 15 0.665 

Time*Location 0.074 1 15 0.789 

Time*Treatment*Location 0.199 2 15 0.822 
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FIGURES 

 

 

Figure 1: Densities of the hemlock woolly adelgid A. tsugae (left axis, triangular 

symbols) and the elongate hemlock scale F. externa (right axis, square symbols) at the 

whole-tree level in the A. tsugae-only and F. externa-only treatments over the course 

of the experiment. March sampling was conducted prior to yearly tree inoculations and 

measures the number of surviving overwintered adults in each treatment. Gray bars 

indicate the approximate formative period for the 2009 and 2010 annual growth rings; 

the space between the bars corresponds to the winter period of hemlock dormancy. 

NOTE: These data were initially presented in online resource 1 in Gómez et al 

(2012a), and are reprinted here to confirm that insects were present in each treatment 

throughout the experiment. 
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Figure 2: Panel (A): Cross-section of T. canadensis branch. Earlywood is 

distinguishable by larger thin-walled earlywood cells (located in the left side of each 

growth ring) and latewood is distinguishable by smaller thick-walled latewood cells 

(located in the right side of each growth ring. Panel (B): Cross-section of T. 
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canadensis branch with false ring (indicated by arrow) located to the left of the true 

ring. The false ring is a diffuse band of latewood flanked by earlywood. In contrast, 

the true ring (located to the right of the indicated false ring) is identified by the abrupt 

alteration from latewood cells in the prior years’ growth to earlywood cells. Panel (C): 

Cross-section of T. canadensis branch with multiple false rings (indicated by arrows). 

All photographs were taken using a PixeLink PL-A662 camera attached to an 

Olympus SZX12 microscope at 400x magnification. 

 

Figure 3: Mean + 1 SE false rings per treatment in each of the 2009 and 2010 annual 

growth rings. Branches from trees in the A. tsugae-only treatment had significantly 

more false rings than branches from trees in either the F. externa-only or control 

treatments. 
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ABSTRACT 

 

Sap-feeding insects have negative impacts on tree growth and physiology but 

little is known about impacts of sap-feeding insects on tree performance when these 

insects are in diapause. Some insects diapause directly on a host plant and the effect of 

inactive insect presence is unknown.  Adelges tsugae (Annand Hemiptera: Adelgidae), 

the hemlock woolly adelgid (HWA), is a sap-feeding insect that undergoes diapause 

during the summer attached to hemlock. HWA is an invasive insect rapidly killing 

Tsuga canadensis (L. Carrière), eastern hemlock trees in eastern North America. Our 

study is the first to look at the effect of HWA on eastern hemlock growth and 

physiology during diapause and immediately after HWA resumes feeding. We found 

that actively feeding HWA exacerbate reductions in photosynthesis and stomatal 

conductance, but not water potential. Interestingly, the presence of HWA, irrespective 

of feeding activity, decreases eastern hemlock growth, water potential, photosynthesis, 

and stomatal conductance. Additionally, water potential and stomatal conductance 

were negatively correlated with HWA density. These data indicate that HWA 

negatively impacts tree health even when not actively feeding and suggests that HWA-

infested trees are water stressed, shedding light on possible mechanisms behind HWA-

induced death.  

 

INTRODUCTION 

 

Many sap-feeding insects have long lasting physiological impacts on their host 

plant. These physiological changes are driven by both changes in plant nutrients 

(McClure 1980a, Masters and Brown 1992) and the production of secondary 
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chemicals (Karban and Myers 1989, Haukioja et al. 1990). By removing nutrients 

from the plants’ xylem or phloem, sap-feeding insect herbivores reduce plant growth, 

decrease photosynthesis rates and decrease plant reproduction (Candolfi et al. 1993, 

Meyer 1993). Sap-feeding insects are detrimental to trees (Vranjic and Gullan 1990, 

Smith and Schowalter 2001), yet there is minimal literature that quantifies the  impact 

of sap-feeding herbivores on woody species (reviewed in Zvereva et al. 2010). 

Conifers may be especially susceptible to sap-feeders because unlike deciduous trees 

that store resources in their roots, stems, and other tissues inaccessible to sap feeders, 

evergreens allocate more storage to foliage (Chapin et al. 1990, Krause and Raffa 

1996, Hester et al. 2004). The lack of such stored resources makes conifers vulnerable 

to herbivore attacks and in some cases, intense sap-feeding events can even result in 

tree death (Fernandes 1990, Furuta and Aloo 1994, Paine 2000).  

The invasive non-native hemlock woolly adelgid (Adelges tsugae Annand 

Hemiptera: Adelgidae) is a specialist sap-feeding insect currently decimating eastern 

hemlock (Tsuga canadensis (L.) Carrière), a foundation species in eastern North 

American forests. Feeding occurs through the insertion of the stylet bundle at the base 

of a needle into the ray parenchyma tissue (Young et al. 1995). Once HWA selects a 

feeding place, it remains sessile throughout its entire life cycle. HWA can kill mature 

hemlocks within four years of infestation (McClure 1991). As eastern hemlock stands 

disappear, they are replaced by deciduous hardwood species such as birch (Orwig and 

Foster 1998, Catovsky and Bazzaz 2000). This disappearance has major impacts on 

ecosystem processes that can result in the regional homogenization of forest structure 
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(Ellison et al. 2005) and declines of bird (Tingley et al. 2002) and invertebrate (Snyder 

et al. 2002) biodiversity (but see Ingwell et al. 2012).  

HWA has a spring and a summer generation in its invaded range and each 

generation passes through four larval instars before becoming adults. The spring 

generation completes its life cycle between April – June and lays eggs that become the 

summer generation. The summer generation hatches in July and remains on hemlock 

until the following April when the cycle starts again (McClure 1989). While the spring 

generation feeds continuously throughout their shorter life cycle, the summer 

generation enters diapause in July immediately after hatching. Summer diapause in 

HWA is primarily induced by temperature (Salom 2001). The summer generation 

stays dormant until October, when HWA break diapause and resume feeding 

throughout the winter until April.  

Diapausing insects undergo a period of arrested development characterized by 

metabolic depression (Triplehorn and Johnson 2005). Although diapause is often 

associated with winter, summer diapause also occurs in a wide range of insect taxa 

(reviewed in Masaki 1980). Insects in the Adelgidae experience diapause (Havill and 

Foottit 2007), but only two species (Adelges tsugae and Adelges piceae) are known to 

go through summer diapause (Amman 1962, McClure 1989). Summer diapause is 

induced by a range of environmental factors that include photoperiod and temperature. 

In addition to abiotic influences, biotic factors such as host plant quality also affect the 

induction and length of insect diapause (Dalin and Nylin 2012). For example, leaf 

toughness influences the likelihood of diapause in the swallowtail butterfly Byasa 

alcinous (Takagi and Miyashita 2008). Hunter and McNeal (1997) found that host 
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plant species and the nutritional content of the diet influences the induction of, and 

mortality during, diapause in the lepidopteran herbivore Choristoneura rosaceana. 

While many studies focus on the effect of the plant host on the insect in diapause, the 

question remains whether the presence of a diapausing insect impacts host-plant 

physiology and performance. 

 The hemlock-HWA interaction provides an ideal system to explore the impact 

of sap-feeding herbivores on trees during and after diapause on their host plant. This is 

because HWA experiences summer diapause with its stylet imbedded at the base of 

hemlock needles. The aim of this study was to determine how HWA impacts hemlock 

performance during diapause and active feeding. Specifically, we assessed hemlock 

growth during the tree growing season, when HWA from the spring are feeding. Once 

the summer generation emerged and entered diapause (which coincides with the end 

of the host plant’s growing season) we measured physiological plant responses such as 

water potential, photosynthesis, and stomatal conductance. These responses were 

measured again immediately after HWA resumed feeding.  

METHODS 

 

 Study Site: In April 2011, one-year hemlock trees were purchased from Van 

Pines (West Olive, MI, USA) and planted in a grid in a randomized complete block 

design at the Kingston Wildlife Research Station (Kingston, RI). There were two 

treatments: HWA-infested (n=12-15) and control (no insect; n=12-15). Subsequently, 

in April 2011 and 2012, experimental trees were inoculated with hemlock branches 

infested with HWA. Control trees received uninfested branches following a standard 
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protocol (Butin et al. (2007). Treatments were randomly assigned within each row of 

the grid and each row contained every treatment. Each sapling was enclosed in a 

cylindrical wire cage (0.3-m diameter, 0.9-m height) covered by a mesh bag (Agribon-

15, Johnny’s Selected Seeds, Waterville, ME, USA; 90% light transmission) to 

prevent cross contamination.  

 Growth Measurements: We marked two terminal branches and two side 

branches of each HWA-infested tree (n=15) and control tree (n=15). For each marked 

branch, we measured length of new growth starting at the first sight of bud break 

(April 28, 2012) and counted number of secondary buds (starting on June 15). We 

measured growth every two weeks from the start date and ended on July 30, 2012 

(when hemlocks ceased to put on new growth). 

 Water Potential: On September 8 and October 27, 2012 we measured pre-

dawn shoot water potential on 12 randomly chosen trees per treatment in the HWA-

infested and control treatments. We chose to take physiological measurement (water 

potential and gas exchange) in the autumn for the following reasons: (1) eastern 

hemlock photosynthesize year round (Hadley 2000); (2) it took until the late 

summer/early fall for foliage to fully develop; and (3) HWA aestivate during the 

summer months, and we wanted to compare impacts of HWA feeding vs. HWA 

presence alone (no feeding). Between 4:00-5:30 am on each date, we collected one ~5 

cm cutting from a terminal branch from each tree, placed in a bag with a wet paper 

towel, and immediately took it back to the lab in a cooler. Prior to sampling we 

conducted HWA density counts on sampled branches. To take water potential 

readings, each branch was placed in the pressure chamber of a Scholander pressure 
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bomb (3005 Plant Water Status Console, Soil Moisture Equipment, Santa Barbara, 

CA, USA) and we recorded the pressure at which xylem appeared visible at the tip of 

the branch under a magnifying glass. 

 Gas Exchange: We measured gas exchange on a terminal branch (2012 

growth) on each tree used to quantify water potential. Measurements were conducted 

between 9:00-11:00 am on September 9 and October 26, 2012. In branches from 

HWA-infested trees, we counted the number of HWA present/ per cm on the sampled 

foliage. After each measurement, foliage inside the leaf chamber was excised, placed 

on a white piece of paper, and photographed; we quantified total leaf area using 

imageJ 1.44 software (Abràmoff et al. 2004). To determine gas exchange rates we 

used a CIRAS-2 portable photosynthesis system (PP systems, Haverhill, MA, USA) 

with a 2.5 cm
2 

leaf chamber and a CIRAS-2 LED light source of 1500 µmolm
-2

s
-1

, a 

CO
2
 concentration of 390 ppm, air flow rate at 350 cm

3
s

-1 
and leaf temperature of 25° 

C.  

 Statistical Analyses: All statistical analyses were performed using JMP 10.0 

with each data point being the mean response variable per tree per sampling date. We 

used repeated-measures ANOVA with treatment and branch type (terminal or side) for 

branch growth and number of secondary buds. We used repeated-measures ANOVA 

to analyze the main effects of treatment and time, and the treatment*time interaction, 

on the following variables: water potential, net photosynthesis, stomatal conductance, 

and evaporation. We used linear regression to assess the correlation between HWA 

density and water potential, photosynthesis, and stomatal conductance for both time 

points. We checked all data for normality, sphericity and homogeneity of variance and 
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log transformed water potential data in order to meet ANOVA assumptions. For 

analyses that did not meet the assumptions of sphericity, we report univariate 

Greenhouse-Geisser corrected p-value is reported. The critical P value used in this 

study was P < 0.05. 

RESULTS 

 

 Growth: By the end of the growing season, terminal branches on control trees 

were 41% longer than HWA-infested terminal branches (Figure 1A). In contrast, 

HWA infestation significantly affected side branch growth: side branches on control 

trees were 57% longer than on HWA-infested trees (Figure 1B). Insect treatment had a 

significant effect on growth (F1,52=7.16, P=0.010), as did tissue type (F1,52=16.49, 

P<0.001).  The significant time*treatment interaction (F6,312=136.77, P=0.0078) 

suggests that HWA presence was more harmful later in the growing season. There was 

also a significant time* tissue type interaction (F6,312=12.67, P<0.001), but no 

time*treatment*tissue interaction. Control trees also had more new buds on both 

terminal and side growth (F1,52=12.34, P=0.0009; Figures 1C,D, respectively). 

Additionally, terminal branches put on more secondary buds than side branches 

(F1,52=23.78, P<0.001). The number of buds increased over time (F3,156=2.52,  

P<0.001) and there were no time*treatment, time*treatment*tissue interactions. There 

was a time*tissue interaction (F3,156=5.22, P=0.003) suggesting that terminal growth 

put on more secondary buds later in the growing season. 

 Water Potential: Water potential was significantly lower in HWA-infested 

branches (F1,20=11.36, P=0.003; Figure 2). Water potential changed over time 

(F1,20=7.93, P=0.011), but there was no time*treatment interaction (F1,20=0.02, 
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P=0.900). On both dates, there was a significant negative correlation between HWA 

density and water potential (September: F1,35=7.38, P=0.010; October: F1,21=9.55, 

P=0.006). 

 Gas Exchange: Net photosynthetic rates and stomatal conductance were lower 

in HWA-infested trees (F1,22=7.70 and 14.75, P=0.011 and <0.001 respectively; 

Figures 3A,B) compared to control trees. Photosynthesis and stomatal conductance 

were greater in October (F1,22=37.89 and 111.04, respectively, both P<0.001). There 

was a significant time*treatment interaction for both gas exchange variables 

(F1,22=9.43 and 11.35, P=0.006 and 0.003, respectively). There was no relationship 

between HWA density and photosynthesis for either September (F1,21=1.06, P=0.314) 

or October (F1,22=4.02, P=0.057). There was a negative correlation between HWA 

density and stomatal conductance for both September (F1,21=6.38, P=0.020) and 

October (F1,22=7.18, P=0.013).  

DISCUSSION 

  

 Diapause, a period of arrested growth and metabolic depression (Hahn and 

Denlinger 2011), allows insects to survive in otherwise-unsuitable environments 

(Andrewartha 1952). Insect diapause can occur at any stage in insect development and 

in locations that include soil, leaf litter, and on a host plant. Although insects that 

diapause on their host plant should have little or no effect on plant performance when 

in dormancy, we are unaware of any literature exploring the impact of ‘inactive’ insect 

presence on plant health. Our study investigates effects of an insects’ active period 

(feeding) and inactive period (diapause) on plant performance. Our results showed that 

active feeding by HWA, an invasive sap-feeding herbivore, had a predictably 
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detrimental impact on hemlock growth and physiology. The fact that HWA decreased 

water potential, photosynthesis and stomatal conductance further suggests that it 

induces symptoms of water stress in eastern hemlock. These symptoms are magnified 

when HWA is actively feeding versus in diapause (inactive period).  

 HWA had significant impacts on hemlock growth. The spring progrediens 

generation settles and begins to feed during the start of the hemlocks’ growing season. 

By the end of the growing season, terminal branches on control trees were 41% longer 

and had 56% more new buds than HWA-infested trees. The effect of HWA was even 

more pronounced on side branches. Side branches on uninfested trees grew 56% more 

and had 120% more new buds than HWA-infested trees. These results suggest that 

HWA-infested trees have significantly less lateral branching than uninfested trees. 

This finding matters because lateral branching can be an effective herbivore deterrent: 

the increasingly complex structure and lateral spread of branches can make it difficult 

for herbivores to navigate (Vesey-FitzGerald 1973, Archibald and Bond 2003). 

Increased tree architecture can also promote tolerance to herbivory by increasing 

sectored subunits within a plant and augmenting resource capture (reviewed in Stowe 

et al. 2000). In addition to HWA, white-tail deer also feed on eastern hemlock 

(Eschtruth and Battles 2008). If HWA infested hemlocks have less complex branching 

structure, the already infested trees may be more susceptible to ungulate herbivory due 

to easier access. Our study is the first to compare growth of terminal and side branches 

and these data confirm findings by McClure (McClure 1991) and Miller-Pierce et al. 

(2010) who both found that trees infested with HWA accrue less new growth.  
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 Some sap-feeding insects impose water stress on plants (Wise and 

Abrahamson 2005) by consuming large amounts of water from the plant during the 

removal of photosynthates. For example, feeding by the spittlebug Philaenus 

spumarius extracts water as well as nitrogen compounds from its host plant; this may 

explain why leaf relative water content decreases (Meyer 1993). Because severe water 

stress can cause tree mortality (Adams et al. 2009), chronic herbivory-induced water 

stress may be similarly detrimental to plant health. The fact that HWA has a density-

dependent impact on water potential provides additional support for previous research 

showing that water stress may play a role in HWA’s impact on hemlock health. 

Specifically, our results are consistent with previous research showing that HWA-

infested trees had increased levels of proline, altered glutamine:glutamate ratios, an 

increase in overall free amino acids; Gómez et al. (2012b), all indicators of water 

stress.  

 HWA-induced changes in hemlock anatomy and physiology likely accentuate 

the impact of HWA-induced water stress. Changes in water status alter gas exchange 

rates. For instance low water potential in plants is coupled with decreases in 

photosynthetic activity and stomatal conductance (Farquhar and Sharkey 1982, Epron 

and Dreyer 1993, Dang et al. 1997) and water stress in conifers such as Abies spp. 

greatly reduces net photosynthesis (Puritch 1973). Congruently, increased 

photosynthetic rates in galled leaves is suggested to be explained by improved water 

relations (Fay et al. 1993). We showed a reduction in water potential and concomitant 

reductions in photosynthesis and stomatal conductance in HWA-infested trees. Sap-

feeding insects generally tend to decrease photosynthesis (reviewed in Zvereva et al. 
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2010), and we found a similar result, HWA-infested trees had lower photosynthetic 

rates;  a difference that was magnified when HWA were actively feeding.  

 The HWA-induced changes in hemlock physiology we observed may result 

from the formation of a higher number of false rings on HWA-infested branches 

(Gonda-King et al. 2012). False rings are bands of abnormal wood within an annual 

ring that consist of thick-walled xylem cells and which may hinder water transport 

efficiency (Mitchell 1967). While our data showed that actively-feeding HWA had a 

greater impact on hemlock physiology and growth, HWA’s impact on physiology was 

visible even during diapause, as shown by a 10% and 41% reduction in photosynthetic 

rates and stomatal conductance, respectively, in HWA-infested trees. Once HWA 

emerged from diapause and began feeding, photosynthesis and stomatal conductance 

were 56% and 70% lower in infested trees. HWA’s impact on photosynthesis and 

stomatal conductance during diapause might be explained by lasting prior changes in 

nutrient allocation from when HWA was actively feeding.  Sap-feeding insects often 

act as resource sinks (Inbar et al. 1995, Kaplan et al. 2011) that can compete with 

natural plant sinks (i.e. actively growing tissues). HWA feeding alters local and 

systemic foliar nitrogen content (Stadler et al. 2005, Miller-Pierce 2010, Gómez et al. 

2012b). Nitrogen sink competition between feeding herbivores and new foliage alters 

leaf nutrient status, resulting in decreased photosynthesis (Larson 1998). Since HWA 

feed on photosynthate from xylem ray parenchyma cells (Young et al. 1995) that 

transfer and store nutrients it is likely HWA induce greater sinks when feeding as 

opposed to in diapause. This is consistent with the idea that competition between plant 

and herbivore sinks reduces net photosynthesis. The act of HWA feeding does not 
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magnify reductions in water potential. If changes in water potential are driven by false 

rings formation, this would have a permanent impact on water relations as changes to 

wood anatomy are not transient.  

 Our results illustrate that HWA presence, whether in diapause or actively 

feeding, negatively impacts hemlock health. The during-diapause impact of HWA 

may be caused by physical injury or chemical cues associated with the initial stylet 

insertion by HWA. Stylet insertion by other sucking insects can cause long-lasting 

anatomical and physiological changes (Ladd and Rawlins 1965, Ecale and Backus 

1995, Shackel et al. 2005), and this may be the case for HWA as well. HWA secretes a 

salivary sheath when feeding at the base of hemlock needles that Young et al. (1995) 

suggests may be ‘toxic’ and responsible for the disproportional negative impact on 

hemlock growth caused by HWA feeding. In support of the ‘toxic’ saliva hypothesis, 

Radville et al. (2011) found that HWA elicits a systemic hypersensitive response in 

hemlock.  

 Despite finding that HWA continues to impact hemlock performance during 

diapause, we cannot determine if this is due to the presence of inactive HWA on the 

plant or if these effects are residual long-term impacts from prior HWA infestations. 

Unfortunately, there is no true ‘control’ to compare impact of HWA diapause versus 

HWA feeding because the HWA life cycle always has a feeding period before 

diapause. A short-term feeding event always occurs prior to HWA entering diapause 

and short-term feeding events by herbivores can have lasting impacts on host plant 

health. For example, Cinara pseudotsugae, a sap sucking aphid, reduced root and 

shoot growth on its host tree and physiological impacts were still evident one year 
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after herbivory (Smith and Schowalter 2001). It is possible that prior HWA feeding 

events have had long-lasting impacts on hemlock physiology and this is reflected 

during the diapause period. Regardless of the mechanism driving decreased hemlock 

performance when HWA are in diapause, these data show that HWA has a lasting 

impact on hemlock performance.  

 While the detrimental impact of HWA on hemlock has long been recognized, 

the effect of HWA on hemlock physiology has received less attention. Even less 

recognition has been given to the impact of HWA during diapause. Our results suggest 

that HWA-infested trees are water stressed due to decreased hemlock growth, water 

potential, photosynthesis and stomatal conductance. Reductions in photosynthesis and 

stomatal conductance are expectedly magnified during periods of HWA feeding. 

These physiological changes in HWA-infested trees may shed light on possible 

mechanisms behind HWA-induced death. We suggest taking long-term measurements 

on HWA-infested trees, from infestation to mortality, to better clarify the mechanism 

of HWA-induced death. Our study is the first to address the impact of HWA in 

diapause versus actively feeding and our results suggest that HWA has a lasting 

physiological impact on hemlock regardless of feeding activity.  
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FIGURES

 

 

Figure 1: Plant growth (top panels) and number of new buds (bottom panels) in 

hemlocks infested with HWA or uninfested in terminal (left panels) and side (right 

panels) branches 
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Figure 2: Water potential in HWA-infested and control trees when HWA are in 

diapause (September) and when HWA are actively feeding (October) 
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Figure 3:  Impact of HWA on photosynthesis (Panel A) and stomatal conductance 

(Panel B) when in diapause and actively feeding 
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Figure 4: Correlation between HWA and water potential. HWA density is negatively 

correlated with water potential in September (R
2
=0.123), when in diapause, and in 

October (R
2
=0.313) when actively feeding.  
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Figure 5: Correlation between HWA density and gas exchange parameters for 

September and October. Panel A shows no correlation between HWA density and 

photosynthesis. Panel B shows a negative correlation between HWA density and 

stomatal conductance for both September (R
2
=0.233) and October (R

2
=0.238). 
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