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ABSTRACT

This dissertation is an exposition of systems of difference equations. I examine
multiple examples of both piecewise and rational difference equations.
In the first two manuscripts, I share the published results of two members of

the following family of 81 systems of piecewise linear difference equations:

Tn+1 = ‘xn‘ +ay, +b
, n=0,1,..
Ynt1 = T + C’yn| +d

where the initial condition (zg,%9) € R?, and where the parameters a,b,c and d
are integers between —1 and 1, inclusively. Since each parameter can be one of
three values, there are 81 members. Each system is designated a number. The

system’s number N is given by
N=27a+1)+90b+1)+3(c+1)+(d+1)+1.

The first manuscript is a study of System(2). System(2) results when
a=0b=c= —1and d = 0. For System(2), I show that there exists a unique
equilibrium solution and exactly two prime period-5 solutions, and that every so-
lution of the system is eventually one of the two prime period-5 solutions or the
unique equilibrium solution.

The second manuscript is a study of System(8). System(8) results when a =
b=—-1, ¢=1and d = 0. For System(8), I show that there exists a unique
equilibrium solution and exactly two prime period-3 solutions, and that except for
the equilibrium solution, every solution of the system is eventually one of the two
prime period-3 solutions.

Of the 81 systems, 65 have been studies thoroughly. In Appendix .1, I give
the unpublished results of the 21 systems that I studied. In Appendix .2, I list all
81 systems (studied by W. Tikjha, E. Grove, G. Ladas, and E. Lapierre) each with

a theorem or conjecture about its global behavior.



In the third manuscript, I give the published results of the following system

of rational difference equations:

aq
Tpa1 =
Tz,
, n=0,1,..
(6% +52xn +yn
Yn+1 =

Yn

where the parameters and initial conditions are positive real values. I show that
the system is permanent and has a unique positive equilibrium which is locally
asymptotically stable. I also find sufficient conditions to insure that the unique
positive equilibrium is globally asymptotically stable.

In Appendix .3, I give the unpublished results of the following system of

rational difference equations:

&3]
Tpil =
Tz .
, n=20,1,..
(6% +52xn +yn
Yn+1 =

BQ$n + Yn
where the parameters and initial conditions are positive real values. I show that
the system is permanent. I also find sufficient conditions to insure that the unique

positive equilibrium is globally asymptotically stable.
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1.1 Abstract

In this paper we consider the system in the title where the initial condition
(70,70) € R?. We show that the system has exactly two prime period-5 solutions
and a unique equilibrium point (0,—1). We also show that every solution of the
system is eventually one of the two prime period-5 solutions or else the unique

equilibrium point.

1.2 Introduction

In this paper we consider the system of piecewise linear difference equations

Tp+1 = ‘xn‘ — Yn — 1
 n=01,.. 2)

Ynt+1 = Tn — |yn’
where the initial condition (zg,10) € R?. We show that every solution of Sys-
tem(2) is eventually either one of two prime period-5 solutions or else the unique
equilibrium point (0, —1).

System(2) was motivated by Devanney’s Gingerbread man map [1, 2]
Tpy1 = |:L‘n| — T+ 1

or its equivalent system of piecewise linear difference equations [3, 4]

Tp+1 = |xn|_yn+1
=012, ...

Ynt1 = Tn
We believe that the methods and techniques used in this paper will be useful
in discovering the global character of solutions of similar systems, including the
Gingerbread man map.

In this paper we consider the system of piecewise linear difference equations

Tpt+1 = |xn| — Yn — 1
. n=0,1,.. 2)

Yn+1 = T — |yn’



where the initial condition (zg,79) € R? We show that every solution of Sys-
tem(2) is eventually either one of two prime period-5 solutions or else the unique

equilibrium point (0, —1).

1.3 Global Results

System(2) has the equilibrium point (Z,7) € R? given by
(., y) = (0,-1).

System(2) has two prime period-5 solutions,

r9=0, yo=1 r0=0, yo=1
r1==-2, y1=—1 r = -8, y1=—§
Pl = To =2, Y= —3 and Pl=| x=2% y=-1
r3 =4, ys=-1 r3=12, y3=—1
Ty = 4, Ys =3 Ty %; y4:—%
Set

i = {(z,y):2>0,y=0}

lo = {(z,y):x=0,y>0}

ls = {(z,y):x<0,y=0}

li, = {(x,y):x=0,y <0}

Q1 = {(z,y): x>0,y >0}

Qy = {(x,y)x<0,y>0}

QS = {(l‘,y):l’<0,y<0}

Qi1 = {(l’,y)2$>0,y<0}.

Theorem 1.3.1 Let (zo,y0) € R?. Then there exists an integer N > 0 such that
the solution {(x,,y,)}52 v is eventually either the prime period-5 solution P, the

prime period-5 solution P2 or else the unique equilibrium point (0, —1).
The proof is a direct consequence of the following lemmas.

Lemma 1.3.2 Suppose there exists an integer M > 0 such that —1 < zp; < 0

and yy = —xy — 1. Then (zar41,Ynv1) = (0, —=1), and so {(wn, yn) }olarsy is the

equilibrium solution.

Proof: Note that



TM+1 — |J,’M|—yM—1 == —IM—(—JIM—1>—1 == 0
ymr = Ta = |yul = oy — (zm +1) = -1,

and so the proof is complete. O

Lemma 1.3.3 Suppose there exists an integer M > 0 such that xp; > 1 and

ym = xap — 1. Then (a1, ym+1) = (0,1), and so {(xn, yn) }opryy is Pr.

Proof: We have

ryp = |eml-yu—1 = 2y —(ey—-1)—1 = 0
Ym1 = Ty~ |Yml = zy — (v — 1) = 1,
and so the proof is complete. O

Lemma 1.3.4 Suppose there exists an integer M > 0 such that xp; = 0 and

yym > 0. Then the following statements are true:

1. TM+5 = 0.

1 .
2. If ypr > T then {(zn, yn) Yo rrss 18 Ps.

1

hen ynr+s = 8yar — 1.

Proof: We have x,; = 0 and yp; > 0. Then

Tyyr = |lem|—ymw —1 = —yy—1<0
Yvm+1 = Tm — |Yuml = —ym <0
Tyye = |Tus| —Yms1—1 = 2y >0
Yv+2 = Ta41 — |Yart] = 2yy—1<0
Tygs = |Tauge| =y —1 = 4yy >0
Ym4s = Tay2 — |[Ym2| = —1

Typa = |Tugs| —ymss—1 = 4dyy >0
Yrmra = Targs — |[Yares) = dyy —1

Tavys = Tl —ypupa—1 = 0,

and so Statement 1 is true.



1 )
If yar > T then ynris = Targa — [yssal = 1. That is (zar45,yamrs) = (0,1)

and so Statement 2 is true.

1
fo<yy< 7 then yyris = Tarya — |ymrea] = 8ym — 1, and so Statement 3

is true. ]
Lemma 1.3.5 Suppose there exists an integer M > 0 such that xp; = 0 and
yu < —1. Then the following statements are true:

1. TM+4 = 0.

3
2. If—§ <yym < —1, then yproqg = —4yy — 5.
3 0 ; 1
3. If ym < 5 then {(zn, Yn) ntnrsa s Ps.

Proof: We have z); = 0 and yy; < —1. Then

Ty = |om|—ym —1 = —yu—1>0
Yvu4r = Tm — |[yml = yu <0

Tyye = |Tus] —ymy—1 = —2yy—2>0
Ymye = Tarl — |Ymtal = —1

Tygs = |Tusel —Ymy2—1 = =2y —2>0
Ynm+s = Ta42 — Y2l = —2ym —3
Tyya = |Tugsl —ymz—1 = 0,

and so Statement 1 is true.

3
Now if —5 < yuy < -1, then yyi3 = —2yy — 3 < 0. Thus

Ymaa = Tares — |Ynmas| = —4yn — 5, and so Statement 2 is true.

3
Lastly, if yy; < ~3 then ypri3 = —2ynr —3 > 0. Thus ypyra = Tares — |ypes| = 1

that is (x4, Yar+a) = (0,1) and so Statement 3 is true. O



Lemma 1.3.6 Suppose there exists an integer M > 0 such that zp; > 0 and

ynm = 0. Then the following statements are true:
1 Ifxar > 1 then {(@n, Yn) 1o prao s Py
1 00 ; 1
2. ]fz <aym <1, then {(zy,yn)} o ar16 15 P
3. If0<xy < i, then a6 =0 and yprr6 = 8xpr — 1.

Proof: First consider the case xj; > 1 and yy; = 0. Then

Ty = |rm|—ymw —1 = xpy—120
YMm+1 = TM — \yM\ = x>0
Trye = v —yp—1 = =2

Ym+2 = Ta1 — |Ymta] = —1,

and so Statement 1 is true.

Next consider the case 0 < z,; < 1 and y,; = 0. Then

Tyyr = |lem|—yw —1 = xy—1<0
Yv4r = Ty — |[yml = xy 20
Tyge = |[Tus] —yms1 —1 = —2x3 <0
Yv+2 = Tyl — |Yart] = -1
Tapres = |Tuge| —yms2 —1 = 21y >0
Ym+s = Ta42 — Y2l = 2oy —-1<0
Typa = |Tumgs) —ymes —1 = 4oy >0
Ymra = Taes — |[Yamres) = —1
Trgs = |Tavgal —Ynusa—1 = 4day >0
YM+s = Ta4d — |Yarsal = dxpy —1
Tvre = |Tmgs| —ymis—1 = 0.

If 1 < xpy < 1, then yprys = 4xpyr — 1 > 0 and 80 Yare6 = Tares — |Ynes| = 1.

That is (€46, Yar+e) = (0,1) and so Statement 2 is true.

If0 <y <%, then ypris = 4zy —1 < 0. Thus yarre = Tarrs — |[yarrs| = 8z — 1,

and so Statement 3 is true.



Lemma 1.3.7 Suppose there exists an integer M > 0 such that zp; < —1 and

ynm = 0. Then the following statements are true:
1. TM+4 = 0.
3
2. ]f—§ <zy < —1, then yprog = —4xp) — 5.

3
3. Ifxy < L then {(@n, Yn) Yo pria 1 Py

Proof: Let xp; < —1 and yp; = 0. Then

Tp+1 = |xM\—yM—1 = —axy—1>0

Ym+1 = TyMm — |yM\ = zy <0

Tyye = |Tus| —yms1—1 = =22y —2>0

Ym+2 = TM+1 — |yM+1| = —1

Tp43 = |$M+2|_yM+2_1 = 2xy—2>0

Ynm+z = Ta42 — Y2l = —2xp—3

Tyya = |Tugsl —ymz—1 = 0,
and so Statement 1 is true.

3
If 5 < ay < =1, then ypyi3 = =2z — 3 < 0. Thus yprea = Taas — [ynmas| =
—4x) — 5, and so Statement 2 is true.
3 .

If Ty < —57 then YM+3 = —2xy — 3 > 0 and YM+4 = Tp+3 — ]yM+3| = 1. That is

(2144, Ynrra) = (0,1) and so {(2n, yn) ol pr4s is Py and the proof is complete. O

We now give the proof of Theorem 1.3.1 when (zp,ypy) is in Iy =

{(z,y) ;2 =0,y 20},

Lemma 1.3.8 Suppose there exists an integer M > 0 such that (xar,ynr) € lo.

Then the following statements are true:
1 : . :
1. If0<yy < = then {(xn, yn) 1225 s eventually the equilibrium solution.

1
2. If yy = = then the solution {(zy, Yn)} o pr4s 15 P2.



1
3. If yy > = then the solution { (T, yn) 2, is eventually P..
Proof:

1
1. We shall first show Statement 1 is true. Suppose 0 <y < 2 for each n > 0,

let
230 1
Uy = ———.
7. 23n
Observe that
1 ) 1
O:a0<a1<a2<...<? and I}Lr&an:?.

Thus there exists a unique integer K > 0 such that yy € [ax, ax11).

1
We first consider the case K = 0; that is y,s € [0, 8). By Statements 1 and

3 of Lemma 1.3.4, xpr45 = 0 and ypr5 = 8y — 1. Clearly yar15 < 0, and so

Tyee = |Tmas| —ymis —1 = —8yn <0
YM+6 = Ta45 — |Ymts) = 8ym — L.
Now —1 < zp46 < 0 and ypyi6 = —2p46 — 1, and so by Lemma 1.3.2,

{(@n, yn) }oZ ar17 is the equilibrium solution.
Without loss of generality we may assume K > 1.
For each integer n such that n > 0, let P(n) be the following statement:

Tpisnts = 0

Ynrsnes = 250y — ( > 0.

23(n+1) -1
=)
Claim: P(n) is true for 0 <n < K — 1.

The proof of the Claim will be by induction on n. We shall first show that

P(0) is true.



11
87
and 3 of Lemma 1.3.4, we have xp/450)+5 = 0 and yar450)45 = Syar — 1.

Recall that ), = 0 and yy € |ak,ax1) C { ) . Then by Statements 1

Note that,

>0

23(0+1) -1
7

Ynms0)+s = 8ym — 1 = 23(0+1)?JM - (

and so P(0) is true. Thus if K = 1, then we have shown that for
0 <n< K -1, P(n)is true. It remains to consider the case K > 2. So
assume that K > 2. Let n be an integer such that 0 < n < K — 2 and

suppose P(n) is true. We shall show that P(n + 1) is true.

Since P(n) is true we know

> 0.

23(n+1) -1
7

Tarisnes =0 and  yarysnas = 250y, — (

23K -1 23(K+1) -1
7.923K 7 7. 93(K+1) )

It is easy to verify that for yys € [ak, ax41) = [

23(n+1) -1 1 1
n - 23(n+1) - — < =< -
YM+5n+5 Ym 7 757

Thus by Statements 1 and 3 of Lemma 1.3.4,

Tpism+n+s = 0 and
Y45+ = S(Ynrgsnts) — 1
23(n+1) -1
= 93 [23(n+1)yM _ <>‘| -1
7
346 3n+6 23
2°m — ——1
A
23(n+2) -1
— 23(n+2)yM . <7> .



7.923K 7 7. 93(K+1)

23K -1 23(K+1) -1
Recall that yy € [ak,axi1) = [ )

In particular,

7

23(n+2) 23K -1 B 23(n+2) -1
7. 23K 7

23n+3K+6 23n+6 23n+6 1

= 7.pKk 7.k 7 17

a(mis 23(n+2) -1
YM+5(nt1)+5 = 2 (nt )?JM -\

v

(1—2-20) > (1 -1

~|
| =

and so P(n + 1) is true. Thus the proof of the Claim is complete. That is,

P(n) is true for 0 < n < K — 1. Specifically, P(K — 1) is true, and so

3K __ 1
Tagsk-1)45 = 0 and  yyrysx—1)45 = 2Ky — ( . > 0.

In particular,
23K -1 23K -1 23K+3 -1 23K -1
3K 3K
2 ( 7. 93K ) - ( 7 ) < Ymisk-1)+5 < 2 (7 osk+s | T 7 .

1
That is, 0 < yarisx-1)45 < 3’ and so by case K = 0, {(Zn, Yn) }olarisri7 19

the equilibrium solution, and the proof of Statement 1 is complete.

1
2. We shall next show that Statement 2 is true. Suppose (zar, yar) = (O, 7).

1
Note that <0, 7) € P2. Thus the solution {(z,,y,)}%,, is P2

1
3. Finally, we shall show that Statement 3 is true. Suppose yyr > 2

10



1
First consider y,, > T By Statement 2 of Lemma 1.3.4, the solution

{(@n, yn) }onrys is P

L 1}. For each n > 1 let

Next consider the case yy, € (7, 1

23n—1 +3
bn = 7 .923n-1 :

Observe that

and lim b, = 1

n—oo

3| —

1
Z:b1>bQ>bg>...>

Thus there exists a unique integer K > 1 such that yy € (bx1,bx]-

If we slightly augment the proof of Statement 1 of this lemma then the
statement P(n) still holds. First note that it is easy to determine through
direct computations that the base case of the inductive argument still holds.
All that is needed to complete the proof for yys € (bg1,bx] is the following
Claim.

Claim: Let n be an integer such that 0 < n < K — 2 and suppose P(n) is
true. We shall show that P(n + 1) is true.

Proof: Since P(n) is true we know

> 0.

23(n+1) -1 >

Tarisnes =0 and  yarisngs = 220y, — ( -

23(K+1)—1+3 23K—1+3
Recall that yy € (b1, bx]| = l — oRRIT 7. 3RT ) then

23(n+1) -1
7

< 23n+3 23K—1 + 3 23n+3 -1
= 7.23K-1 | 7

YM+5n45 = 23(”+1)ZJM—<

11



23n+323K71 23n+33 23n+3 1

7. 93K-1 +7_23K—1_ 7 +7

(23"—3K+43 + 1) < ; (i + 1)

| =

AN

Thus by Statements 1 and 3 of Lemma 1.3.4,

Trsmnt1)+s = 0 and
YM45(n+1)+5 = 8(yM+5n+5) -1
23(n+2) -1
— 23(n+2)yM _ (7 .

23(K+1)71 3 23K -1 3
Again recall that yy € (bgy1,bx]| = [ + + )

7 - 23(K+1)—1 ) 7. 93K -1

In particular,

23(n+2) -1
Yntsmines = 250Dy, — <7>
smay (225D 43 23(n+2) 1
z 2 7w | T\ T 7 )T (7)
23n+3K+8 23n+63 23n+6 1
- 7. 93K+2 +7,23K+2 7 +§
_ 1 (23n—3K+4 + 1)
T
> 0.

The proof of the Claim is complete and this completes the proof that P(n) is
true for Statement 3 of this lemma for 0 < n < K — 1. Specifically P(K —1)

is true, and so

PK _ 1
Tares(k—1)+5 = 0 and Yarse—1)45 = 25 yar — ( 7 ) > 0.

Recall that for yar € (bx1,bk]-

12



In particular,

23K _ 1 23K+2 4 3 23K _ 1 1
_ 03K 3K _ —
Ymisk = 2 yM_< - > > 2 (7'23K+2 - =7

By Statement 2 of Lemma 1.3.4, the solution {(zn, yn) }o2 vriskis 1S Ps-

We now give the proof of Theorem 1.3.1 when (zp,yp) is in Iy =
{(z,y) 12 =0,y <0}.

Lemma 1.3.9 Suppose there exists an integer M > 0 such that (xar,ynr) € ly.

Then the following statements are true:

9
1. If —5 <ym <0, then {(x,, yn)}52,, is eventually the equilibrium solution.
9 | o
2. If yyr = —= then the solution {(n,Yn) }ol sy is Ps.

9
3. Ifyy < —= then the solution { (., yn) 2,y is eventually P..

Proof:
. 9
1. We shall first show that Statement 1 is true. So suppose — <ym < 0.

Case 1: Suppose —1 < ypr < 0. Then

Ty = |ryl—yuw—1 = —yu—1<0
YM+1 = Tm — ’yM’ = Ym-
In particular, —1 < zp41 < 0 and yy41 = —2y1 — 1, and so by

Lemma 1.3.2, {(Zn, Yn) }o 1142 is the equilibrium solution.

5
Case 2: Suppose ~1 < yy < —1. By Statements 1 and 2 of Lemma 1.3.5,

TM+4 = 0 and YM+4 = —4yM — 5. Then
Tres = |Tavgal —Ymga —1 = 4y +4<0
YM+s = Tr4a — |Ynrgal = —dyy — 5.
Thus —1 < xpr45 < 0 and ypra5 = —xp45 — 1, and so by Lemma 1.3.2,

{(@n, yn) }oZar16 is the equilibrium solution.

13



9 5
Case 3: Suppose — < yu < T By Statements 1 and 2 of Lemma 1.3.5,
1
Tyaa = 0 and yprq = —4ypy — 5. Note that 0 < yprg < - and so by

Statement 1 of Lemma 1.3.8, {(Zn, Yn) }o2 pr14 1S eventually equilibrium

solution.
: 9
2. We shall next show that Statement 2 is true. Suppose yy = — By
2 9
direct calculations we have (zp/i1,Ynms1) = (7,—7). So the solution

{(xnayn)}zo:MJrl is P52

3. Finally, we shall show that Statement 3 is true. Suppose z,; = 0 and yy; <
9

=
3 9
Case 1: Suppose —3 < yu < 7 By Statements 1 and 2 of Lemma 1.3.5,
1
we have zp;14 = 0 and yp04 = —4yy — 5. Note that - < Ymaa < 1
and so by Statement 3 of Lemma 1.3.8, the solution {(z,, yn)}0 1s14 18

eventually Py.

3
Case 2 : Suppose yp < 5 By Statement 3 of Lemma 1.3.5, the solution

{(zn, yn)}qof:MH is P51-

We now give the proof of Theorem 1.3.1 when (zp,ypy) is in l; =
{(z,y) 12 >0,y =0}.

Lemma 1.3.10 Suppose there exists an integer M > 0 such that (xp,yy) € 1.

Then the following statements are true:

1
1. If 0 <y < = then {(xn, yn) 122 s eventually the equilibrium solution.

1
2. If vy = = then the solution {(zn, Yn)} o pr4s s P2

14



1
3. If xp > = then the solution { (., yn) 2, is eventually P2
Proof:

1. We shall first show Statement 1 is true. So suppose 0 < xp < ; and
yu = 0. By Statement 3 of Lemma 1.3.6, 306 = 0 and yp.6 = 8zp — 1.
In particular, —1 < ypr46 < ; and so by Statement 1 of Lemma 1.3.8 and
Statement 1 of Lemma 1.3.9, {(z,, yn)}7Z /16 is eventually the equilibrium

solution.

1
2. We shall next show Statement 2 is true. Suppose x,; = = By direct calcula-

2 9
tions we have (zy43,Ynres) = <7, —7>. Thus the solution {(@n, yn) o143

P2
is Py

3. Finally, we shall show Statement 3 is true.

1 1
First consider the case - < oy < T By Statement 3 of Lemma 1.3.6,
Ty16 = 0 and ypr6 = 8xpr — 1. Now, - < yms+e < 1 and so by Statement 3

of Lemma 1.3.8, the solution {(z, yn)}22 /46 1 eventually Py

1
Next consider the case x); > T Then by Statements 1 and 2 of Lemma
1
1.3.6, if )y > 1 then {(zn,yn)}oopie is Py and if 1 < m < 1 then

{(@n, yn) }oZarys is P

We next give the proof of Theorem 1.3.1 when (xp,yn) is in I3 =

{(z,y) 12 <0,y =0}.

Lemma 1.3.11 Suppose there ezists an integer M > 0 such that (xpr,yn) € 3.

Then the following statements are true:

15



9
1. If —o <am < 0, then {(xn, yn) 22, s eventually the equilibrium solution.
9 : - 59
2. Ifxpy = — then the solution {(n,Yn)tolrrsr @5 Ps.
9 ; o ; 1
3. Ifxy < — then the solution {(zn,yn) 22 s is eventually Py .
Proof:

9
1. We will first prove Statement 1 is true. Suppose —7 < zpy <0.

First consider the case —1 < x,; < 0. Then

Ty = |ltm|l—yy—1 = —zy—1
Ym+1 = Tym — |?JM| = TMm-
In particular, —1 < zp;11 < 0 and ypr41 = —xp — 1 and so by Lemma 1.3.2,

{(@n, Yn) }oZ ar4o is the equilibrium solution.

9
Next consider the case —— < x); < —1. By Statements 1 and 2 of Lemma
1
1.3.7, xpr0q = 0 and yproq = —4zpy — 5. In particular, —1 < yprq < -

and so by Statement 1 of Lemma 1.3.8 and Statement 1 of Lemma 1.3.9,

{(@n, yn) }oZ ar14 is eventually the equilibrium solution.

9
2. We shall next show Statement 2 is true. Suppose x5 = — By direct
2 9
calculations we have (zpr41, Ynr41) = (7, —7). That is, {(Zn, Yn)}olrrs 18

2.

9
3. Lastly, we shall show that Statement 3 is true. Suppose x; < —
3 9
First consider the case —5 <xy < 7 By Statements 1 and 2 of Lemma
1
1.3.7, xpre4 = 0 and ypr0q4 = —4xps — 5. In particular, - < ym+a <1 and so

by Statement 3 of Lemma 1.3.8, the solution {(zn,ys) o144 is eventually

Py,
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3
Next consider the case x), < —5 By Statement 3 of Lemma 1.3.7, the

solution {(@,, yn)}o pria is P3.

We next give the proof of Theorem 1.3.1 when (zp,yn) is in @7 =

{(z,y) :2 >0,y > 0}.

Lemma 1.3.12 Suppose there exists an integer M > 0 such that (xpr, yar) € Q1.

Then the following statements are true:
1. If yy <y — 1, then the solution {(zn, yn) }oprse s Ps.

2. If yy > xpr — 1, then there exists an integer N such that (xprin, Yven) €

la Uly.

Proof: Suppose xp; > 0 and ypr > 0.
Then

Ty = |lem|l—ymw—1 = zy—ym—1

Ym+1 = $M—|yM| = Ty —YMm-

Case 1: Suppose ypr < xpr — 1. Then, in particular, xy1 =2y —ypr —1 > 0
and yyre1 =y — yar > 0. Thus

TpMy+2 = |$M+1|—?JM+1—1 = -2
Yrt2 = Ta41 — [Ym+i] = -1,

and so Statement 1 true.
Case 2: Suppose yps > xpr — 1. Then, in particular, zp;01 = 2y —yyr — 1 < 0.

Case 2a: Suppose zpr — yu < 0.

Then ypri1 = xpr — yur < 0. It follows by a straight forward computation, which

17



will be omitted, that x5 = 0. Hence (xy15, yarss) € lo U ly.

Case 2b: Suppose xy — yar > 0.
Then yyr1 = zar — yur > 0. It follows by a straight forward computation, which
will be omitted, that zj.6 = 0. Hence (zp16,Ynr16) € lo U ly, and the proof is

complete. O

We next give the proof of Theorem 1.3.1 when (zp,yn) is in Q3 =

{(z,y) 12 <0,y < 0}.

Lemma 1.3.13 Suppose there exists an integer M > 0 such that (xpr, yn) € Q3.

Then the following statements are true:

1. Ifyy > —wxar — 1, then the solution {(Tn, Yn) bol o @5 the equilibrium solu-

tion.

2. [fyM < —Tpy — 1, then (xM+4,yM+4) c lg U 14.

Proof: By assumption, we have x,;; < 0 and y,; < 0.

If yas > —2p; — 1. Then

Ty = |om|—ym —1 = —ozy—yn—1<0
Ym4r = Tm — |[Ywml = xym+ym <0
Tpm+2 = |1‘M+1| —Ym+1 — 1 =0

Ymiz = Tare1 — |Yaa = —L

Hence {(z,,yn)}oZ /10 is the equilibrium solution and Statement 1 is true.

If ypr < —xpr — 1 then it follows by a straight forward computation, which will be

omitted, that xp; 14 = 0. Thus (zpr44, Yarsa) € lo Uly and Statement 2 is true. O

We next give the proof of Theorem 1.3.1 when (zp;,yn) is in @y =

{(z,y) 12 <0,y > 0}.
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Lemma 1.3.14 Suppose there ezists an integer M > 0 such that (xpr, yar) € Qo.

Then the following statements are true:
1. Ifyy > —xp — 1, then (xpr41,ypy1) € Q3 Uly.
3
2. If yy < —xpr — 2’ then ($M+37?JM+3) € Q1 Ul.

3 5
3 Ifyy < —xp—1,yp > —Tn g and xy; < 1 then (T pr44, Ynrra) € Q1UL.

3 5 5
4. If yy < —xpr — Ly > —xp — §,$M > 1 and yy < $M+Z, then
(Trr45, Yngs) € Q3 U ly.
5
5. If yy < —xm — Liyy > —xy — §’xM > 1 and yy > xM+Z’ then
(Zp46: Ymts) € Q3 U ly.
Proof: Now zp; < 0 and y,; > 0.
1. If ypr > —xpr — 1, then
Tyyr = — 2Ty —ynw —1<0
Ym+1r = Ty —yYnm < 0.

Thus (IL‘M+1,yM+1) € Qg U l4.

3
2. fyy < —xpp — 5 then xp1 = —xp —yyr — 1 > 0. It follows by a straight

forward computation, which will be omitted, that

Ty = —2xpy+2ypy —2>0
Ymts = —2xm —2ym —3 20.

Hence (zpr13, Yares) € Q1 U ly.
3 5
3. fyy < —xp—1,yp > —:L"M—E and rys < 7 then xpr = —xp—yp—1 >
0. It follows by a straight forward computation, which will be omitted, that

Tyya = 4y >0
Yvmaia = —4dxpy—52>0.

Thus (z4,y4) € Q1 U .
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- > —— d < + = lhe
x an xZ 11
27 M l ZUM = M ]7

Tyy1 = —xpy —yym — 1 > 0. It follows by a straight forward computation,

which will be omitted, that

T4+ = 4xM+4yM+4<O
YM+5 — —4xM+4yM—5§O.

Thus (745, Yares) € Q3 Ul

3 5
5. Finally, suppose that yy, < —xp — 1, ypr > —x — §,xM > ~1 and y,r >

5
Ty + T Then xpro1 = —xp — yayr — 1 > 0. It follows by a straight forward

computation, which will be omitted, that

YM+5 = —4xM+4yM—5>O.

Note that
Yvmas = —day +4yy —H > —4day — 4y — 5= —wpy5 — 1
and so by the first statement of this Lemma, (zp16, Yari6) € @3 U ly.

a

Thus we see that if there exists an integer N > 0 such that (zn,yny) ¢ Qa
then the proof of Theorem 1.3.1 is complete. Finally, we consider the case where

the initial condition (zpr,yn) € Qs = {(z,y) : 2 > 0,y < 0}.

Lemma 1.3.15 Suppose there ezists an integer M > 0 such that (zpr, yar) € Qy.

Then there exists a positive integer N < 4 such that (xpran, Yyvan) € Q4.
Proof: Without loss of generality, it suffices to consider the case where

(Tt Yrign) € Qg for 0 <n < 3.

Now (xar,ya) € Q4, and hence xp; > 0 and yp, < 0.

Thus
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Ty = |eml—ym—1 = zy—yuw—1
YmM+1 = $M—’yM’ = Ty t+Yu-

We have (zp11,Yp+1) € Q4, and thus

Tyvye = |Tugr]| —yusr —1 = —2yn — 2,

Ym+2 = Tma1 — |Ym+i) = 2xpy —1.

We also have (z9,12) € Q4, and hence

Tpm+3 = |$M+2| —UYmt2— 1 = =2xp —2ynm — 2,

Ym+s = $M+2—|Z/M+2|

Finally, we have (xpr43, Yar+3) € Q4, and so

Typa = |Tugs| —ymes—1 = —day <O,
YMia = Tares — |Ynrsl = —dym —5.
In particular xp;44 < 0 and hence (zpr14, Ynria) € Q4. O

Conclusion

We have presented the complete results concerning the global character of the
solutions to System(2). We divided the real plane into 8 sections and utilized
mathematical induction, proof by iteration, and direct computations to show that
every solution of System(2) is eventually either the prime period-5 solution Py,
the prime period-5 solution P2 or else the unique equilibrium point (0, —1). The

proofs involve careful consideration of the various cases and subcases.

Acknowledgement

We would like to express our gratitude to the Strategic Scholarships Fellowships
Frontier Research Networks, the Office of the Commission on Higher Education,
and National Center for Genetic Engineering and Biotechnology.

1.4 References

List of References

[1] R.L. Devanney, A piecewise linear model of the the zones of instability of an
area-preserving map, Physica 10D (1984), 387-393.

21



[2] H.O. Peitgen and D. Saupe, (eds.) The Science of Fractal Images, Springer-
Verlog, New York, 1991.

[3] E. Camouzis, and G. Ladas, Dynamics of Third-Order Rational Difference
FEquations with Open Problems and Conjectures, Chapman & Hall/CRC, New
York, 2008.

[4] M.R.S. Kulenovic, and O. Merino, Discrete Dynamical Systems and Difference
FEquations with Mathematica, Chapman & Hall/CRC, New York, 2002.

22



MANUSCRIPT 2

On the Global Behavior of 7,1 = |z,| —y, — 1 and y,11 = T, + |y

Published in CUBO: A Mathematical Journal Vol. 14 No 2, June 2012

Authors

Edward. A. Grove !; Evelina G. Lapierre 2; Wirot Tikjha 3

!Professor, Department of Mathematics, University of Rhode Island, Kingston, Rhode Island,
02881-0816

2PhD Candidate, Department of Mathematics, University of Rhode Island, Kingston, Rhode
Island, 02881-0816

3PhD Candidate, Pibulsongkram Rajabhat University, 156 Moo 5, Tambon Phlaichumphon,
Muang District, Phitsanuloke 65000, Thailand

23



2.1 Abstract

In this paper we consider the system of piecewise linear difference equations
in the title, where the initial conditions zy and yg are real numbers. We show
that there exists a unique equilibrium solution and exactly two prime period-3
solutions, and that except for the unique equilibrium solution, every solution of

the system is eventually one of the two prime period-3 solutions.

2.2 Introduction
In this paper we consider the system of piecewise linear difference equations
Tp+1 = |xn| —Yn — 1
., n=0,1,... (1)
Yn+t1 = In + ‘yn‘

where the initial conditions xy and ¥y, are arbitrary real numbers. We show that
every solution of System(1) is either (from the beginning) the unique equilibrium

point

1

Ty = 0, = —=

o = 0, y = —1 ’ v 3

2 1

Pi=|a = 0,y = 1 or Pi=| 2 = 3= 3
Ty = —2 , yp = 1 2 1

T2 = —5 5 Y2 = —3

3 3

This study of System(1) was motivated by Devaney’s celebrated Gingerbread-
man map

Tpnt+1 = |xn|_yn+]—
, n=0,1,....

Yn+1 = Tp

See Ref. [2, 4, 5, 9].

24



We believe that the methods and techniques used in this paper will be useful

in discovering the global behavior of similar piecewise linear systems of the form

Tpi1 = |Tn| +ay, +b

) n=20,1,2..

Yn+1 = xn+c|yn| +d

For another system of this form see [10].

2.3 Global Results

Set

I3
ly
@1
Q2
OF
Q4

{(z,y) 12 >0,y =0}
{(z,y) : 2 =0,y =2 0}
{(z,y) 12 <0,y =0}
{(z,y) ;2 =0,y <0}
{(z,y) 12 >0,y >0}
{(z,y) 12 <0,y>0}
{(z,y) 12 <0,y <0}

{(z,y) : 2 >0,y <0}.

Theorem 2.3.1 Let {(z,,yn) 52, be a solution of System(8) with (zq,yo) € R>.

Then either {(xn,yn)}o, is the unique equilibrium (Z,y), or else there exists a

non-negative integer N > 0 such that the solution {(x,,y,)}5> N of System(8) is

either the prime period-3 cycle P} or the prime period-3 cycle P3.

The proof of Theorem 2.3.1 is a direct consequence of the following lemmas.

Lemma 2.3.2 Suppose there exists a non-negative integer N > 0 such that

yn = —on — 1 and yn > 0.

Then (zn+1,yn+1) = (0,—1), and so {(xn, Yn) }2 ny1 18 the period-3 cycle P3.
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Proof: Note that xty = —yy — 1 < —1, and so

ryp1 = |oy|l—yv—1 = —ay—(—azx—1)—1 = 0
yne1 =  an+lyn| = ay + (—ay — 1) = —L
The proof is complete. ]

Lemma 2.3.3 Suppose there exists a non-negative integer N > 0 such that

(N, yn) € lo. Then {(2n, Yn) }o noo is the period-3 cycle Pj.

Proof: 1 have
tnyr = |anl—yv—1 = 0—-yy—1 = —yv—1 < 0
yny1 = axv+lyv| = O+yn = YN > 0

and so it follows by Lemma 2.3.2 that {(zy,yn)}22 y» is the period-3 cycle P}. O

Lemma 2.3.4 Suppose there ezists a non-negative integer N > 0 such that xn = 0

and yy < —1. Then
3
2. ]f—§ <uyn < —1, then yni3 = —2yny —3 < 0.
3 0 . : 1
3. Ifyn < —5 then {(Zn, Yn) Yo N4 15 the period-3 cycle Py,

Proof: 1 have

Ty = Jan|l—yv—-1 = —yy—-1 > 0
YNyl = TN + |y~ = —yN > 0
TNy = |onvp| —yvp—1 = -2

Yntz =  Inpt+|yny] = 2yy—1 > 0
TNtz = |Tnie]l—yni2—1 = 2yv+2 < 0
YnN+s = Tyt |lynvie| = —2yy — 3.
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3 3
If—§ <yny < —1,thenyy,s = —2yn—3 < 0. Ifyy < —5 then yyi3 = —2yny—3 >
0 and so by Lemma 2.3.2 {(z,, Yn) }o n44 s the period-3 cycle P}. The proof is

complete. O
Lemma 2.3.5 Suppose there exists a non-negative integer N > 0 such that xn = 0
and —1 < yy < 0. Then
1 . : 1
1. [f—Z <yn <0, then {(@n, yn) } o N5 1 the period-3 cycle Pj.
1 1
2. [f_i <yny < — then rny5 = 8yn + 2, yn15 = —8yn — 3, and xn16 = 0.
1
3. If-1<yy < —5 then {(@n, yn) }ol nag 1S the period-8 cycle P3.

Proof: 1 have

Tty = Jan|—yv—-1 = —yn—1 < 0
YN+1 = TN + |yn| = —YN > 0
TNy = |onp| —yvp—1 = 2yn < 0
Ynt2 = Tyt el = —2ynv —1

TNy = |Tnge| —yYnvpe—1 = 0.

1
If 2 <yn <0, then ynio < 0and yyi3 = Tnio+|ynviz| = dynv+1 > 0. It follows
by Lemma 2.3.3 that {(z,,ys)}22 yy5 is the period-3 cycle P}, and so Statement

1 is true.

1 1
If —3 <yn < T then yyi2 < 0 and

YUn+s = TNy +|ynse] = dyn+1 <0
Tnya = |ongs|l—yvz—1 = —dyn—2 < 0
Ynta = Tngst+lyngs|] = —4dyv—1 > 0
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TNis = |Tnga]l —ynya—1 = 8yn+2 < 0
Yn+s =  TNpat+|lynvpal = —8yn —3

Tnte = |Tnys| —yngs—1 = 0

and so Statement 2 is true.

1
If —1<yy < —5 then yni6 = Tn4s5 + |[Ynts| = —1 and so {(z,, Yn) }oL vy is the

period-3 cycle P}. The proof is complete. O
Lemma 2.3.6 Suppose there exists a non-negative integer N > 0 such that
(xn,yn) € ly. Then the following five statements are true:

1
1. Suppose —3 <N < 0. Then {(xn, yn)}22 v is eventually the period-3 cycle
P:.

1
2. Suppose yy = -3 Then {(xn, yn) Yooy 18 the period-3 cycle P3.

4 1
3. Suppose 3 <uv <3 Then {(zn, yn) }52 § is eventually the period-3 cycle

P:.
4 00 ; : 2
4. Suppose yny = -3 Then {(@n, Yn) }olnis 15 the period-3 cycle Pj3.
4 . ' 1
5. Suppose yy < —3 Then {(xn, yn) }22 n is eventually the period-3 cycle Ps.
Proof: I have zy = 0 and yy < 0.
1
1. Suppose -3 < yn < 0. Note that by Statement 1 of Lemma 2.3.5, that if
1 . - 1
— < <0, then {(z,,yn)}7> y15 is the period-3 cycle Pj.

1 1
So suppose —3 <yn < T For each integer n > 1, let
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B _22n+1

= T3 g
Observe that
1 1 , 1
—1:a1>a2>a3>...>—§ and Jirgoan:—g.
See diagram below:
a, a, a, a, lim a,

1 5 21 —2°"+ 1 1
4 16 64 3.2 3

Thus there exists a unique integer K > 1 such that yy € (axi1,ax]. I first

consider the case K = 1; that is, yy € (—%, —ﬂ . It follows from Statement

2 of Lemma 2.3.5 that zn45 = 8ynv +2 < 0, ynys = —8yn — 3 < 0, and
xnt6 = 0. Thus ynyi6 = nss5 + lynvas| = 16yy +5 > 0, and so by Lemma

2.3.3 T have {(2,, yn)}52 ys 1S the period-3 cycle Pj.

Hence without loss of generality, I may assume K > 2. For each in-

teger m > 1, let P(m) be the following statement:

TNy3mez = 0

22m+2 -1

YN+3m+3 = 22m+2yN+? < 0.

Claim: P(m) is true for 1 <m < K — 1.
The proof of the Claim will be by induction on m. I shall first show that
P(1) is true.

Recall that xy = 0 and yy € (axi1,ax] C (—%, —1%} , and so by Statement
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2 of Lemma 2.3.5 T have x5 = 8yy +2 < 0 and ynyys = —8yny — 3 < 0.
Then
Tni3)+3 = O

22(1)+2 -1
Yn+s)+s = lbyy +5 = 22+ 4+ = — <0

3 <
and so P(1) is true. Thus if K = 2, then I have shown that for
1 <m < K —1, P(m) is true. It remains to consider the case K > 3. So
assume that K > 3. Let m be an integer such that 1 < m < K — 2, and

suppose P(m) is true. I shall show that P(m + 1) is true.

Since P(m) is true I know

TNy3mez = 0

_ 22m+2 -1

YN+3m+3 = 22m+2yN+f < 0.

_22(K+1) 1 —922K 41
Recall that yy € (axi1,ax] = ( - + ]

3.922(K+1) 7 3.92K

Then
9 9 22m+2 -1
INt3mt+d = |TN43me3| — Untsmez —1 = =2 N — (3) —1.
Note that Ty 3m14 = —Yni3mes — L.
In particular,
22m+2 -1
TN+3m+4 = —2mE2y (3) -1
PRy it AW ottt A W
3. 22(K+1) 3
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22m+2K+4 22m+2 22m+2 1
T 3.92K+2  3.92K+2 3 +§_1

22m—2K 2

3 3
< 0
and
UN+3m+d = TN+3m+3 + [UN+ames] = —Unssmes > 0.
Thus
TN43mt+s5 = |TN+3mta| — UNgsmya — 1
= Yntsmes + 1 — (—Ynismes) — 1
= 2Ynizmez < 0
and
YN+3m+5 = TN+3mid T+ |yN+3m+4| = —UYN+43m43 — 1+ (—yN+3m+3)
= —2Ynyzmis — L.
In particular,
22m+2 -1
YN+3m+s = —2 (22m+2yN + — 5 ) —1
_22(K+1) +1 22m+2 _ q
_ 2m+2 o
< [2 ( 3.2k ) T 3 !
22m+2K+5 22m+3 22m+3 2

3. 22K+2 3. 22K+2 3 3

22m—2K+1 1

3 3
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Finally,

TN+3(m+1)+3 = TN+3m+6
= |$N+3m+5| — YN+3m+5 — 1

= —2Yntsmts — (—2Yn43mes — 1) — 1

= 0

and
yN+3(m+1)+3 = YN+3mi6

= TN43m+5 T [YNt3mts]
= 2yN+3m+3 =+ 2yN+3m+3 + 1

= dYynizmis + 1

2 2m+2 22m+2 _

92m+4 __ 4

yN—i-f_{_l

—  92mitd

22(m+1)+2 _ q

22(m+1)+2yN " .

In particular,

YN 3mangy < 22D <—§22; 1) 22(m+1;+2 _q
92m+2K+4  92m+d4  9Imid q
T T3k T3k T3 3
= _1 (1 _ 22m—2K+4>
3
< 0

and so P(m + 1) is true. Thus the proof of the Claim is complete. That is,
P(m) is true for 1 < m < K — 1. Specifically, P(K — 1) is true, and so
IN43(Kk-1)43 = Tny3x = 0

22K_1

< 0.
3

YUN43(K—1)+3 = YN{3K = 22y +
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Note that

22K (_22K+2 + 1) 22K -1

_22K 1 22K -1
< ynizx < 2°K ( i ) -

3. 22K+2 3 3. 22K 3
So as
- _22K+2 +1 22K -1 _24K+2 22K 22K 1
2 (3,22K+2 ) 3 - 3_22K+2+3,22K+2+ 3 3
_ 1 ( 1 1) _ 1
o3 \22 4
and
22K _22K+1 22K_17_22K+1+22K_170
3. 22K 3 3 3
I have
1
1 < ynyax <0

and so it follows from Statement 1 of Lemma 2.3.5 that {(zn, Yn) }ol visx s

is the period-3 cycle P3.

Note that (0,—3%) € P} and so {(zn,ys)}52y is the

W=

. Suppose y, = —=.

period-3 cycle P3.

1

. Suppose —% <yn < —3.

I shall first consider the case where —% <yny < —1.

So suppose —% < yn < —1. For each integer n > 0, let

_22n+2 + 1
by =~
3.2
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Observe that

4
—1:b0>b1>b2>...>—§ and nh_{gob":_g'
See diagram below:
B, 3 b, b, lim b,

[
1 1

_pantz 4 q 4
16 3.22n 3

——
e

|
-
BN}
[N}
[

Thus there exists a unique integer K > 1 such that yy € (bg,bgx_1]. I first
consider the case K = 1; that is, yy € (—%,—1} . Note that if yy = —1
then (zn,yy) = (0,—1) and {(z,,yn)}>y is the period-3 cycle Pi. So
assume yy € (—%,—1). By Statements 1 and 2 of Lemma 2.3.4, I have

Tn+3 =2yv +2 <0 and yyi3 = —2yy — 3 < 0. Then

Tnta = |ongs|—ynvgz—1 = 0

Yn+a =  Tnztlynisl = dyv+5 > 0
and so it follows by Lemma 2.3.3 that {(2n,yn)}oo N, is the period-3 cycle
Pl

Hence without loss of generality, I may assume K > 2. For each in-

teger m > 1, let Q(m) be the following statement:

TNt3my1 = 0

22m+2 -1
Yntsmiyr = 227yn + — 3 < 0.
Claim: Q(m) is true for 1 <m < K — 1.
The proof of the Claim will be by induction on m. I shall first show that

Q(1) is true.
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Recall that 2y = 0 and yy € (bg,bx 1] C (—f — ], and so by Statements

1 and 2 of Lemma 2.3.4 I have

TNy3 = 2uv+2 < 0
Ynys = —2yn—3 < 0
Tnpsyer = |Tvasl —yvgs =1 = 0
YN+3(1)+1 = Tnis + |Ynis
= 4yN + 5 S 0
92(1)+2 _ |
= 22Wyy + — < 0

and so Q(1) is true. Thus if K = 2, then I have shown that for
1 <m < K -1, Q(m) is true. It remains to consider the case K > 3. So
assume that K > 3. Let m be an integer such that 1 < m < K — 2, and

suppose Q(m) is true. I shall show that Q(m + 1) is true.

Since Q(m) is true I know

TNg3me1 = 0
2m+2 _
L S S
YN+3m+1 YN 3 S
and so
IN43mt+2 = |TN+3me1] — Untsmi1 —1 = 00— ynisme1 — L.

_22K+2 1 _22K 1
Recall that yy € (b, bie_1] = ( : i ]

3.922K  3.92K-2
In particular,

22m+2 -1
TNpsmiz = —22Myy — () —1

_22K+2 1 22m+2 -1
< o—m (TP (2 0)
322K 3
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22K+2m+2 22m 22m+2 1

3. 22K 3. 22K 3 3
_ _1 (22m—2K+2 + 2)
-3
< 0
and
UN+3mt2 = TN+3mi1 + [Untsmt1] = 0 —Ynismir > 0.
Hence
TN43m+3 = |TN+3mt2| — UN+3mie — 1
= Yntsm+1 + 1 — (—Ynisms1) — 1
= 2Yynizmt1 < O
and
YN+3m+3 = TN+3mt+2 + [UNtsmi2] = —Un+sm+1 — L+ (—YN+3mt1)

= —2Yyni3m+1 — L.

In particular,

UNiamia = —2 [2"Myn +

[ o _22K+2+1 22m+2_ 1
< =212 30K + 5 -1

22m+2 _ 1‘|
| !

22K+2m+3 22m+1 22m+3 2

= — - - —1
3. 22K 3. 22K 3 * 3
_ _} (22m72K+1 + 1)
3
< 0
Finally,
INL3m+1)+1 = TN43mt4
= |TNt3mes| — Yntamir — 1
= —2Ynisms1 — (—2Un43mi1— 1) =1 = 0
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and
YN+3(m+1)+1 = YN+3m+4

= TN43m+3 + [UN+3m+3]
= 2YN+3m+1 T 2UN43m+1 + 1

= dynizme1 +1

22(m+1)+2 -1

— 22(m+1)yN + 3

In particular,

_22K +1 22m+4 —1
YNtamin1 < 222 < )

3. 22K—2 3

22K+2m+2 22m+2 22m+4 1

_3‘22K—2 +3,22K—2+ 3 3

_ ;1), (22m72K+4 B 1)

< 0

and so Q(m + 1) is true. Thus the proof of the Claim is complete. That is,

Q(m) is true for 1 < m < K — 1. Specifically, Q(K — 1) is true, and so
INi3(k-1)41 = 0

22(K—1)+2 -1
YNH3(K-1)+1 = 22(K_I)Z/N + 3 < 0.

Note that

_22K+2 +1 22K -1
0 > B > 92(K—1)
Z  YN+3(K-1)+1 3. 92K 3

24K 22K—2 22K

1
T T3k T3ipk T3 T3

- )

1

4
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and so it follows by Statement 1 of Lemma 2.3.5 that {(@n, yn)} oS v isx4s 1S

the period-3 cycle P3.

Suppose —1 < yy < —%. By Statement 3 of Lemma 2.3.5 I have

{(Zn, yn) }o2 Ny 1s the period-3 cycle P3.

To complete the proof of Statement 3 1 shall now suppose that

—% <yn < —%. For each integer n > 1, let

_22n—1 -1

Qn = 3.92n-1

Observe that

B 1 4 1 1
—§—oz1<ozg<oz3<...<—§ and  lim o = —2.
See diagram below:
e, . o . .
: | : : :

1 —pm-1_q 11

Thus there exists a unique integer K > 1 such that yy € [ak, axi1). I first
consider the case K = 1; that is, yy € [—%, —%) . By Statement 2 of Lemma
2.3.5Thave x5 =8yny +2 <0, ynvis = —8yy — 3 > 0, and so it follows by
Lemma 2.3.2 that {(2,, yn)}22 v is the period-3 cycle P3. Without loss of
generality I may assume K > 2. For each integer m > 1, let R(m) be the

following statement:

22m+1 _ 2
TNt3mt2 = 22m+lyzv+f < 0
22m+1+1
YNt3my2 = —22m+1?/1v—<3 < 0.
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Claim: R(m) is true for 1 <m < K — 1.

The proof of the Claim will be by induction on m. I shall first show that
R(1) is true.

Recall that xy = 0 and yy € [k, axi1) C {—g, —%), and so it follows from

Statement 2 of Lemma 2.3.5 that

22(1)+1 -9

TNg3e2 = SYyn+2 = 22y 4 3 <0

3
and so R(1) is true. Thus if K = 2, then I have shown that for

22(1)+1+1
YnN43()+2 = —Syn—3 = —22(1)+1yN—< < 0

1 <m < K —1, R(m) is true. It remains to consider the case K > 3. So
assume that K > 3. Let m be an integer such that 1 < m < K — 2, and

suppose R(m) is true. I shall show that R(m + 1) is true.

Since R(m) is true I know

22m+1 )
Tnismiz = 27" Tyn + — 5 < 0
22m+1 + 1
YNtamiz = —27"Tlyy — ( 3 < 0.
Then
TN43m+3 = |TN+3m+2| — UN+smae — 1
22m+1 -9 22m+1 + 1
— _22m+1 o . _22m+1 . o 1
YN 3 YN 3
=0
YN+3m+3 = TN+3m+2 + |YN+3m-2]
2m+1 __ 2 22m+1 4 1
_ 22m+1yN + ; i 22m+1yN i ;
22m+2 -1
— 22m+2yN + #
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_22K71 -1 _22(K+1)71 o 1)

Recall that yy € [ak, axi1) = [ 3.92K-1 7 3. 92(K+1)-1

In particular,

_22(K+1)—1 -1 22m+2 -1
YNtamps < 27T ( +

3. 92(K+1)-1 3

22K+2m+3 22m+2 22m+2 1

_3,22K+1_3_22K+1+ 3 3

_ _; (1+22m—2K+1>

< 0.
Then
TN43m+4 = |TN+3mt3] — UN+3mts — 1 =0 — Ynismis — 1 = —Ynismes — L.
In particular,
22m+2 -1
TNigmia = —22"Pyy — —3 1
K— m
- _22m+2 _22 1 _ 1 B 22 +2 1 1
= 3. 22K 1 3
22m+2K+1 22m+2 22m+2 1
= 3_22K—1+3,22K—1_ 3 +§_1
_ 2 2m—2K 42
- o)
< 0
Hence
YUN+3m+4 = TN+3m+3 + [Un+smts] = 0+ (—Ynt3mts) = —Yn+3ms > 0.
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Finally,
TN43(m+1)+2 = TN+3m+5
= [ont3ma| — Ynsamia — 1
= Yntsmts + 1 — (—Yntamss) — 1

= 2YN+3m+3 < 0

22(m+1)+1 -9

22(m+1)+1yN 4 f < 0

and
YNL3m+1D)+2 = YN+3m45

= TN43m+d + [UN+3ma]
= —YNt3m+3 — L+ (—Yni3m+s)

= —2YNi3m3 — 1

— 2y (WHH>

3

In particular,

YNtz < =22 (‘22K_1 - 1) B <22m+3 + 1)

3. 92K 3
22m+2K+2 22m+3 22m+3 1
- 3,22K—1+3,22K—1_ 3 3
1

_ 5 (22m—2K+4 i 1)

<0

and so R(m + 1) is true. Thus the proof of the Claim is complete. That is,
R(m) is true for 1 < m < K — 1. Specifically, R(K — 1) is true, and so

22(K—1)+1 )

TN{3(K—1)42 = 22(K71)+13/N+# <0

2(K—1)+1
2+1> < 0.

YNI3(K-1)42 = —QQ(KUHZ/N—( 3
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Then
IN+3K = TN43(K-1)+3

= |enisk—1)+2| — Unssk—1)+2 — 1

= 0
and
YN+3K = YN+3(K—-1)+3
= INy3(k-1+2 T [UNt3r-1) 2]
22K _q

= 22Ky]v+ 3

Note that
() + B < e < () 22
So as
- _22K—1 -1 22K -1 _24K—1 22K 22]( 1
2 3.92K-1 + 3 :3.22K—1+3.22K—1+ 3 _§:_1

and

22K _22K+1 —1 N 22K -1 B _24K+1 22K 1 1 1 1
3. 22K+l 3 3.22Kk+1 3 3 6 3
I have

—1 < ynqar < 3

and so it follows by Statement 3 of Lemma 2.3.5 and the fact (0,—1) € P}

that the solution {(n, yn)}2Z yo3x4s 1S the period-3 cycle P3.

. Suppose yy = —3. By direct computations I have (zn3, yny3) = (=3, —3) €

W=

P3, and so {(zn, yn)}o2 N3 Is the period-3 cycle P3.
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5. Suppose yy < —%.

First consider the case —% < ynv < —%. For each integer n > 0,
let
_22n+3 -1
5” - 3. 92n+1

Observe that

3
—§zﬂo<ﬁl<ﬁz<...<— and Ji_@oﬁ":_§

See diagram below:

Thus there exists a unique integer K > 1 such that yy € [Bx_1, k). I first
consider the case K = 1; that is, yy € {—%, —%) . By Statements 1 and 2 of

Lemma 2.3.4 I have

TNz = 2yv+2 < 0
Yn+z = —2yv—3 < 0
and so
ITNt4 = |$N+3\ —yny3—1 = 0
YN+a =  Tnis+|ynvis|l = dynv+5 < 0.

In particular, —1 < yyy4 < —%. It follows by Statement 3 of Lemma 2.3.5

that the solution {(z,,yn)}22 yo7 is the period-3 cycle P3.

Thus without loss of generality, I may assume that K > 2. For each
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integer m > 1, let S(m) be the following statement:

22m+3 )
Tnpsmes = 22" Tlyn + — 5 < 0
22m+3 -9
YN+3m+3 = —2¢mtly Ny — <3 )—1 < 0.

Claim: §(m) is true for 1 <m < K — 1.

The proof of the Claim will be by induction on m. I shall first show that
S(1) is true.

Recall that xy = 0 and yy € [Bx_1,0K) C [—%, —%) , and so by Statements

1 and 2 of Lemma 2.3.4 I have

TNiz = 2yv+2 < 0
Yngzs = —2yv—3 < 0
TNya = |Tngs|—ynvz—1 = 0
Yn+a = Tyt lyngs] = dyv+5 < 0
TNys = |Tngal —yvpa—1 = —dyy—6 < 0
YN+s = TNta + YNt = —4dyy—5 > 0.
Finally,
TN43(1)+3 = Tn+6 = |[Tngs| —yngs—1 = Syn+10 < 0
YN13W)+3 = YN+ =  Tnys+lynes| = —Syy—11 < 0.

It follows that S(1) is true. Thus if K = 2, then I have shown that for
1<m< K —1,8(m) is true. It remains to consider the case K > 3. So
assume that K > 3. Let m be an integer such that 1 < m < K — 2, and

suppose S(m) is true. I shall show that S(m + 1) is true.

Since S(m) is true, I know
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22m+3 -9

TN43m+3 = 22ty N + — 5 < 0
22m+3 _ 2
YN+smes = —22"Tlyy — ( 3 -1 < 0.
Note that yni3m4+s = —Tn43mes — 1, and so —1 <z 343 < 0.
Thus
TN43m+4 = |TN+3m+3| — UN+smes — 1
= —IN4+3m+3 — (—$N+3m+3 - 1) —1
=0
and
YUN43m+d = TN+3m+3 + [UN+3mts]

= TN43m+43 + TN43my3 + 1

= 2TNigmts + 1.

_22(K—1)+3 -1 _22K+3 -1
3. 22(K-1)+1 * 3.92K+1 )

Recall that yy € [Bx-1,0K) = [

In particular,

YN43mtd = 2

22m+3 -9
92mtly oy 3] +1

i P _22K+3 -1 22m+3 -9
< 212 5 p2KT1 + 5 +1

22K+2m+5 22m+2 22m+4 1

_3_22K+1 _3_22K+1+ 3 3

_ _gl), (22m72K+1 + 1)

< 0.

Also note that —1 < xy 3mi3 < —%.
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Thus
TN+3mt+s5 = |TN+3mta] — Untamea — 1

= 00— (22n43me3 +1) — 1

= —2enigmi3 —2 < 0

and
YN+3m+5 = TN43mta + [YNt3mta]

= 04+ (—22N43m43 — 1)

= —2onigmi3—1 > 0.

Finally,
IN43(m+1)+3 = IN43m+6
= |TNt3m+s| — Yntamrs — 1
= 20N13mi3 +2— (20N 3my3 — 1) — 1

= 4TNi3m+3 + 2 < 0

_ 22m+1 22m+3 -9

22(m+1)+3 —9

_ 22(m+1)+1yN+< .

) +2 < 0
and
YN+3(m+1)+3 — YN+3m+6
= TN43m+5 + |YN+3mts]
= —2TNi3m43 — 2+ (—2TN13mi3 — 1)

= —4TNi3mts — 3

22m+3 -9
- e (257

22(m+1)+3 —9
— _22(m+1)+1yN o ( —1.

3
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In particular,

_22(K—1)+3 -1 22m+3 -9
YN+3mre < —4 lQQmH ( + -3

- 3. 22(K-1)+1 3

22K+2m+4 22m+3 22m+5

1
3.92K-1 +3,22K—1_ 3 §

il)) (22m—2K+4 B 1)

A
o

and so S(m + 1) is true. Thus the proof of the Claim is complete. That is,

S(m) is true for 1 < m < K — 1. Specifically, S(K — 1) is true, and so

oK1 22K+1 -9
IN43(K—1)43 = TN43k = 277 yn + — 5 <0
. 92K+1 _ 9
YUN43(K-1)43 = YN43Kk = —27 YN — <3> —1<0.
Note that yyi3x = —rni3x — 1.
Thus
TNisk+1 = |TN43k| — Yngsx — 1

= —anys3x — (—onpsx — 1) — 1

= 0

and
YN+3K+1 = TN+3K + |UNisk|

= TN43k T Tnt3k + 1

= 2xn43k + 1

22K+1 -9
= 2 (22K1yN + 3> + 1.
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Note that

_22(K71)+3 -1 22K+1 -9
2K—1
2 [2 ( 3. 22(K—1)+1 ) + 3 ] + 1 S YN+3K+1

<2 3. 22K+1 3

22K71 (_22K+3 _ 1) 22K+1 o 2‘| ey

So as
_22(K—1)+3 -1 22K+1 _ 9
2K—1 _
2[2 ( 3. 22(K-1)+1 >+ 3 ]+1 -
_24K+1 22K 22K+2 1 1
— ——=—(2+1) = -1
3. 92K 1 3. 99K 1 T 3 3 3( +1)
and
5 22K71 _22K+3 -1 N 22K+1 -9 41 = _22K+3 _} 22K+2 _}
3. 22K+1 3 3.2 6 3 3
_ 1.1 1
6 3 2
I have
1
-1 <yngsr < 5

and hence it follows from case 3 of this Lemma and the fact that (0, —1) € P}

that the solution {(2,, ¥n)}o2 nisx4s i eventually the period-3 cycle Pj.

Finally, suppose yy < —%. Then by Statement 3 of Lemma 2.3.4 the solution

{(2n,yn) }22 Ny is the period-3 cycle P3.
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Lemma 2.3.7 Suppose there exists a non-negative integer N > 0 such that
(zn,yn) € Q1. Then {(z,,yn)}°y is eventually the period-3 cycle Py or the

period-3 cycle P2.

Proof: 1 have

Tny1 = |en|—yv—1 = an—yn—1
YN+l = ry + [yn| = TN + YN > 0.

If xy11 > 0 then

Tny2 = |anp]l—yng1—1 = —2yny — 2 < 0
YN+2 = TNt1 + YNl = 2ey — 1 > 0
Tnis = |Tnge] —yng2—1 = 2any+2yv+2 < 0
Yn+s =  Int2t|ynie| = 2oy —2yy —3

TNys = |Tngs| —yYngs—1 = 0

and S0 (Tni4,Ynia) € Il Uly. By Lemmas 2.3.3 and 2.3.6, the solution

{(xn, yn)}2 v is eventually the period-3 cycle P} or the period-3 cycle P3.

If xy11 <0 then

IN+2 = ’$N+1| —yny1—1 = “2zy < 0
YNt2 = Tny1 + [ynt] = 2xny—1
Tnys = |Tngo| —yng2—1 = 0

and so (znis3,ynys) € Il Uly. By Lemmas 2.3.3 and 2.3.6, the solution

{(xn, yn)}52 y is eventually the period-3 cycle P} or the period-3 cycle P2. O

Lemma 2.3.8 Suppose there exists a non-negative integer N > 0 such that
(zn,yn) € Qa. Then {(z,,yn)}y is eventually the period-3 cycle P or the

period-3 cycle P2.
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Proof: 1 have
Ty = |anl—yv—1 = —ay—yy —1
YnN+1 = TN + |yn| = TN + YN-

Case 1: Suppose yn41 > 0. Then by Lemma 2.3.2, the solution {(z,, yn)}oZ y o is

the period-3 cycle P3.
Case 2: Suppose yyy1 < 0 and zyy1 < 0. Then xy 40 = |[Tyi1| —yni1 —1 =0 and
5O (TN42,Yn+2) € lo Uly. By Lemmas 2.3.3 and 2.3.6, the solution {(zn,yn) 22y

is eventually the period-3 cycle P} or the period-3 cycle P3.

Case 3: Suppose yy+1 < 0 and xy11 > 0. Then

Tnyz = |enp|—yvpi—1 = 22y —2yy—2 > 0
Yn+2 = Ty tlyval = 2oy —2Yyv—1 > 0
Tnys = [Ty —yng2e—1 = —2

Yn+s =  Ingot|ynse| = —danv—4dyn—3 > 0
TNya = |Tngs| —yngs—1 = day+dyy+4 < 0
Yn+a =  Tnizt+lynis| = —dan —4dyn =5

Tnys = |TNga|l —yYnvpa—1 = 0

and so (znis,Ynys) € Il Uly. By Lemmas 2.3.3 and 2.3.6, the solution

{(xn, yn)}52 y is eventually the period-3 cycle P} or the period-3 cycle P2. O

Lemma 2.3.9 Suppose there exists a non-negative integer N > 0 such that
(xn,yn) € Qa. Then {(xn,yn)}y is eventually the period-3 cycle Pi or the

period-3 cycle P2.
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Proof: 1 have
typ1 = |an|—yv—1 = oy —yny—1
ynr1 = axv+lyv] = axv—yn > 0
Case 1: Suppose zyy1 > 0. Then (zx11,yni1) € @1 and so by Lemma 2.3.7, the

solution {(zn,yn)}o 4o is eventually the period-3 cycle P} or the period-3 cycle

P2.

Case 2: Suppose zxi1 = 0. Then (zny1,yn+1) € lo and so by Lemma

2.3.3, the solution {(zn, yn)}o2 .4 is the period-3 cycle P3.

Case 3: Suppose znyi1 < 0. Then (xyi1,yny1) € @2 and so by Lemma
2.3.8, the solution {(z,,yn)}o> N, is eventually the period-3 cycle Pj or the

period-3 cycle P2.

Lemma 2.3.10 Suppose there exists a non-negative integer N > 0 such that

(zn,yn) € li. Then {(xn, yn)}2 y is eventually the period-3 cycle P or P3.

Proof: 1 have

Ty = |an[—yv—1 = ay—1

yn1 =  avtlyn] = an
Case 1:  Suppose zy = 0. Then (zni1,yny1) = (—1,0), and so
(n42,yn+2) = (0,—1). Hence the solution {(@n,yn)}oy,o is the period-3

cycle P}.

Case 2: Suppose 0 < zxy < 1. Then zyy; < 0 and yyy; > 0. Thus
(TN4+1,Yn+1) € Q2 U ly, and hence by Lemmas 2.3.3 and 2.3.8, the solution

{(zn, yn) }o> N4 s eventually the period-3 cycle P} or the period-3 cycle P3.
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Case 3: Suppose xy > 1. Then ;1 > 0 and yyy1 > 0. Thus (zn11,yni1) € Q1
and by Lemma 2.3.7, the solution {(z,, yn)}r> v is eventually the period-3 cycle

P} or the period-3 cycle P2. O

Lemma 2.3.11 Suppose there exists a non-negative integer N > 0 such that
(zn,yn) € l3. Then {(Tn, yn) }3 N 18 eventually the period-3 cycle P or the period-
3 cycle P3.

Proof: 1 have

Tny1 = |an|—yv—1 = —ay—1
yn+1 = oy +lyn] = TN < 0.
Case 1: Suppose —1 < xy < 0. Then zyyo = |zy41] —ynvi1 — 1 = 0, and

SO (Tny2,Yns2) € lo Uly. It follows by Lemmas 2.3.3 and 2.3.6, that the so-

lution { (2, yn) }o2 1o is eventually the period-3 cycle Pj or the period-3 cycle P3.

Case 2: Suppose zy = —1. Then (zy.1,yns1) = (0,—1) € Pl and so the

solution {(zn, yn)}o N is the period-3 cycle P3.

Case 3: Suppose zy < —1. Then (zyy1,ynv+1) € Q4 Ul It follows by
Lemmas 2.3.9 and 2.3.10, the solution {(2n,yn)}oe n4o is eventually the period-3

cycle P} or the period-3 cycle P2. O

To complete the proof of Theorem 2.1 it remains to consider the case where

the initial condition (zg,yo) € Q3.

Lemma 2.3.12 Suppose (xo,y0) € Q3. Then {(xn, yn) 122, is the unique equilib-

1

rium solution (Z,y) = (—%, —5), or else is eventually either the period-3 cycle P}

or the period-3 cycle P3.
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Proof: If (x,yo) = (_g —%) , then the solution {(z,,y,)}5%, is the equilibrium.

So suppose (Zg, %) € Q3 \ {<—%, —é)} It suffices to show that there exists an

integer N > 0 such that {(z,,y,)}>2y is either the period-3 cycle P} or the

period-3 cycle P3.

For the sake of contradiction, assume that it is false that there exists an
integer N > 0 such that {(z,,y,)}>y is either the period-3 cycle P} or the
period-3 cycle P2. Tt follows from the previous lemmas that z,, < 0 and y,, < 0 for
every integer n > 0.

Case 1: Suppose xg < —2 and yy < 0. Then

v1= |zl —yo—1=—20—4o—1>0

which is a contradiction, and the proof is complete.
Case 2: Suppose —2 < o < 0 and yy < —1. Then

ry= |zl —yYo—1=—20—yo—1>0

which is a contradiction, and the proof is complete.

Case 3: It remains to consider the case (xg,y0) € (—2,0) x (—1,0). For

each integer n > 0, let

_247172 -1 _24n + 1 _24n72 -1 _24n + 1
a/n:i? bn:77 Cn:77 dn:7
5. 24n—3 5. 24n—1 5. 24n—2 5. 24n
24n 1
and D,, = )
)
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Observe that

2 . 2
—2:a0<a1<a2<...<—5 and nh_)ngoan:—g
2 . 2
0:b0>bl>b2>...>—5 and 7}1_}1{)1@()”:—5
. 1

—1:co<cl<02<...<—g and JLIEOCn:—g
1 . 1
0:d0>d1>d2>...>—g and T}Lg}odn:—g.

See diagram below:

There exists a unique integer K > 0 such that

(9007590) € [GK,bK] X [CKadK] \ [CLK—H»bKJ,-l] X [CK+17dK+1]-

I first consider the case K = 0; that is, (zo,40) € [—2,0] x [=1,0] \ [-3, —3] x
[—1,—+]. Note that by Lemmas 2.3.6 and 2.3.11, and by Case 1 and Case 2
of this lemma, I know that the solution {(z,,y.)}>2, is eventually either the

period-3 cycle P} or the period-3 cycle P2 when (g, o) is an element of the outer

o4



boundaries of [-2,0] x [—1,0].

Recall by assumption that z,, < 0 and y,, < 0 for every integer n > 0.

1 3 1 3
So suppose (2o, %) € (—2,0) x (=1,0) \ {_2’_8] X [_4’_16} Then
T = |zl —yo— 1= —x0—yo — 1

Y1 = 2o + Y| = 20 — Yo
o= |1 —th —1=(xo+yo+1)— (xo — o) — 1 =2y

Yo =1+ |y1| = (=20 —yo — 1) + (—xo + yo) = —2z — 1.

If —2<z2p< —%, then yo > 0 which is a contradiction.

Thus —% < xg < 0. Then
T3 = |372| — Y — 1= (—2y0) — (—2270 — 1) —1= 2270 — 2y0

Yz = T2 + |y2| = (240) + (239 + 1) = 2z + 2y + 1
T4 = |zs| — ys — 1 = (=20 + 2y0) — (220 + 2yo + 1) — 1 = —dzo — 2

Ys = T3+ |ys| = (220 — 2y0) + (=220 — 290 — 1) = —4yo — 1.

If —1<yy< —i, then y4 > 0 which is a contradiction.

Hence —i <9 < 0. Then

x5:\:U4|—y4—1:(4x0+2)—(—4y0—1)—1:4$0+4y0+2
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Ys = g + [ya| = (—dwo — 2) + (dyo + 1) = —dao + 4yo — 1
x6 = |vs| —ys — 1 = (—4wo — dyo — 2) — (—4wo +4yo — 1) — 1= —8yo — 2

Yo = T5 + |ys| = (dwo + 4yo + 2) + (4w — 4yo + 1) = 879 + 3.

If —% < 29 < 0, then yg > 0 which is a contradiction.

Hence —% < x9 < —%. Thus
Ty = |l’6|—y6—1:(8:1/0-’-2)-(81’0-’-3)-1:—8$0+8y0—2

yr = x6 + |ys| = (—8yo — 2) + (—8x¢ — 3) = —8x¢ — 8yp — 5
ZU8:‘l‘7|—y7—1:(8$0—8y0—|—2)—(—8$0—8y0—5)—1:16.110—|-6

ys = o7 + |y7| = (—=8x¢ + 8yo — 2) + (8 + 8yp + 5) = 16yy + 3 > 0,

which is a contradiction. Thus the case K = 0 is complete.

Next consider the case K > 1. Recall that z, < 0 and y, < 0 for all

n > 0.

For each integer m such that 0 < m < K — 1, let P(m) be the following

proposition:
T8m+1 — —24m$0 - 24my0 - 3Dm —1
Ysma1 = 2Yxo — 2""yo + D,y
Tgmyz = 27" Tlyo +2D,,
Ysmez = —2Y"Tlgg—4D, —1
Tgmis = 24m+1x0 _ 24m+1y0 + 2Dm

Ysmys = 27Ty + 28"y, + 6D, + 1
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T8m+4 — —24m+2330 - 8Dm -2
Ysm+4 = —24m+290 —4D,, —1

Tgmys = 23F2pg 4+ 29mF 290 412D, + 2

Ysmas = —2 24 24m 2y, — 4D, —1
Tem+6 — _24m+3y0 — 8D, — 2

Ysm+6 — 24m+3$0 -+ 16Dm -+ 3

Tgmir = —2""F3xg 42 3y0 — 8D, — 2
Ysmir = —24mT3gg — 243y, — 24D, — 5

T8m+8 — 24m+4$0 + 32Dm +6

Ysmas = 21 Tzy+16D,, + 3.

Claim: P(m) is true for 0 < m < K — 1. The proof of the Claim will be by

induction on m. I shall first show that P(0) is true.

Tsoe1 = —To—Yo—1 = —24O0g,—21Oy, 3D, -1
Ys(o)+1 = Lo — Yo = 21035 — 24Oy, — D,

Tg(0)+2 — 2Yo = 24(0)+1y0 + 2Dy

Ys(0)y+2 = —2x9—1 = _24(0)+1£L‘0 — 4Dy — 1

Ig(0)+3 = 21'0 — 2y0 = 24(0)+1.Z'0 — 24(0)+1y0 + 2D0
Yso)rs = 2x0+2y0+1 = 28O+lg, 4 28O+ 4 6Dy + 1
L8(0)+4 = —4dxo — 2 = —24(0)+2$0 — 8Dy —2

Ys(0)+4 = —4yo — 1 = —240+25 4Dy — 1

T8(0)45 = 43;0 + 4y0 +92 — 24(0)+1$0 _ 24(0)+2y0 + 12D0 +2
ysoy+s = —4dxo+4dyo—1 = — 240420 4 2400 +2y 4Dy — 1
x8(0)+6 = —81’0 -2 = —24(0)+3I0 - 8D0 -2

Yso)+6 = 8yo + 3 = 28O+, 416D, + 3

.’L’g(o)+7 = —81’0 + 8y0 -2 = —24(0)+3£L‘0 + 24(0)+3y0 — 8D0 -2
Usoyrr = —8wo—8yo—5 = =240z — 2103y, — 24D, +5
Ty(0)+s = 1620 + 6 = 24O+y, 4+ 32Dy + 6

Ys(0)+8 = 16y + 3 = 24O+ 116Dy + 3
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and so P(0) is true. Thus if K = 1, then I have shown that for 0 <m < K — 1,
P(m) is true. It remains to consider the case K > 2. So assume that K > 2.
Suppose that m is an integer such that 0 < m < K — 2, and that P(m) is true. I

shall show that P(m + 1) is true.

Since P(m) is true, I know
Tsmas = 2™z +32D,, + 6

Ysmis = 224z + 16D, + 3.

Hence
T(m+1)+1 = T8m+9
= [Tgm+s| — Ysmes — 1
= —(24 gy +32D,, + 6) — (2™ Ty, + 16D, + 3) — 1
— _24m+4l,0 _ 24m+4y0 _ 48Dm —10
24m _ 1
— _24m+41.0 _ 24m+4y0 — 48 ( = ) —10
24(m+1) -1

— _24(m+1)x0 . 24(m+1)y0 -5 <5> -1
— _24(m+1)xo _ 24(m+1)y0 _ 3Dm+1 -1

and

Ys(m+1)+1 = Ys8m+9
= Tgmis T |[Ysms|
= 24m+4$0 + 32Dm + 6+ (_24m+4y0 - 16Dm - 3)

= 2imiig, — 24ty 416D, + 3

24m _ 1
= 24(m+1)x0 _ 24(m+1)y0 +16 ( - ) +3
— 24(m+1)x0 _ 24(m+1)y0 + Dm+1-

o8



Thus
T8(m+1)+2 = TL8m+10

= |T8myol — Ysmio — 1
— _(_24(m+1)x0 o 24(m+1)y0 o 3Dm+1 . 1)
_(24(m+1)x0 . 24(m+1)y0 + Dm+1) -1

= 24mtD)Fly 4 2D,

and
Ys(m+1)+2 = Ysm+10
= Tgmig + ’y8m+9|
= =24ty — 24ty — 3D, — 1+
(=24 g 4 24+ )y — D)
_ _24(m+1)+1x0 — 4D, 41 — 1.
Then
T8(m+1)+3 — T8mi11
= |@sm+10] — Ysm+10 — 1
= DLy op 4 24mAD L qD 1 — 1
_ 24(m+1)+1x0 _ 24(m+1)+1y0 + 2Dy 11
and
Y(m+1)+3 = Y8m+11
= Tgm+10 + |Ysmt10]
= 4mIDHly 4 o 4 24D 4D ]
24(m+1)+1x0 + 24(m+1)+1y0 —+ 6Dm+1 -+ 1
Hence

T(m+1)+4 — T8m412

= |Tsmi11] — Ysm11 — 1

— _24(m+1)+1x0 + 24(m+1)+1y0 _ 2Dm+1 _ 24(m+1)+1x0
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_24(m+1)+1y0 _ 6Dm+1 -9

= 24mAD+20 8D, — 2

and
Ys(m+1)+4 = Ysm+12
= Tgmi11 + |Ysmr11]
= QAmA+1p odmt DLy 4 oD L A )Hg
MmN+ gD ]
= —4mHD+2y 4D, — 1.
Thus
Tg(m+1)+5 — T8m+13
= |zsm+12] — Ysma12 — 1
= 24mAD+ 200 L 8D,y + 24242y 4D+ 1 -1
= 4mAD+2p 0 4 24mA D2y 19D+ 2
and
Ys(m+1)+5 — Y8m+13
= Tgmy12 T |[Ysmi12]
= —2Mm+D+200 8D,y — 2+ 2420 4D, g+ 1
= dmA2 4 od(mi )42y gD
Hence

T8(m+1)+6 — T8m+14

= [Tsm+13] — Ysm13 — 1

= —4mAD+2g oA+ 2 0 12D, — 2
424 mA D2y 4mADH 2y 4 4D, + 1 -1

= 24ty — 8D, — 2
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and

Y8(m+1)+6 = Ysm414

= Tgmt13 + |Ysmt1s]

— 24(m+1)+2x0 4 24(m+1)+2y0 + 12Dm+1 +24+ 24(m+1)+2x0
=m0 4 AD,  + 1

= 24m+)H3y0 4+ 16D, + 3.

Then
T8(m+1)+7 — TL8mH+15
= [Tsm+1a] — Ysmi1a — 1
= 24mIDF3y L 8D,y + 2 — 240Dy 16D, — 3 — 1
= _dmAD3, 4 ot DABy gD 9
and
Ys(m+1)+7 = Y8m+15
= Tgm+14 Tt |[Ysmi14]
= —4mtD+3y 8D, — 2 — 24Dy 16D, — 3
= —24mHD 3y, — 24t Dty 24D, — 5.
Thus

T8(m+1)+8 — TL8m+16

= |Zsmt15] — Ysm+15 — 1

= Q4mI DBy odmA+3y 4 8D 49
L YN, V) 5 MY, guy |

— 24(m+1)+4$0+32Dm+1+6
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and
Ys$(m+1)+8 = Ysm+16

= Tgm+15 + [Ysmr1s]

— —24(m+1)+3x0 + 24(m+1)+3y0 . 8Dm+1 -9
FoAmA gy A3y L 94D+ 6

= 24ty + 16 Dygr + 3

and so P(m + 1) is true. Thus the proof of the Claim is complete. That is, P(m)

is true for 0 < m < K — 1. In particular, P(K — 1) is true. Thus

Tsie = Tg(r—1)4s = 2"y + 32D + 6

and

Ysi = Ys(x—1)+s = 2 F Ty + 16Dy + 3.
Hence

T = |Tsr| —ysx — 1
= —2%gy—32Dg_1 — 6 — 2"y —16Dg_; —3 —1
= 2%y — 2y — 48Dy | — 10
9d(K—1) _

= -2y — 21Ky, — 48 <5> — 10

= MKy 2Ky 5 '524K + 2 —1

= -2y, — 24Ky — 3Dk — 1
and

Ysk+1 = Tsk + |Usk|
= 24K.I‘0 + 32DK_1 + 6 — 24Ky0 — 16DK_1 -3

= 2%y — 2"y + 16Dk 1 + 3
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AK 4K |

4K 24
= 2o - 2Wyo + — - = +3

= 24KIL’0 — 24Ky0 + DK.

Hence
Tsrra = |Tery1| — Ysxr — 1
= 2y + 24y + 3Dk + 1 — 2435 4+ 24Ky) — Dy — 1
— 9K+l LoD,
and

Ysik+2 = Tsikt1 + |Ysk+1l
= —24KZEO — 24Ky0 — 3DK —1- 24Kl'0 + 24Ky0 — DK

Q4K+ 4Dy — 1.

Recall that
(z0,%0) € [ak,br] X [cx,di] \ [arxt1,0x41] X [crt1, dx41]

_ [_24K—2_1 _24K_‘_1‘| [_24K—2_1 _24K_|_1‘|

5. 04K-3 ’5_241(—1 5. 24K-2 ? 5. 24K

_24(K+1)72 -1 _24(K+1) +1 _24(K+1)72 -1 _24(K+1) +1
\ 5.924(K+1)-3 7 5. 04(K+1)-1 1 [ 5.24(K+1)—-2 5. 94(K+1) 1

Suppose (Zo, Yo) € [ak,ax+1) X [k, dk].

Hence
YsK+2 > —24K+1 (UJK-H) — 4DK —1

SKA1 _24(K+1)—2 -1
—2 5.04(K+1)—3 | 4Dk — 1

28K +3 24(K+1) -1 24(K+2) 4

~ 5.9iK+1 + 5.904K+)-3 5 + 5 1

= 0
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which is a contradiction.

Next suppose (20,%0) € ax+1,bx] X [cx, cx11).

Then
Tsk+s = |Tski2| — Yski2 — 1
= 2ty 2D + 2 F g 4D +1 -1
— 24K+1l’0 _ 24K+1y0 + 2DK
and
Ysk+3 = Tsx+2 + |Ysitel
= 24K+1y0 —+ 2DK + 24K+1.T0 + 4DK +1
— 24K+1x0+24K+1y0+6DK+ 1.
Hence
Tsk+a = |Tsits| — Ysk4s — 1
Qg 4 9y oDy — 94Ky 94Ky 6D — 1 — 1
—24K+2$0 — 8Dk — 2
and
Ysk+4 = Tsk+3 + |Ysitsl

— 24K+1I0 _ 24K+1y0 + 2-DK _ 24K+1l’0 _ 24K+1y0 _ 6DK -1

= K2y 4D — 1.

Recall that (xg,yo) € [axi1,bk] X [ck, Cri1)-

Thus
YSK+4 > —24K+2(CK+1) — 4DK —1

24K+2 _24K+2 -1 A 24K —1 .
B A 5 a
28K+4 24K+2 24K+2 4

= 5_24K+2+5,24K+2_ 5 +g_1

= 0

which is a contradiction.
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Now suppose that (2o, y0) € (br+1,bk] X [cxr1, di].

Hence
Tsk+s = |Tsita| — Yska — 1
= 2200 4+ 8Dk + 2+ 22y 4+ 4D +1 -1
= 24 H2p 4 24K F 200 L 12D + 2
and
Ysk+5 = Tsk4d + |Usial
—2MH200 — 8Dy — 2+ 24Ky L 4Dy + 1
—24K+2330 + 24K+2y0 _ 4DK —1.
Then
Tsk+6 = |Tsk+s| — Ysits — 1
—24K+2$‘0 _ 24K+2y0 _ 12DK ) 24K+2$0 _ 24K+2y0 4 4DK +1-1
= 23y 8Dy —2
and
Ysk+6 = Tsk+5+ |Ysits|

= MRy 4 242y, 12D 4+ 2 242y — 202y 4 ADg 41

= 24K+31'0 + 16DK —f- 3

Recall that (xg,yo) € (bxy1,bk] X [cxi1,dK] -

Thus

24K _ 1
ysi+e > 23 (bgyr) +16 < 5 ) +3

_24(K+1) +1 24K _ 1
4K+3
2 +<5‘24(K+1)_1)+16< - >+3
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B _24K+4 N 1 N 24K+4 16 3
B 5 5 5 5

which is a contradiction.

Finally, suppose (2o, %0) € [ax 1, bx 1] X (i1, dk].

Thus
Tskir = |Tskie| — Yskte — 1
= 24K+3y0 + 8DK +2— 24K+3£L'0 - 16DK -3-1
_24K+3x0 + 24K+3y0 _ 8DK -9

and

Ysk+7 = Tsk+6+ |Usk+ol

= —24K+3y0 - SDK —2— 24K+3I0 - 16DK -3
—24K+3.1'0 - 24K+3y0 - 24DK — 5.
Hence
Tskis = |Tsk+r| — Yser — 1
QA3 — 23y 1 8D + 2+ 243y 4 24Ky L 24D 4+ 5 — 1
= 24KH30, 4+ 32Dk + 6
and
Ysk+s = Tsk+7 + |[Usk+7]

ARy 9Ky QD — 2 243y 4 94Ky 4 94D + 5

= 28K+ + 16D + 3.
Recall that (Jio,yo) S [CLK_H, bK—i—l] X (dK—i-l;dK]-

Thus

UK _
Yysi s > 24T (dK+1)+16< 5 >+3

—24EFD) 1 20K — 1
> QK+ <+> +16< >+3

5. 24(K+1) 5
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B 24K+4 N 1 N 24K+4 16 N 5
B 5 5 5 5

= 0

which is a contradiction. The proof is complete.
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3.1 Abstract

We investigate the system of rational difference equations in the title, where
the parameters and the initial conditions are positive real numbers. We show that
the system is permanent and has a unique positive equilibrium which is locally
asymptotically stable. We also find sufficient conditions to insure that the unique

positive equilibrium is globally asymptotically stable.

3.2 Introduction

We show that the system of rational difference equations

aq
Tn =
! Tn + Yn
, n=0,1,... (2)
) + 62xn + Yn
Yn+1 =

Yn

is permanent, where the parameters aq, as, f and the initial conditions xg, yo of the
system are positive real numbers. We actually show that there exist positive real
numbers [y, Iy, Ly, Lo such that for every positive solution {(z,,yn)}5, of system
2, we have

h<z,<Ly and Iy <y, <Ly for n > 3.

We show that the system has a unique positive equilibrium which is locally
asymptotically stable. We also find sufficient conditions to insure that the unique

positive equilibrium is globally asymptotically stable.

For the last four years we have been interested in the boundedness character
and the global behavior of systems of rational difference equations. This paper is

part of a general project which involves the system of rational difference equations

aq + ﬁlxn + Y1Yn
Ay + Bix, + Chy,

Tni1
, n=0,1,... (3)

(8% + ﬁan + YoUYn

Ao + Byx,, + Coyp,

Yn+1
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which includes 2401 special cases. In the numbering system which was introduced
by Camouzis, Kulenovi¢, Ladas, and Merino in ([6]), system 2 is referred to as

System(12, 41). Related work has recently been given in ([1]-[11]) and ([14]-[19]).

The following well-known result is needed for the local asymptotic stability

analysis of the equilibrium of System(12, 41).

Theorem 3.2.1 Let F' = (f,g) be a continuously differentiable function defined

on an open set Win R?, and let (%,y) in W be a fized point of F.

1. If all the eigenvalues of the Jacobian matriz Jp(T,y) have modulus less than

one, then the equilibrium point (z,y) is locally asymptotically stable.

2. If at least one of the eigenvalues of the Jacobian matriz Jp(z,y) has modulus

greater than one, then the equilibrium point (z,y) is unstable.

The following theorem gives necessary and sufficient conditions for the two

roots of a quadratic equation to have modulus less than one.

Theorem 3.2.2 ([13]) Assume p and q are real numbers. Then a necessary and

sufficient condition for both roots of the equation
Mtpl+qg=0
to have modulus less than 1 s that
Ip| <14¢<2.

The next theorem gives a sufficient condition to insure that there exists a
unique positive equilibrium, and it is a global attractor. Let k be a positive integer.
For i € {1,...,k}, assume [a;,b;] is a closed and bounded interval, and let F" :

la1,b1] X ... X [ag, bk] — [ai, b;] be a continuous function. For each i,j € {1,...,k},
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let M;; : [ai,b;] — [ai, b;] and m;; : [a;,b] — [a;, b;] be defined as follows: given
mi, M; € [a;, bi]

set
M;, if FJ is increasing in z;
m;, if F) is non — increasing in z;

Mi,j(mi7 Mz) = {
and

m; ;(mq, M;) = M; ;(M;, m;).

Theorem 3.2.3 ([12]) Assume that each i € {1,...,k}, [a;,b;] is a closed and

bounded interval of real numbers, and the function

Fi . C([al, bl] X ... X [ak, bk], [CLZ', bz])7
satisfies the following conditions:

1. Fi(zy,...,2) is weakly monotonic in each of its arguments.

2. If My, ..., My,mq,...,my, where m; < M; for each i € {1,...,k}, is a

solution of the system of 2k equations:

M;, = Fi<M1,i(m1> M1)> ceey Mk,i(mka Mk))

‘ , 1e€4{1,...,k}
m; = F'(my;(my, My),...,mgi(mg, My))
then
M; =my, forallie {1,... k}.
Then the system of k difference equations:
zlo = Fl(xh,... 2F)
a2, = Fa),....2%) , n=0,1,...(%)
xfﬁ-l : Fk(‘”}u e 7@2)
with initial condition (z{, ..., z8) € [a1,b1] X ... X [ay, bg], has exactly one equilib-
rium point (z',..., %), and it is a global attractor.
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3.3 Local Stability Analyses
Lemma 3.3.1 System(12,41) has a unique equilibrium (Z,y). Moreover, (Z,y) is

locally asymptotically stable.

Proof: Suppose (z,y) is a feasible equilibrium of System(12,41). That is

_ o1 _ apt+ T+
r = — — and Y=———_—>>.
rT+y )
_ ooy =7
Note that z < /oy and y = —
and so
R T o R e o
j _y_ g - Oéljjz :

T

After simplifying we have
T + 37 + T — 7° — (oq — 7%)* = 0.

Set

flx) = 22+ (1= Br)a — (201 + ag)x® — gz + . (4)

Thus in order to show that there exists a unique equilibrium (z, 7), it suffices
to show f(z) = 0 has a unique positive solution less than ,/a;. By Descartes’ rule
of signs we know (4) has at most two positive roots. We also see that f(0) = a? > 0
and f(\/ar) = —oq(y/oafB2 + ag) < 0. Since f(x) is a fourth degree polynomial
with a positive leading coefficient we know that it has a minimum of two positive
roots. Therefore there are exactly two positive roots; one root is less than \/aj,
and the other is greater than /a;. Thus the proof is complete.

We shall now investigate the linearized stability of the equilibrium (z,y) of

System(12,41).
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Let

o _wm+frty
f(x’w_x—ky and g(&?,y)— y .
Then
of of —Q —q R
or 0y @+y)? (T+7)? v oo
\7(j7g) = = _ = _
dg 0dg B2 —(a2 + (o) B 1-y
0T 0y Y T Y Y

The characteristic equation of the linearized equation of System(12,41) about the
equilibrium (z,y) is

727 — (1 — § 72(j — 1
%y OCIE y)A+ z*(y _+ﬁz)
a1y oy

A+ = 0.

By Theorem 3.2.2 we see that both roots are real and lie within the unit disk.
Therefore by Theorem 3.2.1, the unique positive equilibrium (z, g) is locally asymp-

totically stable.

3.4 Permanence
We say that System(12,41) is permanent if there exists real numbers [y, L, [,
and Lo such that for every positive solution {(x,,y,)}o, of System(12,41), there

exists an integer N > 0, such that
lh<z,<Ly and Iy <y, < Lo for every integer n > N.

With this in mind, define l;, L1, [, and L; as follows:

1l = “

’ 1_@1+C¥2+1+62041
2. L1:Oé1

3. lpb=1
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4. Ly =aq1 + 1+ By

Theorem 3.4.1 System(12,41) is permanent. In particular, let {(x,, yn)}2, be

a positive solution of System(12,41). Then for every integer n > 4, we have
ll < Ty < Ly and l2 < Yp < L.

Proof: Given a non-negative integer n > 0, note that

(651

ntl = € (0,
Ln+1 o+ Un (0,00)
and
Qo + Doy, + Yn Q9 + Doy,
Y1 = — ﬁ; In _ Qy& +1€(1,00).

Thus y, > 1 =1, forn > 1.

Hence if n > 1, then

(03] < (03] .
Tn + Yn 0+1

0<zpy = aq

and so z,, < L; for n > 2.

Hence if n > 2, then

ag + B2y + Yn < ag + ey +1
Yn 1

Yn+1 = Ly.

That is, for every integer n > 3 we have

ly < yn < Lo.

If n > 3, then
aq aq

> =l.
Tp+Yn o +ag+ Foog +1 '

Tnt1 =
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That is, for every integer n > 4 we have

ll <z, < L1
and the proof is complete. |
3.5 Global Attractivity Analysis

The following theorem gives a sufficient condition for the unique equilibrium

of System(12,41) to be globally asymptotically stable.

Theorem 3.5.1 Suppose that either

2 2
0<ay< o _ o
1+ 5 1+ 5
or
04153 < o
1+ 5, —

Then the unique equilibrium point (Z,y) is globally asymptotically stable.

Proof: The proof will be by Theorem 3.2.3. For (x,y) € [0,00) x (0,00), set
“ and glo,y) = 2ERTEY

f(wjy)szry y

and let R = [a,b] X [¢,d] = [0, 1] x [1, ag + Bacry + 1].

Let T': [0,00) x (0,00) — (0,00) x (0,00) be given by T'(x,y) : (f(z,y),g(x,y)).

We shall first show that T[R] C R. Suppose (z,y) € R. It suffices to show

that

f(z,y) € [a,b] and g(x,y) € e, d].
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1. We shall first show that a < f(z,y).

Note that
aq
r+y

a=0<

2. We shall next show that f(x,y) <b.

We have
aq (0751 (03]
J(z.) r+y  a+c 041 1
3. We shall next show that ¢ < g(z,y).
cm1< Q2 g X BTEY 0,

Yy Y
4. Finally, we shall show that g(z,y) < d.

Now

g + (o +y < g+ ab+1

g(z,y) = ” < 1 =g + ooy +1=d.

Thus T[R] C R.

Clearly f is strictly decreasing in x and strictly decreasing in y, and g is
strictly increasing in = and strictly decreasing in y. So to apply Theorem 3.2.3,
suppose (my, My, ma, My) € [0, a1]* X [1, g + 1 + Bac1]* is a solution of the system

of equations

my — M, o— 4
M+ M, C T g+ my
_ Qg+ famy + My g+ (o My +my
mo = ) MQ_
M2 meo

with

0<m <M <o and 1 <mg < My <as+1+ Baas.
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It suffices to show that
mp = M1 and mo = MQ.

For the sake of contradiction, suppose that this is not the case.

Now
m1M1 + m1M2 =1 = M1m1 + M1m2
. 651 . ..
and so mi My = Mims. Since m; = ————, we see m; is positive, and so as
My + My

my My = Mimsy, we have

0<m < M and 1 <my < M.

Hence

We also have

g + Bomy + My = maoMy = ag + B2 My + M.

Therefore Gomq + My = B2 M7 + ms, and hence
My —my = B My — Bamy.

Thus
m

m
52(M1 - ml) = My —mgy = miQMl — Mg = J(Ml - ml)-
1

ma

So as My # my, we have
m
fr=—=#0.
ma
That is,
mo = [fomy and My = By M,.

Recall that
(5] (05} (05}

- M, + M, - M, + B2 M,y B (1+ Bo) M,y

my
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and so

Thus

aq

1. M, =
! 1+ 55

2. Mo = ﬁgml.

3. M2 = 52M1 =

&3]
M, =
myiviy 1+ﬁ2
1
m1.
a1 32 1
1—|—62 ml'

In particular, since mo = [amy, we see that

and so

Thus

and so

We also have

Oélﬁ%
1+,

and thus

1 a1 32
—meo My = My =
P
04153
moMs = .
2 1+,
04153
moMs = g + Bomy + M
1+ 3 oMo 9 + Bamy 2

ag + Bomy + Bo My

a1 1
= Qo+ Pamy +
2+ B2y 1+ 06, m
o133 13
0= Bymi + (g — my + .
Py (2 1+52> L+ (5

moMy = ag + BoMi +moe = g+ B2 My + Bomy

affy 1
+ Bo My + .
(&%) ﬁQ 1 1+ 53 M
041522 a3
0=pFM:+ [ay — M, + .
62 1 ( 2 1+52> 1 1"‘52
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That is, m; and M; are the two distinct roots of the quadratic equation

2 041522 a1 32
+ — + =
oz (O&g 1+ ﬁz) : 1+ 5
Hence
041522 041522 ? 40615%
0 < — 1+, 1+ 2 L+ 5,
e 25,
and
2
a1 33 —oy | + g — a3 o don 33
14 3o 1+ (2 1+ (2
my < M; = .
23

So by our hypothesis this is a contradiction, and the proof of the theorem is

complete.

Extensive computer simulations lead us to the following conjecture:

Conjecture 3.5.1 The unique positive equilibrium of System(12,41) is globally

asymptotically stable for the entire range of the parameters.
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.1.1 General Theorems for the 81 Systems of Piecewise Linear Differ-
ence Equations

The following six theorems generalizes the global behavior of 75 of the 81

piecewise systems.

Consider the set of systems

Tp+1 = ‘xn‘ _yn+b
, n=0,1,... (1)
Ynt1 = Tp+ C|yn| +d

where (0, y0) € R? and

{b=-landc=d=1}

or {b=0and [(c=1and d e {0,1}) or (c=—1 and d € {—1,0})]}
or {b=1and [(c=—1) or (c=1and d € {0,1})]}.

Theorem: Let {(x,,y,)}5%, be a solution of a system from set I with

(zo,y0) € R% Then {(z,,yn) 2, is eventually a unique equilibrium.

This set of systems are Systems(9-11, 17-21, 26, 27).

Consider the set of systems

Tp+1 = ’xn’
., n=0,1,... (a)
Yn+1 = Tn +d

where (z9,v0) € R? and d € {—1,0,1}.

Theorem: Let {(z,,y,)}2>, be a solution of a system from set Ia with

(mo,y0) € R Then {(z,yn)}2, is eventually an equilibrium.
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This set of systems are Systems(40-42).

Consider the set of systems

Tpnt+1 = |$n|+yn+b
, n=0,1,... (1)
Ynt1 = Tp+cly,| +d

where (z9,v0) € R? and b,c,d € {—1,0,1}.

Theorem: Let {(z,,y,)}>2, be a solution of a system from set II. Then there
exists initial conditions (zg,yo) € R? such that {(x,, y,)}°, has the boundedness

characteristic (U,U). In particular, {(z,,y,)}22, increases without bound.

This set of systems are Systems(55-81). Note that of these 27 systems, 19

have one to three equilibrium points and 5 have period-2 solutions.

Consider the set of systems

Tpi1 = |za|+1
Cn=01,... (I11)
Ynt1 = Tp+ C’yn| +d

where (zg,y0) € R? and ¢,d € {—1,0,1}.

Theorem: Let {(z,,yn)}7>, be a solution of a system from set III with
(z0,70) € R2 Then {(xn,yn)}°, has the boundedness characteristic (U,U). In

particular, {(z,, yn)}>, increases without bound.

This set of systems are Systems(46-54).
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Consider the set of systems

Tp+1 = |$n| _yn+b
, n=0,1,... (IV)
Ynt1 = Tp+ C|yn| +d

where (g, yo) € R? and

{b=—-1land (c=—-1lord=—-lorc=d=1)}

or {b=0and c+d =0}

or{b=1land [(c=—1)or (c=1andd=—1)or (c=0and d=1)}.

Theorem: Let {(z,,yn)}r>, be a solution of a system from set IV with
(z0,y0) € R% Then {(z,,yn)}52, is a unique equilibrium solution or periodic with

period greater than two.

This set of systems are Systems(1-4, 7, 8, 12, 14-16, 24, 25).

Consider the set of systems

Tpy1 = |xn|+a
, n=20,1,... (V)
Ynt+1 = $n+c|yn|+d

where (g, yo) € R? and
{a=-1land [(c=—-1landd=1)or (c=0)or (c=1andd e {—1,0})]}
or {a=0and c=—1and de {0,1}}.

Theorem: Let {(z,,y,)}5°, be a solution of a system from set V with

(70,y0) € R% Then {(z,,yn)}52, is a unique equilibrium solution or periodic with
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period-2 or period-4.

This set of systems are Systems(30-35, 38, 39). Note that only Systems(30,

34, 35) exhibit prime period-4 solutions.

Consider the set of systems

Tpr1 = |zal+a
, n=0,1,... (V1)
Ynt1 = Tp+ Clyn’ +d

2 and

where (x9,70) € R
{a=—1land [(c=—-1andde {-1,0})or (c=d=1)}

or {a=0and [(c=d=—1)or (¢c=1)}.

Theorem: Let {(z,,yn)}5>, be a solution of a system from set VI with

(z0,y0) € R? Then {(z,,yn)}>2, has the boundedness character (B,U).
This set of systems are Systems(28, 29, 36, 37, 43-45). Note: all systems except

44 and 45 exhibit period-2 solutions and Systems(37, 43, 44) have equilibrium

points.

86



.1.2  Systems(10 and 26)
In this section I consider System(10) and System(26). I will begin with Sys-
tem(26):

Tpy1 = ’xn’ — Yn + 1
 n=0,1,.. (26)
Yn+1 = Tn + |Yn]

where the initial conditions xy and gy are arbitrary real numbers. The theorem

that follows gives the global behavior of this system.

Theorem .1.1 Let {(x,,y,)}5%, be a solution of System(26) with (xo,ys) € R?.

Then {(zn, yn) 22, is eventually the unique equilibrium (Z,y) = (0,1).

The change of variables, =, = —Y,, and y, = X,,, reduces the system to

Xn+1 = |Xn| - Yn
on=0,1,.. (10)
Yn+l =X, - ’Yn‘ -1

which is System(10). The global behavior of System(10) follows.

System(10)
I will now consider the system of piecewise linear difference equations

Tpt1 = |xn‘ — Yn
=01, (10)
Yn+l = Tn — |yn‘ —1

where the initial conditions zy and gy, are arbitrary real numbers. This is Sys-
tem(10).

I show that every solution of System(10) is the unique equilibrium (z,y) =
(1,0).
Global Results

Set
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Q= {(z,y):2>0,y >0}
Qy = {(z,y):2<0,y>0}
Qs = {(r,y): 2 <0,y <0}

Qs = {(x,y):x>0,y <0}

Theorem .1.2 Let {(x,,y.)}5%, be a solution of System(10) with (xo,vs) € R?.

Then {(zn, yn) 122, is eventually the unique equilibrium (Z,y) = (1,0).
The proof of Theorem .1.2 is a direct consequence of the following lemmas.

Lemma .1.3 For a non-negative integer N > 0, (zn11,Yn+1) = (Z,79) if and only

if 1l =|an| —ynv and 1 =y — |yn|.

Proof: We have

(@N+1,Yn+1) = (Z,7)
if and only if
(@N+1,yn+1) = (1,0)
if and only if
l=|zy|—yyand 0 = zy — |yn| — 1
if and only if

l=l|zy| —yy and 1 =zy — |yn|.

Lemma .1.4 Suppose there exists a mon-negative integer N > 0, such that

(xn,yn) € Q1. Then either (xny2,ynt2) = (T,9) or (Tnt2, Un+2) € Qu.
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Proof: We have a non-negative integer N > 0, such that (zx,yy) € Q1. Then

Case 1: Suppose xn > yn, then

TNg1 = len] —yn = TN — YN > 0

Yn+1 = an—|yn|—1 = v —yy — 1.

Suppose ynvi1 =y —yn — 1 > 0, then
IN+2 = |95N+1| — YN+ = IN — YN — (xN — YN — 1) =1
YN+2 = $N+1—|?JN+1\—1 = xN_yN_(xN_yN_l)_l =0
and so (Tn12,Yni2) = (T,7).
Suppose ynyi1 =y —yny — 1 <0, then

INt2 = |$N+1| — YN+ = IN — YN — (IN —Yn — 1) =1

YNtz = Ty — [Uns1| —1 = 2oy — 2yy — 2 < 0
and 80 (Tn12,Yni2) € Q4.

Case 2: Suppose rny < yn, then

TNyl = lzn| — yn = TN — YN < 0
yn+1 = an—|yn|—1 = azy—yn—1 < O
Tny2 =  |TNp1] —yny1 = 2oy +2ynv+1 > 0
Yn+2 = In41— |YUn+1|—1 = 2oy —2yy—2 < O
and so (Tny2,Yni2) € Q4. The proof is complete. O

Lemma .1.5 Suppose there exists a non-negative integer N > 0, such that
(zn,yn) € Q2. Then (Tny2,Ynt2) € Qu.

Proof: We have a non-negative integer N > 0, such that (zy,yn) € Q2.

Case 1: Suppose —xy > Yy, then

INt1 = lzNn| — Yy~ = —azn—yyn =2 0
yv+1 =  av—|yn[—-1 = —ay—yv—-1 < O
Tny2 = TNy —ynsa = —2zn +1 > 0
YNtz = Tn41— |YUn+1]—1 = —2yn — 2 < 0
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and so (Tyyo,Yni2) € Q.

Case 2: Suppose —xy < yy, then

TNy = lzn| = yn = —ay—yyn < O
YN+1 = ry — |yn| — 1 = —azy—yn—1 < 0
Tny2 =  |Tnpl] —yngr = 2yy +1 > 0
YNtz = Tn41— |yn41| —1 = —2yn — 2 < 0
and 8o (Tn12,Yni2) € Q4. The proof is complete. O

Lemma .1.6 Suppose there exists a mon-negative integer N > 0, such that

(xn,yn) € Q3. Then (Tny2,Yn+2) € Q.

Proof: We have

TNyl = [zn| = yn = —TN — YN > 0
yn+1 =  av—|ynv[—-1 = axv+yv—-1 < 0
Tny2 =  |tnp1]—yvp1 = —2zny—2yn+1 > 0
YUnt2 = Ty — [Uns1| —1 = -2 < 0
and 8o (Tn12,Yni2) € Q4. The proof is complete. O

Lemma .1.7 Suppose there exists a mnon-negative integer N > 0, such that

(zn,yn) € Qu. Then {(n, Yn) }ol Ny 15 the unique equilibrium (T, 7).

Proof: We have
TNy =  |ry[-yy = ayv—yn > 0

ynt1 = v —|yn| =1 = anv+yv—1
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Case 1: Suppose yy+1 =2y +yny — 1 > 0 then

Tny2 =  |eyp|l—yvpr = —2yn+1 > 0
Yn+2 = Ty — |yl -1 = “2yy > 0
Tnys = |Ange| —Ynie = 1
Ynez = Tni2 — [Ynge| =1 = 0

and so (zn43,yn+s) = (T,7).

Case 2: Suppose yyy1 =y +yny — 1 < 0 then

TN+y2 = [ Tn41] — YN+t = —2yn+1 > 0

YN+2 = Tn41— |Yns1]—1 = 2y —2.

Subcase 2a: Suppose ynyio = 2xy — 2 > 0 then

TNy3 = TN —ynyr = —2ey—2yv+3 > 0

Ynez = Ty~ lyvpl—1 = 2oy —2yv+2 < 0
and so it follows by Lemma .1.3 that (zx14,yni4) = (Z,7).
Subcase 2b: Suppose yni2 = 2xy — 2 < 0 then
Tnys = |onpi| —yng1 = 2z —2ynv+3 > 0
YNz = Tyt~ |yva| =1 = 2ay —2yn — 2.
Subcase 2bi: Suppose yni3 = 22y — 2yy — 2 > 0 then
Tnya = |evgs|—yvgs = —dan+5 > 0
YNta = Tn4sz—|yngs|—1 = —4day+4 > 0
and so it follows by Lemma .1.3 that (zn45, yn1s) = (Z, 7).

Subcase 2bii: Suppose yyi3 = 22y — 2yny — 2 < 0 then

TNyg = |TNi3] — Ynas = —4dxn +5 > 0
Yn+a = Tngs — |yns| =1 = —4dyn > 0
Tnis = |onial —ynia = —day+4dyn+5 > 0
YNts = Tnia— |Ynpa| =1 = —day+4dyy+4 > 0
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and so it follows by Lemma .1.3 that (zn16, Yn16) = (Z, 7).

The proof is complete.
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.1.3 System(12)

I next consider the system of piecewise linear difference equations

Tp+1 = ’xn’ — Yn
 on=01,.. (12)

Ynt+1 = Tn — |yn| +1
where the initial conditions xg and yg are arbitrary real numbers.

12
It has the unique equilibrium point <—5, 5> and the following two prime period-3

solutions:
1
Tg = —= = 0
2o = —1 , 4o = 0 0 3 N
Pé: T, = 1, Y1 = 0 or P%: T = } .oy = g
3 3
Ty = 1, yo = 2 B 1 B 2
Ty = 3 y Y2 = 3

Theorem .1.8 Let {(,,yn)}5%, be a solution of System(12) with (z¢,y0) € R
Then either {(xn, yn)}22, is the unique equilibrium (z,y), or else there exists a
non-negative integer N > 0 such that the solution {(x,,yn) 22y of System(12) is

either the prime period-3 cycle P} or the prime period-3 cycle P3.

The change of variables, x,, =Y,, and y, = —X,,, reduces the system to

Xpy1 = | Xn| =Y, —1
, n=01,.. (8)
Yn+1 - Xn + |Yn’

which is System(8). See Theorem 2.3.1.
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.1.4 Systems(19 and 27)
In this section I consider System(19) and System(27). I will begin with Sys-
tem(27):

Tpt+1 = ’xn’ — Yn +1
., n=01,.. (27)
Ynt+1 = Tp + |yn| +1
where the initial conditions xy and y, are arbitrary real numbers. The theorem

that follows gives the global behavior.

Theorem .1.9 Let {(z,,y,)}52, be a solution of System(27) with (xo,y0) € R>.
Then {(xn, yn)}o2, is eventually the unique equilibrium (z,y) = (—1, 3).
The change of variables, =, = —Y,, and y, = X,,, reduces the system to

X1 =Xy =Y, +1

. n=0,1,.. (19)
Yoo = X — |V, = 1

which is System(19). The global behavior of System(19) follows.

System(19)

I will now consider the system of piecewise linear difference equations

Tnt1 = |xn| — Yn + 1
. n=0,1,.. (19)
Ynt1 = Tn — ’yn’ -1

where the initial conditions xg and yg are arbitrary real numbers.

I show that every solution of System(19) is the unique equilibrium solution (z, y) =
(3,1).

Global Results

Set
Q1 = {(z,y):2>0,y>0}

Qy = {(x,y):2<0,y>0}
Qs = {(z,y):2<0,y <0}

Qs = {(x,y): x>0,y <0}
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Theorem .1.10 Let {(x,,y,)}52, be a solution of System(19) with (zq,yo) € R?.

Then {(xn, yn) }22, is eventually the unique equilibrium (Z,y) = (3,1).
The proof of this theorem is a direct consequence of the following lemmas.

Lemma .1.11 For N >0, (xn+1,yn+1) = (Z,9) if and only if |xn| —yn = 2 and

IN — |yN| = 2.

Proof: We have

(@n+1,yn+1) = (2, 7)
if and only if
(Tn+1,yn+1) = (3,1)
if and only if
3=lzy|—ynv+land 1 =2y — |yn| — 1
if and only if

lzn| —yny =2 and zy — |yn| = 2.

In particular, zny > 0, yy > 0 and zxy — yy = 2. O

Lemma .1.12 Suppose there exists a non-negative integer N > 0, such that
(xn,yn) € Q1. Then either (xn14,ynta) = (T,7) or (Tni2, Yni2) € Q4.
Proof: Suppose (xy,yn) € Q1. Then

TN = |an[—yv+1 = ayv—yv+1

ynt1 = v —|yn|—1 = an—yy — 1.
Case 1: Suppose ynyi1 > 0, then xx.1 > 0 and so it follows by Lemma .1.11 that
(TN+2,Yn+2) = (T, 7).
Case 2: Suppose zyy1 < 0, then yy1 < 0. Hence

TNy = |$N+1‘—y]v+1+1 = —2$N+2y1\/+1 > 0

YNt = $N+1—|y1\7+1|—1 = QZEN—QyN—]_ < 0
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and so (Tyyo,Yni2) € Q.

Case 3: Suppose znyy1 < 0 and yyi1 > 0. Then

Tnre = |enaa|—ynaa+1 = —2zy+2yv+1 > 0
UNty2 = Tng1— [Uns1| —1 = 1
TNtz = |enie| —ynio+1 = —2zy+2yv+1 > 0
YN+s = Tni2—|Ynt2| —1 = 2oy +2yvn—1 > 0
and so it follows by Lemma .1.11 that (xx44, ynia) = (Z,7). a

Lemma .1.13 Suppose there exists a non-negative integer N > 0, such that

(xn,yn) € Q2. Then (Tn42,Yn+2) € Q.

Proof: Suppose (zx,yn) € Q2. Then
Ty = |an[—yn+1 = —ay—yn +1
yny1 = v —|yn|—1 = ay—yvn—1 < 0.
Case 1: Suppose 41 > 0. Then
Tny2 = |enp|—ynp1+1 = —2z2y+3 > 0
YUnt2z = Tny1—|ynt1|—1 = —2yn—1 < 0

and 8o (Tn12,Yni2) € Q4.

Case 2: Suppose zy41 < 0. Then

Tnio = |lenvp]—yvai+1 = 2yv+1 > 0
Yntz = Tnp—lyna| -1 = —2yv—1 < 0
and 8o (Tni2,Yni2) € Q4. O

Lemma .1.14 Suppose there exists a non-negative integer N > 0, such that

(xn,yn) € Q3. Then (xni1,Yn+1) € Qu.
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Proof: Suppose (xy,yy) € Q3. Then

TNt1 = ley]l—yn+1 = —axn—yn+1 > 0
yn+1 = sy —|yn| =1 = axy+yv—1 < 0
and 5o (vn41,Yn+1) € Q4. O

Lemma .1.15 Suppose there exists a non-negative integer N > 0, such that

(zn,yn) € Qa. Then {(n, Yn) }ol N5 @5 the unique equilibrium (T, 7).

Proof: Suppose (zn,yn) € Q4. Then
TNyl = ’$N|—@/N+1 = xN—yN+1 > 0
ynv+1 = ay—|yn|—1 = ay+yv— 1

Case 1: Suppose yy+1 > 0. Then

Iny2 = |onp|l—yvpi+1 = —2yv+3 > 0
yn+2 = Tnp1—lyn4| =1 = “2yv+1 > 0
and so it follows by Lemma .1.11 that (xyi3,yn13) = (Z, 7).

Case 2: Suppose yy+1 > 0. Then

Tny2 = |ensil—yna1+1 = —2yn+3 > 0

Yn+2 = Tny1— |[Yn41| —1 = 2xny — 1
Subcase 2a: Suppose ynyio > 0. Then

Tnys = |Tnge| —yng2+1 = 2oy —2yn+5 > 0

Yn+s = Tni2— |Yng2| —1 = 22y —2yv+3 > 0

and so it follows by Lemma .1.11 that (zx44, Yn14a) = (Z,7).

Subcase 2b: Suppose yni2 < 0. Then

TN+s = |onie| —yng2+1 = -2y —2ynv+5 > 0
Yn+s = Tni2—|Ynt2| —1 = 2oy —2yv+1 > 0
Tnia = |rnas|—ynis+1 = —4don +5 > 0
YN+s = Tnis— |ynas|—1 = —4xy +3 > 0
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and so it follows by Lemma .1.11 that (xy.5, ynis) = (Z, 7).
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.1.5 Systems(28 - 33)
All six systems share the same first difference equation, x,,1 = |x,| — 1. The

following lemma gives the global behavior of {x,}2 , for Systems(28 - 33).

Lemma .1.16 Every solution of x,41 = |x,|—1 is eventually periodic with period-
2 and there exists prime period-2 solutions. In fact, let {x,}>>, be a real solution
of Tpy1 = |xn| — 1 and write |xo| = m + a where m € {0,1,2,...}, and 0 < a < 1
where o € R. Then the closed form is

Zo if j=0

[wo| —Jj if 0<j<m

a—1 if j=m+2n—1 for neN
—a if j=m+2n for neN

In particular, —1 < x;, < 0 for any natural number k, where £ > m. The

proof is by computations and will be omitted.

System(28)
I first consider the system of piecewise linear difference equations

Tpi1 = |z, — 1
, n=20,1,.. (28)
Ynt+1 = Tp — |yn| -1

where the initial conditions xg and yg are arbitrary real numbers.
I show that the boundedness character of System(28) is (B,U).

Global Results

Theorem .1.17 Let {(x,,yn)}52, be a solution of System(28) with (zq,yo) € R?.
Then {(Tn,yn)}o>y has the boundedness character (B,U), moreover {x,}>2, is

eventually period-2 and {y,}5°, is decreasing without bound.

Proof: By Lemma .1.16, {z,}32, ., is period-2 and —1 < x; <0 for all j > m.

Set k =m + 1 and suppose y, € R. Then for any non-negative integer n > 0
Yrint1 = Thin = [Uksn| =1 < Ypgn-
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Therefore {y,}2,, ., is decreasing without bound.

System(29)
In this section I next consider the system of piecewise linear difference equations

Tpg1 = |Tn| — 1
, n=20,1,.. (29)
Ynt+1 = Tn — |yn|

where the initial conditions xg and yg are arbitrary real numbers.

I show that the boundedness character of System(29) is (B,U).

Global Results

Theorem .1.18 Let {(xn, yn)}52, be a solution of System(29) with (zg,vo) € R*
Then {(n,yn)}o2, has the boundedness character (B,U), moreover {x,}>2, is

eventually period-2 and {y,}5°, is decreasing without bound.

Proof: By Lemma .1.16, {z,}32,, .1, is period-2 and —1 < z; <0 for all j > m.

Set Kk =m + 1 and suppose yr € R. Then for any non-negative integer n > 0

Yktn+1 = xk+n_|yk+n| < Yk+n-

Therefore {y,}r2,, ., is decreasing without bound. O

System(30)
I next consider System(30)

Tpa1 = |xa] — 1
, n=01,.. (30)
Ynt1 = Tn — ’yn’ +1
where the initial conditions xy and yg are arbitrary real numbers.
11

I show that every solution is either the unique equilibrium (—2, 4), or periodic
with (not necessarily prime) period-4.

Global Results
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Theorem .1.19 Let {(x,,y,)}52, be a solution of System(30) with (zq,yo) € R?.
11

Then the solution {(x,,yn)}2, is eventually the equilibrium solution (—2, 4),

periodic with prime period-2 or periodic with prime period-4.

Proof: By Lemma .1.16 we know {(x,)}22, ., is period-2. Set M = m + 1 for the

remainder of this proof. Also recall that —1 < x,, < 0 for any natural number n,

where n > M.

Lemma .1.20 Suppose there exists a non-negative natural number N such that

N>M, oy = —% and yy € R. Then {(2n,yn) }ol vy @5 eventually a period-2

solution.
1 1
Proof: Suppose xy = —3. Thus, by Lemma .1.16, xn 1 = —3 for all £ € N.
Suppose further that |yx| < 3. Then
Ynt1 = oy —|yn|+1 = 1 —lyn|
Yni2 = TNy~ |Yngr| 1= —%—(%—|9ND+1 = |yn]
Ynis = Tnie—lyniel +1 = 3 —|yn| = ynvn

and so {yn}r2 v is periodic with period-2.
Now suppose |yn| > 1. Then for cach integer 1 <m < K —1, where K = [2[yy|],

let P(m) be the following statement

m
YN+m = 5 lyn| < 0.

The proof will be by induction on m. I shall first show that P(1) is true. We have

1
Ynt1 =Ty — |yn| + 1= 5~ YN |-
Note that

1 | |<K—1
g T IUNI="Ty

- |?JN|
and

Bl yn] <0 iff K <2yy|+1 i [2Jyn|] <2lyn| +1
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and so P(1) is true. Thus if K = 2, then I have shown that for 1 <m < K — 1,
P(m) is true. It remains to consider the case K > 3. So assume K > 3. Let m be
an integer such that 1 < m < K — 2 and suppose P(m) is true. I shall show that

P(m +1) is true.

YNtm+l = TN4m — [UN4m| +1 = _% — (=% +lyn|) +1
mEL — Jyy]
Note that
m—+1 K—-1
M < _
9 |yN| > 9 |yN|
and

L yn] <0 iff K <2yn|+1 iff [2lyn|] <2lyn| +1

and so P(m + 1) is true. That is P(m) is true for 1 < m < K — 1. Specifically,

P(K — 1) is true. Then

YN+K = TNpE-1— [Yntr-1| +1 = —% - (—% + yn|) +1

= % - |?JN|-

In particular,

K 2|yn|
YNtk = — — |yn| > —=— — |lyn| = 0.
2 2
Thus ) .
YN+k+1 = TNy — [Yner| 1 = —5 = (5 —|yn|) +1
= 55+ ywl.
In particular,
1— K 1 —2lyn| 1
=-_— > - <IN ——
YN+K+1 5 + lyn| > 9 + lyn] 2
Then
Ynvikt2 = TNtk — [Uvirnl +1 = =5 = (555 +lyw]) + 1
= %-\yz\/! = YN+K

and so the solution is periodic with period-2. Note, if yy = i then we have the

equilibrium solution. O
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Lemma .1.21 Suppose there exists a non-negative natural number N such that

N > M and |yn| > on + 1. Then {(xn, yn) }22 v is a period-4 solution.

Proof: Suppose —1 < zx < 0 and |yy| > zn + 1. Then

INy+1 — \:cN|—1:—xN—1§O
yn41 = 2y —|yn|+1<0
IN42 = TN

Yn+2 = Tyy1— |yvpl+l=—ay—1—(—zy +lyn| - 1) +1
= |yn|+120

IN4+3 = TN+1

Yn+s = Tny2— |[ynp2| 1 =2y — (lyn|+1) +1

= xN—|yN]<O

IN44 = IN
Ynta = Tnis— |ynvasl +1=—ay —1— (—ay +[yn]) +1
= —lyn[ <0
IN+5 — TN+1
YUN+s = TN4d— |Ynpal T 1 =28 —|yn|+1
= YN+1-
The proof is complete. u

To complete the proof of Theorem .1.19 it remains to consider the region enclosed

by |yN| <zy+1land zy € (—1’ _l) U (_l 0).

Lemma .1.22 Suppose there exists a non-negative natural number N such that

N > M and |yn| < xny + 1. Then {(xn, yn) }52 N is eventually a period-4 solution.
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Set
R, = {(a:,y):—1<x<—% and 0 <y<z+1}

Ry = {(z,y):—3<z<0 and 0<y<az+1}

Ry = {(z,y):—1<2<0 and —(z+1)<y<0}.

First, suppose there exists a non-negative integer N, such that (zy,yy) € Rs.
Then x4 = |zn| — 1 and yyy1 = 2n — lyn| + 1 = 2y + yn + 1 > 0. Otherwise
Yn+1 > Tny1 + 1 then by Lemma .1.21, the solution {(z,yn)}ol n, 1 is a period-4

solution. If yyi11 < zny1 + 1 then (zyy1,ynvi1) € R U Rs.

Next, suppose there exists a non-negative integer N, such that (zy,yn) € Ra.

Then xy41 = |ozn| — 1 and yyi1 = oy — |yn| +1 > 0. So (zn+1,Yn+1) € Ry

Finally, suppose there exists a non-negative integer N, such that (zy,yn) € Rj.
For each integer m > 0, let P(m) be the following statement:

IN+2m = TN

YNtom = —2mzry +yn —m >0

IN+2m+1 = TN+1

YNtome1 = (2m+ Doy —yy + (m +1) > 0.

Claim: P(m) is true for 0 < m < K — 1, where K = [%1 Note K > 1.
TN

The proof of the Claim will be by induction on m. I shall first show that P(0) is

true. Recall that —1 < xy <0 and 0 < yy < xy + 1. Then
TN42(0) = TN
YNt200) =yn >0
TN+2(0)+1 = TN+1
Ynt20)41 = &N — [yn| 1 =any —yn +1 > 0.
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Thus if K = 1, then I have shown that for 0 < m < K — 1, P(m) is true. It
remains to consider the case K > 2. So assume K > 2. Let m be an integer such
that 0 < m < K —2 and suppose P(m) is true. I shall show that P(m+1) is true.

Since P(m) is true I know

IN4+2m = TN
YN4om = —2mrn +yn —m >0
IN4+2m+1 = TN+1

YN+2m+1 = (Qm + I)IN — YN + (m + 1) > 0.

Then
IN42(m41) = [ZNtomi| = 1= [onp] =1
YN+2(m+1) = TN42mt1 — [Untomer] + 1

= anu —[2m+ 1Dy —yv+ (m+1)]+1
= —any—1-0CCm+Day+yv—(m+1)+1
= —aony—(2m+Day+yv — (m+1)

= 2m+1)zy +yy — (m+1).
In particular,

YUntomi) = —2(m+1)ay+yv —(m+1)

= [—meN + YN — m] + [—21‘]\[ — 1] >0

Then
TN4+2(m+1)+1 = ’xN+2(m+l)’ —-1= ‘$N| —1
= IN+1
YNt2(mtl)+1 = TN42(mt1) — [YNt2m1)| +1

= oy —[-2(m+1Dzy+yv —(m+1)]+1
= zy+2m+Day —yv+(m+1)+1

= [2m+1)+1ay —yn + [(m+1) +1].
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In particular,

Yntamin+1 = [2(m+1)+1ay —yn + [(m+1) +1]

= 2(m+Day —yy + (m+ D]+ [zx +1] > 0.

and so P(m+1) is true. Thus the proof of the Claim is complete. That is P(m) is

true for 0 < m < K — 1. Specifically, P(K-1) is true, and so

ITN2(K-1) = IN

YN4+2(K-1) = 20K-lay+yv—(K-1)>0
TN+2(K-1)+1 — IN+41

ynro-n+1 = 2K -1 +1ay —yn +[(K-1)+1] >0

Then
TN4+2(K-1)42 — IN42Kk = IN
YN+2(Kk-1)+2 = YN+2Kk = TNH2K-1)+1 — ’yN+2(K—1)+1| +1

= $N+1—[(2K—1)I’N—yN+K]+].>O
= —:L‘N—l—[(QK—l)iL'N—yN—i—K]—Fl>O

= —2Kzy+ynv— K.

Recall K = [%L thus

Ynt2x = —2Kay+yv— K

= —2fupeitay +yy — (S

= 1+ 525 oy +yy — [—(F234 - 1)]

— [ZE 4 IN= 2le‘N'|_|_yN "IN‘H/N_{_l_I

2en+1 2en+1
_ IN—2YNTN TNFYN
= TNt T 11 I+yv+1- 2o+l

= oy 14 [ gy

> ay+1 = xypo+ 1
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Therefore by Lemma .1.21 {(2n, yn) }22 v ok is periodic with period-4.

The proof of Theorem .1.19 is complete.
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System(31)

I also consider the system of piecewise linear difference equations
Tp+1 = |xn| -1
, n=0,1,.. (31)
Yn+1 = Tpn — 1

where the initial conditions xg and yg are arbitrary real numbers.

1 3
It has the unique equilibrium point <—2, —2>.

Theorem .1.23 Let {(x,, yn)}2, be a solution of System(351) with (zg,vo) € R%.
Then the solution {(z,, yn)}32, s eventually periodic with (not necessarily prime)
period-2.

The change of variables, z, = X,, and y, = Y,, — 1, reduces the system to

Xn+1 — |Xn| — 1
 on=0,1,.. (32)
Yn+1 =X,

which is System(32). See Theorem .1.30.

System(33)

Now consider the system of piecewise linear difference equations

Tpi1 = |2, — 1
, n=01,.. (33)
Yn+1 = Tn + 1

where the initial conditions xy and gy, are arbitrary real numbers.

11
It has the unique equilibrium point (—2, 2).
Theorem .1.24 Let {(x,,y,)}52, be a solution of System(33) with (zq,yo) € R?.

Then the solution {(x,, yn) 52, is eventually periodic with (not necessarily prime)

period-2.
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The change of variables, z,, = X,, and v, = Y,, + 1, reduces the system to

Xn+1 — ‘Xn‘ - 1
, n=01,.., (32)
Yn+1 :Xn

which is System(32). See Theorem .1.30.

System(32)
The next system of piecewise linear difference equations I consider is

Tpi1 = |xn] — 1
, n=20,1,.. (32)
Yn+1 = Tn

where the initial conditions xy and gy, are arbitrary real numbers.

1 1
The unique equilibrium point of this system is (—2, —2>.

Theorem .1.25 Let {(x,,y,)}5%, be a solution of System(32) with (zq,v) € R?.
FEvery solution of this system is eventually periodic with (not necessarily prime)
period-2. In particular, if |xo| = m + o, where m € {0,1,2,...}, and o € R such

that 0 < o < 1 then the period-2 solution in {z,} is {a — 1, —a}.

The proof is a direct consequence of Lemma .1.16.
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.1.6 System(37)
In this section I consider the system of piecewise linear difference equations

Tn+1 = |xn‘
, n=01,.. (37)
Ynt+1 = Tn — |yn‘ -1

where the initial conditions xy and gy, are arbitrary real numbers.

The set of equilibrium points are found on the following line:

1
27

{(x,y):yzg if y >0, and x =1 if y < 0}.

The period two cycles are:

($2m—1>y2m—1) = ($0, To — Yo — 1)
, m=12 ..

(@2ms Yom) = (20, Yo)
I show that every solution of System(37) is either an equilibrium point, is a
period-2 solution, or has the boundedness character (B, U).
Global Results

Set
Ry = {(z,y):y<z—1,2z>1, andy >0}

Ry = {(z,y):y>x—1,z>1, and y > 0}
Ry = {(z,y):x>1, and y <0}
Ry = {(z,y): |z| <1}

Ry = {(z,y) 2 < —1}.
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=#»  Equilibrium line

P

o be a solution of System(37) with (xq,y0) € R?.

o0
n=

Theorem .1.26 Let {(x,,y,)}

Then {(zn,yn)}

o 18 either an equilibrium solution, a period-2 solution, or it has

o0
n—

o 18 decreasing without bound.

o0
n—

the boundedness character (B,U), that is {y,}

The proof of Theorem 1.5.1 is a direct consequence of the following lemmas.

Lemma .1.27 Suppose the initial condition (xq,yo) is an element of Ry. Then

{(@n, yn) }

o 48 a period-2 solution.

o0
n=

itial

111

, and y > 0}. Suppose the

{(z,y)
condition (xg,yo) is an element of Ry. It is clear that x, = x¢ for all n € N.

Recall that Ry =

Proof

Then

> 0

To — |yo| — 1

n

Yo-
o — Yo — 1 and ya,, = yo. The proof is complete.

Ty — || —1

Yo

|

1

Yom—

Y

So, for any m € N

Lemma .1.28 Suppose the initial condition (xg,yo) is an element of Ry. Then

{(2n, yn)}

o 15 eventually a period-2 solution.

o0
n—=

111



Proof: Recall that Ry = {(z,y) : © > 1, and y < 0}. Suppose the initial condition
(20, Yo) is an element of Ry.

Then
r = |o| > 1

yi = To—|vl—-1 = mo+yo—1.
It is clear that x,, = xo for n > 0.

Case 1: Suppose xg = 1. Then y; = yo, and so (z,, y,) = (1,yo) for n > 0.

Case 2: Suppose y; = z9+yo—1 > 0. Recall Ry = {(z,y) :y<z—1,z>1, andy >
0}, so one more condition must be satisfied to utilize Lemma .1.27.
Note that, yy =xo+yo—1=214+yo—1> 2, — 1

and so by Lemma .1.27, the solution {(x,, y,)}3>, period-2.

Case 3: Suppose y; = xg+ yo — 1 < 0. For each integer m > 1, let P(m) be the

following statement
Ym = (m)(xo — 1) + 4o < 0.

Claim: P(m) is true for 1 < m < K — 1, where K = [_%]. Note K > 2.
The proof of the Claim will be by induction on m. It is cleat that P(1) is
true. Thus if K = 1, then we know that for 1 <m < K —1, P(m) is true. It
remains to consider the case K > 3. So assume K > 3. Let m be an integer
such that 1 < m < K — 4 and suppose P(m) is true. I shall show that
P(m+ 1) is true.

Since P(m) is true I know

Yo = (M)(mo—1)+y < 0
and so
Ym+1 = Ty — |ym’ —1

= x—[~(m)(xo —1) —yo] — 1

= m+1)(xzg—1)+y < O.
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In particular,

Ym+1 =

<

(m+1)(zo— 1) + o

(K + 1)(xo— 1) +yo
( ;071101 —1+1)($0—1)+y0
0.

and so P(m+1) is true. Thus the proof of the Claim is complete. Specifically,

P(K —1) is true and so
Yr-1 =

Yk =

Recall K = [ %21, then

o

Yk =

(K—=1)(zo—1)+y <0
i — yk| — 1

(K) (7o — 1) + yo.

([:25 Do —1) +y = 0

and so (zx,yx) € Ry, and by Lemma .1.27, the solution {(z,,y,)}2, is

eventually period-2.

Lemma .1.29 Suppose the initial condition (xq,yo) is an element of R{UR,. Then

{(xn, yn) 122, is eventually a period-2 solution.

Proof: Recall that Ry = {(z,y) :y >z —1, and 2 > 1,y > 0} and Ry = {(z,y) :

x < —1}. Suppose the initial condition (xg,yo) is an element of R;.

Then

v = |l

Yy =

= Qjo

> 0

To— Yol =1 = o—yo—1 < 0
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and so (z1,y1) € Ry and by Lemma .1.28 the solution {(z,,y,)}2, is eventually
period-2.
Suppose the initial condition (xg,yo) is an element of Ry.

Then
ry = |ZEO| > 0

y1 = To—|wl—1 < 0
and so (z1,y1) € Ry and by Lemma .1.28 the solution {(z,,y,)}2, is eventually

n=1

period-2. O

Lemma .1.30 Suppose the initial condition (xg,yo) is an element of Rs. Then the

boundedness character is (B, U).

Proof: Recall that Ry = {(x,y) : |x| < 1}. Suppose the initial condition (xg, o) is
an element of Rj.
First note that, z,, = |zo| < 1foralln=1,2,3,....

For each integer m > 1, let P(m) be the following statement

Ym = Y1 — (m - 1)(1 - |ZL‘0|) < 0.

Claim: P(m) is true for m > 2 The proof of the Claim will be by induction on m.

I shall first show that P(2) is true. Then
y1 = To— |yl —1 < O
Yo = x1— |yl —1
= |wol + (w0 — |yo| = 1) — 1
= (w0 — [yo| = 1) = (1 — |x0])
= - Q- —|xl) < 0

Let m be an integer such that m > 2 and suppose P(m) is true. I shall show that

P(m+ 1) is true.

114



Since P(m) is true I know

Ym = y1—(m—-11—|z]) < 0
and so
Ym+1 = Tm — |ym| -1

= lzo| = (=1 + (m = (1 = [xo])) =1
= y1— (m =11 = [of) = (1 = [xo])
= yr—m(l—|zf) < 0
and so P(m + 1) is true. The proof of the claim is complete. Clearly, {y,}5°, is

decreasing at a constant rate with no lower bound. The proof is complete. a
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.1.7  System(38)
In this section I consider the system of piecewise linear difference equations

Tp+1 = ’xn|
, n=01,.. (38)

Ynt1 = Tn — |Yn|
where the initial conditions xy and yy are arbitrary real numbers.

The set of equilibrium points are found on the following line:

{(x,y):yzg, if y >0, and x =0 if y <0}.

The period two cycles are:

(ZL“Qm—l, yzm—l) = ($0, To — yo)
, m=12,...

(2m, Yom) = (%0, Yo)
I show that every solution of System(38) is either an equilibrium point or a
period-2 solution.
Global Results

Set
Ry = {(z,y):x=0andy € R}

Ry = {(z,y):x<y and x>0}
Ry = {(z,y):2>y and y >0}
Ry = {(z,y):2>0 and y <0}

R, = {(z,y): 2z <0}.
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Ro= y-axis

Ra

<+eb Equilibrium line

Theorem .1.31 Let {(x,,yn)}5%, be a solution of System(38) with (zq,yo) € R?.

Then {(xn, yn) 22, is either an equilibrium solution or a period-2 solution.
The proof of Theorem 1.6.1 is a direct consequence of the following lemmas.

Lemma .1.32 Suppose the initial condition (xq,yo) is an element of Ry. Then

{(xn, yn) 122 is a equilibrium solution.

Proof: Suppose the initial condition (z¢,y) is an element of Ry = {(z,y) : z =

0 and y € R}. It is clear that x, =0 for n =0,1,2,....

Then
yo= @0~ |yl = ~[yol
vy = o=l = 0—=[—lwll = —lyol
and 80 (zn,yn) = (0, —|yo|) for n = 1,2, .... The proof is complete. O

Lemma .1.33 Suppose the initial condition (xg,yo) is an element of Ry. Then

{(Tn, yn) }22, is a period two solution.

Proof: Suppose the initial condition (z¢,vo) is an element of Ry = {(z,y) : * >
y and y > 0}. First note that, x,, = |x¢| = o for n =1,2,3,....

Then
o= xo— |yl = To — Yo > 0

Y2 = $1—|?J1| = $0—|950—y0| = Yo-
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So, for any m € N, (22m—1, Y2m-1) = (T0, %o — yo) and (Tam, Yom) = (To,¥0). The

proof is complete. O

Lemma .1.34 Suppose the initial condition (xq,yo) is an element of Rs. Then

{(n, yn) 22, is eventually a period two solution.

Proof: Suppose the initial condition (z¢,yo) is an element of Ry = {(z,y) : * >
0 and y < 0}. It is clear that x, =2y > 0 forn =0,1,2, ....
Then
y1 = xo—|yo| = o+ o
Case 1: Suppose y; = zg + yo > 0. Recall Ry = {(z,y) : « >y and y > 0}, so
an additional condition must be satisfied to utilize Lemma .1.33. Note that
Y1 =20+ Yo =21+ Yo < T,

and so by Lemma .1.33, the solution {(x,,y,)}2>, period-2.

Case 2: Suppose y; = xo+yo < 0. For each integer m > 1, let P(m) be the following

statement
Yn = MmITo+y < 0

Claim: P(m) is true for 1 <m < K — 1, where K = [Z%2]. Note K > 2.
The proof of the Claim will be by induction on m. P(1) is clearly true. Thus
if K =2, then for 1 <m < K — 1, P(m) is true. It remains to consider the
case K > 3. So assume K > 3. Let m be an integer such that 1 <m < K —2
and suppose P(m) is true. I shall show that P(m + 1) is true.

Since P(m) is true I know

Ym = My + Y < 0
and so
Ymtl = Zmi1 — |[Umt1] = Zo+mazo+ Yo

= (m+ 1)z + yo.
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In particular,
Ymr1 = (m+1)zo +yo < (K — 1)z + yo = Kzo + yo — 9 < 0.

The proof of the Claim is complete. So P(m) is true for 1 < m < K — 1.
Specifically, P(K — 1) is true. Hence
Y1 = (K—1xog+yo < 0
Yk = Tx1—|yka| = w0+ (K —1)x0+ W0
= Kzo+yo = [Z2lzo+yo = 0,

and so (rf,yx) € Ry, and by Lemma .1.33, the solution {(x,,y,)}°, is

eventually period-2.

Lemma .1.35 Suppose the initial condition (xg,yo) is an element of Ry = {(z,y) :

x <y and x> 0}. Then {(zn,yn)}22, is eventually a period two solution.

Proof: We have
Ty = |x0] = Zo > 0

yo= wo—|yl = zo—y < O
and so (z1,71) € Rs and by Lemmas .1.34 and .1.33 the solution {(x,,y,)}5%, is

eventually a period two. O

Lemma .1.36 Suppose the initial condition (xg,yo) is an element of Ry = {(z,vy) :

x < 0}. Then {(xn, yn)}o2, is eventually a period two solution.

Proof: We have
Ty = |zo] = —x9 > 0

yo= zo—lywl < 0
and so (z1,y1) € R and by Lemmas .1.34 and .1.33 the solution {(x,,y,)}52, is

eventually a period two. O
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.1.8 System(43)
In this section I consider the system of piecewise linear difference equations

Tp+1 = ’xn’
 on=01,.. (43)
Yn+1 = Tp + |yn| -1

where the initial conditions xy and gy, are arbitrary real numbers.

The set of equilibrium points are found on the following line:

1
{(x,y):y:g—§<01f:z:20, and x = 1 if y > 0}.

I show that every solution of System(43) is either an equilibrium point, a
period-2 solution or has the boundedness characteristic (B, U).
Global Results

Set

Ry = {(z,y):|z|=1landy=%—3 <0if z >0}

z 1
2 2

Ry = {(zy): |2[ > 1}

Ry = {(x,y):|o] <1}

Theorem .1.37 Let {(xn, yn)}52, be a solution of System(43) with (zg,vo) € R*.
Then the solution {(xn, yn)}o2, is either an equilibrium, a period-2 solution or has
the boundedness character (B,U). In particular, {(x,)}5°, = |zo| and {(y,)}5°, is

increasing without bound.
The proof of Theorem .1.37 is a direct consequence of the following lemmas.

Lemma .1.38 Suppose the initial condition (xg,yo) is an element of Ry. Then
{(Tn, yn) 122 is an equilibrium solution.
Proof: Recall Ry = {(z,y) : || = 1 and y =

{(zn) 3321 = [0l

%—% < 0if =z > 0}. Clearly,
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Case 1:

Case 2:

Case 3:

Suppose xg = 1. Then
yo= zot+ywl—-1 = [wl > 0
y2 = mtlpl-1 = |nl = un
and so (2,7) = (1, [yol)-
Now suppose zo = —1 and |yo| < 2. Then
yr = xo+ |yl —1 = |yl —2 < 0
yo = xitlyl-1 = 1+[pl-1 = —|p/+2 = 0
ys = To+ | —1 = 1+|pl—-1 = p
and so (z,79) = (1, —|yo| + 2).
It remains to consider |yo| > 2. Then
y1 = o+l —1 = |yo| -2 > 0
y2 = mitlnl-1 = 1+lp[-1 = n
and so (z,9) = (1, |yo| — 2).

Finally, suppose zg > 0 and yo = % — % < 0. Then

yr = xotlyl—1 = (550—1)‘1‘(%_%) = 5

N[ =
I

<

[«)

and so (E7g> = (x(]?y[))‘

Lemma .1.39 Suppose the initial condition (zo,yo) is an element of Ry. Then

{(xn, yn) 22y has the boundedness character (B,U). In particular, {y,}2, is in-

creasing without bound.

Proof: Recall Ry = {(x,y) : |x| > 1}. Clearly, {(z,)}22, = xo.

121



Case 1:

Case 2:

Suppose g > 1 and yo € R. For each integer m > 1, let P(m) be the
following statement:

Ym = m(xo — 1) + |yo| > 0

Claim: P(m) is true for m > 1. The proof of the claim will be by induction

on m. I shall first show that P(1) is true.
y1 =20+ |yo| =1 =1(zo — 1) + |yo| > 0

Suppose P(m) is true. I shall show that P(m + 1) is true.
Ymt1 = Tm+ |Ym| —1
= @9+ [m(xo — 1) + |yol]] — 1
= (m+1)(zo— 1) + |yl > 0

00
n=1

and so P(m+1) is true. Thus the proof of the claim is complete. So {(yy)

is increasing at a constant rate, therefore the boundedness character is (B,U).
Suppose rg < —1 and yy € R. Then
T = ‘ZL‘()’ = —x5 > 1

o= To+lwl -1 = —zo+|w|/-1 € R

and so, by Case 1, the solution {(,,¥yn)}s v, has the boundedness char-

acter (B,U).

Lemma .1.40 Suppose the initial condition (zo,vo) is an element of Ry. Then the

solution {(zn, yn)}5% is eventually periodic with period-2.

Proof: Recall Ry = {(x,y) : |x| < 1}. Clearly, =, = || for all n > 0.
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Case 1:

Case 2:

Suppose 0 < g < 1 and |yo| < 1 — . Then
yr = @o+ly/—1 < 0
Yo = mi+lpl—1 = w4+ (—zo—|wl+1) -1 = |y

ys = To+ | —1 = zo+|wl -1 = wu.

So for n > 1 the periodic solution is
(x2n7 y2n> - ('1'07 _’yOD
($2n+17y2n+1) = ($0;$0 + ’yo| - 1)-

Suppose 0 < 25 < 1 and |yg| > 1 — . Then for each integer 1 <m < K —1,

where K = f_ohioﬂ, note K > 2, let P(m) be the following statement:

Ym = m(xo — 1) + |yo| > 0

Claim: P(m) is true for 1 < m < K — 1. The proof of the Claim will be by
induction on m. It is clear that P(1) is true because y; = xg + |yo| — 1 > 0.
So if K = 2 then I have shown that for 1 < m < K — 1, the claim is true. So
assume K > 3. Let m be an integer such that 1 < m < K — 2 and suppose

P(m) is true. I shall show that P(m + 1) is true. So
Ym+1 = T+ [Ym| — 1
= wxo+ [m(xg— 1)+ |yo]] — 1
= (m+1)(xg— 1)+ |yo| > 0.

The proof of the Claim is complete. So P(m) is true for 1 <m < K — 1. In

particular P(K — 1) is true. Then
Yg—1 = (K — 1)(5(]0 — ].) + Yo > 0
yk = rg-1t|yx—a] -1

= w0+ [(K = 1)(zo — 1) + [go]] = 1
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= K(zg—1)+ |yl

= ([ (@o—1)+y < 0

and so
Yki1 = T+ |y —1

= @+ [-K(zo—1) —y] =1
= xO—K<x0—1>—y0—1

= —[(K=1)(xo = 1) + 0o

= —yg-1 < 0
Yk+2 = Tr41+ |Yr+1]| —1
= xo+yx-—1—1

= wo+ [(K—=1)(zo — 1) +50] -1

= K(xo—1)—w = yx.
So for n > 1 the periodic solution is
($K+2n,yK+2n) = (%, K(wo - 1) + Z/o)
(xK+2n+17yK+2n+l) = (iﬂo, —[(K - 1)(330 - 1) + yo])

and this completes the proof of Case 2.
Case 3: Suppose —1 < xg < 0 and yo € R. Then
Ty = |Z’0’ = —x9 > 1

yi = Totlyl—1 = —zo+fw/—-1 € R
and so, by Cases 1 and 2, the solution {(x,,y,)}:> 5 is eventually periodic

with period-2.
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.1.9 Systems(44 and 45)
In this section I first consider the system of piecewise linear difference equa-
tions

Tp4+1 = |xn|
 on=0,1,.. (44)
Yn+1 = Ty + |yn’

where the initial conditions xy and yg are arbitrary real numbers.

The set of equilibrium points are found on the following line: {(z,y) : = =
0 and y > 0}.

Global Results

Theorem .1.41 Let {(x,,y,)}5%, be a solution of System(44) with (zg,yo) € R?.
Then the solution {(x,,yn)}>2, is either an equilibrium, or has the boundedness
character (B,U). In particular, if |xo| = 0 then the solution is (Z,y) = (0, |yol),

and if |zo| # 0 then {(x,)}o2, = |zo| and {(yn)}2, is increasing without bound.

The proof is by computations and will be omitted.

System(45)
Next, I consider the system of piecewise linear difference equations

Tp4+1 = |xn|
C on=0,1,.. (45)
Ynt1 = Tp + |yn| +1

where the initial conditions xy and gy, are arbitrary real numbers.

Global Results

Theorem .1.42 Let {(x,,yn)}52, be a solution of System(45) with (zg,vo) € R?.
Then the solution {(x,, yn)}22, has the boundedness character (B,U). In particular,

{(z2)}52, = |wo| and {(yn)}22, is increasing without bound.

The proof is by computations and will be omitted.
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.1.10 Systems(46 - 48, 52, 53)

All five systems share the same first difference equation, x,1 = |z,| + 1. It is
clear that x, = |zo| + n for n > 1 and {z,,}5°, is increasing without bound.
System(46)

I first consider the system of piecewise linear difference equations

Tpi1 = |Tp| + 1
, n=0,1,.. (46)
Ynt1 = Tp — ‘yn‘ -1

where the initial conditions xg and yg are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(46) is
(U,0).
Global Results

Theorem .1.43 Let {(x,,yn)}52, be a solution of System(46) with (zg,yo) € R?.
Then the solution {(x,, yn) }22, has the boundedness character (U,U). In particular,

{2,}°° v and {x,}>2 \ are both increasing without bound.
Recall {z,}5°, is increasing without bound.

Lemma .1.44 Suppose there exists a non-negative natural number N such that
lynv] < @y —1 and xy > 0. Then the solution {(xn,yn)}o> y has the boundedness

character (U,U).

Proof: Suppose |yy| < zny — 1 and zx > 0. For each integer m > 1, let P(m) be

the following statement:

YUn+om = |yn| +m >0
YN+amt1 = 2N — |yn| + (m —1) > 0.

Claim: P(m) is true for m > 1. The proof of the claim will be by induction on m.
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[ shall first show that P(1) is true. Hence
Yn+1 = av—|yn[-1 = 0
Yn+2) = Tnt1— [ynpa| =1
= |xo| +N+1—[ay —|yn| —1] -1
= |zl + N+ 1 —[lmo| + N — [yn| - 1] -1
= |yn|+1 > 0
YN+2()+1 = TN42 — lyn2| — 1
= |zl + N+2—[lyn[+1] -1
= |zol + N —[yn]|
= zn—|yn|] > O.
So P(1) is true. Suppose P(m) is true. I shall show that P(m + 1) is true. Hence
YN+2(m+1) = TNtomt1 — [Yntrem| — 1
= Jzo| + N+2m+1—|zy — |yn| + (m —1)] =1
= ay+2m—ay+ |yn[ = (m—1)
= Jyn| +(m+1) > 0
YN+2mi)+1 = TNtami2 — [YNtamia| — 1
= ol + N +2m+2—[Jyn| + (m +1)] =1

= oy — [yn[+[(m+1)=1] > 0
and so P(m + 1) is true and the proof of the Claim is complete. So {yniom >,

and {yniom+1 oo, are increasing without bound. O

Lemma .1.45 Suppose there exists a non-negative natural number N such that
lyn| >y — 1 and xny > 0. Then the solution {(z,,yn)}>2 x has the boundedness

character (U,U).
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Proof: 1t suffices to show that there exists an integer M > 0 such that {y, }22 n.
is increasing without bound (that is, ynia > 0).

For the sake of contradiction assume that it is false that there exists and integer
M > 0 such that yyia > 0 and {y, }02 v, is increasing without bound.
Suppose |yny| > zxy — 1 and xy > 0. Then yyy1 = 2y — |lyn| — 1 < 0. For each

integer m > 2, let P(m) be the following statement

YN+m = YN+m—1 + TNim—2-

Recall by assumption that yy,, < 0 for every integer m > 2. Claim: P(m) is true
for m > 2. The proof of the claim will be by induction on m. I shall first show

that P(2) is true. Hence
Yn+z = Tn41— |ynva] — 1
= Jwo| + N+1—[—an+|yn|+1] -1
= |zo| + N+an—|yn| -1
= (v —|yn[ = 1) + 2y

= YN+1 + TN

So P(2) is true. Suppose P(m) is true. I shall show that P(m + 1) is true. Hence
YN+(mt1) = TN+m — [Ynem| —1
= |xo| + N+ m — (—Ynim-1 — TNtm—2) — 1
= |zl + N+m+ynvima + x| + N+m—-2-1
= Ynim-1+|To|] + N+m—14|zg| + N+m —2
= YN+m-1 T INtm—1+ TNym-2
= YN+m — TN+m—-2 T TN4m—-1 + TN4m—2

= YN+tm T TNtm-1
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and so P(m+1) is true. Clearly, {y,}° v, is increasing at a growing rate. This
leads to a contradiction. So there exists a smallest M such that yy. 3 > 0. Then,

by Lemma .1.46, the solution {y,}% v, is increasing without bound. O

System(47)
I next consider the system of piecewise linear difference equations

Tyt = |xa]| + 1
, n=0,1,.. (47)
Ynt1 = Tn — |yn|

where the initial conditions xg and yg are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(47) is
(U,U).
Global Results

Theorem .1.46 Let {(x,, yn)}52, be a solution of System(47) with (zg,vo) € R%
Then the solution {(zn, yn) }22, has the boundedness character (U,U). In particular,

{z,}00 v and {x,}°2 \ are both increasing without bound.

Recall {z,,}5°, is increasing without bound. So there exists a smallest non-negative
integer N such that xny > 0. Suppose n > N then the change of variables, x,, =

X, —1and Y, =y, reduces the system to

Xn+1 = |Xn| +1
. n=0,1,.. (46)
Yn+1 =X, — |Yn| -1

which is System(46). See Theorem .1.43.

System (48)
I next consider the system of piecewise linear difference equations

Tpi1 = |z, + 1
, n=201,.. (48)
Ynt+1 = Tn — |yn| +1
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where the initial conditions xg and yg are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(48) is
(U,0).
Global Results

Theorem .1.47 Let {(x,,yn)}5%, be a solution of System(48) with (zq,yo) € R?.
Then the solution {(zn, yn) }22, has the boundedness character (U,U). In particular,

{2,}°° v and {x,}>2 \ are both increasing without bound.

Recall {z,,}5°, is increasing without bound. So there exists a smallest non-negative
integer N such that xny > 0. Suppose n > N then the change of variables, x,, =
X, — 2 and Y,, = y, reduces the system to

Xn+1 - |Xn| +1
C on=0,1,.. (46)
Yo =X, — Y| —1

which is System(46). See Theorem .1.43.

Systems(52 and 53)
I next consider the system of piecewise linear difference equations

Tpt1 = |Tp| + 1
, n=0,1,... (52)
Ynt+1 = Tp + |yn| -1

where the initial conditions xg and yg are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(52) is
(U,U).
Global Results

Theorem .1.48 Let {(x,,y,)}52, be a solution of System(52) with (zq,vo) € R?.
Then the solution {(x,, yn) }22, has the boundedness character (U,U). In particular,

{2,}°° v and {x,}>2 \ are both increasing without bound.
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Recall {z,,}>°, is increasing without bound. So there exists a smallest non-negative
integer N such that xny > 0. Suppose n > N then the change of variables, x,, =
X, + 1 and Y,, = y, reduces the system to

, n=01,.. (53)
YnJrl =X, + |Yn|

which is System(53). By inspection, it is clear that {y,}°°, of System(53) is

increasing without bound.
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Appendix .2

.2  Summary of Results for the 81 Systems of Piecewise Linear Differ-
ence Equations

System(1)

Tpt1 = ‘xnl — Yn — 1
, n=01,..
Ynt+1 = Tn — ’yn| —1

It has the unique equilibrium point (1,-1), and the following two prime period-6

solutions:
7
To = g y Yo = -3
ry = = > N = —F
o o= 5,y = —1 5 5
1
T = 5 , y2 = 3 T2 = 5, Y = 5
P; = or Pg =
T3 = 1 y Y3 = 1 — g — _B
T3 5 Y3 5
Ty = -1 , Ysa = —1 3 3
Ty = —C 5, Ys = —r
s = 1, ys = =3 g g
1 11
Ts = 5 , Ys = —g

Theorem:  Let {(2,Yn)}52, be a solution of System(1) with (xg,yo) € R Then
either {(xn, yn) 122, is the unique equilibrium (z,y), or else there exists a non-
negative integer N > 0 such that the solution {(xn, yn)}o> v of System(1) is either
the prime period-6 cycle P} or the prime period-6 cycle P2.

See [5].
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System(2)

Tpt+1 = |xn| — Yn — 1
, n=0,1,..

Ynt1 = Tn — ’yn’

It has the unique equilibrium point (0, -1) and the following two prime period-5

solutions:
1
To = 0 y Yo = ?
o = —2 , Yo = -1
8 1
€T = _— s = _—
©o= 2,y = -3 ! 70 U 7
2 9
Pé: T2 = 3, 2 = —1 or P} = T2 = ? v Y2 = _?
T3 = 4 y Y3 = 3 4
T3 = ? , Yz = -1
Ty = 0, yu = 1
4 3
T = — g _
4 7 y Y4 7

Theorem: Let {(z,yn) o, be a solution of System(2) with (z¢,vy0) € R*. Then
either {(x,, yn) 152 is the unique equilibrium (Z,y), or else there exists a non-
negative integer N > 0 such that the solution {(z,,yn)}22 n of System(2) is either
the prime period-5 cycle P} or the prime period-5 cycle P2.

See [4]. Also see Manuscript 1.

System(3)
Tpt+1 = |xn| — Yn — 1
) n=20,1,..
Yn+1 = T — ’yn’ +1

31
It has the unique equilibrium point <—5, 5) and the following two prime period-3

and prime period-4 solutions:
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Theorem: Let {(x,,yn)}5%, be a solution of System(3) with (zo,y0) € R* Then
either {(xn, yn) 22, is the unique equilibrium (z,y), or else there exists a non-
negative integer N > 0 such that the solution {(x,,yn)}o> n of System(3) is either

the prime period-3 cycle P} or the prime period-3 cycle P3, or the prime period-4

1

Y

Yo

n

Y2

Yo

n

Y2

Y3

W — Wl

—_

2 _
or P5 =

or P2 =

cycle P} or the prime period-4 cycle P2.

See [5].

System(4)

The unique equilibrium point of this system is (0, -1).

We can see that the system can be reduced to the second order difference equation

Yn+1 = Tp — 1

Tpt1 = ‘xn| —Yn — 1

Zo

X

T2

Zo

X1

X2

T2

3

n=20,1,..

Tnt1 = |xn| - (xn—l - 1) —1= |xn| — Tp-1-
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Theorem: Let {(x,,yn)}52, be a solution of System(4) with (zo,y0) € R* Then
every solution is periodic with prime period-9.

See [2].

System(5)
Tp4+1 = ‘xn| — Yn — 1
Yn+1 = Tn

1 1
The unique equilibrium point of this system is (— —).

Open problem.

System(6)
Tp4+1 = ‘xn| —Yn — 1

) n=20,1,..
Yn+1 =, +1

21
The unique equilibrium point of this system is (—3, 3).
Open problem.

System(7)
Tpt1 = ‘xnl — Yn — 1
, n=01,..
Ynt+1 = Tp + |yn| -1

1 3
This system has the unique equilibrium point (—5, —5> and the following two

prime period-3 and prime period-4 solutions:
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Theorem: Let {(x,,yn)}5%, be a solution of System(3) with (zo,y0) € R* Then
either {(xn, yn) 22, is the unique equilibrium (z,y), or else there exists a non-
negative integer N > 0 such that the solution {(x,,yn)}o> n of System(3) is either

the prime period-3 cycle P} or the prime period-3 cycle P3, or the prime period-4

—1

Y

Yo

n

Y2

Yo

n

Y2

Y3

2 _
or P5 =

or P2 =

cycle P} or the prime period-4 cycle P2.

See [5].

System(8)

2
This system possesses the unique equilibrium point (—, —

two prime period-3 solutions:

Ynt+1 = Tp + |yn|

Tpt1 = ‘xn| —Yn — 1
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1

Ty = 0, = —=

Trg = 0 , Yo = —1 0 Yo 3

2 1

Pi=|z = 0, y, = 1| or Pj= o= -3, m o= g
To = —2 , Y = 1 ) 1

T2 = T3 Y2 = 3

Theorem: Let {(x,,yn)}5%, be a solution of System(8) with (xo,y0) € R* Then
either {(xn, yn) 152 is the unique equilibrium (Z,y), or else there exists a non-
negative integer N > 0 such that the solution {(x,,yn)}o2  of System(8) is either
the prime period-3 cycle P} or the prime period-3 cycle P3.

See [3]. Also see Manuscript 2.

System(9)
Tt = [Tn| — Y0 — 1
Ynt1 = T+ [yn| + 1
It has the unique equilibrium point (-1, 1).
Theorem: Let {(x,,yn)}52, be a solution of System(10) with (xg,yo) € R Then
{(Tn, yn) }o2, is eventually the unique equilibrium (Z,y).

See [5].

System(10)

Tp+1 = ‘xnl — Un
, n=0,1,..
Ynt1 = Tn — |yn’ -1

It has the unique equilibrium point (1, 0).
Theorem: Let {(z,yn) o2, be a solution of System(10) with (xo,yo) € R Then
{(Tn, yn) }o2 ¢ is the unique equilibrium (Z,7).

See Theorem .1.2.
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System(11)
T+l = |Tn| = Un
Yn+1 = Tn = |Yn]
It has the unique equilibrium point (0, 0).
Theorem: Let {(x,,yn)}5%, be a solution of System(11) with (xg,vyo) € R*. Then

{(n, yn) 122, is eventually the unique equilibrium (Z,7).

See [5].

System(12)

Tpt1 = |xn| — Yn
, n=201,..

Ynt+1 = Tn — |yn| +1

12
It has the unique equilibrium point <—, > and the following two prime period-3

5 9
solutions:
L 0
€T = _—— s =
rg = —1 , Yo = 0 0 3 o
Pé: ry = 1 , Y1 = 0 or sz xry = 1 , 1 = g
3 3
Ty = 1 , Yo = 2 B 1 B 2
Ty = 3 y Y2 = 3

Theorem: Let {(2,yn) o2, be a solution of System(12) with (xo,yo) € R Then
either {(xn, yn) 152 is the unique equilibrium (Z,y), or else there exists a non-
negative integer N > 0 such that the solution {(x,, yn)}o> n of System(12) is either
the prime period-3 cycle P} or the prime period-3 cycle P3.

See [3]. Also see Theorem .1.8.
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System(13)
Tnt1 = |Tn| — Yn
Yny1 = Ty — 1
It has the unique equilibrium point (1, 0).
Open problem. Note: The change of variables, y, = Y,, — 1, reduces it to Sys-

tem(23), the Gingerbread man map.
See [1].

System(14)
Tnt1 = |Tn| — Yn
Yn+1 = Tn
It has the unique equilibrium point (1, 0).
Theorem: Let {(z,,yn) o2, be a solution of System(14) with (xo,yo) € R Then
the solution {(xn, y,)}°", is a prime period-9 cycle P3.

See [2].

System(15)

Tp4+1 = |xn| — Yn
Ynt1 = Tp + 1
) A . 12
It has the unique equilibrium point (—3, 3>.
Open problem.

Note: The change of variables, y,, = Y,, + 1, reduces it to System(5).
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System(16)

Tptl = ’xn’ — Yn
, n=0,1,..
Yn+1 = Tp + |yn| -1

It has the unique equilibrium point (1, 0) and the following two prime period-5

solutions:

4
To = L,y = ?

g = =1 , yp = 0
3 4
€T —= — s = _—
rr = 1 , Y1 = —2 ! 7 n 7

1 2 1

P:=| 22 = 3, Yy = 2 or Pr=1| 2, = = Yy = 0
€T3 = 1 y Ys = 4 . 1 . 8
T3 = 7 Ys = 7

Ty = -3 , Ya = 4
9 2
X = — — —
4 7 Ys 7

Theorem: Let {(2,yn) o2, be a solution of System(16) with (xo,yo) € R Then
either {(xn, yn) 152 is the unique equilibrium (Z,y), or else there exists a non-
negative integer N > 0 such that the solution {(x,, yn)}o> n of System(16) is either
the prime period-5 cycle P} or the prime period-5 cycle P2.

Note: The change of variables, x,, = —Y,, and y,, = X,,, reduces it to System(2).

See [4]. Also see Manuscript 1.

System(17)
T4l = |Tn] = Yn
Ynt1 = Tn + |Yn|
It has the unique equilibrium point (0, 0).
Theorem: Let {(xn, yn)}22, be a solution of System(17) with (xq,y0) € R?. Then
{(Tn, yn) }22, is eventually the unique equilibrium (0,0).

See [5].
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System(18)
T4l = |Tn| = Yn
Ynt1 = Tn + [yn| +1
It has the unique equilibrium point (-1, 2).
Theorem: Let {(xn,yn)}52, be a solution of System(18) with (xg,vyo) € R*. Then
{(n, yn) 122, is eventually the unique equilibrium (—1,2).

See [5].

System(19)
Tpt1 = |xn| — UYn +1

Ynt+1 = Tn — |yn| -1

It has the unique equilibrium point (3, 1).

Theorem: Let {(2n,yn) 2, be a solution of System(19) with (zo,y0) € RZ.
Then {(zn, yn) 22, is eventually the unique equilibrium (3,1).

See Theorem .1.10.

System(20)
Tpt1 = |Tn| —yn + 1
Ynt1 = Tn — |Yn|
It has the unique equilibrium point (2, 1).
Theorem: Let {(z,,yn) 2, be a solution of System(20) with (xo,yo) € R Then
{(Tn, yn) }o2, is eventually the unique equilibrium (2,1).

See [5].
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System(21)
Tpt+l = |xn| — Yn +1
Ynt1 = Tn — |Yn| + 1
It has the unique equilibrium point (1, 1).
Theorem: Let {(x,,yn)}5%, be a solution of System(21) with (xg,vyo) € R*. Then

{(n, yn) 22, is eventually the unique equilibrium (1,1).

See [5].
System(22)
Tpt1 = |xn| — Yn +1
, n=20,1,..
Yn+1 = T — 1
It possesses the unique equilibrium point (2, 1).
Open problem.
System(23)
Tp41 = |$n| — Yn + 1
) n= 07 17

Yn+1 = Tn
It possesses the unique equilibrium point (1, 1).
This system is the Gingerbread man map.

Open problem.
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System(24)

Tnt1 = |$n| — UYn + 1

Ynt1 = Tp + 1
It has the unique equilibrium point (1, 0).
Theorem: Let {(xn, yn)}52, be a solution of System(24) with (xo,y0) € R?. Then
every solution 1s pertodic with prime period-9.
Note: The change of variables, y,, = Y,, + 2, reduces it to System(4).
See [2].

System(25)

Tptl1 = ’In’ — Yn + 1
, n=0,1,..
Yn+1l = Tp + |yn‘ -1

It has the unique equilibrium point (1, 1), and the following two prime period-6

solutions:
7
To = -3, Yy = g
Too= 3, W =3 13 17
I = - » N = =
xry = L,y = 5 5 5
1
g = =3 , Yo = 5 T2 = 5o Y2 = 5
Pé: or P%z
Tr3 = —1 , Ys = 1 _ _E _ E
X3 5 Ys 5
Ty = = 5 Y4 = —Z
s = 3, ys = 1 g g
11 1
Ty = —— = -
5 5 Ys 5

Theorem: Let {(z,,yn) 52, be a solution of System(25) with (xg,yo) € R Then

{(n, yn) 12, is either the unique equilibrium solution, the prime period-6 cycle P}
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or the prime period-6 cycle P3.

See [5].

System(26)

Lpt1 = |xn| — Yn + 1
, n=20,1,...
Yn+1 = Tn + |yn‘

The unique equilibrium point of this system is (0, 1).
Theorem: Let {(z,,yn) 2, be a solution of System(26) with (xo,yo) € R*. Then
{(Tn, yn) }o2, is eventually the unique equilibrium (0, 1).

See Theorem .1.1.

System(27)

Tpt+1 = |$n| — Yn +1
, n=0,1,..
Yn+1l = Tp + ‘yn‘ +1

The unique equilibrium point of this system is (-1, 3).
Theorem: Let {(z,,yn) 2, be a solution of System(27) with (xo,yo) € R Then
{(Tn, yn) }22, is eventually the unique equilibrium (—1,3).

See Theorem .1.9.
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System(28)

Tpa1 = |xa] — 1
, n=0,1,..
Ynt1 = Tn — |yn’ -1

This system has no equilibrium point.

The boundedness characteristic of this system is (B, U).

Theorem: Let {(z,,yn) 52, be a solution of System(28) with (xo,yo) € R Then
every solution is eventually period-2 in {x,}. More precisely, if |xo| < 1 then the
period-2 solution is {—|xol, |zo| — 1}. Every solution is unbounded in {y,}.

See Theorem .1.17.

System(29)
Tpi1 = |, — 1

Ynt1 = Tpn — |yn|

This system has no equilibrium point.
The boundedness characteristic of this system is (B, U).
Theorem: Let {(x,,yn)}5%, be a solution of System(29) with (xg,vyo) € R*. Then

every solution is eventually period-2 in {x,} and every solution is unbounded in

See Theorem .1.18.
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System(30)

Tpp1 = |xn] — 1
, n=0,1,..
Ynt1 = Tn — |yn| +1

11
The unique equilibrium point of this system is (—2, 3).
Theorem: Let {(xn, yn) 122, be a solution of System(30) with (zo,yo) € R?. Then
11
the solution {(xn,yn)}5% is eventually the equilibrium solution (—2, 4), periodic

with prime period-2 or periodic with prime period-4. See Theorem .1.19

System(31)
Tpi1 = |, — 1
) n=20,1,..
Yn+1 = Tn — 1
. - . . ) 1 3
The unique equilibrium point of this system is (—2, —2).

Theorem: Let {(z,,yn) 52, be a solution of System(31) with (xo,yo) € R Then
the solution {(x,, yn)}o, is eventually periodic with period-2.

See Theorem .1.23.
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System(32)

Tpi1 = |xn]| — 1
) n=20,1,..
Yn+1 = Tp
. ey . . . I 1

The unique equilibrium point of this system is (—2, —2>.
Theorem: Let {(z,,yn) 152, be a solution of System(32) with (xg,y0) € R*. Every
solution of this system is eventually periodic with period-2. In particular, if |xo| =
m ~+ «, where m € {0,1,2,...}, and o € R such that 0 < « < 1 then the period-2

solution in {x,} is {a — 1, —a}.

See Theorem .1.25.

System(33)
Tpt1 = |y — 1
, n=0,1,..
Ynt1 = T + 1
. T . . . 11
The unique equilibrium point of this system is (—2, 2>.

Theorem: Let {(z,,yn) 52, be a solution of System(33) with (xo,yo) € R Then
the solution {(x,,yn)}5, is eventually periodic with period-2.

See Theorem .1.24.

System(34)
Tpp1 = |xn] — 1
Yn+1 = Ty + ‘yn‘ -1
: s : : . 1 3
The unique equilibrium point of this system is (—2, —4).
Theorem: Let {(z,,yn) o2, be a solution of System(34) with (xo,yo) € R Then

the solution {(x,, yn)}52, is eventually the equilibrium solution (—2, 4), periodic

with prime period-2 or periodic with prime period-4. See [5].
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System(35)

Tp1 = |xn]| — 1
) n=20,1,..
Ynt+1 = Tp + |yn|

1 1
The unique equilibrium point of this system is (—2, —4).
Conjecture: The boundedness characteristic is (B, B) and there exist prime period-

4 solutions.

System(36)

Tpi1 = |2, — 1

Ynt1 = Tn + |Ya| + 1
This system has no equilibrium point.
The boundedness characteristic of this system is (B, U).
Theorem: Let {(xn,yn)}2, be a solution of System(356) with (xo,y0) € R
Then every solution is eventually (not necessarily prime) period-2 in {x,} and
every solution is unbounded in {y,}. In particular, if |xo| = m + «, where
m € {—1,0,1,2,...},and a € R such that 0 < a < 1 then the period-2 solu-
tion in {x,} is {a — 1, —a}.

See [5].

System(37)
Tn+1 = ‘xnl
, n=0,1,..
Ynt+1 = Tn — |yn’ -1
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The equilibrium lines are:

ify >0, theny:;x—;, and if y < 0, then x = 1.
Theorem: Let {(z,,yn) 5%, be a solution of System(37) with (xg,yo) € R Then
{(n, yn) 22, is either an equilibrium point, a period-2 solution, or it has the bound-

edness character (B,U).

See Theorem .1.26.

System(38)
T4l = |
Yn+1 = Tn — |Yn]
The equilibrium lines are:
if y >0, theny:;x, and if y <0, then x = 0.
Theorem: Let {(x,,yn)}5%, be a solution of System(38) with (zg,vyo) € R?. Then
{(xn, yn) 22, is either an equilibrium solution or a period-2 solution.

See Theorem .1.31.

System(39)
Tt1 = |Tn
Ynt1 = Tn — |yn| +1
The equilibrium lines are:
ifyZO,theny:;:c—i-;,and if y <0, then z = —1.
Theorem: Let {(z,,yn) 52, be a solution of System(39) with (xo,yo) € R Then
{(Tn, yn) }22, is either an equilibrium solution or a period-2 solution. In particular,
if the initial condition is (xo,yo) then the prime period-2 solution in {y,} is {xo —
Yo+ 1,90}
See [5].
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System(40)

Tpt1 = ‘xn‘
) n=20,1,..
Yn+1 = Tp — 1

If the initial condition is (z¢, yo) then the equilibrium point is (|zol, |zo| — 1).
Theorem: Let {(x,,yn)}5%, be a solution of System(40) with (xg,vyo) € R*. Then
{(n, yn) 122, is eventually an equilibrium solution.

Note: The change of variables: y, =Y, — 1, reduces it to System(41).

System(41)

Tp4+1 = |~Tn|
, n=20,1,..

Ynt+1 = Tn
If the initial condition is (xg, o) then the equilibrium point is (|zol, |xo|)-
Theorem: Let {(xn,yn)}5%, be a solution of System(41) with (g, vyo) € R?. Then
{(n, yn) 22, is eventually an equilibrium solution.

Clearly, =, = y, = |x¢| for n > 2.

System(42)
Tpt+1 = |xn|
) n=20,1,..
Yntl = Tp + 1

If the initial condition is (zo,yo) then the equilibrium point is (|zo|, |zo| + 1).
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Theorem: Let {(n,yn) 22, be a solution of System(42) with (zo,y0) € R?.
Then {(xn, yn)}o2, is eventually an equilibrium solution.

Note: The change of variables: y, =Y, + 1, reduces it to System(41).

System(43)
Tpt1 = |xn|

Ynt1 = Tp + |yn| -1

The equilibrium lines are:

if y >0, then x =1, and ify<0,theny:;x—;
Theorem: Let {(z,,yn) 22, be a solution of System(43) with (xo,yo) € R Then
{(Tn, yn) }22, is either an equilibrium point, a period-2 solution, or it has the bound-
edness character (B,U).

See Theorem .1.37.

System(44)

Tny1 = |2

Ynt+1 = Tn + [Yn|
The equilibrium line is the positive y-axis.
Theorem: Let {(z,,yn) 52, be a solution of System(44) with (xo,y0) € R Then
{(Tn,yn)}22, is either an equilibrium point or it has the boundedness character
(B,U).

See Theorem .1.41.
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System(45)

Tpt+1 = |:Bn|
, n=01,..
Ynt1 = Tp + |yn’ +1

This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(45) with (xo,yo) € R Then
{(xn, yn) 122 has the boundedness character (B,U).

See Theorem .1.42.

System(46)

Tn+1 = ‘xnl +1
) n=20,1,..
Yn+1 = Tn — |yn| —1

This system has no equilibrium point.
Theorem: Let {(xn,yn)}52, be a solution of System(46) with (zg,vyo) € R®. Then
{(n, yn) 22, has the boundedness character (U,U).

See Theorem .1.43.
System(47)
Tpi1 = |xn| +1

Ynt+1 = Tn — |Yn]
This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(47) with (xo,yo) € R Then
{(Tn,yn)}22 has the boundedness character (U,U).

See Theorem .1.46.
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System(48)

Tt = |a] + 1

Ynt1 = Tn — |yn| +1
This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(48) with (xo,yo) € R Then
{(xn, yn) 122 has the boundedness character (U,U).

See Theorem .1.47.

System(49)

Tny1 = |xn| +1
, n=0,1,..
Yn+1 = Tn — 1

This system has no equilibrium point.
Theorem: Let {(xn,yn)}52, be a solution of System(49) with (g, vyo) € R*. Then
{(n, yn) 22, has the boundedness character (U,U).

Note: The change of variables: y,, = Y,, — 1, reduces it to System(50).

System(50)
Tpy1 = |In| +1

Yn+1 = Tn
This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(50) with (xg,yo) € R Then

{(Tn, yn)}22 has the boundedness character (U,U).
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System(51)
Tpy1 = |xn] +1
Ynp1 = Tp + 1
This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(51) with (xg,yo) € R Then
{(xn, yn) 122 has the boundedness character (U,U).

Note: The change of variables: y, = Y,, + 1, reduces it to System(50).

System(52)

Tps1 = |Tn| + 1
, n=20,1,..
Yn+1 = Tpn + |yn| -1

This system has no equilibrium point.
Theorem: Let {(xn,yn)}52, be a solution of System(52) with (zg,vyo) € R?. Then
{(xn, yn) 22, has the boundedness character (U,U).

See Theorem .1.48.
System(53)
Tpy1 = |xn| +1

Yn+1 = Ty + ’yn’

This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(53) with (xo,yo) € R Then

{(Tn, yn)}22 has the boundedness character (U,U).
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System(54)

Tpa1 = |za| + 1
, n=01,..
Ynt1 = Tp + |yn’ +1

This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(54) with (xo,yo) € R Then

{(Tn, yn) 122 has the boundedness character (U,U).

System(55)

Tnt1 = |xn| +yn -1

Ynt1 =T — |yn| — 1
The equilibrium point of this system is (3, 1).
Conjecture: Let {(z,,yn) 152, be a solution of System(55) with (zo,yo) € R*. Then
the solution {(xn,yn)}5%, is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

System(56)

Tpt+1 = |$n| + Yn — 1
, n=20,1,..
Ynt1 = Tn — |Yn|
The equilibrium point of this system is (2, 1).
Conjecture: Let {(2,,yn) 152, be a solution of System(56) with (zo,yo) € R?. Then

the solution {(xn, yn)}o2, is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).
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System(57)

Tpt1 = ’mn’ + Y — 1
, n=0,1,..
Ynt1 = Tn — |yn| +1

11
The equilibrium points of this system are (1,1), (—1,—1), and (—g, 5)
Conjecture: Let {(z,,yn) 152, be a solution of System(57) with (zo,yo) € R?. Then
the solution {(xn, yn)}o2, is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

System(58)

Lpt+l = |xn| +yn -1
, n=0,1,..
Yn4+1 = T — 1

The equilibrium points of this system are (2,1), and (—2, —3).
Conjecture: Let {(z,yn) 152, be a solution of System(58) with (zo,yo) € R?. Then
the solution {(xn,yn)}5%, is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

System(59)

Tpt1 = ’mn’ + Yn — 1
, n=0,1,..
Yn+1 = T

The equilibrium points of this system are (1,1), and (=1, —1).
Conjecture: Let {(zn, yn)}5%o be a solution of System(59) with (zo,vo) € R%. Then
the solution {(xn, yn) 22, is either an equilibrium point or it has the boundedness

character (U,U).



System(60)

Tpi1 = |Tn| +yn — 1

Yny1 = Ty + 1
The equilibrium point of this system is (0, 1).
Theorem: Let {(z,,yn) 52, be a solution of System(60) with (xo,yo) € R Then
the solution {(zn,yn)}22, is either an equilibrium point or it has the boundedness
character (U,U).

Note: The change of variables: y,, = Y,, + 2, reduces it to System(76).

System(61)

Tpt1 = ’xn’ + Y — 1
, n=0,1,..
Yn+1l = Tp + |yn‘ -1

The equilibrium points of this system are (1,1), and (=1, —1).
Conjecture: Let {(n, yn)}52o be a solution of System(61) with (zo,v0) € R%. Then
the solution {(x,,yn)}o2, is either an equilibrium point or it has the boundedness

character (U,U).

System(62)
Lpt+1 = ’:Cn| +yn -1
, n=0,1,..
Yn+1l = Tp + |yn|
ey . . 2 1
The equilibrium points of this system are (0, 1), and (—3, —3).

Conjecture: Let {(2,,yn) 152, be a solution of System(62) with (zo,yo) € R*. Then
the solution {(x,,yn)}oo, s either an equilibrium point or it has the boundedness

character (U,U).
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System(63)

Tpt+l = |xn| +yn —1
, n=20,1,..
Ynt1 = Tp + |yn| +1

This system does not possess an equilibrium point.
Theorem: Let {(x,,yn)}5%, be a solution of System(63) with (zg,vyo) € R®. Then

the solution {(x,,yn)}>2, has the boundedness character (U,U).

System(64)

Tpt+1 = |xn| +yn
, n=0,1,..
Yn+1 = T — |yn’ -1

This system has the equilibrium point (1, 0).

Theorem: Let {(z,,yn) 5, be a solution of System(64) with (xo,yo) € R Then
the solution {(zn,yn)}22, is either an equilibrium point or it has the boundedness
character (U,U).

Note: The change of variables, x,, = —Y,, and y,, = —X,,, reduces it to System(74).

System(65)
Tpt1 = |xn| + Yn
Ynt1 = Tn — ’yn’
The equilibrium point of this system is (0, 0).
Theorem: Let {(z,,yn) 52, be a solution of System(65) with (xo,yo) € R Then

the solution {(zn,yn)}22, is either an equilibrium point or it has the boundedness

character (U,U).
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System(66)

Tpt+l = |xn| + Yn

Ynt1 = Tn — |yn| +1
This system has the equilibrium point (—1,—2).
Conjecture: Let {(z,,yn)}52, be a solution of System(66) with (zo,yo) € R
Then the solution {(xn,yn)}s, is either an equilibrium point, or periodic with
(not necessarily prime) period-2, or it has the boundedness character (U,U).

Note: The change of variables, z, = —Y,, and y,, = —X,,, reduces it to System(56).

System(67)

Tp4+1 = |xn| + Yn
) n=20,1,..
Yn+1 = Tp — 1

This system has the equilibrium points (1,0) and (—1, —2).

Conjecture: Let {(z,,yn)}52, be a solution of System(67) with (zo,yo) € R*. Then
the solution {(x,,yn)}22, is either an equilibrium point or it has the boundedness
character (U,U).

Note: The change of variables, y, = Y,, — 1, reduces it to System(59).

System(68)

Tp4+1 = |xn| + Yn
) n=20,1,..

Yn+1 = Tp
The equilibrium point of this system is (0, 0).

Theorem: Let {(x,,yn)}52, be a solution of System(68) with (zg,vyo) € R?. Then
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the solution {(xn,yn)}22, is either an equilibrium point or it has the boundedness
character (U,U).

Note: The change of variables, y,, = Y,, — 1, reduces it to System(60).

System(69)
Tp41 = [Tl + Yn
Ynt1 = 2n +1
This system has no equilibrium point.
Theorem: Let {(z,,yn) 52, be a solution of System(69) with (xo,yo) € R Then
the solution {(n, yn)}oy has the boundedness character (U,U).

Note: The change of variables: y,, = Y,, + 1, reduces it to System(77).

System(70)

Lpt1 = ’mn’ + Yn
, n=0,1,..
Yn+1l = Tp + |yn‘ —1
ey . . 1 2
The equilibrium points of this system are (1,0), and <—3, —3).
Conjecture: Let {(z,,yn) 152, be a solution of System(70) with (zo,yo) € R*. Then

the solution {(x,,yn)}>2, has the boundedness character (U,U).

Note: The change of variables, z,, = Y,, and y,, = X,,, reduces it to System(62).
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System(71)
Tpy1 = |xn| + Yn
Ynt+1 = Tp + ’yn|
The equilibrium point of this system is (0, 0).
Theorem: Let {(z,,yn) 5%, be a solution of System(71) with (xo,yo) € R Then

the solution {(zn,yn)}22, is either an equilibrium point or it has the boundedness

character (U,U).

System(72)
T4l = |Tn| + Yn
Ynt1 = Ty + |yn| +1
This system has no equilibrium point.
Theorem: Let {(x,,yn)}5%, be a solution of System(72) with (xg,vyo) € R*. Then

the solution {(x,,yn)}22, has the boundedness character (U,U).

System(73)

Tp4+1 = |$n| + Yn +1
, n=20,1,..
Yn+1 = Tn — |yn| —1

The equilibrium point of this system is (1, —1).

Theorem: Let {(xn,yn)}5%, be a solution of System(73) with (zg,vyo) € R?. Then
the solution {(x,, yn)}oo s either an equilibrium point or it has the boundedness
character (U,U).

See [5].
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System(74)
Tpt+1 = |$n| + Yn + 1
Ynt1 = Tp — ‘ynl
The equilibrium point of this system is (0, —1).
Theorem: Let {(z,,yn) 52, be a solution of System(74) with (xo,yo) € R Then

the solution {(zn,yn)}22, is either an equilibrium point or it has the boundedness

character (U,U).

System(75)

Tp+1 = ‘xn‘ + Yy, + 1
, n=0,1,..
Ynt1 = Tn — ‘ynl +1

The equilibrium point of this system is (—1, —3).
Conjecture: Let {(n, yn)}52o be a solution of System(75) with (zo,vyo) € R%. Then
the solution {(x, yn) o2, is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

System(76)

Tny1 = [Tl +yn +1

Yn+1 =Ty — 1
The equilibrium point of this system is (0, —1).
Theorem: Let {(2,,yn) 52, be a solution of System(76) with (zo,yo) € R? Then
the solution {(xn,yn)}oo, is either the equilibrium point or it has the boundedness
character (U,U).

Note: The change of variables, y,, = Y,, — 2, reduces it to System(60).
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System(77)
Tpi1 = |Tp] +yn +1
Yn+1l = Tn
This system has no equilibrium point.
The Theorem:Let {(z,,yn)}5%, be a solution of System(77) with (zo,yo) € R
Then the solution {(x,,yn)}>2, has the boundedness character (U,U).

Note: The change of variables, y, = Y,, — 1, reduces it to System(69).

System(78)
Tp41 = [Tn| + g + 1
Yny1 = Ty + 1
This system has no equilibrium point.
The Theorem:Let {(xn,yn)}2, be a solution of System(78) with (xo,yo) € R

Then the solution {(zn,yn)}>2, has the boundedness character (U,U).
System(79)
Tpt1 = ‘xn‘ + UYn +1

Yn+1 = Tn + Yo — 1
This system has no equilibrium point.
The Theorem:Let {(z,,yn)}5%, be a solution of System(79) with (zo,yo) € R

Then the solution {(x,,yn)}>2, has the boundedness character (U,U).
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System(80)

Tp4+1 = |$n| + Yn + 1
, n=20,1,..
Yn+1 = Tp + |yn|

This system has no equilibrium point.
The Theorem:Let {(z,,yn)}5%, be a solution of System(80) with (zo,yo) € R

Then the solution {(x,,yn)}>2, has the boundedness character (U,U).

System(81)
Tp4+1 = |mn| + Yn +1

Yn+1 = Ty + ’yn’ +1

This system has no equilibrium point.
Theorem: Let {(x,,yn)}5%, be a solution of System(81) with (zg,vyo) € R Then

the solution {(x,,yn)}>2, has the boundedness character (U,U).
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.3.1 Abstract

We investigate the system of rational difference equations in the title, where
the parameters and initial conditions are positive real values. We show that the
system is permanent. We also find sufficient conditions to insure that every positive

solution of the system converges.

.3.2 Introduction

We show that the system of rational difference equations

aq
T =
! Tn + Yn
, n=0,1,... (.5)
a2 + ﬂ2xn + Yn
Yn+1 =

B2xn + Yn

is permanent, where the parameters aq, as, 32, By and the initial conditions xg, yo of
the system are positive real numbers. We actually show that there exist positive
real numbers Iy, s, Ly, Ly such that for every positive solution {(z,,y,)}2, of

system (.5), we have
h <z, <l and lo < yp < Lo for n > 4.

We also find sufficient conditions to insure that every positive solution of

system (.5) converges.

During the last four years we have been interested in the boundedness char-
acter and the global behavior of systems of rational difference equations. This

paper is part of a general project which involves the system of rational difference

equations
ay + len + Y1Yn
Tpn+1 =
Al + len + Clyn
, n=0,1,... (.6)
Qg + ﬁan + YoUYn
Yn+1 =

AQ + Bgl‘n + ngn
which includes 2401 special cases. In the numbering system which was introduced

by Camouzis, Kulenovi¢, Ladas, and Merino in ([6]), system (2) is referred to
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as System(12,48). Related work has recently been given in ([1]-[10]) and ([13]-[15]).

This theorem gives a sufficient condition to insure that a system of k contin-

uous functions have a unique positive equilibrium, and it is a global attractor.

Theorem .3.1 ([11]) Let k be a positive integer. For i € {1,2,...,k}, as-
sume |a;,b;] is a closed and bounded interval of real mumbers, and let F*
la1,b1] X [ag,bo] X ... X [ag,bk] — [a;,bi] be a continuous function. For each
i,j € {1,2,...,k}, let M;; @ [a;,b)] — [ai,b)] and m;; : [a;,b)] — [a;,b;] be de-
fined as follows: given m;, M; € [a;, b;]

set
M;, if ¥ is increasing in z;

i.g (i, M;) m;, if FJ is non — increasing in z;

and
mi j(mg, M;) = M; ;(M;, m;).
Assume that for each i € {1,2,... k}, that the function F*, satisfies the
following conditions:
1. F(2q,29,...,2;) 18 weakly monotonic in each of its arguments.
2. If My, My, ..., My, my,ma, ... ,my, where m; < M; for eachi € {1,2,...,k},
s a solution of the system of 2k equations:

Mi = F”L:(Ml,i(ml, Ml); Mgvi(mQ, Mg), ceey Mm(mk, Mk))
m; FY(myi(my, M), moi(ma, Ma), ..., myi(mg, My))

then

Mi:mi,forallie {1,2,,1{?}

Then the system of k difference equations:

1 gl 2 k

z,,, = F (xn,xn,...,xz)

2 p2(,l 2 —

., = Fx,,x,...,x;) , n=0,1,...
ko k(2 k

vy = Ff(a,,zi,... 2)
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with initial condition (xd, z2, ... x8) € [ay,b1] X [ag, ba] X ... X [ax, by], has ezactly

one equilibrium point (z',z%,...,7%), and it is a global attractor.

.3.3 Permanence

Recall System(12,48)

&3]
Tn
o Tn + Yn
., n=0,1,... (2)
Qg + 521'71 + Yn
Yn+1 =

Baxp + yn
where the parameters aq, as, G2, B and the initial conditions xg, 39 of the system
are positive real numbers.

System(12,48) is permanent if there exist positive real numbers Iy, Ly, ls, Ly
such that for every positive solution {(x,,y,)}o>, of System(12,48), there exists
an integer N > 0 (possibly depending upon the solution {(x,,y,)}>>, of Sys-

tem(12,48) such that
L <x, <Ly and lo <yn < Lo
for every integer n > N.
In view of the above, set
U= max{ By, 1}
0%
and define [y, L1, [, Ly as follows:

a

L = DBl + 1)+ (R0 £ 1)

1

3. 1y, = ———
2 BoU + 1

4. Ly = ao(BU+1)4 (BU +1).
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In particular, note that

03]

= and L1 =UL,.
Ly + Ly ! ?

l
Let {(zn, yn) }32, be a positive solution of System(12,48).

Given a non-negative integer n > 0, note that

Tpt1 o Buntys ay - Baxy + yn
Ynt1 Tn 4+ Yn 2+ Boxp + Yp ag + BoZy + Y Ty + Un
Bsy, 1} x, n
Coon maxd By b e
Q9 Ty + Yn (&%)
= U.

Thus

r, < Uy, for all n>1.

Hence if n > 1 is an integer, then

o+ Bamn + Y Yn Yn 1
Yn+1 = > >
Boxy, +yp Boxy, +yn ByUyn + yn BU +1

and so

Yn > o for all n > 2.

Hence if n > 2 is an integer, then

(%) + ﬁan + Yn < (%) + ﬂan + Yn < %) + /62Uyn + Yn
By, + yn Yn Yn

Yn+1

= Lo @U+D) < PH@BU+D) = L
2

n

That is, for every integer n > 3 we have
ly <y, < Lo.
Now if n > 3 is an integer, then
T < Uy, <ULy = Ly.
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Hence for every integer n > 3, we also have

(03] > (07] .
Tn + Yn Ll + L2

l.

Tny1 =
In conclusion we see that the following theorem is true.

Theorem .3.2 System(12,48) is permanent. In particular, let {(x,, yn)}22, be a

positive solution of System(12,48). Then for every integer n > 4, we have
ll < Ty < L1

and

l2 <yn<L2.

.3.4 Global Attractivity Analysis

In this section we give the result in the case oy, g, Ba, 52 € (0,00). The case
aq, g, By € (0,00) and # = 0 was given in [13].

The following theorem gives a sufficient condition for the unique equilibrium

of System(12,48) to be a global attractor.

Theorem .3.3 Suppose that By > 35 and
(a2 By + (2)(By — Bo)a (max{Ba, 1})* + (ag + 1)(Ba — fB2)ajas max{Bs, 1} < a3,

Then System(12,48) has a unique positive equilibrium point (Z,y), and every pos-

itive solution of System(12,48) converges to (z,7).

Proof: For (z,y) € (0,00) x (0, 00), set

aq

and  gla,y) = 2L TY Dty

and let R = [ly, L1] X [la, Lo, where Iy, Ly, 15, and Ly are as defined in section 3.2.

We have the following lemma.
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Lemma .3.4 For (z,y) € R, the following statements are true.

of of

9y 9y
.= .= < 0.
3. S (ay) <0 L @y <o

Proof: The proofs of Statements (1), (2) are trivial and will be omitted. For the
proofs of Statements (3) and (4), let (z,y) € R.

We shall first show that Statement (3) is true. Note that as By > s, we have

 (Bar+y)fe— (e + Bz +y)By  —aaBy — (By— [2)y
)= (Bar + 97 ST Gy

oz
and so Statement (3) is true.

Finally, we shall show that Statement (4) is true. Note that the proof that

Statement (4) is true depends upon the fact that (z,y) € R. We have

dg _ (By — Bo)x — g (Ba — B2) Ly —
@<x’ v = (Bax +y)? = (Baz + y)?

(Bz - 52)UL2 — Qg
(Box + y)?

<B2 - BQ)U[OZQ(BQU + 1) + (/BQU + 1)] — Q9
(B +y)?

(BQ - BQ)U[OQBZU + a9 + /BQU + 1] — Q9
(B +y)?

(By = 82)U[(a2 By + 32)U + (a2 + 1)] — cp
(Byw +y)?

(a2 By + (2)(By — f2)U? + (2 + 1)(By — B2)U — g
(Byr +y)?

(2 Bs 4 32)(Bs — (2)ai(max{Bs, 1})?
a(Bayx + y)?

i (052 -+ 1)(82 — 52)051042 maX{BQ, 1} — C(g
a3(Bax + y)?

IA
o
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and the proof of the lemma is complete. O
Let T : (0,00) x (0,00) — (0,00) x (0,00) be given by
T(z,y) = (f(z,), 9(x,y)).
Lemma .3.5 T'[R] C R.
Proof: Let (z,y) € R. It suffices to show that
f(z,y) € [lh, L] and  g(z,y) € [l2, Lo].

1. We shall first show that [; < f(z,y).

Note that
(051 (051
l == < = ,
! L1+L2_l’+y f(xy)
as was to be shown.
2. We shall next show that f(z,y) < L.
We have
aq a1
= <
f(x,y) PV
and so it suffices to show that
a1
< L.

L+l —

That is, we must show that
aq S Ll(ll + lg)
Now
aq 1 ULQOél UL2
Lyi(l+ly) = ULyl l—UL( )_
i(hth) btl) =Vl \ T+ 55 v1) "L L BU 41

and so

(05} S Ll(ll + lg)
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if and only if

ULQOél UL2
ap < +
Li+ Ly, ByU+1

if and only if
aq(Ly + Lo)(BoU + 1) < ULy (BoU + 1) + ULs(Ly + Lo)
if and only if
a1(BU + 1)Ly < ULs(Ly + L)
if and only if
a1 BoU +ay <ULy +U(ByUag + ag + 5oU + 1)
if and only if
a1 BoU + ar < ULy + BgUagzz max{Ba, 1} + sl + BoU? + U
if and only if
oy ULy + a1 BoU(max{ By, 1} — 1) + anU + BoU? + U

if and only if

a1 < ULy + ByUay(max{Bs, 1} — 1) + azjl max{By, 1} + BU% + U
if and only if

0 <ULy + ByUaj(max{By,1} — 1) + oy (max{By, 1} — 1) + BU? +U

which is true, and so f(x,y) < L; as was to be shown.
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3. We shall next show that I, < g(z,y).

1
Recall that I, = BU 1 and by Lemma 3.2, g(z,y) is decreasing in both
arguments.
So,

g + Boly + Ly

and so it suffices to show that

1 < ag + BoLy + Lo
BQU -+ 1~ B2L1 + L2

Now
1 < (6] + /82.[/1 + L2
BQU +1 = BQLI + LZ

if and only if
ByLy + Ly < (BoU + 1) (g + B2y + Lo)
if and only if
BoULs + Ly < BoUaww + BoUPBo Ly + BoU Ls + g + Bo Ly + Lo
if and only if
0 < BoUay + BoUBo Ly + g + Bo Ly

which is true. Hence Iy < g(z,y).

4. Finally, we shall show that g(z,y) < Ls.

Recall that

L2:BQUa2+a2+62U+1=a2(32U+1)+ﬁ2U+1:%+52U+1.
2
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ag + Baoly + Iy

By Lemma 327 g<x7 y) S g(ll’ l2) - B2l1 + l2

, and so it suffices to show

that
ag + Baly + 1y

< ByUwy + ag + GU + 1.
Bl 11y = 2U g 2 + B2

Now
g + Baoly + Iy

< B,U U+1
Boli 11y = yUa + g + BoU +

if and only if

s + Boly + 1o < (BoUag + g + 52U + 1) (Baly + 1o)
if and only if

ot oli+ly < BaUa Boli+BaU cigla+an Bali gl + 52U Bali+52Ula+ Baly +1a
if and only if
g + Boly < ayB3Uly + aaBoly + Boly + (BoU + 1)aly + 52U Baly + 32Ul
if and only if
az + Boli < asB3Uly + aaBoly + Boly + 112@212 + BoUBoly + BoUly

if and only if

Boly < ayB3Uly + ayByly + Byly + Boli BoU + ByUly

if and only if

0 < (02B3UL + aaBaly + Boly ) + [Baly(BoU — 1) + Ul

It suffices to show that Gali(BoU — 1) + BoUls > 0.
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Now

Boli(BoU = 1) + BolUly = @LlO:LQ (BoU — 1) + Aol (BQJH)
= (Uoi%LQ(BgU 1)+ 32%21
) glfi (;Q+512U+1 (BQU_lHBfI;Zl
2
B ((;lle aa(BoU + 1)1+ (BoU + 1) (BeU —1)
Note that
= R LE 1)1+ G 1) (B Bz%lil

if and only if
0 < afa(BU = 1)(BU + 1) + BoU [aa(BoU + 1) + (52U + 1)]
if and only if
0 < fa(B3U? = 1) + axfa(BeU + 1)U + BoU(3U + 1)
if and only if

Py < g faBIU? + a2 BoU? + g 3oU + B3U% + U
= BiU? + ay 3, BU* + 04252% max{ By, 1} + B5U? 4 5,U
2

which is true because
g
a1y < 0425207 max{ By, 1}.
2
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Therefore it follows that
0 < (02B3UlL + azBaly + Baly) + [Bal1(BeU — 1) + $oUly]
O

Let ((my, My), (ma, My)) € [ly, L1]* x [lo, Ls]* be a solution of the system of

equations

a1 g
= — M = —
M1+M2 ! m1+m2

|
—
~
N—

my

ag + Bo My + My
mo =

a mi+m
M, = 2+ (Jamy + 2

) = .8
By M, + M, Bymy + mao (8)

Then it follows by Theorem .3.1 and Theorem .3.2 that the proof of Theorem

.3.3 will be completed by showing

my = M, and me = M. (.9)

By (.7), we see that
my (M + My) = aq = Myi(mq + mo)

and hence that
m1M2 = M1m2. (].0)
By (.8), we see similarly that
ByMimg + moMy = ag + B2 My + M,

Boymiy My + maMs = ay + Pamy + meo

and so
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BQ(Mlmg — m1M2> = ﬁQ(Ml — ml) + (MQ — mg). (]_]_)

Thus by (.10) and (.11) we see that

0= ﬁQ(Ml — ml) + (M2 — m2>

and so as 3y > 0, we must have

my = M1 and meo = MQ (12)

and so the proof of Theorem .3.3 is complete.

Extensive computer simulations lead us to the following conjecture:

Conjecture .3.1 The unique positive equilibrium of System(12,48) is a global at-

tractor for the entire range of the parameters.
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