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ABSTRACT

This dissertation is an exposition of systems of difference equations. I examine

multiple examples of both piecewise and rational difference equations.

In the first two manuscripts, I share the published results of two members of

the following family of 81 systems of piecewise linear difference equations:
xn+1 = |xn|+ ayn + b

, n = 0, 1, ...
yn+1 = xn + c|yn|+ d

where the initial condition (x0, y0) ∈ R2, and where the parameters a, b, c and d

are integers between −1 and 1, inclusively. Since each parameter can be one of

three values, there are 81 members. Each system is designated a number. The

system’s number N is given by

N = 27(a+ 1) + 9(b+ 1) + 3(c+ 1) + (d+ 1) + 1.

The first manuscript is a study of System(2). System(2) results when

a = b = c = −1 and d = 0. For System(2), I show that there exists a unique

equilibrium solution and exactly two prime period-5 solutions, and that every so-

lution of the system is eventually one of the two prime period-5 solutions or the

unique equilibrium solution.

The second manuscript is a study of System(8). System(8) results when a =

b = −1, c = 1 and d = 0. For System(8), I show that there exists a unique

equilibrium solution and exactly two prime period-3 solutions, and that except for

the equilibrium solution, every solution of the system is eventually one of the two

prime period-3 solutions.

Of the 81 systems, 65 have been studies thoroughly. In Appendix .1, I give

the unpublished results of the 21 systems that I studied. In Appendix .2, I list all

81 systems (studied by W. Tikjha, E. Grove, G. Ladas, and E. Lapierre) each with

a theorem or conjecture about its global behavior.



In the third manuscript, I give the published results of the following system

of rational difference equations:
xn+1 =

α1

xn + yn
, n = 0, 1, ...

yn+1 =
α2 + β2xn + yn

yn

where the parameters and initial conditions are positive real values. I show that

the system is permanent and has a unique positive equilibrium which is locally

asymptotically stable. I also find sufficient conditions to insure that the unique

positive equilibrium is globally asymptotically stable.

In Appendix .3, I give the unpublished results of the following system of

rational difference equations:
xn+1 =

α1

xn + yn
, n = 0, 1, ...

yn+1 =
α2 + β2xn + yn
B2xn + yn

where the parameters and initial conditions are positive real values. I show that

the system is permanent. I also find sufficient conditions to insure that the unique

positive equilibrium is globally asymptotically stable.
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1.1 Abstract

In this paper we consider the system in the title where the initial condition

(x0, y0) ∈ R2. We show that the system has exactly two prime period-5 solutions

and a unique equilibrium point (0,−1). We also show that every solution of the

system is eventually one of the two prime period-5 solutions or else the unique

equilibrium point.

1.2 Introduction

In this paper we consider the system of piecewise linear difference equations
xn+1 = |xn| − yn − 1

, n = 0, 1, ... (2)
yn+1 = xn − |yn|

where the initial condition (x0, y0) ∈ R2. We show that every solution of Sys-

tem(2) is eventually either one of two prime period-5 solutions or else the unique

equilibrium point (0,−1).

System(2) was motivated by Devanney’s Gingerbread man map [1, 2]

xn+1 = |xn| − xn−1 + 1

or its equivalent system of piecewise linear difference equations [3, 4]
xn+1 = |xn| − yn + 1

, n = 0, 1, 2, . . . .
yn+1 = xn

We believe that the methods and techniques used in this paper will be useful

in discovering the global character of solutions of similar systems, including the

Gingerbread man map.

In this paper we consider the system of piecewise linear difference equations
xn+1 = |xn| − yn − 1

, n = 0, 1, ... (2)
yn+1 = xn − |yn|
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where the initial condition (x0, y0) ∈ R2. We show that every solution of Sys-

tem(2) is eventually either one of two prime period-5 solutions or else the unique

equilibrium point (0,−1).

1.3 Global Results

System(2) has the equilibrium point (x, y) ∈ R2 given by

(x, y) = (0,−1).

System(2) has two prime period-5 solutions,

P 1
5 =


x0 = 0, y0 = 1
x1 = −2, y1 = −1
x2 = 2, y2 = −3
x3 = 4, y3 = −1
x4 = 4, y4 = 3

 and P 2
5 =


x0 = 0, y0 = 1

7

x1 = −8
7
, y1 = −1

7

x2 = 2
7
, y2 = −9

7

x3 = 4
7
, y3 = −1

x4 = 4
7
, y4 = −3

7

 .

Set
l1 = {(x, y) : x ≥ 0, y = 0}
l2 = {(x, y) : x = 0, y ≥ 0}
l3 = {(x, y) : x < 0, y = 0}
l4 = {(x, y) : x = 0, y < 0}
Q1 = {(x, y) : x > 0, y > 0}
Q2 = {(x, y) : x < 0, y > 0}
Q3 = {(x, y) : x < 0, y < 0}
Q4 = {(x, y) : x > 0, y < 0} .

Theorem 1.3.1 Let (x0, y0) ∈ R2. Then there exists an integer N ≥ 0 such that

the solution {(xn, yn)}∞n=N is eventually either the prime period-5 solution P 1
5 , the

prime period-5 solution P 2
5 or else the unique equilibrium point (0,−1).

The proof is a direct consequence of the following lemmas.

Lemma 1.3.2 Suppose there exists an integer M ≥ 0 such that −1 ≤ xM ≤ 0

and yM = −xM − 1. Then (xM+1, yM+1) = (0,−1), and so {(xn, yn)}∞n=M+1 is the

equilibrium solution.

Proof : Note that

3



xM+1 = |xM | − yM − 1 = −xM − (−xM − 1)− 1 = 0
yM+1 = xM − |yM | = xM − (xM + 1) = −1,

and so the proof is complete. 2

Lemma 1.3.3 Suppose there exists an integer M ≥ 0 such that xM ≥ 1 and

yM = xM − 1. Then (xM+1, yM+1) = (0, 1), and so {(xn, yn)}∞n=M+1 is P 1
5 .

Proof : We have

xM+1 = |xM | − yM − 1 = xM − (xM − 1)− 1 = 0
yM+1 = xM − |yM | = xM − (xM − 1) = 1,

and so the proof is complete. 2

Lemma 1.3.4 Suppose there exists an integer M ≥ 0 such that xM = 0 and

yM ≥ 0. Then the following statements are true:

1. xM+5 = 0.

2. If yM >
1

4
, then {(xn, yn)}∞n=M+5 is P 1

5 .

3. If 0 ≤ yM ≤
1

4
, then yM+5 = 8yM − 1.

Proof : We have xM = 0 and yM ≥ 0. Then

xM+1 = |xM | − yM − 1 = −yM − 1 < 0
yM+1 = xM − |yM | = −yM ≤ 0
xM+2 = |xM+1| − yM+1 − 1 = 2yM ≥ 0
yM+2 = xM+1 − |yM+1| = −2yM − 1 < 0
xM+3 = |xM+2| − yM+2 − 1 = 4yM ≥ 0
yM+3 = xM+2 − |yM+2| = −1
xM+4 = |xM+3| − yM+3 − 1 = 4yM ≥ 0
yM+4 = xM+3 − |yM+3| = 4yM − 1
xM+5 = |xM+4| − yM+4 − 1 = 0,

and so Statement 1 is true.
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If yM >
1

4
, then yM+5 = xM+4 − |yM+4| = 1. That is (xM+5, yM+5) = (0, 1)

and so Statement 2 is true.

If 0 ≤ yM ≤
1

4
, then yM+5 = xM+4 − |yM+4| = 8yM − 1, and so Statement 3

is true. 2

Lemma 1.3.5 Suppose there exists an integer M ≥ 0 such that xM = 0 and

yM < −1. Then the following statements are true:

1. xM+4 = 0.

2. If −3

2
< yM < −1, then yM+4 = −4yM − 5.

3. If yM ≤ −
3

2
, then {(xn, yn)}∞n=M+4 is P 1

5 .

Proof : We have xM = 0 and yM < −1. Then

xM+1 = |xM | − yM − 1 = −yM − 1 > 0
yM+1 = xM − |yM | = yM < 0
xM+2 = |xM+1| − yM+1 − 1 = −2yM − 2 > 0
yM+2 = xM+1 − |yM+1| = −1
xM+3 = |xM+2| − yM+2 − 1 = −2yM − 2 > 0
yM+3 = xM+2 − |yM+2| = −2yM − 3
xM+4 = |xM+3| − yM+3 − 1 = 0,

and so Statement 1 is true.

Now if −3

2
< yM < −1, then yM+3 = −2yM − 3 < 0. Thus

yM+4 = xM+3 − |yM+3| = −4yM − 5, and so Statement 2 is true.

Lastly, if yM ≤ −
3

2
, then yM+3 = −2yM −3 ≥ 0. Thus yM+4 = xM+3−|yM+3| = 1;

that is (xM+4, yM+4) = (0, 1) and so Statement 3 is true. 2

5



Lemma 1.3.6 Suppose there exists an integer M ≥ 0 such that xM ≥ 0 and

yM = 0. Then the following statements are true:

1. If xM ≥ 1 then {(xn, yn)}∞n=M+2 is P 1
5 .

2. If
1

4
< xM < 1, then {(xn, yn)}∞n=M+6 is P 1

5 .

3. If 0 ≤ xM ≤ 1
4
, then xM+6 = 0 and yM+6 = 8xM − 1.

Proof : First consider the case xM ≥ 1 and yM = 0. Then

xM+1 = |xM | − yM − 1 = xM − 1 ≥ 0
yM+1 = xM − |yM | = xM > 0
xM+2 = |xM+1| − yM+1 − 1 = −2
yM+2 = xM+1 − |yM+1| = −1,

and so Statement 1 is true.

Next consider the case 0 ≤ xM < 1 and yM = 0. Then

xM+1 = |xM | − yM − 1 = xM − 1 < 0
yM+1 = xM − |yM | = xM ≥ 0
xM+2 = |xM+1| − yM+1 − 1 = −2xM ≤ 0
yM+2 = xM+1 − |yM+1| = −1
xM+3 = |xM+2| − yM+2 − 1 = 2xM ≥ 0
yM+3 = xM+2 − |yM+2| = −2xM − 1 < 0
xM+4 = |xM+3| − yM+3 − 1 = 4xM ≥ 0
yM+4 = xM+3 − |yM+3| = −1
xM+5 = |xM+4| − yM+4 − 1 = 4xM ≥ 0
yM+5 = xM+4 − |yM+4| = 4xM − 1
xM+6 = |xM+5| − yM+5 − 1 = 0.

If
1

4
< xM < 1, then yM+5 = 4xM − 1 > 0 and so yM+6 = xM+5 − |yM+5| = 1.

That is (xM+6, yM+6) = (0, 1) and so Statement 2 is true.

If 0 ≤ xM ≤ 1
4
, then yM+5 = 4xM−1 ≤ 0. Thus yM+6 = xM+5−|yM+5| = 8xM−1,

and so Statement 3 is true.

2
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Lemma 1.3.7 Suppose there exists an integer M ≥ 0 such that xM < −1 and

yM = 0. Then the following statements are true:

1. xM+4 = 0.

2. If −3

2
≤ xM < −1, then yM+4 = −4xM − 5.

3. If xM < −3

2
, then {(xn, yn)}∞n=M+4 is P 1

5 .

Proof : Let xM < −1 and yM = 0. Then

xM+1 = |xM | − yM − 1 = −xM − 1 > 0
yM+1 = xM − |yM | = xM < 0
xM+2 = |xM+1| − yM+1 − 1 = −2xM − 2 > 0
yM+2 = xM+1 − |yM+1| = −1
xM+3 = |xM+2| − yM+2 − 1 = −2xM − 2 > 0
yM+3 = xM+2 − |yM+2| = −2xM − 3
xM+4 = |xM+3| − yM+3 − 1 = 0,

and so Statement 1 is true.

If −3

2
≤ xM < −1, then yM+3 = −2xM − 3 ≤ 0. Thus yM+4 = xM+3 − |yM+3| =

−4xM − 5, and so Statement 2 is true.

If xM < −3

2
, then yM+3 = −2xM − 3 > 0 and yM+4 = xM+3 − |yM+3| = 1. That is

(xM+4, yM+4) = (0, 1) and so {(xn, yn)}∞n=M+4 is P 1
5 and the proof is complete. 2

We now give the proof of Theorem 1.3.1 when (xM , yM) is in l2 =

{(x, y) : x = 0, y ≥ 0} .

Lemma 1.3.8 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ l2.

Then the following statements are true:

1. If 0 ≤ yM <
1

7
, then {(xn, yn)}∞n=M is eventually the equilibrium solution.

2. If yM =
1

7
, then the solution {(xn, yn)}∞n=M+2 is P 2

5 .

7



3. If yM >
1

7
, then the solution {(xn, yn)}∞n=M is eventually P 1

5 .

Proof :

1. We shall first show Statement 1 is true. Suppose 0 ≤ yM <
1

7
, for each n ≥ 0,

let

an =
23n − 1

7 · 23n
.

Observe that

0 = a0 < a1 < a2 < . . . <
1

7
and lim

n→∞
an =

1

7
.

Thus there exists a unique integer K ≥ 0 such that yM ∈ [aK , aK+1).

We first consider the case K = 0; that is yM ∈
[
0,

1

8

)
. By Statements 1 and

3 of Lemma 1.3.4, xM+5 = 0 and yM+5 = 8yM − 1. Clearly yM+5 < 0, and so

xM+6 = |xM+5| − yM+5 − 1 = −8yM ≤ 0
yM+6 = xM+5 − |yM+5| = 8yM − 1.

Now −1 < xM+6 ≤ 0 and yM+6 = −xM+6 − 1, and so by Lemma 1.3.2,

{(xn, yn)}∞n=M+7 is the equilibrium solution.

Without loss of generality we may assume K ≥ 1.

For each integer n such that n ≥ 0, let P(n) be the following statement:

xM+5n+5 = 0

yM+5n+5 = 23(n+1)yM −
(

23(n+1) − 1

7

)
≥ 0.

Claim: P(n) is true for 0 ≤ n ≤ K − 1.

The proof of the Claim will be by induction on n. We shall first show that

P(0) is true.

8



Recall that xM = 0 and yM ∈ [aK , aK+1) ⊂
[
1

8
,
1

7

)
. Then by Statements 1

and 3 of Lemma 1.3.4, we have xM+5(0)+5 = 0 and yM+5(0)+5 = 8yM − 1.

Note that,

yM+5(0)+5 = 8yM − 1 = 23(0+1)yM −
(

23(0+1) − 1

7

)
≥ 0

and so P(0) is true. Thus if K = 1, then we have shown that for

0 ≤ n ≤ K − 1, P(n) is true. It remains to consider the case K ≥ 2. So

assume that K ≥ 2. Let n be an integer such that 0 ≤ n ≤ K − 2 and

suppose P(n) is true. We shall show that P(n+ 1) is true.

Since P(n) is true we know

xM+5n+5 = 0 and yM+5n+5 = 23(n+1)yM −
(

23(n+1) − 1

7

)
≥ 0.

It is easy to verify that for yM ∈ [aK , aK+1) =

[
23K − 1

7 · 23K
,
23(K+1) − 1

7 · 23(K+1)

)

yM+5n+5 = 23(n+1)yM −
(

23(n+1) − 1

7

)
<

1

7
<

1

4
.

Thus by Statements 1 and 3 of Lemma 1.3.4,

xM+5(n+1)+5 = 0 and

yM+5(n+1)+5 = 8(yM+5n+5)− 1

= 23

[
23(n+1)yM −

(
23(n+1) − 1

7

)]
− 1

= 23n+6yM −
23n+6

7
+

23

7
− 1

= 23(n+2)yM −
(

23(n+2) − 1

7

)
.

9



Recall that yM ∈ [aK , aK+1) =

[
23K − 1

7 · 23K
,
23(K+1) − 1

7 · 23(K+1)

)
.

In particular,

yM+5(n+1)+5 = 23(n+2)yM −
(

23(n+2) − 1

7

)

≥ 23(n+2)

(
23K − 1

7 · 23K

)
−
(

23(n+2) − 1

7

)

=
23n+3K+6

7 · 23K
− 23n+6

7 · 23K
− 23n+6

7
+

1

7

=
1

7

(
1− 23[n−(K−2)]

)
≥ 1

7
(1− 1)

= 0,

and so P(n + 1) is true. Thus the proof of the Claim is complete. That is,

P(n) is true for 0 ≤ n ≤ K − 1. Specifically, P(K − 1) is true, and so

xM+5(K−1)+5 = 0 and yM+5(K−1)+5 = 23KyM −
(

23K − 1

7

)
≥ 0.

In particular,

23K

(
23K − 1

7 · 23K

)
−
(

23K − 1

7

)
≤ yM+5(K−1)+5 < 23K

(
23K+3 − 1

7 · 23K+3

)
−
(

23K − 1

7

)
.

That is, 0 ≤ yM+5(K−1)+5 <
1

8
, and so by case K = 0, {(xn, yn)}∞n=M+5K+7 is

the equilibrium solution, and the proof of Statement 1 is complete.

2. We shall next show that Statement 2 is true. Suppose (xM , yM) =
(

0,
1

7

)
.

Note that
(

0,
1

7

)
∈ P 2

5 . Thus the solution {(xn, yn)}∞n=M is P 2
5 .

3. Finally, we shall show that Statement 3 is true. Suppose yM >
1

7
.
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First consider yM >
1

4
. By Statement 2 of Lemma 1.3.4, the solution

{(xn, yn)}∞n=M+5 is P 1
5 .

Next consider the case yM ∈
(

1

7
,
1

4

]
. For each n ≥ 1 let

bn =
23n−1 + 3

7 · 23n−1
.

Observe that

1

4
= b1 > b2 > b3 > . . . >

1

7
and lim

n→∞
bn =

1

7
.

Thus there exists a unique integer K ≥ 1 such that yM ∈ (bK+1, bK ].

If we slightly augment the proof of Statement 1 of this lemma then the

statement P(n) still holds. First note that it is easy to determine through

direct computations that the base case of the inductive argument still holds.

All that is needed to complete the proof for yM ∈ (bK+1, bK ] is the following

Claim.

Claim: Let n be an integer such that 0 ≤ n ≤ K − 2 and suppose P(n) is

true. We shall show that P(n+ 1) is true.

Proof: Since P(n) is true we know

xM+5n+5 = 0 and yM+5n+5 = 23(n+1)yM −
(

23(n+1) − 1

7

)
≥ 0.

Recall that yM ∈ (bK+1, bK ] =

[
23(K+1)−1 + 3

7 · 23(K+1)−1
,
23K−1 + 3

7 · 23K−1

)
, then

yM+5n+5 = 23(n+1)yM −
(

23(n+1) − 1

7

)

≤ 23n+3

(
23K−1 + 3

7 · 23K−1

)
−
(

23n+3 − 1

7

)
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=
23n+323K−1

7 · 23K−1
+

23n+33

7 · 23K−1
− 23n+3

7
+

1

7

=
1

7

(
23n−3K+43 + 1

)
≤ 1

7

(
3

4
+ 1

)

=
1

4
.

Thus by Statements 1 and 3 of Lemma 1.3.4,

xM+5(n+1)+5 = 0 and

yM+5(n+1)+5 = 8(yM+5n+5)− 1

= 23(n+2)yM −
(

23(n+2) − 1

7

)
.

Again recall that yM ∈ (bK+1, bK ] =

[
23(K+1)−1 + 3

7 · 23(K+1)−1
,
23K−1 + 3

7 · 23K−1

)
.

In particular,

yM+5(n+1)+5 = 23(n+2)yM −
(

23(n+2) − 1

7

)

≥ 23(n+2)

(
23(K+1)−1 + 3

7 · 23(K+1)−1

)
−
(

23(n+2)

7

)
+
(

1

7

)

=
23n+3K+8

7 · 23K+2
+

23n+63

7 · 23K+2
− 23n+6

7
+

1

7

=
1

7

(
23n−3K+4 + 1

)
≥ 0.

The proof of the Claim is complete and this completes the proof that P(n) is

true for Statement 3 of this lemma for 0 ≤ n ≤ K− 1. Specifically P(K− 1)

is true, and so

xM+5(K−1)+5 = 0 and yM+5(K−1)+5 = 23KyM −
(

23K − 1

7

)
≥ 0.

Recall that for yM ∈ (bK+1, bK ].

12



In particular,

yM+5K = 23KyM −
(

23K − 1

7

)
> 23K

(
23K+2 + 3

7 · 23K+2

)
−
(

23K − 1

7

)
=

1

4
.

By Statement 2 of Lemma 1.3.4, the solution {(xn, yn)}∞n=M+5K+5 is P 1
5 .

2

We now give the proof of Theorem 1.3.1 when (xM , yM) is in l4 =

{(x, y) : x = 0, y < 0} .

Lemma 1.3.9 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ l4.

Then the following statements are true:

1. If −9

7
< yM < 0, then {(xn, yn)}∞n=M is eventually the equilibrium solution.

2. If yM = −9

7
, then the solution {(xn, yn)}∞n=M+1 is P 2

5 .

3. If yM < −9

7
, then the solution {(xn, yn)}∞n=M is eventually P 1

5 .

Proof :

1. We shall first show that Statement 1 is true. So suppose −9

7
< yM < 0.

Case 1: Suppose −1 ≤ yM < 0. Then

xM+1 = |xM | − yM − 1 = −yM − 1 ≤ 0
yM+1 = xM − |yM | = yM .

In particular, −1 < xM+1 ≤ 0 and yM+1 = −xM+1 − 1, and so by

Lemma 1.3.2, {(xn, yn)}∞n=M+2 is the equilibrium solution.

Case 2: Suppose −5

4
≤ yM < −1. By Statements 1 and 2 of Lemma 1.3.5,

xM+4 = 0 and yM+4 = −4yM − 5. Then

xM+5 = |xM+4| − yM+4 − 1 = 4yM + 4 < 0
yM+5 = xM+4 − |yM+4| = −4yM − 5.

Thus −1 ≤ xM+5 < 0 and yM+5 = −xM+5 − 1, and so by Lemma 1.3.2,

{(xn, yn)}∞n=M+6 is the equilibrium solution.
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Case 3: Suppose −9

7
< yM < −5

4
. By Statements 1 and 2 of Lemma 1.3.5,

xM+4 = 0 and yM+4 = −4yM − 5. Note that 0 < yM+4 <
1

7
and so by

Statement 1 of Lemma 1.3.8, {(xn, yn)}∞n=M+4 is eventually equilibrium

solution.

2. We shall next show that Statement 2 is true. Suppose yM = −9

7
. By

direct calculations we have (xM+1, yM+1) =
(

2

7
,−9

7

)
. So the solution

{(xn, yn)}∞n=M+1 is P 2
5 .

3. Finally, we shall show that Statement 3 is true. Suppose xM = 0 and yM <

−9

7
.

Case 1: Suppose −3

2
< yM < −9

7
. By Statements 1 and 2 of Lemma 1.3.5,

we have xM+4 = 0 and yM+4 = −4yM − 5. Note that
1

7
< yM+4 < 1

and so by Statement 3 of Lemma 1.3.8, the solution {(xn, yn)}∞n=M+4 is

eventually P 1
5 .

Case 2 : Suppose yM ≤ −
3

2
. By Statement 3 of Lemma 1.3.5, the solution

{(xn, yn)}∞n=M+4 is P 1
5 .

2

We now give the proof of Theorem 1.3.1 when (xM , yM) is in l1 =

{(x, y) : x ≥ 0, y = 0} .

Lemma 1.3.10 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ l1.

Then the following statements are true:

1. If 0 ≤ xM <
1

7
, then {(xn, yn)}∞n=M is eventually the equilibrium solution.

2. If xM =
1

7
, then the solution {(xn, yn)}∞n=M+3 is P 2

5 .
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3. If xM >
1

7
, then the solution {(xn, yn)}∞n=M is eventually P 1

5 .

Proof :

1. We shall first show Statement 1 is true. So suppose 0 ≤ xM <
1

7
and

yM = 0. By Statement 3 of Lemma 1.3.6, xM+6 = 0 and yM+6 = 8xM − 1.

In particular, −1 < yM+6 <
1

7
and so by Statement 1 of Lemma 1.3.8 and

Statement 1 of Lemma 1.3.9, {(xn, yn)}∞n=M+6 is eventually the equilibrium

solution.

2. We shall next show Statement 2 is true. Suppose xM =
1

7
. By direct calcula-

tions we have (xM+3, yM+3) =
(

2

7
,−9

7

)
. Thus the solution {(xn, yn)}∞n=M+3

is P 2
5 .

3. Finally, we shall show Statement 3 is true.

First consider the case
1

7
< xM ≤

1

4
. By Statement 3 of Lemma 1.3.6,

xM+6 = 0 and yM+6 = 8xM − 1. Now,
1

7
< yM+6 ≤ 1 and so by Statement 3

of Lemma 1.3.8, the solution {(xn, yn)}∞n=M+6 is eventually P 1
5 .

Next consider the case xM >
1

4
. Then by Statements 1 and 2 of Lemma

1.3.6, if xM ≥ 1 then {(xn, yn)}∞n=M+2 is P 1
5 and if

1

4
< xM < 1 then

{(xn, yn)}∞n=M+6 is P 1
5 .

2

We next give the proof of Theorem 1.3.1 when (xM , yM) is in l3 =

{(x, y) : x < 0, y = 0} .

Lemma 1.3.11 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ l3.

Then the following statements are true:
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1. If −9

7
< xM < 0, then {(xn, yn)}∞n=M is eventually the equilibrium solution.

2. If xM = −9

7
, then the solution {(xn, yn)}∞n=M+1 is P 2

5 .

3. If xM < −9

7
, then the solution {(xn, yn)}∞n=M is eventually P 1

5 .

Proof :

1. We will first prove Statement 1 is true. Suppose −9

7
< xM < 0.

First consider the case −1 ≤ xM < 0. Then

xM+1 = |xM | − yM − 1 = −xM − 1
yM+1 = xM − |yM | = xM .

In particular, −1 < xM+1 ≤ 0 and yM+1 = −xM − 1 and so by Lemma 1.3.2,

{(xn, yn)}∞n=M+2 is the equilibrium solution.

Next consider the case −9

7
< xM < −1. By Statements 1 and 2 of Lemma

1.3.7, xM+4 = 0 and yM+4 = −4xM − 5. In particular, −1 < yM+4 <
1

7

and so by Statement 1 of Lemma 1.3.8 and Statement 1 of Lemma 1.3.9,

{(xn, yn)}∞n=M+4 is eventually the equilibrium solution.

2. We shall next show Statement 2 is true. Suppose xM = −9

7
. By direct

calculations we have (xM+1, yM+1) =
(

2

7
,−9

7

)
. That is, {(xn, yn)}∞n=M+1 is

P 2
5 .

3. Lastly, we shall show that Statement 3 is true. Suppose xM < −9

7
.

First consider the case −3

2
≤ xM < −9

7
. By Statements 1 and 2 of Lemma

1.3.7, xM+4 = 0 and yM+4 = −4xM − 5. In particular,
1

7
< yM+4 ≤ 1 and so

by Statement 3 of Lemma 1.3.8, the solution {(xn, yn)}∞n=M+4 is eventually

P 1
5 .
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Next consider the case xM < −3

2
. By Statement 3 of Lemma 1.3.7, the

solution {(xn, yn)}∞n=M+4 is P 1
5 .

2

We next give the proof of Theorem 1.3.1 when (xM , yM) is in Q1 =

{(x, y) : x > 0, y > 0} .

Lemma 1.3.12 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ Q1.

Then the following statements are true:

1. If yM ≤ xM − 1, then the solution {(xn, yn)}∞n=M+2 is P 1
5 .

2. If yM > xM − 1, then there exists an integer N such that (xM+N , yM+N) ∈

l2 ∪ l4.

Proof : Suppose xM > 0 and yM > 0.

Then

xM+1 = |xM | − yM − 1 = xM − yM − 1
yM+1 = xM − |yM | = xM − yM .

Case 1: Suppose yM ≤ xM − 1. Then, in particular, xM+1 = xM − yM − 1 ≥ 0

and yM+1 = xM − yM > 0. Thus

xM+2 = |xM+1| − yM+1 − 1 = −2
yM+2 = xM+1 − |yM+1| = −1,

and so Statement 1 true.

Case 2: Suppose yM > xM − 1. Then, in particular, xM+1 = xM − yM − 1 < 0.

Case 2a: Suppose xM − yM < 0.

Then yM+1 = xM − yM < 0. It follows by a straight forward computation, which
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will be omitted, that xM+5 = 0. Hence (xM+5, yM+5) ∈ l2 ∪ l4.

Case 2b: Suppose xM − yM ≥ 0.

Then yM+1 = xM − yM ≥ 0. It follows by a straight forward computation, which

will be omitted, that xM+6 = 0. Hence (xM+6, yM+6) ∈ l2 ∪ l4, and the proof is

complete. 2

We next give the proof of Theorem 1.3.1 when (xM , yM) is in Q3 =

{(x, y) : x < 0, y < 0} .

Lemma 1.3.13 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ Q3.

Then the following statements are true:

1. If yM ≥ −xM − 1, then the solution {(xn, yn)}∞n=M+2 is the equilibrium solu-

tion.

2. If yM < −xM − 1, then (xM+4, yM+4) ∈ l2 ∪ l4.

Proof : By assumption, we have xM < 0 and yM < 0.

If yM ≥ −xM − 1. Then

xM+1 = |xM | − yM − 1 = −xM − yM − 1 ≤ 0
yM+1 = xM − |yM | = xM + yM < 0
xM+2 = |xM+1| − yM+1 − 1 = 0
yM+2 = xM+1 − |yM+1| = −1.

Hence {(xn, yn)}∞n=M+2 is the equilibrium solution and Statement 1 is true.

If yM < −xM − 1 then it follows by a straight forward computation, which will be

omitted, that xM+4 = 0. Thus (xM+4, yM+4) ∈ l2 ∪ l4 and Statement 2 is true. 2

We next give the proof of Theorem 1.3.1 when (xM , yM) is in Q2 =

{(x, y) : x < 0, y > 0} .
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Lemma 1.3.14 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ Q2.

Then the following statements are true:

1. If yM ≥ −xM − 1, then (xM+1, yM+1) ∈ Q3 ∪ l4.

2. If yM ≤ −xM −
3

2
, then (xM+3, yM+3) ∈ Q1 ∪ l1.

3. If yM < −xM−1, yM > −xM−
3

2
and xM ≤ −

5

4
, then (xM+4, yM+4) ∈ Q1∪l1.

4. If yM < −xM − 1, yM > −xM −
3

2
, xM > −5

4
and yM ≤ xM +

5

4
, then

(xM+5, yM+5) ∈ Q3 ∪ l4.

5. If yM < −xM − 1, yM > −xM −
3

2
, xM > −5

4
and yM > xM +

5

4
, then

(xM+6, yM+6) ∈ Q3 ∪ l4.

Proof : Now xM < 0 and yM > 0.

1. If yM ≥ −xM − 1, then

xM+1 = −xM − yM − 1 ≤ 0
yM+1 = xM − yM < 0.

Thus (xM+1, yM+1) ∈ Q3 ∪ l4.

2. If yM ≤ −xM −
3

2
, then xM+1 = −xM − yM − 1 > 0. It follows by a straight

forward computation, which will be omitted, that

xM+3 = −2xM + 2yM − 2 > 0
yM+3 = −2xM − 2yM − 3 ≥ 0.

Hence (xM+3, yM+3) ∈ Q1 ∪ l1.

3. If yM < −xM−1, yM > −xM−
3

2
and xM ≤ −

5

4
, then xM+1 = −xM−yM−1 >

0. It follows by a straight forward computation, which will be omitted, that

xM+4 = 4yM > 0
yM+4 = −4xM − 5 ≥ 0.

Thus (x4, y4) ∈ Q1 ∪ l1.
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4. If yM < −xM − 1, yM > −xM −
3

2
, xM > −5

4
and yM ≤ xM +

5

4
, then

xM+1 = −xM − yM − 1 > 0. It follows by a straight forward computation,

which will be omitted, that

xM+5 = 4xM + 4yM + 4 < 0
yM+5 = −4xM + 4yM − 5 ≤ 0.

Thus (xM+5, yM+5) ∈ Q3 ∪ l4.

5. Finally, suppose that yM < −xM − 1, yM > −xM −
3

2
, xM > −5

4
and yM >

xM +
5

4
. Then xM+1 = −xM − yM − 1 > 0. It follows by a straight forward

computation, which will be omitted, that

xM+5 = 4xM + 4yM + 4 < 0
yM+5 = −4xM + 4yM − 5 > 0.

Note that

yM+5 = −4xM + 4yM − 5 > −4xM − 4yM − 5 = −xM+5 − 1

and so by the first statement of this Lemma, (xM+6, yM+6) ∈ Q3 ∪ l4.

2

Thus we see that if there exists an integer N ≥ 0 such that (xN , yN) /∈ Q4

then the proof of Theorem 1.3.1 is complete. Finally, we consider the case where

the initial condition (xM , yM) ∈ Q4 = {(x, y) : x > 0, y < 0}.

Lemma 1.3.15 Suppose there exists an integer M ≥ 0 such that (xM , yM) ∈ Q4.

Then there exists a positive integer N ≤ 4 such that (xM+N , yM+N) /∈ Q4.

Proof : Without loss of generality, it suffices to consider the case where

(xM+n, yM+n) ∈ Q4 for 0 ≤ n ≤ 3.

Now (xM , yM) ∈ Q4, and hence xM > 0 and yM < 0.

Thus
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xM+1 = |xM | − yM − 1 = xM − yM − 1
yM+1 = xM − |yM | = xM + yM .

We have (xM+1, yM+1) ∈ Q4, and thus

xM+2 = |xM+1| − yM+1 − 1 = −2yM − 2,
yM+2 = xM+1 − |yM+1| = 2xM − 1.

We also have (x2, y2) ∈ Q4, and hence

xM+3 = |xM+2| − yM+2 − 1 = −2xM − 2yM − 2,
yM+3 = xM+2 − |yM+2| = 2xM − 2yM − 3.

Finally, we have (xM+3, yM+3) ∈ Q4, and so

xM+4 = |xM+3| − yM+3 − 1 = −4xM < 0,
yM+4 = xM+3 − |yM+3| = −4yM − 5.

In particular xM+4 < 0 and hence (xM+4, yM+4) /∈ Q4. 2

Conclusion

We have presented the complete results concerning the global character of the

solutions to System(2). We divided the real plane into 8 sections and utilized

mathematical induction, proof by iteration, and direct computations to show that

every solution of System(2) is eventually either the prime period-5 solution P 1
5 ,

the prime period-5 solution P 2
5 or else the unique equilibrium point (0,−1). The

proofs involve careful consideration of the various cases and subcases.
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2.1 Abstract

In this paper we consider the system of piecewise linear difference equations

in the title, where the initial conditions x0 and y0 are real numbers. We show

that there exists a unique equilibrium solution and exactly two prime period-3

solutions, and that except for the unique equilibrium solution, every solution of

the system is eventually one of the two prime period-3 solutions.

2.2 Introduction

In this paper we consider the system of piecewise linear difference equations


xn+1 = |xn| − yn − 1

, n = 0, 1, . . .
yn+1 = xn + |yn|

(1)

where the initial conditions x0 and y0 are arbitrary real numbers. We show that

every solution of System(1) is either (from the beginning) the unique equilibrium

point

(x̄, ȳ) =
(
−2

5
,−1

5

)
or else is eventually one of the following period-3 cycles:

P1
3 =


x0 = 0 , y0 = −1

x1 = 0 , y1 = 1

x2 = −2 , y2 = 1

 or P2
3 =



x0 = 0 , y0 = −1

3

x1 = −2

3
, y1 =

1

3

x2 = −2

3
, y2 = −1

3


.

This study of System(1) was motivated by Devaney’s celebrated Gingerbread-

man map 
xn+1 = |xn| − yn + 1

, n = 0, 1, . . . .
yn+1 = xn

See Ref. [2, 4, 5, 9].
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We believe that the methods and techniques used in this paper will be useful

in discovering the global behavior of similar piecewise linear systems of the form
xn+1 = |xn|+ ayn + b

, n = 0, 1, 2...
yn+1 = xn + c |yn|+ d

For another system of this form see [10].

2.3 Global Results

Set

l1 = {(x, y) : x ≥ 0, y = 0}

l2 = {(x, y) : x = 0, y ≥ 0}

l3 = {(x, y) : x ≤ 0, y = 0}

l4 = {(x, y) : x = 0, y ≤ 0}

Q1 = {(x, y) : x > 0, y > 0}

Q2 = {(x, y) : x < 0, y > 0}

Q3 = {(x, y) : x < 0, y < 0}

Q4 = {(x, y) : x > 0, y < 0}.

Theorem 2.3.1 Let {(xn, yn)}∞n=0 be a solution of System(8) with (x0, y0) ∈ R2.

Then either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a

non-negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(8) is

either the prime period-3 cycle P1
3 or the prime period-3 cycle P2

3.

The proof of Theorem 2.3.1 is a direct consequence of the following lemmas.

Lemma 2.3.2 Suppose there exists a non-negative integer N ≥ 0 such that

yN = −xN − 1 and yN ≥ 0.

Then (xN+1, yN+1) = (0,−1), and so {(xn, yn)}∞n=N+1 is the period-3 cycle P1
3.
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Proof : Note that xN = −yN − 1 ≤ −1, and so

xN+1 = |xN | − yN − 1 = −xN − (−xN − 1)− 1 = 0

yN+1 = xN + |yN | = xN + (−xN − 1) = −1.

The proof is complete. 2

Lemma 2.3.3 Suppose there exists a non-negative integer N ≥ 0 such that

(xN , yN) ∈ l2. Then {(xn, yn)}∞n=N+2 is the period-3 cycle P1
3.

Proof : I have

xN+1 = |xN | − yN − 1 = 0− yN − 1 = −yN − 1 < 0

yN+1 = xN + |yN | = 0 + yN = yN ≥ 0

and so it follows by Lemma 2.3.2 that {(xn, yn)}∞n=N+2 is the period-3 cycle P1
3. 2

Lemma 2.3.4 Suppose there exists a non-negative integer N ≥ 0 such that xN = 0

and yN < −1. Then

1. xN+3 = 2yN + 2 < 0.

2. If −3

2
≤ yN < −1, then yN+3 = −2yN − 3 ≤ 0.

3. If yN < −3

2
, then {(xn, yn)}∞n=N+4 is the period-3 cycle P1

3.

Proof : I have

xN+1 = |xN | − yN − 1 = −yN − 1 > 0

yN+1 = xN + |yN | = −yN > 0

xN+2 = |xN+1| − yN+1 − 1 = −2

yN+2 = xN+1 + |yN+1| = −2yN − 1 > 0

xN+3 = |xN+2| − yN+2 − 1 = 2yN + 2 < 0

yN+3 = xN+2 + |yN+2| = −2yN − 3.
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If−3

2
≤ yN < −1, then yN+3 = −2yN−3 ≤ 0. If yN < −3

2
, then yN+3 = −2yN−3 >

0 and so by Lemma 2.3.2 {(xn, yn)}∞n=N+4 is the period-3 cycle P1
3. The proof is

complete. 2

Lemma 2.3.5 Suppose there exists a non-negative integer N ≥ 0 such that xN = 0

and −1 < yN ≤ 0. Then

1. If −1

4
< yN ≤ 0, then {(xn, yn)}∞n=N+5 is the period-3 cycle P1

3.

2. If −1

2
< yN ≤ −

1

4
, then xN+5 = 8yN + 2, yN+5 = −8yN − 3, and xN+6 = 0.

3. If −1 < yN ≤ −
1

2
, then {(xn, yn)}∞n=N+6 is the period-3 cycle P1

3.

Proof : I have

xN+1 = |xN | − yN − 1 = −yN − 1 < 0

yN+1 = xN + |yN | = −yN ≥ 0

xN+2 = |xN+1| − yN+1 − 1 = 2yN ≤ 0

yN+2 = xN+1 + |yN+1| = −2yN − 1

xN+3 = |xN+2| − yN+2 − 1 = 0.

If −1

4
< yN ≤ 0, then yN+2 < 0 and yN+3 = xN+2 +|yN+2| = 4yN +1 > 0. It follows

by Lemma 2.3.3 that {(xn, yn)}∞n=N+5 is the period-3 cycle P1
3, and so Statement

1 is true.

If −1

2
< yN ≤ −

1

4
, then yN+2 < 0 and

yN+3 = xN+2 + |yN+2| = 4yN + 1 ≤ 0

xN+4 = |xN+3| − yN+3 − 1 = −4yN − 2 < 0

yN+4 = xN+3 + |yN+3| = −4yN − 1 ≥ 0
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xN+5 = |xN+4| − yN+4 − 1 = 8yN + 2 ≤ 0

yN+5 = xN+4 + |yN+4| = −8yN − 3

xN+6 = |xN+5| − yN+5 − 1 = 0

and so Statement 2 is true.

If −1 < yN ≤ −
1

2
, then yN+6 = xN+5 + |yN+5| = −1 and so {(xn, yn)}∞n=N+6 is the

period-3 cycle P1
3. The proof is complete. 2

Lemma 2.3.6 Suppose there exists a non-negative integer N ≥ 0 such that

(xN , yN) ∈ l4. Then the following five statements are true:

1. Suppose −1

3
< yN ≤ 0. Then {(xn, yn)}∞n=N is eventually the period-3 cycle

P1
3.

2. Suppose yN = −1

3
. Then {(xn, yn)}∞n=N is the period-3 cycle P2

3.

3. Suppose −4

3
< yN < −1

3
. Then {(xn, yn)}∞n=N is eventually the period-3 cycle

P1
3.

4. Suppose yN = −4

3
. Then {(xn, yn)}∞n=N+3 is the period-3 cycle P2

3.

5. Suppose yN < −4

3
. Then {(xn, yn)}∞n=N is eventually the period-3 cycle P1

3.

Proof : I have xN = 0 and yN ≤ 0.

1. Suppose −1

3
< yN ≤ 0. Note that by Statement 1 of Lemma 2.3.5, that if

−1

4
< yN ≤ 0, then {(xn, yn)}∞n=N+5 is the period-3 cycle P1

3.

So suppose −1

3
< yN ≤ −

1

4
. For each integer n ≥ 1, let
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an =
−22n + 1

3 · 22n
.

Observe that

−1

4
= a1 > a2 > a3 > . . . > −1

3
and lim

n→∞
an = −1

3
.

See diagram below:

Thus there exists a unique integer K ≥ 1 such that yN ∈ (aK+1, aK ]. I first

consider the case K = 1; that is, yN ∈
(
− 5

16
,−1

4

]
. It follows from Statement

2 of Lemma 2.3.5 that xN+5 = 8yN + 2 ≤ 0, yN+5 = −8yN − 3 < 0, and

xN+6 = 0. Thus yN+6 = xN+5 + |yN+5| = 16yN + 5 > 0, and so by Lemma

2.3.3 I have {(xn, yn)}∞n=N+8 is the period-3 cycle P1
3.

Hence without loss of generality, I may assume K ≥ 2. For each in-

teger m ≥ 1, let P(m) be the following statement:

xN+3m+3 = 0

yN+3m+3 = 22m+2yN +
22m+2 − 1

3
≤ 0.

Claim: P(m) is true for 1 ≤ m ≤ K − 1.

The proof of the Claim will be by induction on m. I shall first show that

P(1) is true.

Recall that xN = 0 and yN ∈ (aK+1, aK ] ⊂
(
−1

3
,− 5

16

]
, and so by Statement
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2 of Lemma 2.3.5 I have xN+5 = 8yN + 2 < 0 and yN+5 = −8yN − 3 < 0.

Then

xN+3(1)+3 = 0

yN+3(1)+3 = 16yN + 5 = 22(1)+2yN +
22(1)+2 − 1

3
≤ 0

and so P(1) is true. Thus if K = 2, then I have shown that for

1 ≤ m ≤ K − 1, P(m) is true. It remains to consider the case K ≥ 3. So

assume that K ≥ 3. Let m be an integer such that 1 ≤ m ≤ K − 2, and

suppose P(m) is true. I shall show that P(m+ 1) is true.

Since P(m) is true I know

xN+3m+3 = 0

yN+3m+3 = 22m+2yN +
22m+2 − 1

3
≤ 0.

Recall that yN ∈ (aK+1, aK ] =

(
−22(K+1) + 1

3 · 22(K+1)
,
−22K + 1

3 · 22K

]
.

Then

xN+3m+4 = |xN+3m+3| − yN+3m+3 − 1 = −22m+2yN −
(

22m+2 − 1

3

)
− 1.

Note that xN+3m+4 = −yN+3m+3 − 1.

In particular,

xN+3m+4 = −22m+2yN −
(

22m+2 − 1

3

)
− 1

< −22m+2

(
−22(K+1) + 1

3 · 22(K+1)

)
−
(

22m+2 − 1

3

)
− 1
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=
22m+2K+4

3 · 22K+2
− 22m+2

3 · 22K+2
− 22m+2

3
+

1

3
− 1

= −22m−2K

3
− 2

3

< 0

and

yN+3m+4 = xN+3m+3 + |yN+3m+3| = −yN+3m+3 ≥ 0.

Thus
xN+3m+5 = |xN+3m+4| − yN+3m+4 − 1

= yN+3m+3 + 1− (−yN+3m+3)− 1

= 2yN+3m+3 ≤ 0

and

yN+3m+5 = xN+3m+4 + |yN+3m+4| = −yN+3m+3 − 1 + (−yN+3m+3)

= −2yN+3m+3 − 1.

In particular,

yN+3m+5 = −2

(
22m+2yN +

22m+2 − 1

3

)
− 1

< −2

[
22m+2

(
−22(K+1) + 1

3 · 22(K+1)

)
+

22m+2 − 1

3

]
− 1

=
22m+2K+5

3 · 22K+2
− 22m+3

3 · 22K+2
− 22m+3

3
+

2

3
− 1

= −22m−2K+1

3
− 1

3

< 0.
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Finally,

xN+3(m+1)+3 = xN+3m+6

= |xN+3m+5| − yN+3m+5 − 1

= −2yN+3m+3 − (−2yN+3m+3 − 1)− 1

= 0

and
yN+3(m+1)+3 = yN+3m+6

= xN+3m+5 + |yN+3m+5|

= 2yN+3m+3 + 2yN+3m+3 + 1

= 4yN+3m+3 + 1

= 22

(
22m+2yN +

22m+2 − 1

3

)
+ 1

= 22m+4yN +
22m+4 − 4

3
+ 1

= 22(m+1)+2yN +
22(m+1)+2 − 1

3
.

In particular,

yN+3(m+1)+3 ≤ 22(m+1)+2

(
−22K + 1

3 · 22K

)
+

22(m+1)+2 − 1

3

= −22m+2K+4

3 · 22K
+

22m+4

3 · 22K
+

22m+4

3
− 1

3

= −1

3

(
1− 22m−2K+4

)
≤ 0

and so P(m + 1) is true. Thus the proof of the Claim is complete. That is,

P(m) is true for 1 ≤ m ≤ K − 1. Specifically, P(K − 1) is true, and so

xN+3(K−1)+3 = xN+3K = 0

yN+3(K−1)+3 = yN+3K = 22KyN +
22K − 1

3
< 0.
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Note that

22K

(
−22K+2 + 1

3 · 22K+2

)
+

22K − 1

3
< yN+3K ≤ 22K

(
−22K + 1

3 · 22K

)
+

22K − 1

3
.

So as

22K

(
−22K+2 + 1

3 · 22K+2

)
+

22K − 1

3
=
−24K+2

3 · 22K+2
+

22K

3 · 22K+2
+

22K

3
− 1

3

=
1

3

(
1

22
− 1

)
= −1

4

and

22K

(
−22K + 1

3 · 22K

)
+

22K − 1

3
=
−22K + 1

3
+

22K − 1

3
= 0

I have

−1

4
< yN+3K ≤ 0

and so it follows from Statement 1 of Lemma 2.3.5 that {(xn, yn)}∞n=N+3K+5

is the period-3 cycle P1
3.

2. Suppose yn = −1
3
. Note that (0,−1

3
) ∈ P1

3 and so {(xn, yn)}∞n=N is the

period-3 cycle P1
3.

3. Suppose −4
3
< yN ≤ −1

3
.

I shall first consider the case where −4
3
< yN ≤ −1.

So suppose −4
3
< yN ≤ −1. For each integer n ≥ 0, let

bn =
−22n+2 + 1

3 · 22n
.
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Observe that

−1 = b0 > b1 > b2 > . . . > −4

3
and lim

n→∞
bn = −4

3
.

See diagram below:

Thus there exists a unique integer K ≥ 1 such that yN ∈ (bK , bK−1]. I first

consider the case K = 1; that is, yN ∈
(
−5

4
,−1

]
. Note that if yN = −1

then (xN , yN) = (0,−1) and {(xn, yn)}∞n=N is the period-3 cycle P1
3. So

assume yN ∈
(
−5

4
,−1

)
. By Statements 1 and 2 of Lemma 2.3.4, I have

xN+3 = 2yN + 2 < 0 and yN+3 = −2yN − 3 ≤ 0. Then

xN+4 = |xN+3| − yN+3 − 1 = 0

yN+4 = xN+3 + |yN+3| = 4yN + 5 > 0

and so it follows by Lemma 2.3.3 that {(xn, yn)}∞n=N+6 is the period-3 cycle

P1
3.

Hence without loss of generality, I may assume K ≥ 2. For each in-

teger m ≥ 1, let Q(m) be the following statement:

xN+3m+1 = 0

yN+3m+1 = 22myN +
22m+2 − 1

3
≤ 0.

Claim: Q(m) is true for 1 ≤ m ≤ K − 1.

The proof of the Claim will be by induction on m. I shall first show that

Q(1) is true.
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Recall that xN = 0 and yN ∈ (bK , bK−1] ⊂
(
−4

3
,−5

4

]
, and so by Statements

1 and 2 of Lemma 2.3.4 I have

xN+3 = 2yN + 2 < 0

yN+3 = −2yN − 3 < 0

xN+3(1)+1 = |xN+3| − yN+3 − 1 = 0

yN+3(1)+1 = xN+3 + |yN+3|

= 4yN + 5 ≤ 0

= 22(1)yN +
22(1)+2 − 1

3
≤ 0

and so Q(1) is true. Thus if K = 2, then I have shown that for

1 ≤ m ≤ K − 1, Q(m) is true. It remains to consider the case K ≥ 3. So

assume that K ≥ 3. Let m be an integer such that 1 ≤ m ≤ K − 2, and

suppose Q(m) is true. I shall show that Q(m+ 1) is true.

Since Q(m) is true I know

xN+3m+1 = 0

yN+3m+1 = 22myN +
22m+2 − 1

3
≤ 0

and so

xN+3m+2 = |xN+3m+1| − yN+3m+1 − 1 = 0− yN+3m+1 − 1.

Recall that yN ∈ (bK , bK−1] =

(
−22K+2 + 1

3 · 22K
,
−22K + 1

3 · 22K−2

]
.

In particular,

xN+3m+2 = −22myN −
(

22m+2 − 1

3

)
− 1

< −22m

(
−22K+2 + 1

3 · 22K

)
−
(

22m+2 − 1

3

)
− 1
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=
22K+2m+2

3 · 22K
− 22m

3 · 22K
− 22m+2

3
+

1

3
− 1

= −1

3

(
22m−2K+2 + 2

)
< 0

and

yN+3m+2 = xN+3m+1 + |yN+3m+1| = 0− yN+3m+1 ≥ 0.

Hence
xN+3m+3 = |xN+3m+2| − yN+3m+2 − 1

= yN+3m+1 + 1− (−yN+3m+1)− 1

= 2yN+3m+1 ≤ 0

and

yN+3m+3 = xN+3m+2 + |yN+3m+2| = −yN+3m+1 − 1 + (−yN+3m+1)

= −2yN+3m+1 − 1.

In particular,

yN+3m+3 = −2

[
22myN +

22m+2 − 1

3

]
− 1

< −2

[
22m

(
−22K+2 + 1

3 · 22K

)
+

22m+2 − 1

3

]
− 1

=
22K+2m+3

3 · 22K
− 22m+1

3 · 22K
− 22m+3

3
+

2

3
− 1

= −1

3

(
22m−2K+1 + 1

)
< 0.

Finally,

xN+3(m+1)+1 = xN+3m+4

= |xN+3m+3| − yN+3m+1 − 1

= −2yN+3m+1 − (−2yN+3m+1 − 1)− 1 = 0
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and
yN+3(m+1)+1 = yN+3m+4

= xN+3m+3 + |yN+3m+3|

= 2yN+3m+1 + 2yN+3m+1 + 1

= 4yN+3m+1 + 1

= 22(m+1)yN +
22(m+1)+2 − 1

3
.

In particular,

yN+3(m+1)+1 ≤ 22m+2

(
−22K + 1

3 · 22K−2

)
+

22m+4 − 1

3

= −22K+2m+2

3 · 22K−2
+

22m+2

3 · 22K−2
+

22m+4

3
− 1

3

=
1

3

(
22m−2K+4 − 1

)
≤ 0

and so Q(m + 1) is true. Thus the proof of the Claim is complete. That is,

Q(m) is true for 1 ≤ m ≤ K − 1. Specifically, Q(K − 1) is true, and so

xN+3(K−1)+1 = 0

yN+3(K−1)+1 = 22(K−1)yN +
22(K−1)+2 − 1

3
≤ 0.

Note that

0 ≥ yN+3(K−1)+1 > 22(K−1)

(
−22K+2 + 1

3 · 22K

)
+

22K − 1

3

= − 24K

3 · 22K
+

22K−2

3 · 22K
+

22K

3
− 1

3

=
1

3

(
1

4
− 1

)

= −1

4

37



and so it follows by Statement 1 of Lemma 2.3.5 that {(xn, yn)}∞n=N+3K+3 is

the period-3 cycle P1
3.

Suppose −1 < yN < −1
2
. By Statement 3 of Lemma 2.3.5 I have

{(xn, yn)}∞n=N+3 is the period-3 cycle P1
3.

To complete the proof of Statement 3 I shall now suppose that

−1
2
≤ yN < −1

3
. For each integer n ≥ 1, let

αn =
−22n−1 − 1

3 · 22n−1
.

Observe that

−1

2
= α1 < α2 < α3 < . . . < −1

3
and lim

n→∞
αn = −1

3
.

See diagram below:

Thus there exists a unique integer K ≥ 1 such that yN ∈ [αK , αK+1). I first

consider the case K = 1; that is, yN ∈
[
−1

2
,−3

8

)
. By Statement 2 of Lemma

2.3.5 I have xN+5 = 8yN + 2 ≤ 0, yN+5 = −8yN − 3 > 0, and so it follows by

Lemma 2.3.2 that {(xn, yn)}∞n=N+6 is the period-3 cycle P1
3. Without loss of

generality I may assume K ≥ 2. For each integer m ≥ 1, let R(m) be the

following statement:

xN+3m+2 = 22m+1yN +
22m+1 − 2

3
< 0

yN+3m+2 = −22m+1yN −
(

22m+1 + 1

3

)
≤ 0.

38



Claim: R(m) is true for 1 ≤ m ≤ K − 1.

The proof of the Claim will be by induction on m. I shall first show that

R(1) is true.

Recall that xN = 0 and yN ∈ [αK , αK+1) ⊂
[
−3

8
,−1

3

)
, and so it follows from

Statement 2 of Lemma 2.3.5 that

xN+3(1)+2 = 8yN + 2 = 22(1)+1yN +
22(1)+1 − 2

3
< 0

yN+3(1)+2 = −8yN − 3 = −22(1)+1yN −
(

22(1)+1 + 1

3

)
≤ 0

and so R(1) is true. Thus if K = 2, then I have shown that for

1 ≤ m ≤ K − 1, R(m) is true. It remains to consider the case K ≥ 3. So

assume that K ≥ 3. Let m be an integer such that 1 ≤ m ≤ K − 2, and

suppose R(m) is true. I shall show that R(m+ 1) is true.

Since R(m) is true I know

xN+3m+2 = 22m+1yN +
22m+1 − 2

3
< 0

yN+3m+2 = −22m+1yN −
(

22m+1 + 1

3

)
≤ 0.

Then

xN+3m+3 = |xN+3m+2| − yN+3m+2 − 1

= −22m+1yN −
22m+1 − 2

3
−
(
−22m+1yN −

22m+1 + 1

3

)
− 1

= 0

yN+3m+3 = xN+3m+2 + |yN+3m+2|

= 22m+1yN +
22m+1 − 2

3
+ 22m+1yN +

22m+1 + 1

3

= 22m+2yN +
22m+2 − 1

3
.
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Recall that yN ∈ [αK , αK+1) =

[
−22K−1 − 1

3 · 22K−1
,
−22(K+1)−1 − 1

3 · 22(K+1)−1

)
.

In particular,

yN+3m+3 < 22m+2

(
−22(K+1)−1 − 1

3 · 22(K+1)−1

)
+

22m+2 − 1

3

= −22K+2m+3

3 · 22K+1
− 22m+2

3 · 22K+1
+

22m+2

3
− 1

3

= −1

3

(
1 + 22m−2K+1

)
< 0.

Then

xN+3m+4 = |xN+3m+3| − yN+3m+3 − 1 = 0− yN+3m+3 − 1 = −yN+3m+3 − 1.

In particular,

xN+3m+4 = −22m+2yN −
22m+2 − 1

3
− 1

≤ −22m+2

(
−22K−1 − 1

3 · 22K−1

)
−
(

22m+2 − 1

3

)
− 1

=
22m+2K+1

3 · 22K−1
+

22m+2

3 · 22K−1
− 22m+2

3
+

1

3
− 1

= −2

3

(
1− 22m−2K+2

)
< 0.

Hence

yN+3m+4 = xN+3m+3 + |yN+3m+3| = 0 + (−yN+3m+3) = −yN+3m+3 > 0.
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Finally,

xN+3(m+1)+2 = xN+3m+5

= |xN+3m+4| − yN+3m+4 − 1

= yN+3m+3 + 1− (−yN+3m+3)− 1

= 2yN+3m+3 < 0

= 22(m+1)+1yN +
22(m+1)+1 − 2

3
< 0

and
yN+3(m+1)+2 = yN+3m+5

= xN+3m+4 + |yN+3m+4|

= −yN+3m+3 − 1 + (−yN+3m+3)

= −2yN+3m+3 − 1

= −22(m+1)+1yN −
(

22(m+1)+1 + 1

3

)
.

In particular,

yN+3(m+1)+2 ≤ −22m+3

(
−22K−1 − 1

3 · 22K−1

)
−
(

22m+3 + 1

3

)

=
22m+2K+2

3 · 22K−1
+

22m+3

3 · 22K−1
− 22m+3

3
− 1

3

=
1

3

(
22m−2K+4 − 1

)
≤ 0

and so R(m + 1) is true. Thus the proof of the Claim is complete. That is,

R(m) is true for 1 ≤ m ≤ K − 1. Specifically, R(K − 1) is true, and so

xN+3(K−1)+2 = 22(K−1)+1yN +
22(K−1)+1 − 2

3
< 0

yN+3(K−1)+2 = −22(K−1)+1yN −
(

22(K−1)+1 + 1

3

)
≤ 0.
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Then
xN+3K = xN+3(K−1)+3

= |xN+3(K−1)+2| − yN+3(K−1)+2 − 1

= 0

and
yN+3K = yN+3(K−1)+3

= xN+3(K−1)+2 + |yN+3(K−1)+2|

= 22KyN +
22K − 1

3
.

Note that

22K
(
−22K−1−1

3·22K−1

)
+ 22K−1

3
≤ yN+3K < 22K

(
−22K+1−1

3·22K+1

)
+ 22K−1

3
.

So as

22K

(
−22K−1 − 1

3 · 22K−1

)
+

22K − 1

3
=
−24K−1

3 · 22K−1
+

22K

3 · 22K−1
+

22K

3
− 1

3
= −1

and

22K

(
−22K+1 − 1

3 · 22K+1

)
+

22K − 1

3
=
−24K+1

3 · 22K+1
+

22K

3
− 1

3
= −1

6
− 1

3
= −1

2

I have

−1 ≤ yN+3K < −1

2

and so it follows by Statement 3 of Lemma 2.3.5 and the fact (0,−1) ∈ P1
3

that the solution {(xn, yn)}∞n=N+3K+3 is the period-3 cycle P1
3.

4. Suppose yN = −4
3
. By direct computations I have (xN+3, yN+3) = (−2

3
,−1

3
) ∈

P2
3, and so {(xn, yn)}∞n=N+3 is the period-3 cycle P2

3.
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5. Suppose yN < −4
3
.

First consider the case −3
2
≤ yN < −4

3
. For each integer n ≥ 0,

let

βn =
−22n+3 − 1

3 · 22n+1
.

Observe that

−3

2
= β0 < β1 < β2 < . . . < −4

3
and lim

n→∞
βn = −4

3
.

See diagram below:

Thus there exists a unique integer K ≥ 1 such that yN ∈ [βK−1, βK). I first

consider the case K = 1; that is, yN ∈
[
−3

2
,−11

8

)
. By Statements 1 and 2 of

Lemma 2.3.4 I have

xN+3 = 2yN + 2 < 0

yN+3 = −2yN − 3 ≤ 0

and so
xN+4 = |xN+3| − yN+3 − 1 = 0

yN+4 = xN+3 + |yN+3| = 4yN + 5 < 0.

In particular, −1 ≤ yN+4 < −1
2
. It follows by Statement 3 of Lemma 2.3.5

that the solution {(xn, yn)}∞n=N+7 is the period-3 cycle P1
3.

Thus without loss of generality, I may assume that K ≥ 2. For each
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integer m ≥ 1, let S(m) be the following statement:

xN+3m+3 = 22m+1yN +
22m+3 − 2

3
< 0

yN+3m+3 = −22m+1yN −
(

22m+3 − 2

3

)
− 1 ≤ 0.

Claim: S(m) is true for 1 ≤ m ≤ K − 1.

The proof of the Claim will be by induction on m. I shall first show that

S(1) is true.

Recall that xN = 0 and yN ∈ [βK−1, βK) ⊂
[
−11

8
,−4

3

)
, and so by Statements

1 and 2 of Lemma 2.3.4 I have

xN+3 = 2yN + 2 < 0

yN+3 = −2yN − 3 < 0

xN+4 = |xN+3| − yN+3 − 1 = 0

yN+4 = xN+3 + |yN+3| = 4yN + 5 < 0

xN+5 = |xN+4| − yN+4 − 1 = −4yN − 6 < 0

yN+5 = xN+4 + |yN+4| = −4yN − 5 > 0.

Finally,

xN+3(1)+3 = xN+6 = |xN+5| − yN+5 − 1 = 8yN + 10 < 0

yN+3(1)+3 = yN+6 = xN+5 + |yN+5| = −8yN − 11 ≤ 0.

It follows that S(1) is true. Thus if K = 2, then I have shown that for

1 ≤ m ≤ K − 1, S(m) is true. It remains to consider the case K ≥ 3. So

assume that K ≥ 3. Let m be an integer such that 1 ≤ m ≤ K − 2, and

suppose S(m) is true. I shall show that S(m+ 1) is true.

Since S(m) is true, I know
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xN+3m+3 = 22m+1yN +
22m+3 − 2

3
< 0

yN+3m+3 = −22m+1yN −
(

22m+3 − 2

3

)
− 1 ≤ 0.

Note that yN+3m+3 = −xN+3m+3 − 1, and so −1 ≤ xN+3m+3 < 0.

Thus
xN+3m+4 = |xN+3m+3| − yN+3m+3 − 1

= −xN+3m+3 − (−xN+3m+3 − 1)− 1

= 0

and
yN+3m+4 = xN+3m+3 + |yN+3m+3|

= xN+3m+3 + xN+3m+3 + 1

= 2xN+3m+3 + 1.

Recall that yN ∈ [βK−1, βK) =

[
−22(K−1)+3 − 1

3 · 22(K−1)+1
,
−22K+3 − 1

3 · 22K+1

)
.

In particular,

yN+3m+4 = 2

[
22m+1yN +

22m+3 − 2

3

]
+ 1

< 2

[
22m+1

(
−22K+3 − 1

3 · 22K+1

)
+

22m+3 − 2

3

]
+ 1

= −22K+2m+5

3 · 22K+1
− 22m+2

3 · 22K+1
+

22m+4

3
− 1

3

= −1

3

(
22m−2K+1 + 1

)
< 0.

Also note that −1 < xN+3m+3 < −1
2
.
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Thus
xN+3m+5 = |xN+3m+4| − yN+3m+4 − 1

= 0− (2xN+3m+3 + 1)− 1

= −2xN+3m+3 − 2 < 0

and
yN+3m+5 = xN+3m+4 + |yN+3m+4|

= 0 + (−2xN+3m+3 − 1)

= −2xN+3m+3 − 1 > 0.

Finally,

xN+3(m+1)+3 = xN+3m+6

= |xN+3m+5| − yN+3m+5 − 1

= 2xN+3m+3 + 2− (−2xN+3m+3 − 1)− 1

= 4xN+3m+3 + 2 < 0

= 4

[
22m+1yN +

(
22m+3 − 2

3

)]
+ 2 < 0

= 22(m+1)+1yN +

(
22(m+1)+3 − 2

3

)
+ 2 < 0

and

yN+3(m+1)+3 = yN+3m+6

= xN+3m+5 + |yN+3m+5|

= −2xN+3m+3 − 2 + (−2xN+3m+3 − 1)

= −4xN+3m+3 − 3

= −4

[
22m+1yN +

(
22m+3 − 2

3

)]
− 3

= −22(m+1)+1yN −
(

22(m+1)+3 − 2

3

)
− 1.
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In particular,

yN+3m+6 ≤ −4

[
22m+1

(
−22(K−1)+3 − 1

3 · 22(K−1)+1

)
+

22m+3 − 2

3

]
− 3

=
22K+2m+4

3 · 22K−1
+

22m+3

3 · 22K−1
− 22m+5

3
− 1

3

=
1

3

(
22m−2K+4 − 1

)
< 0

and so S(m + 1) is true. Thus the proof of the Claim is complete. That is,

S(m) is true for 1 ≤ m ≤ K − 1. Specifically, S(K − 1) is true, and so

xN+3(K−1)+3 = xN+3K = 22K−1yN +
22K+1 − 2

3
< 0

yN+3(K−1)+3 = yN+3K = −22K−1yN −
(

22K+1 − 2

3

)
− 1 < 0.

Note that yN+3K = −xN+3K − 1.

Thus
xN+3K+1 = |xN+3K | − yN+3K − 1

= −xN+3K − (−xN+3K − 1)− 1

= 0

and
yN+3K+1 = xN+3K + |yN+3K |

= xN+3K + xN+3K + 1

= 2xN+3K + 1

= 2

(
22K−1yN +

22K+1 − 2

3

)
+ 1.
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Note that

2

[
22K−1

(
−22(K−1)+3 − 1

3 · 22(K−1)+1

)
+

22K+1 − 2

3

]
+ 1 ≤ yN+3K+1

< 2

[
22K−1

(
−22K+3 − 1

3 · 22K+1

)
+

22K+1 − 2

3

]
+ 1.

So as

2

[
22K−1

(
−22(K−1)+3 − 1

3 · 22(K−1)+1

)
+

22K+1 − 2

3

]
+ 1 =

−24K+1

3 · 22K−1
− 22K

3 · 22K−1
+

22K+2

3
− 1

3
= −1

3
(2 + 1) = −1

and

2

[
22K−1

(
−22K+3 − 1

3 · 22K+1

)
+

22K+1 − 2

3

]
+ 1 =

−22K+3

3 · 2
− 1

6
+

22K+2

3
− 1

3

= −1

6
− 1

3
= −1

2
.

I have

−1 ≤ yN+3K+1 < −
1

2

and hence it follows from case 3 of this Lemma and the fact that (0,−1) ∈ P1
3

that the solution {(xn, yn)}∞n=N+3K+5 is eventually the period-3 cycle P1
3.

Finally, suppose yN < −3
2
. Then by Statement 3 of Lemma 2.3.4 the solution

{(xn, yn)}∞n=N+4 is the period-3 cycle P1
3.

2
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Lemma 2.3.7 Suppose there exists a non-negative integer N ≥ 0 such that

(xN , yN) ∈ Q1. Then {(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or the

period-3 cycle P2
3.

Proof : I have

xN+1 = |xN | − yN − 1 = xN − yN − 1

yN+1 = xN + |yN | = xN + yN > 0.

If xN+1 ≥ 0 then

xN+2 = |xN+1| − yN+1 − 1 = −2yN − 2 < 0

yN+2 = xN+1 + |yN+1| = 2xN − 1 > 0

xN+3 = |xN+2| − yN+2 − 1 = −2xN + 2yN + 2 ≤ 0

yN+3 = xN+2 + |yN+2| = 2xN − 2yN − 3

xN+4 = |xN+3| − yN+3 − 1 = 0

and so (xN+4, yN+4) ∈ l2 ∪ l4. By Lemmas 2.3.3 and 2.3.6, the solution

{(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or the period-3 cycle P2

3.

If xN+1 < 0 then

xN+2 = |xN+1| − yN+1 − 1 = −2xN < 0

yN+2 = xN+1 + |yN+1| = 2xN − 1

xN+3 = |xN+2| − yN+2 − 1 = 0

and so (xN+3, yN+3) ∈ l2 ∪ l4. By Lemmas 2.3.3 and 2.3.6, the solution

{(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or the period-3 cycle P2

3. 2

Lemma 2.3.8 Suppose there exists a non-negative integer N ≥ 0 such that

(xN , yN) ∈ Q2. Then {(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or the

period-3 cycle P2
3.
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Proof : I have

xN+1 = |xN | − yN − 1 = −xN − yN − 1

yN+1 = xN + |yN | = xN + yN .

Case 1: Suppose yN+1 ≥ 0. Then by Lemma 2.3.2, the solution {(xn, yn)}∞n=N+2 is

the period-3 cycle P1
3.

Case 2: Suppose yN+1 < 0 and xN+1 ≤ 0. Then xN+2 = |xN+1|− yN+1− 1 = 0 and

so (xN+2, yN+2) ∈ l2 ∪ l4. By Lemmas 2.3.3 and 2.3.6, the solution {(xn, yn)}∞n=N

is eventually the period-3 cycle P1
3 or the period-3 cycle P2

3.

Case 3: Suppose yN+1 < 0 and xN+1 > 0. Then

xN+2 = |xN+1| − yN+1 − 1 = −2xN − 2yN − 2 > 0

yN+2 = xN+1 + |yN+1| = −2xN − 2yN − 1 > 0

xN+3 = |xN+2| − yN+2 − 1 = −2

yN+3 = xN+2 + |yN+2| = −4xN − 4yN − 3 > 0

xN+4 = |xN+3| − yN+3 − 1 = 4xN + 4yN + 4 < 0

yN+4 = xN+3 + |yN+3| = −4xN − 4yN − 5

xN+5 = |xN+4| − yN+4 − 1 = 0

and so (xN+5, yN+5) ∈ l2 ∪ l4. By Lemmas 2.3.3 and 2.3.6, the solution

{(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or the period-3 cycle P2

3. 2

Lemma 2.3.9 Suppose there exists a non-negative integer N ≥ 0 such that

(xN , yN) ∈ Q4. Then {(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or the

period-3 cycle P2
3.
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Proof : I have

xN+1 = |xN | − yN − 1 = xN − yN − 1

yN+1 = xN + |yN | = xN − yN > 0

Case 1: Suppose xN+1 > 0. Then (xN+1, yN+1) ∈ Q1 and so by Lemma 2.3.7, the

solution {(xn, yn)}∞n=N+2 is eventually the period-3 cycle P1
3 or the period-3 cycle

P2
3.

Case 2: Suppose xN+1 = 0. Then (xN+1, yN+1) ∈ l2 and so by Lemma

2.3.3, the solution {(xn, yn)}∞n=N+4 is the period-3 cycle P1
3.

Case 3: Suppose xN+1 < 0. Then (xN+1, yN+1) ∈ Q2 and so by Lemma

2.3.8, the solution {(xn, yn)}∞n=N+1 is eventually the period-3 cycle P1
3 or the

period-3 cycle P2
3.

2

Lemma 2.3.10 Suppose there exists a non-negative integer N ≥ 0 such that

(xN , yN) ∈ l1. Then {(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or P2

3.

Proof : I have
xN+1 = |xN | − yN − 1 = xN − 1

yN+1 = xN + |yN | = xN

Case 1: Suppose xN = 0. Then (xN+1, yN+1) = (−1, 0), and so

(xN+2, yN+2) = (0,−1). Hence the solution {(xn, yn)}∞n=N+2 is the period-3

cycle P1
3.

Case 2: Suppose 0 < xN ≤ 1. Then xN+1 ≤ 0 and yN+1 > 0. Thus

(xN+1, yN+1) ∈ Q2 ∪ l2, and hence by Lemmas 2.3.3 and 2.3.8, the solution

{(xn, yn)}∞n=N+1 is eventually the period-3 cycle P1
3 or the period-3 cycle P2

3.
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Case 3: Suppose xN > 1. Then xN+1 > 0 and yN+1 > 0. Thus (xN+1, yN+1) ∈ Q1

and by Lemma 2.3.7, the solution {(xn, yn)}∞n=N+1 is eventually the period-3 cycle

P1
3 or the period-3 cycle P2

3. 2

Lemma 2.3.11 Suppose there exists a non-negative integer N ≥ 0 such that

(xN , yN) ∈ l3. Then {(xn, yn)}∞n=N is eventually the period-3 cycle P1
3 or the period-

3 cycle P2
3.

Proof : I have

xN+1 = |xN | − yN − 1 = −xN − 1

yN+1 = xN + |yN | = xN < 0.

Case 1: Suppose −1 < xN ≤ 0. Then xN+2 = |xN+1| − yN+1 − 1 = 0, and

so (xN+2, yN+2) ∈ l2 ∪ l4. It follows by Lemmas 2.3.3 and 2.3.6, that the so-

lution {(xn, yn)}∞n=N+2 is eventually the period-3 cycle P1
3 or the period-3 cycle P2

3.

Case 2: Suppose xN = −1. Then (xN+1, yN+1) = (0,−1) ∈ P1
3, and so the

solution {(xn, yn)}∞n=N+1 is the period-3 cycle P1
3.

Case 3: Suppose xN < −1. Then (xN+1, yN+1) ∈ Q4 ∪ l1. It follows by

Lemmas 2.3.9 and 2.3.10, the solution {(xn, yn)}∞n=N+2 is eventually the period-3

cycle P1
3 or the period-3 cycle P2

3. 2

To complete the proof of Theorem 2.1 it remains to consider the case where

the initial condition (x0, y0) ∈ Q3.

Lemma 2.3.12 Suppose (x0, y0) ∈ Q3. Then {(xn, yn)}∞n=0 is the unique equilib-

rium solution (x̄, ȳ) =
(
−2

5
,−1

5

)
, or else is eventually either the period-3 cycle P1

3

or the period-3 cycle P2
3.

52



Proof : If (x0, y0) =
(
−2

5
,−1

5

)
, then the solution {(xn, yn)}∞n=0 is the equilibrium.

So suppose (x0, y0) ∈ Q3 \
{(
−2

5
,−1

5

)}
. It suffices to show that there exists an

integer N ≥ 0 such that {(xn, yn)}∞n=N is either the period-3 cycle P1
3 or the

period-3 cycle P2
3.

For the sake of contradiction, assume that it is false that there exists an

integer N ≥ 0 such that {(xn, yn)}∞n=N is either the period-3 cycle P1
3 or the

period-3 cycle P2
3. It follows from the previous lemmas that xn < 0 and yn < 0 for

every integer n ≥ 0.

Case 1: Suppose x0 ≤ −2 and y0 < 0. Then

x1 = |x0| − y0 − 1 = −x0 − y0 − 1 > 0

which is a contradiction, and the proof is complete.

Case 2: Suppose −2 < x0 < 0 and y0 ≤ −1. Then

x1 = |x0| − y0 − 1 = −x0 − y0 − 1 > 0

which is a contradiction, and the proof is complete.

Case 3: It remains to consider the case (x0, y0) ∈ (−2, 0) × (−1, 0). For

each integer n ≥ 0, let

an =
−24n−2 − 1

5 · 24n−3
, bn =

−24n + 1

5 · 24n−1
, cn =

−24n−2 − 1

5 · 24n−2
, dn =

−24n + 1

5 · 24n

and Dn =
24n − 1

5
.
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Observe that

−2 = a0 < a1 < a2 < . . . < −2

5
and lim

n→∞
an = −2

5

0 = b0 > b1 > b2 > . . . > −2

5
and lim

n→∞
bn = −2

5

−1 = c0 < c1 < c2 < . . . < −1

5
and lim

n→∞
cn = −1

5

0 = d0 > d1 > d2 > . . . > −1

5
and lim

n→∞
dn = −1

5
.

See diagram below:

There exists a unique integer K ≥ 0 such that

(x0, y0) ∈ [aK , bK ]× [cK , dK ] \ [aK+1, bK+1]× [cK+1, dK+1].

I first consider the case K = 0; that is, (x0, y0) ∈ [−2, 0] × [−1, 0] \ [−1
2
,−3

8
] ×

[−1
4
,− 3

16
]. Note that by Lemmas 2.3.6 and 2.3.11, and by Case 1 and Case 2

of this lemma, I know that the solution {(xn, yn)}∞n=0 is eventually either the

period-3 cycle P1
3 or the period-3 cycle P2

3 when (x0, y0) is an element of the outer
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boundaries of [−2, 0]× [−1, 0].

Recall by assumption that xn < 0 and yn < 0 for every integer n ≥ 0.

So suppose (x0, y0) ∈ (−2, 0)× (−1, 0) \
[
−1

2
,−3

8

]
×
[
−1

4
,− 3

16

]
. Then

x1 = |x0| − y0 − 1 = −x0 − y0 − 1

y1 = x0 + |y0| = x0 − y0

x2 = |x1| − y1 − 1 = (x0 + y0 + 1)− (x0 − y0)− 1 = 2y0

y2 = x1 + |y1| = (−x0 − y0 − 1) + (−x0 + y0) = −2x0 − 1.

If −2 < x0 < −1
2
, then y2 > 0 which is a contradiction.

Thus −1
2
≤ x0 < 0. Then

x3 = |x2| − y2 − 1 = (−2y0)− (−2x0 − 1)− 1 = 2x0 − 2y0

y3 = x2 + |y2| = (2y0) + (2x0 + 1) = 2x0 + 2y0 + 1

x4 = |x3| − y3 − 1 = (−2x0 + 2y0)− (2x0 + 2y0 + 1)− 1 = −4x0 − 2

y4 = x3 + |y3| = (2x0 − 2y0) + (−2x0 − 2y0 − 1) = −4y0 − 1.

If −1 < y0 < −1
4
, then y4 > 0 which is a contradiction.

Hence −1
4
≤ y0 < 0. Then

x5 = |x4| − y4 − 1 = (4x0 + 2)− (−4y0 − 1)− 1 = 4x0 + 4y0 + 2
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y5 = x4 + |y4| = (−4x0 − 2) + (4y0 + 1) = −4x0 + 4y0 − 1

x6 = |x5| − y5 − 1 = (−4x0 − 4y0 − 2)− (−4x0 + 4y0 − 1)− 1 = −8y0 − 2

y6 = x5 + |y5| = (4x0 + 4y0 + 2) + (4x0 − 4y0 + 1) = 8x0 + 3.

If −3
8
< x0 < 0, then y6 > 0 which is a contradiction.

Hence −1
2
< x0 ≤ −3

8
. Thus

x7 = |x6| − y6 − 1 = (8y0 + 2)− (8x0 + 3)− 1 = −8x0 + 8y0 − 2

y7 = x6 + |y6| = (−8y0 − 2) + (−8x0 − 3) = −8x0 − 8y0 − 5

x8 = |x7| − y7 − 1 = (8x0 − 8y0 + 2)− (−8x0 − 8y0 − 5)− 1 = 16x0 + 6

y8 = x7 + |y7| = (−8x0 + 8y0 − 2) + (8x0 + 8y0 + 5) = 16y0 + 3 > 0,

which is a contradiction. Thus the case K = 0 is complete.

Next consider the case K ≥ 1. Recall that xn < 0 and yn < 0 for all

n ≥ 0.

For each integer m such that 0 ≤ m ≤ K − 1, let P(m) be the following

proposition:

x8m+1 = −24mx0 − 24my0 − 3Dm − 1
y8m+1 = 24mx0 − 24my0 +Dm

x8m+2 = 24m+1y0 + 2Dm

y8m+2 = −24m+1x0 − 4Dm − 1

x8m+3 = 24m+1x0 − 24m+1y0 + 2Dm

y8m+3 = 24m+1x0 + 24m+1y0 + 6Dm + 1
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x8m+4 = −24m+2x0 − 8Dm − 2
y8m+4 = −24m+2y0 − 4Dm − 1

x8m+5 = 24m+2x0 + 24m+2y0 + 12Dm + 2
y8m+5 = −24m+2x0 + 24m+2y0 − 4Dm − 1

x8m+6 = −24m+3y0 − 8Dm − 2
y8m+6 = 24m+3x0 + 16Dm + 3

x8m+7 = −24m+3x0 + 24m+3y0 − 8Dm − 2
y8m+7 = −24m+3x0 − 24m+3y0 − 24Dm − 5

x8m+8 = 24m+4x0 + 32Dm + 6
y8m+8 = 24m+4x0 + 16Dm + 3.

Claim: P(m) is true for 0 ≤ m ≤ K − 1. The proof of the Claim will be by

induction on m. I shall first show that P(0) is true.

x8(0)+1 = −x0 − y0 − 1 = −24(0)x0 − 24(0)y0 − 3D0 − 1
y8(0)+1 = x0 − y0 = 24(0)x0 − 24(0)y0 −D0

x8(0)+2 = 2y0 = 24(0)+1y0 + 2D0

y8(0)+2 = −2x0 − 1 = −24(0)+1x0 − 4D0 − 1

x8(0)+3 = 2x0 − 2y0 = 24(0)+1x0 − 24(0)+1y0 + 2D0

y8(0)+3 = 2x0 + 2y0 + 1 = 24(0)+1x0 + 24(0)+1y0 + 6D0 + 1

x8(0)+4 = −4x0 − 2 = −24(0)+2x0 − 8D0 − 2
y8(0)+4 = −4y0 − 1 = −24(0)+2x0 − 4D0 − 1

x8(0)+5 = 4x0 + 4y0 + 2 = 24(0)+1x0 − 24(0)+2y0 + 12D0 + 2
y8(0)+5 = −4x0 + 4y0 − 1 = −24(0)+2x0 + 24(0)+2y0 − 4D0 − 1

x8(0)+6 = −8x0 − 2 = −24(0)+3x0 − 8D0 − 2
y8(0)+6 = 8y0 + 3 = 24(0)+3x0 + 16D0 + 3

x8(0)+7 = −8x0 + 8y0 − 2 = −24(0)+3x0 + 24(0)+3y0 − 8D0 − 2
y8(0)+7 = −8x0 − 8y0 − 5 = −24(0)+3x0 − 24(0)+3y0 − 24D0 + 5

x8(0)+8 = 16x0 + 6 = 24(0)+4x0 + 32D0 + 6
y8(0)+8 = 16y0 + 3 = 24(0)+4x0 + 16D0 + 3
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and so P(0) is true. Thus if K = 1, then I have shown that for 0 ≤ m ≤ K − 1,

P(m) is true. It remains to consider the case K ≥ 2. So assume that K ≥ 2.

Suppose that m is an integer such that 0 ≤ m ≤ K − 2, and that P(m) is true. I

shall show that P(m+ 1) is true.

Since P(m) is true, I know

x8m+8 = 24m+4x0 + 32Dm + 6

y8m+8 = 24m+4x0 + 16Dm + 3.

Hence

x8(m+1)+1 = x8m+9

= |x8m+8| − y8m+8 − 1

= −(24m+4x0 + 32Dm + 6)− (24m+4y0 + 16Dm + 3)− 1

= −24m+4x0 − 24m+4y0 − 48Dm − 10

= −24m+4x0 − 24m+4y0 − 48

(
24m − 1

5

)
− 10

= −24(m+1)x0 − 24(m+1)y0 − 3

(
24(m+1) − 1

5

)
− 1

= −24(m+1)x0 − 24(m+1)y0 − 3Dm+1 − 1

and
y8(m+1)+1 = y8m+9

= x8m+8 + |y8m+8|

= 24m+4x0 + 32Dm + 6 + (−24m+4y0 − 16Dm − 3)

= 24m+4x0 − 24m+4y0 + 16Dm + 3

= 24(m+1)x0 − 24(m+1)y0 + 16

(
24m − 1

5

)
+ 3

= 24(m+1)x0 − 24(m+1)y0 +Dm+1.
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Thus
x8(m+1)+2 = x8m+10

= |x8m+9| − y8m+9 − 1

= −(−24(m+1)x0 − 24(m+1)y0 − 3Dm+1 − 1)

−(24(m+1)x0 − 24(m+1)y0 +Dm+1)− 1

= 24(m+1)+1y0 + 2Dm+1

and
y8(m+1)+2 = y8m+10

= x8m+9 + |y8m+9|

= −24(m+1)x0 − 24(m+1)y0 − 3Dm+1 − 1+

(−24(m+1)x0 + 24(m+1)y0 −Dm+1)

= −24(m+1)+1x0 − 4Dm+1 − 1.

Then

x8(m+1)+3 = x8m+11

= |x8m+10| − y8m+10 − 1

= −24(m+1)+1y0 − 2Dm+1 + 24(m+1)+1x0 + 4Dm+1 + 1− 1

= 24(m+1)+1x0 − 24(m+1)+1y0 + 2Dm+1

and
y8(m+1)+3 = y8m+11

= x8m+10 + |y8m+10|

= 24(m+1)+1y0 + 2Dm+1 + 24(m+1)+1x0 + 4Dm+1 + 1

= 24(m+1)+1x0 + 24(m+1)+1y0 + 6Dm+1 + 1.

Hence

x8(m+1)+4 = x8m+12

= |x8m+11| − y8m+11 − 1

= −24(m+1)+1x0 + 24(m+1)+1y0 − 2Dm+1 − 24(m+1)+1x0
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−24(m+1)+1y0 − 6Dm+1 − 2

= −24(m+1)+2x0 − 8Dm+1 − 2

and
y8(m+1)+4 = y8m+12

= x8m+11 + |y8m+11|

= 24(m+1)+1x0 − 24(m+1)+1y0 + 2Dm+1 − 24(m+1)+1x0

−24(m+1)+1y0 − 6Dm+1 − 1

= −24(m+1)+2y0 − 4Dm+1 − 1.

Thus

x8(m+1)+5 = x8m+13

= |x8m+12| − y8m+12 − 1

= 24(m+1)+2x0 + 8Dm+1 + 2 + 24(m+1)+2y0 + 4Dm+1 + 1− 1

= 24(m+1)+2x0 + 24(m+1)+2y0 + 12Dm+1 + 2

and

y8(m+1)+5 = y8m+13

= x8m+12 + |y8m+12|

= −24(m+1)+2x0 − 8Dm+1 − 2 + 24(m+1)+2y0 + 4Dm+1 + 1

= −24(m+1)+2x0 + 24(m+1)+2y0 − 4Dm+1 − 1.

Hence

x8(m+1)+6 = x8m+14

= |x8m+13| − y8m+13 − 1

= −24(m+1)+2x0 − 24(m+1)+2y0 − 12Dm+1 − 2

+24(m+1)+2x0 − 24(m+1)+2y0 + 4Dm+1 + 1− 1

= −24(m+1)+3y0 − 8Dm+1 − 2
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and

y8(m+1)+6 = y8m+14

= x8m+13 + |y8m+13|

= 24(m+1)+2x0 + 24(m+1)+2y0 + 12Dm+1 + 2 + 24(m+1)+2x0

−24(m+1)+2y0 + 4Dm+1 + 1

= 24(m+1)+3x0 + 16Dm+1 + 3.

Then

x8(m+1)+7 = x8m+15

= |x8m+14| − y8m+14 − 1

= 24(m+1)+3y0 + 8Dm+1 + 2− 24(m+1)+3x0 − 16Dm+1 − 3− 1

= −24(m+1)+3x0 + 24(m+1)+3y0 − 8Dm+1 − 2

and

y8(m+1)+7 = y8m+15

= x8m+14 + |y8m+14|

= −24(m+1)+3y0 − 8Dm+1 − 2− 24(m+1)+3x0 − 16Dm+1 − 3

= −24(m+1)+3x0 − 24(m+1)+3y0 − 24Dm+1 − 5.

Thus

x8(m+1)+8 = x8m+16

= |x8m+15| − y8m+15 − 1

= 24(m+1)+3x0 − 24(m+1)+3y0 + 8Dm+1 + 2

+24(m+1)+3x0 + 24(m+1)+3y0 + 24Dm+1 + 5− 1

= 24(m+1)+4x0 + 32Dm+1 + 6
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and
y8(m+1)+8 = y8m+16

= x8m+15 + |y8m+15|

= −24(m+1)+3x0 + 24(m+1)+3y0 − 8Dm+1 − 2

+24(m+1)+3x0 + 24(m+1)+3y0 + 24Dm+1 + 5

= 24(m+1)+4y0 + 16Dm+1 + 3

and so P(m+ 1) is true. Thus the proof of the Claim is complete. That is, P(m)

is true for 0 ≤ m ≤ K − 1. In particular, P(K − 1) is true. Thus

x8K = x8(K−1)+8 = 24(K−1)+4x0 + 32DK−1 + 6

and

y8K = y8(K−1)+8 = 24(K−1)+4y0 + 16DK−1 + 3.

Hence

x8K+1 = |x8K | − y8K − 1

= −24Kx0 − 32DK−1 − 6− 24Ky0 − 16DK−1 − 3− 1

= −24Kx0 − 24Ky0 − 48DK−1 − 10

= −24Kx0 − 24Ky0 − 48

(
24(K−1) − 1

5

)
− 10

= −24Kx0 − 24Ky0 −
3 · 24K

5
+

3

5
− 1

= −24Kx0 − 24Ky0 − 3DK − 1

and
y8K+1 = x8K + |y8K |

= 24Kx0 + 32DK−1 + 6− 24Ky0 − 16DK−1 − 3

= 24Kx0 − 24Ky0 + 16DK−1 + 3
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= 24Kx0 − 24Ky0 + 16

(
24(K−1) − 1

5

)
+ 3

= 24Kx0 − 24Ky0 +
24K

5
− 24

5
+ 3

= 24Kx0 − 24Ky0 +DK .

Hence

x8K+2 = |x8K+1| − y8K+1 − 1

= 24Kx0 + 24Ky0 + 3DK + 1− 24Kx0 + 24Ky0 −DK − 1

= 24K+1y0 + 2DK

and
y8K+2 = x8K+1 + |y8K+1|

= −24Kx0 − 24Ky0 − 3DK − 1− 24Kx0 + 24Ky0 −DK

= −24K+1x0 − 4DK − 1.

Recall that

(x0, y0) ∈ [aK , bK ]× [cK , dK ] \ [aK+1, bK+1]× [cK+1, dK+1]

=

[
−24K−2 − 1

5 · 24K−3
,
−24K + 1

5 · 24K−1

]
×
[
−24K−2 − 1

5 · 24K−2
,
−24K + 1

5 · 24K

]

\
[
−24(K+1)−2 − 1

5 · 24(K+1)−3
,
−24(K+1) + 1

5 · 24(K+1)−1

]
×
[
−24(K+1)−2 − 1

5 · 24(K+1)−2
,
−24(K+1) + 1

5 · 24(K+1)

]
.

Suppose (x0, y0) ∈ [aK , aK+1)× [cK , dK ].

Hence
y8K+2 > −24K+1 (aK+1)− 4DK − 1

= −24K+1

(
−24(K+1)−2 − 1

5 · 24(K+1)−3

)
− 4DK − 1

=
28K+3

5 · 24K+1
+

24(K+1) − 1

5 · 24(K+1)−3
− 24(K+2)

5
+

4

5
− 1

= 0
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which is a contradiction.

Next suppose (x0, y0) ∈ [aK+1, bK ]× [cK , cK+1).

Then
x8K+3 = |x8K+2| − y8K+2 − 1

= −24K+1y0 − 2DK + 24K+1x0 + 4DK + 1− 1

= 24K+1x0 − 24K+1y0 + 2DK

and
y8K+3 = x8K+2 + |y8K+2|

= 24K+1y0 + 2DK + 24K+1x0 + 4DK + 1

= 24K+1x0 + 24K+1y0 + 6DK + 1.

Hence

x8K+4 = |x8K+3| − y8K+3 − 1

= −24K+1x0 + 24K+1y0 − 2DK − 24K+1x0 − 24K+1y0 − 6DK − 1− 1

= −24K+2x0 − 8DK − 2

and

y8K+4 = x8K+3 + |y8K+3|

= 24K+1x0 − 24K+1y0 + 2DK − 24K+1x0 − 24K+1y0 − 6DK − 1

= −24K+2y0 − 4DK − 1.

Recall that (x0, y0) ∈ [aK+1, bK ]× [cK , cK+1).

Thus
y8K+4 > −24K+2(cK+1)− 4DK − 1

= −24K+2

(
−24K+2 − 1

5 · 24K+2

)
− 4

(
24K − 1

5

)
− 1

=
28K+4

5 · 24K+2
+

24K+2

5 · 24K+2
− 24K+2

5
+

4

5
− 1

= 0

which is a contradiction.
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Now suppose that (x0, y0) ∈ (bK+1, bK ]× [cK+1, dK ].

Hence
x8K+5 = |x8K+4| − y8K+4 − 1

= 24K+2x0 + 8DK + 2 + 24K+2y0 + 4DK + 1− 1

= 24K+2x0 + 24K+2y0 + 12DK + 2

and
y8K+5 = x8K+4 + |y8K+4|

= −24K+2x0 − 8DK − 2 + 24K+2y0 + 4DK + 1

= −24K+2x0 + 24K+2y0 − 4DK − 1.

Then

x8K+6 = |x8K+5| − y8K+5 − 1

= −24K+2x0 − 24K+2y0 − 12DK − 2 + 24K+2x0 − 24K+2y0 + 4DK + 1− 1

= −24K+3y0 − 8DK − 2

and

y8K+6 = x8K+5 + |y8K+5|

= 24K+2x0 + 24K+2y0 + 12DK + 2 + 24K+2x0 − 24K+2y0 + 4DK + 1

= 24K+3x0 + 16DK + 3.

Recall that (x0, y0) ∈ (bK+1, bK ]× [cK+1, dK ] .

Thus

y8K+6 > 24K+3 (bK+1) + 16

(
24K − 1

5

)
+ 3

= 24K+3

(
−24(K+1) + 1

5 · 24(K+1)−1

)
+ 16

(
24K − 1

5

)
+ 3
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=
−24K+4

5
+

1

5
+

24K+4

5
− 16

5
+ 3

= 0

which is a contradiction.

Finally, suppose (x0, y0) ∈ [aK+1, bK+1]× (dK+1, dK ].

Thus
x8K+7 = |x8K+6| − y8K+6 − 1

= 24K+3y0 + 8DK + 2− 24K+3x0 − 16DK − 3− 1

= −24K+3x0 + 24K+3y0 − 8DK − 2

and
y8K+7 = x8K+6 + |y8K+6|

= −24K+3y0 − 8DK − 2− 24K+3x0 − 16DK − 3

= −24K+3x0 − 24K+3y0 − 24DK − 5.

Hence

x8K+8 = |x8K+7| − y8K+7 − 1

= 24K+3x0 − 24K+3y0 + 8DK + 2 + 24K+3x0 + 24K+3y0 + 24DK + 5− 1

= 24K+3x0 + 32DK + 6

and

y8K+8 = x8K+7 + |y8K+7|

= −24K+3x0 + 24K+3y0 − 8DK − 2 + 24K+3x0 + 24K+3y0 + 24DK + 5

= 24K+4y0 + 16DK + 3.

Recall that (x0, y0) ∈ [aK+1, bK+1]× (dK+1, dK ].

Thus

y8K+8 > 24K+4 (dK+1) + 16

(
24K − 1

5

)
+ 3

> 24K+4

(
−24(K+1) + 1

5 · 24(K+1)

)
+ 16

(
24K − 1

5

)
+ 3
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= −24K+4

5
+

1

5
+

24K+4

5
− 16

5
+ 3

= 0

which is a contradiction. The proof is complete.
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3.1 Abstract

We investigate the system of rational difference equations in the title, where

the parameters and the initial conditions are positive real numbers. We show that

the system is permanent and has a unique positive equilibrium which is locally

asymptotically stable. We also find sufficient conditions to insure that the unique

positive equilibrium is globally asymptotically stable.

3.2 Introduction

We show that the system of rational difference equations
xn+1 =

α1

xn + yn
, n = 0, 1, . . .

yn+1 =
α2 + β2xn + yn

yn

(2)

is permanent, where the parameters α1, α2, β2 and the initial conditions x0, y0 of the

system are positive real numbers. We actually show that there exist positive real

numbers l1, l2, L1, L2 such that for every positive solution {(xn, yn)}∞n=0 of system

2, we have

l1 < xn < L1 and l2 < yn < L2 for n ≥ 3.

We show that the system has a unique positive equilibrium which is locally

asymptotically stable. We also find sufficient conditions to insure that the unique

positive equilibrium is globally asymptotically stable.

For the last four years we have been interested in the boundedness character

and the global behavior of systems of rational difference equations. This paper is

part of a general project which involves the system of rational difference equations
xn+1 =

α1 + β1xn + γ1yn
A1 +B1xn + C1yn

, n = 0, 1, . . .

yn+1 =
α2 + β2xn + γ2yn
A2 +B2xn + C2yn

(3)
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which includes 2401 special cases. In the numbering system which was introduced

by Camouzis, Kulenović, Ladas, and Merino in ([6]), system 2 is referred to as

System(12, 41). Related work has recently been given in ([1]-[11]) and ([14]-[19]).

The following well-known result is needed for the local asymptotic stability

analysis of the equilibrium of System(12, 41).

Theorem 3.2.1 Let F = (f, g) be a continuously differentiable function defined

on an open set W in R2, and let (x̄, ȳ) in W be a fixed point of F.

1. If all the eigenvalues of the Jacobian matrix JF (x̄, ȳ) have modulus less than

one, then the equilibrium point (x̄, ȳ) is locally asymptotically stable.

2. If at least one of the eigenvalues of the Jacobian matrix JF (x̄, ȳ) has modulus

greater than one, then the equilibrium point (x̄, ȳ) is unstable.

The following theorem gives necessary and sufficient conditions for the two

roots of a quadratic equation to have modulus less than one.

Theorem 3.2.2 ([13]) Assume p and q are real numbers. Then a necessary and

sufficient condition for both roots of the equation

λ2 + pλ+ q = 0

to have modulus less than 1 is that

|p| < 1 + q < 2.

The next theorem gives a sufficient condition to insure that there exists a

unique positive equilibrium, and it is a global attractor. Let k be a positive integer.

For i ∈ {1, . . . , k}, assume [ai, bi] is a closed and bounded interval, and let F i :

[a1, b1]× . . .× [ak, bk]→ [ai, bi] be a continuous function. For each i, j ∈ {1, . . . , k},
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let Mi,j : [ai, bi] → [ai, bi] and mi,j : [ai, bi] → [ai, bi] be defined as follows: given

mi,Mi ∈ [ai, bi]

set

Mi,j(mi,Mi) =

{
Mi, if Fj is increasing in zi
mi, if Fj is non− increasing in zi

and

mi,j(mi,Mi) = Mi,j(Mi,mi).

Theorem 3.2.3 ([12]) Assume that each i ∈ {1, . . . , k}, [ai, bi] is a closed and

bounded interval of real numbers, and the function

F i : C([a1, b1]× . . .× [ak, bk], [ai, bi]),

satisfies the following conditions:

1. F i(z1, . . . , zk) is weakly monotonic in each of its arguments.

2. If M1, . . . ,Mk,m1, . . . ,mk, where mi ≤ Mi for each i ∈ {1, . . . , k}, is a

solution of the system of 2k equations:


Mi = F i(M1,i(m1,M1), . . . ,Mk,i(mk,Mk))

, i ∈ {1, . . . , k}
mi = F i(m1,i(m1,M1), . . . ,mk,i(mk,Mk))

then

Mi = mi, for all i ∈ {1, . . . , k}.

Then the system of k difference equations:
x1
n+1 = F 1(x1

n, . . . , x
k
n)

x2
n+1 = F 2(x1

n, . . . , x
k
n) , n = 0, 1, . . . (∗)

...
xkn+1 = F k(x1

n, . . . , x
k
n)

with initial condition (x1
0, . . . , x

k
0) ∈ [a1, b1]× . . .× [ak, bk], has exactly one equilib-

rium point (x̄1, . . . , x̄k), and it is a global attractor.
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3.3 Local Stability Analyses

Lemma 3.3.1 System(12,41) has a unique equilibrium (x̄, ȳ). Moreover, (x̄, ȳ) is

locally asymptotically stable.

Proof : Suppose (x̄, ȳ) is a feasible equilibrium of System(12,41). That is

x̄ =
α1

x̄+ ȳ
and ȳ =

α2 + β2x̄+ ȳ

ȳ
.

Note that x̄ <
√
α1 and ȳ =

α1 − x̄2

x̄

and so

α1 − x̄2

x̄
= ȳ =

α2 + β2x̄+ ȳ

ȳ
=
α2 + β2x̄+ α1−x̄2

x̄
α1−x̄2

x̄

.

After simplifying we have

α2x̄
2 + β2x̄

3 + α1x̄− x̄3 − (α1 − x̄2)2 = 0.

Set

f(x) = x4 + (1− β2)x3 − (2α1 + α2)x2 − α1x+ α2
1. (4)

Thus in order to show that there exists a unique equilibrium (x̄, ȳ), it suffices

to show f(x) = 0 has a unique positive solution less than
√
α1. By Descartes’ rule

of signs we know (4) has at most two positive roots. We also see that f(0) = α2
1 > 0

and f(
√
α1) = −α1(

√
α1β2 + α2) < 0. Since f(x) is a fourth degree polynomial

with a positive leading coefficient we know that it has a minimum of two positive

roots. Therefore there are exactly two positive roots; one root is less than
√
α1,

and the other is greater than
√
α1. Thus the proof is complete.

We shall now investigate the linearized stability of the equilibrium (x̄, ȳ) of

System(12,41).
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Let

f(x, y) =
α1

x+ y
and g(x, y) =

α2 + β2x+ y

y
.

Then

J(x̄,ȳ) =


∂f

∂x̄

∂f

∂ȳ

∂g

∂x̄

∂g

∂ȳ

 =


−α1

(x̄+ ȳ)2

−α1

(x̄+ ȳ)2

β2

ȳ

−(α2 + β2x̄)

ȳ2

 =


−x̄2

α1

−x̄2

α1

β2

ȳ

1− ȳ
ȳ

 .

The characteristic equation of the linearized equation of System(12,41) about the

equilibrium (x̄, ȳ) is

λ2 +
x̄2ȳ − α1(1− ȳ)

α1ȳ
λ+

x̄2(ȳ − 1 + β2)

α1ȳ
= 0.

By Theorem 3.2.2 we see that both roots are real and lie within the unit disk.

Therefore by Theorem 3.2.1, the unique positive equilibrium (x̄, ȳ) is locally asymp-

totically stable.

2

3.4 Permanence

We say that System(12,41) is permanent if there exists real numbers l1, L1, l2,

and L2 such that for every positive solution {(xn, yn)}∞n=0 of System(12,41), there

exists an integer N ≥ 0, such that

l1 < xn < L1 and l2 < yn < L2 for every integer n ≥ N.

With this in mind, define l1, L1, l2, and L1 as follows:

1. l1 =
α1

α1 + α2 + 1 + β2α1

2. L1 = α1

3. l2 = 1
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4. L2 = α1 + 1 + β2α1

Theorem 3.4.1 System(12,41) is permanent. In particular, let {(xn, yn)}∞n=0 be

a positive solution of System(12,41). Then for every integer n ≥ 4, we have

l1 < xn < L1 and l2 < yn < L2.

Proof : Given a non-negative integer n ≥ 0, note that

xn+1 =
α1

xn + yn
∈ (0,∞)

and

yn+1 =
α2 + β2xn + yn

yn
=
α2 + β2xn

yn
+ 1 ∈ (1,∞).

Thus yn > 1 = l2 for n ≥ 1.

Hence if n ≥ 1, then

0 < xn+1 =
α1

xn + yn
<

α1

0 + 1
= α1

and so xn < L1 for n ≥ 2.

Hence if n ≥ 2, then

yn+1 =
α2 + β2xn + yn

yn
<
α2 + β2α1 + 1

1
= L2.

That is, for every integer n ≥ 3 we have

l2 < yn < L2.

If n ≥ 3, then

xn+1 =
α1

xn + yn
>

α1

α1 + α2 + β2α1 + 1
= l1.
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That is, for every integer n ≥ 4 we have

l1 < xn < L1

and the proof is complete. 2

3.5 Global Attractivity Analysis

The following theorem gives a sufficient condition for the unique equilibrium

of System(12,41) to be globally asymptotically stable.

Theorem 3.5.1 Suppose that either

0 < α2 ≤
α1β

2
2

1 + β2

− 2

√√√√ α1β2
2

1 + β2

or

α1β
2
2

1 + β2

≤ α2.

Then the unique equilibrium point (x̄, ȳ) is globally asymptotically stable.

Proof : The proof will be by Theorem 3.2.3. For (x, y) ∈ [0,∞)× (0,∞), set

f(x, y) =
α1

x+ y
and g(x, y) =

α2 + β2x+ y

y

and let R = [a, b]× [c, d] = [0, α1]× [1, α2 + β2α1 + 1].

Let T : [0,∞)× (0,∞)→ (0,∞)× (0,∞) be given by T (x, y) : (f(x, y), g(x, y)).

We shall first show that T [R] ⊂ R. Suppose (x, y) ∈ R. It suffices to show

that

f(x, y) ∈ [a, b] and g(x, y) ∈ [c, d].
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1. We shall first show that a < f(x, y).

Note that

a = 0 <
α1

x+ y
= f(x, y).

2. We shall next show that f(x, y) ≤ b.

We have

f(x, y) =
α1

x+ y
≤ α1

a+ c
=

α1

0 + 1
= α1 = b.

3. We shall next show that c < g(x, y).

c = 1 <
α2 + β2x

y
+ 1 =

α2 + β2x+ y

y
= g(x, y).

4. Finally, we shall show that g(x, y) ≤ d.

Now

g(x, y) =
α2 + β2x+ y

y
≤ α2 + β2b+ 1

1
= α2 + β2α1 + 1 = d.

Thus T [R] ⊂ R.

Clearly f is strictly decreasing in x and strictly decreasing in y, and g is

strictly increasing in x and strictly decreasing in y. So to apply Theorem 3.2.3,

suppose (m1,M1,m2,M2) ∈ [0, α1]2× [1, α2 + 1 +β2α1]2 is a solution of the system

of equations 
m1 =

α1

M1 +M2

, M1 =
α1

m1 +m2

m2 =
α2 + β2m1 +M2

M2

, M2 =
α2 + β2M1 +m2

m2

with

0 ≤ m1 ≤M1 ≤ α1 and 1 ≤ m2 ≤M2 ≤ α2 + 1 + β2α1.
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It suffices to show that

m1 = M1 and m2 = M2.

For the sake of contradiction, suppose that this is not the case.

Now

m1M1 +m1M2 = α1 = M1m1 +M1m2

and so m1M2 = M1m2. Since m1 =
α1

M1 +M2

, we see m1 is positive, and so as

m1M2 = M1m2, we have

0 < m1 < M1 and 1 < m2 < M2.

Hence

M2 =
m2

m1

M1.

We also have

α2 + β2m1 +M2 = m2M2 = α2 + β2M1 +m2.

Therefore β2m1 +M2 = β2M1 +m2, and hence

M2 −m2 = β2M1 − β2m1.

Thus

β2(M1 −m1) = M2 −m2 =
m2

m1

M1 −m2 =
m2

m1

(M1 −m1).

So as M1 6= m1, we have

β2 =
m2

m1

6= 0.

That is,

m2 = β2m1 and M2 = β2M1.

Recall that

m1 =
α1

M1 +M2

=
α1

M1 + β2M1

=
α1

(1 + β2)M1
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and so

m1M1 =
α1

1 + β2

.

Thus

1. M1 =
α1

1 + β2

· 1

m1

.

2. m2 = β2m1.

3. M2 = β2M1 =
α1β2

1 + β2

· 1

m1

.

In particular, since m2 = β2m1, we see that

1

β2

m2M2 = m1M2 =
α1β2

1 + β2

and so

m2M2 =
α1β

2
2

1 + β2

.

Thus

α1β
2
2

1 + β2

= m2M2 = α2 + β2m1 +M2

= α2 + β2m1 + β2M1

= α2 + β2m1 +
α1β2

1 + β2

· 1

m1

and so

0 = β2m
2
1 +

(
α2 −

α1β
2
2

1 + β2

)
m1 +

α1β2

1 + β2

.

We also have

α1β
2
2

1 + β2

= m2M2 = α2 + β2M1 +m2 = α2 + β2M1 + β2m1

= α2 + β2M1 +
α1β2

1 + β2

· 1

M1

and thus

0 = β2M
2
1 +

(
α2 −

α1β
2
2

1 + β2

)
M1 +

α1β2

1 + β2

.
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That is, m1 and M1 are the two distinct roots of the quadratic equation

β2z
2 +

(
α2 −

α1β
2
2

1 + β2

)
z +

α1β2

1 + β2

= 0.

Hence

0 < m1 =

(
α1β

2
2

1 + β2

− α2

)
−

√√√√(α2 −
α1β2

2

1 + β2

)2

− 4α1β2
2

1 + β2

2β2

and

m1 < M1 =

(
α1β

2
2

1 + β2

− α2

)
+

√√√√(α2 −
α1β2

2

1 + β2

)2

− 4α1β2
2

1 + β2

2β2

.

So by our hypothesis this is a contradiction, and the proof of the theorem is

complete.

2

Extensive computer simulations lead us to the following conjecture:

Conjecture 3.5.1 The unique positive equilibrium of System(12,41) is globally

asymptotically stable for the entire range of the parameters.

3.6 References
List of References

[1] A.M. Amleh, E. Camouzis, and G. Ladas, On the dynamics of a rational
difference equation, Part 1, Int. J. Difference Equ., 3 (2008), 1-35.

[2] A.M. Amleh, E. Camouzis, and G. Ladas, On the dynamics of a rational
difference equation, Part 2, Int. J. Difference Equ., 3 (2008), 195-225.

[3] A. Brett, E. Camouzis, C. Lynd, and G. Ladas, On the boundedness character
of a rational system, JNMaS, (2009), 1-10.

[4] E. Camouzis, M. Drymonis, and G. Ladas, On the global character of the

system xn+1 =
α1

xn + yn
and yn+1 =

γ2yn
B2xn + yn

, Communications on Applied

Nonlinear Analysis, 16 (2009), 51-64.

79



[5] E. Camouzis, A. Gilbert, M. Heissan, and G. Ladas, On the boundedness char-

acter of the system xn+1 =
α1 + γ1yn

xn
and yn+1 =

α2 + β2xn + γ2yn
A2 + xn + yn

, Commu-

nications on Applied Nonlinear Analysis, (2009), 41-50.
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.1.1 General Theorems for the 81 Systems of Piecewise Linear Differ-
ence Equations

The following six theorems generalizes the global behavior of 75 of the 81

piecewise systems.

Consider the set of systems
xn+1 = |xn| − yn + b

, n = 0, 1, . . . (I)
yn+1 = xn + c|yn|+ d

where (x0, y0) ∈ R2 and

{b = −1 and c = d = 1}

or {b = 0 and [(c = 1 and d ∈ {0, 1}) or (c = −1 and d ∈ {−1, 0})]}

or {b = 1 and [(c = −1) or (c = 1 and d ∈ {0, 1})]}.

Theorem: Let {(xn, yn)}∞n=0 be a solution of a system from set I with

(x0, y0) ∈ R2. Then {(xn, yn)}∞n=0 is eventually a unique equilibrium.

This set of systems are Systems(9-11, 17-21, 26, 27).

...........................................................................................

Consider the set of systems
xn+1 = |xn|

, n = 0, 1, . . . (Ia)
yn+1 = xn + d

where (x0, y0) ∈ R2 and d ∈ {−1, 0, 1}.

Theorem: Let {(xn, yn)}∞n=0 be a solution of a system from set Ia with

(x0, y0) ∈ R2. Then {(xn, yn)}∞n=0 is eventually an equilibrium.
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This set of systems are Systems(40-42).

...........................................................................................

Consider the set of systems
xn+1 = |xn|+ yn + b

, n = 0, 1, . . . (II)
yn+1 = xn + c|yn|+ d

where (x0, y0) ∈ R2 and b, c, d ∈ {−1, 0, 1}.

Theorem: Let {(xn, yn)}∞n=0 be a solution of a system from set II. Then there

exists initial conditions (x0, y0) ∈ R2 such that {(xn, yn)}∞n=0 has the boundedness

characteristic (U,U). In particular, {(xn, yn)}∞n=0 increases without bound.

This set of systems are Systems(55-81). Note that of these 27 systems, 19

have one to three equilibrium points and 5 have period-2 solutions.

...........................................................................................

Consider the set of systems
xn+1 = |xn|+ 1

, n = 0, 1, . . . (III)
yn+1 = xn + c|yn|+ d

where (x0, y0) ∈ R2 and c, d ∈ {−1, 0, 1}.

Theorem: Let {(xn, yn)}∞n=0 be a solution of a system from set III with

(x0, y0) ∈ R2. Then {(xn, yn)}∞n=0 has the boundedness characteristic (Ũ , Ũ). In

particular, {(xn, yn)}∞n=0 increases without bound.

This set of systems are Systems(46-54).
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...........................................................................................

Consider the set of systems
xn+1 = |xn| − yn + b

, n = 0, 1, . . . (IV )
yn+1 = xn + c|yn|+ d

where (x0, y0) ∈ R2 and

{b = −1 and (c = −1 or d = −1 or c = d = 1)}

or {b = 0 and c+ d = 0}

or {b = 1 and [(c = −1) or (c = 1 and d = −1) or (c = 0 and d = 1)}.

Theorem: Let {(xn, yn)}∞n=0 be a solution of a system from set IV with

(x0, y0) ∈ R2. Then {(xn, yn)}∞n=0 is a unique equilibrium solution or periodic with

period greater than two.

This set of systems are Systems(1-4, 7, 8, 12, 14-16, 24, 25).

...........................................................................................

Consider the set of systems
xn+1 = |xn|+ a

, n = 0, 1, . . . (V )
yn+1 = xn + c|yn|+ d

where (x0, y0) ∈ R2 and

{a = −1 and [(c = −1 and d = 1) or (c = 0) or (c = 1 and d ∈ {−1, 0})]}

or {a = 0 and c = −1 and d ∈ {0, 1}}.

Theorem: Let {(xn, yn)}∞n=0 be a solution of a system from set V with

(x0, y0) ∈ R2. Then {(xn, yn)}∞n=0 is a unique equilibrium solution or periodic with
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period-2 or period-4.

This set of systems are Systems(30-35, 38, 39). Note that only Systems(30,

34, 35) exhibit prime period-4 solutions.

...........................................................................................

Consider the set of systems
xn+1 = |xn|+ a

, n = 0, 1, . . . (V I)
yn+1 = xn + c|yn|+ d

where (x0, y0) ∈ R2 and

{a = −1 and [(c = −1 and d ∈ {−1, 0}) or (c = d = 1)}

or {a = 0 and [(c = d = −1) or (c = 1)}.

Theorem: Let {(xn, yn)}∞n=0 be a solution of a system from set VI with

(x0, y0) ∈ R2. Then {(xn, yn)}∞n=0 has the boundedness character (B,U).

This set of systems are Systems(28, 29, 36, 37, 43-45). Note: all systems except

44 and 45 exhibit period-2 solutions and Systems(37, 43, 44) have equilibrium

points.
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.1.2 Systems(10 and 26)

In this section I consider System(10) and System(26). I will begin with Sys-

tem(26):
xn+1 = |xn| − yn + 1

, n = 0, 1, ... (26)
yn+1 = xn + |yn|

where the initial conditions x0 and y0 are arbitrary real numbers. The theorem

that follows gives the global behavior of this system.

Theorem .1.1 Let {(xn, yn)}∞n=0 be a solution of System(26) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is eventually the unique equilibrium (x̄, ȳ) = (0, 1).

The change of variables, xn = −Yn and yn = Xn, reduces the system to
Xn+1 = |Xn| − Yn

, n = 0, 1, ... (10)
Yn+1 = Xn − |Yn| − 1

which is System(10). The global behavior of System(10) follows.

System(10)

I will now consider the system of piecewise linear difference equations
xn+1 = |xn| − yn

, n = 0, 1, ... (10)
yn+1 = xn − |yn| − 1

where the initial conditions x0 and y0 are arbitrary real numbers. This is Sys-

tem(10).

I show that every solution of System(10) is the unique equilibrium (x̄, ȳ) =

(1, 0).

Global Results

Set
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Q1 = {(x, y) : x ≥ 0, y ≥ 0}

Q2 = {(x, y) : x < 0, y > 0}

Q3 = {(x, y) : x ≤ 0, y ≤ 0}

Q4 = {(x, y) : x > 0, y < 0}.

Theorem .1.2 Let {(xn, yn)}∞n=0 be a solution of System(10) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is eventually the unique equilibrium (x̄, ȳ) = (1, 0).

The proof of Theorem .1.2 is a direct consequence of the following lemmas.

Lemma .1.3 For a non-negative integer N ≥ 0, (xN+1, yN+1) = (x̄, ȳ) if and only

if 1 = |xN | − yN and 1 = xN − |yN |.

Proof : We have

(xN+1, yN+1) = (x̄, ȳ)

if and only if

(xN+1, yN+1) = (1, 0)

if and only if

1 = |xN | − yN and 0 = xN − |yN | − 1

if and only if

1 = |xN | − yN and 1 = xN − |yN |.

2

Lemma .1.4 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q1. Then either (xN+2, yN+2) = (x̄, ȳ) or (xN+2, yN+2) ∈ Q4.
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Proof : We have a non-negative integer N ≥ 0, such that (xN , yN) ∈ Q1. Then

Case 1: Suppose xN ≥ yN , then

xN+1 = |xN | − yN = xN − yN ≥ 0

yN+1 = xN − |yN | − 1 = xN − yN − 1.

Suppose yN+1 = xN − yN − 1 ≥ 0, then

xN+2 = |xN+1| − yN+1 = xN − yN − (xN − yN − 1) = 1

yN+2 = xN+1 − |yN+1| − 1 = xN − yN − (xN − yN − 1)− 1 = 0

and so (xN+2, yN+2) = (x̄, ȳ).

Suppose yN+1 = xN − yN − 1 < 0, then

xN+2 = |xN+1| − yN+1 = xN − yN − (xN − yN − 1) = 1

yN+2 = xN+1 − |yN+1| − 1 = 2xN − 2yN − 2 < 0

and so (xN+2, yN+2) ∈ Q4.

Case 2: Suppose xN < yN , then

xN+1 = |xN | − yN = xN − yN < 0

yN+1 = xN − |yN | − 1 = xN − yN − 1 < 0

xN+2 = |xN+1| − yN+1 = −2xN + 2yN + 1 > 0

yN+2 = xN+1 − |yN+1| − 1 = 2xN − 2yN − 2 < 0

and so (xN+2, yN+2) ∈ Q4. The proof is complete. 2

Lemma .1.5 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q2. Then (xN+2, yN+2) ∈ Q4.

Proof : We have a non-negative integer N ≥ 0, such that (xN , yN) ∈ Q2.

Case 1: Suppose −xN ≥ yN , then

xN+1 = |xN | − yN = −xN − yN ≥ 0

yN+1 = xN − |yN | − 1 = −xN − yN − 1 < 0

xN+2 = |xN+1| − yN+1 = −2xN + 1 > 0

yN+2 = xN+1 − |yN+1| − 1 = −2yN − 2 < 0
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and so (xN+2, yN+2) ∈ Q4.

Case 2: Suppose −xN < yN , then

xN+1 = |xN | − yN = −xN − yN < 0

yN+1 = xN − |yN | − 1 = −xN − yN − 1 < 0

xN+2 = |xN+1| − yN+1 = 2yN + 1 > 0

yN+2 = xN+1 − |yN+1| − 1 = −2yN − 2 < 0

and so (xN+2, yN+2) ∈ Q4. The proof is complete. 2

Lemma .1.6 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q3. Then (xN+2, yN+2) ∈ Q4.

Proof : We have

xN+1 = |xN | − yN = −xN − yN ≥ 0

yN+1 = xN − |yN | − 1 = xN + yN − 1 < 0

xN+2 = |xN+1| − yN+1 = −2xN − 2yN + 1 > 0

yN+2 = xN+1 − |yN+1| − 1 = −2 < 0

and so (xN+2, yN+2) ∈ Q4. The proof is complete. 2

Lemma .1.7 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q4. Then {(xn, yn)}∞n=N+6 is the unique equilibrium (x̄, ȳ).

Proof : We have

xN+1 = |xN | − yN = xN − yN > 0

yN+1 = xN − |yN | − 1 = xN + yN − 1
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Case 1: Suppose yN+1 = xN + yN − 1 ≥ 0 then

xN+2 = |xN+1| − yN+1 = −2yN + 1 ≥ 0

yN+2 = xN+1 − |yN+1| − 1 = −2yN > 0

xN+3 = |xN+2| − yN+2 = 1

yN+3 = xN+2 − |yN+2| − 1 = 0

and so (xN+3, yN+3) = (x̄, ȳ).

Case 2: Suppose yN+1 = xN + yN − 1 < 0 then

xN+2 = |xN+1| − yN+1 = −2yN + 1 ≥ 0

yN+2 = xN+1 − |yN+1| − 1 = 2xN − 2.

Subcase 2a: Suppose yN+2 = 2xN − 2 ≥ 0 then

xN+3 = |xN+1| − yN+1 = −2xN − 2yN + 3 > 0

yN+3 = xN+1 − |yN+1| − 1 = −2xN − 2yN + 2 < 0

and so it follows by Lemma .1.3 that (xN+4, yN+4) = (x̄, ȳ).

Subcase 2b: Suppose yN+2 = 2xN − 2 < 0 then

xN+3 = |xN+1| − yN+1 = −2xN − 2yN + 3 > 0

yN+3 = xN+1 − |yN+1| − 1 = 2xN − 2yN − 2.

Subcase 2bi: Suppose yN+3 = 2xN − 2yN − 2 ≥ 0 then

xN+4 = |xN+3| − yN+3 = −4xN + 5 > 0

yN+4 = xN+3 − |yN+3| − 1 = −4xN + 4 > 0

and so it follows by Lemma .1.3 that (xN+5, yN+5) = (x̄, ȳ).

Subcase 2bii: Suppose yN+3 = 2xN − 2yN − 2 < 0 then

xN+4 = |xN+3| − yN+3 = −4xN + 5 > 0

yN+4 = xN+3 − |yN+3| − 1 = −4yN > 0

xN+5 = |xN+4| − yN+4 = −4xN + 4yN + 5 > 0

yN+5 = xN+4 − |yN+4| − 1 = −4xN + 4yN + 4 > 0
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and so it follows by Lemma .1.3 that (xN+6, yN+6) = (x̄, ȳ).

The proof is complete. 2
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.1.3 System(12)

I next consider the system of piecewise linear difference equations
xn+1 = |xn| − yn

, n = 0, 1, ... (12)
yn+1 = xn − |yn|+ 1

where the initial conditions x0 and y0 are arbitrary real numbers.

It has the unique equilibrium point
(
−1

5
,
2

5

)
and the following two prime period-3

solutions:

P1
3 =


x0 = −1 , y0 = 0

x1 = 1 , y1 = 0

x2 = 1 , y2 = 2

 or P2
3 =



x0 = −1

3
, y0 = 0

x1 =
1

3
, y1 =

2

3

x2 = −1

3
, y2 =

2

3


.

Theorem .1.8 Let {(xn, yn)}∞n=0 be a solution of System(12) with (x0, y0) ∈ R2.

Then either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a

non-negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(12) is

either the prime period-3 cycle P1
3 or the prime period-3 cycle P2

3.

The change of variables, xn = Yn and yn = −Xn, reduces the system to
Xn+1 = |Xn| − Yn − 1

, n = 0, 1, ... (8)
Yn+1 = Xn + |Yn|

which is System(8). See Theorem 2.3.1.
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.1.4 Systems(19 and 27)

In this section I consider System(19) and System(27). I will begin with Sys-

tem(27):
xn+1 = |xn| − yn + 1

, n = 0, 1, ... (27)
yn+1 = xn + |yn|+ 1

where the initial conditions x0 and y0 are arbitrary real numbers. The theorem

that follows gives the global behavior.

Theorem .1.9 Let {(xn, yn)}∞n=0 be a solution of System(27) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is eventually the unique equilibrium (x̄, ȳ) = (−1, 3).

The change of variables, xn = −Yn and yn = Xn, reduces the system to
Xn+1 = |Xn| − Yn + 1

, n = 0, 1, ... (19)
Yn+1 = Xn − |Yn| − 1

which is System(19). The global behavior of System(19) follows.

System(19)

I will now consider the system of piecewise linear difference equations
xn+1 = |xn| − yn + 1

, n = 0, 1, ... (19)
yn+1 = xn − |yn| − 1

where the initial conditions x0 and y0 are arbitrary real numbers.

I show that every solution of System(19) is the unique equilibrium solution (x̄, ȳ) =

(3, 1).

Global Results

Set
Q1 = {(x, y) : x ≥ 0, y ≥ 0}

Q2 = {(x, y) : x < 0, y > 0}

Q3 = {(x, y) : x ≤ 0, y ≤ 0}

Q4 = {(x, y) : x > 0, y < 0}.
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Theorem .1.10 Let {(xn, yn)}∞n=0 be a solution of System(19) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is eventually the unique equilibrium (x̄, ȳ) = (3, 1).

The proof of this theorem is a direct consequence of the following lemmas.

Lemma .1.11 For N ≥ 0, (xN+1, yN+1) = (x̄, ȳ) if and only if |xN | − yN = 2 and

xN − |yN | = 2.

Proof : We have

(xN+1, yN+1) = (x̄, ȳ)

if and only if

(xN+1, yN+1) = (3, 1)

if and only if

3 = |xN | − yN + 1 and 1 = xN − |yN | − 1

if and only if

|xN | − yN = 2 and xN − |yN | = 2.

In particular, xN ≥ 0, yN ≥ 0 and xN − yN = 2. 2

Lemma .1.12 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q1. Then either (xN+4, yN+4) = (x̄, ȳ) or (xN+2, yN+2) ∈ Q4.

Proof : Suppose (xN , yN) ∈ Q1. Then

xN+1 = |xN | − yN + 1 = xN − yN + 1

yN+1 = xN − |yN | − 1 = xN − yN − 1.

Case 1: Suppose yN+1 ≥ 0, then xN+1 > 0 and so it follows by Lemma .1.11 that

(xN+2, yN+2) = (x̄, ȳ).

Case 2: Suppose xN+1 ≤ 0, then yN+1 < 0. Hence

xN+2 = |xN+1| − yN+1 + 1 = −2xN + 2yN + 1 > 0

yN+2 = xN+1 − |yN+1| − 1 = 2xN − 2yN − 1 < 0
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and so (xN+2, yN+2) ∈ Q4.

Case 3: Suppose xN+1 < 0 and yN+1 > 0. Then

xN+2 = |xN+1| − yN+1 + 1 = −2xN + 2yN + 1 > 0

yN+2 = xN+1 − |yN+1| − 1 = 1

xN+3 = |xN+2| − yN+2 + 1 = −2xN + 2yN + 1 > 0

yN+3 = xN+2 − |yN+2| − 1 = −2xN + 2yN − 1 > 0

and so it follows by Lemma .1.11 that (xN+4, yN+4) = (x̄, ȳ). 2

Lemma .1.13 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q2. Then (xN+2, yN+2) ∈ Q4.

Proof : Suppose (xN , yN) ∈ Q2. Then

xN+1 = |xN | − yN + 1 = −xN − yN + 1

yN+1 = xN − |yN | − 1 = xN − yN − 1 < 0.

Case 1: Suppose xN+1 ≥ 0. Then

xN+2 = |xN+1| − yN+1 + 1 = −2xN + 3 > 0

yN+2 = xN+1 − |yN+1| − 1 = −2yN − 1 < 0

and so (xN+2, yN+2) ∈ Q4.

Case 2: Suppose xN+1 < 0. Then

xN+2 = |xN+1| − yN+1 + 1 = 2yN + 1 > 0

yN+2 = xN+1 − |yN+1| − 1 = −2yN − 1 < 0

and so (xN+2, yN+2) ∈ Q4. 2

Lemma .1.14 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q3. Then (xN+1, yN+1) ∈ Q4.
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Proof : Suppose (xN , yN) ∈ Q3. Then

xN+1 = |xN | − yN + 1 = −xN − yN + 1 ≥ 0

yN+1 = xN − |yN | − 1 = xN + yN − 1 ≤ 0

and so (xN+1, yN+1) ∈ Q4. 2

Lemma .1.15 Suppose there exists a non-negative integer N ≥ 0, such that

(xN , yN) ∈ Q4. Then {(xn, yn)}∞n=N+5 is the unique equilibrium (x̄, ȳ).

Proof : Suppose (xN , yN) ∈ Q4. Then

xN+1 = |xN | − yN + 1 = xN − yN + 1 > 0

yN+1 = xN − |yN | − 1 = xN + yN − 1.

Case 1: Suppose yN+1 ≥ 0. Then

xN+2 = |xN+1| − yN+1 + 1 = −2yN + 3 > 0

yN+2 = xN+1 − |yN+1| − 1 = −2yN + 1 > 0

and so it follows by Lemma .1.11 that (xN+3, yN+3) = (x̄, ȳ).

Case 2: Suppose yN+1 ≥ 0. Then

xN+2 = |xN+1| − yN+1 + 1 = −2yN + 3 > 0

yN+2 = xN+1 − |yN+1| − 1 = 2xN − 1.

Subcase 2a: Suppose yN+2 ≥ 0. Then

xN+3 = |xN+2| − yN+2 + 1 = −2xN − 2yN + 5 > 0

yN+3 = xN+2 − |yN+2| − 1 = −2xN − 2yN + 3 > 0

and so it follows by Lemma .1.11 that (xN+4, yN+4) = (x̄, ȳ).

Subcase 2b: Suppose yN+2 < 0. Then

xN+3 = |xN+2| − yN+2 + 1 = −2xN − 2yN + 5 > 0

yN+3 = xN+2 − |yN+2| − 1 = 2xN − 2yN + 1 > 0

xN+4 = |xN+3| − yN+3 + 1 = −4xN + 5 > 0

yN+4 = xN+3 − |yN+3| − 1 = −4xN + 3 > 0
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and so it follows by Lemma .1.11 that (xN+5, yN+5) = (x̄, ȳ). 2

98



.1.5 Systems(28 - 33)

All six systems share the same first difference equation, xn+1 = |xn| − 1. The

following lemma gives the global behavior of {xn}∞n=0 for Systems(28 - 33).

Lemma .1.16 Every solution of xn+1 = |xn|−1 is eventually periodic with period-

2 and there exists prime period-2 solutions. In fact, let {xn}∞n=0 be a real solution

of xn+1 = |xn| − 1 and write |x0| = m + α where m ∈ {0, 1, 2, ...}, and 0 ≤ α < 1

where α ∈ R. Then the closed form is

xj =


x0 if j = 0
|x0| − j if 0 < j ≤ m
α− 1 if j = m+ 2n− 1 for n ∈ N
−α if j = m+ 2n for n ∈ N

In particular, −1 ≤ xk ≤ 0 for any natural number k, where k > m. The

proof is by computations and will be omitted.

System(28)

I first consider the system of piecewise linear difference equations
xn+1 = |xn| − 1

, n = 0, 1, ... (28)
yn+1 = xn − |yn| − 1

where the initial conditions x0 and y0 are arbitrary real numbers.

I show that the boundedness character of System(28) is (B,U).

Global Results

Theorem .1.17 Let {(xn, yn)}∞n=0 be a solution of System(28) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 has the boundedness character (B,U), moreover {xn}∞n=0 is

eventually period-2 and {yn}∞n=0 is decreasing without bound.

Proof : By Lemma .1.16, {xn}∞n=m+1, is period-2 and −1 ≤ xj ≤ 0 for all j > m.

Set k = m+ 1 and suppose yk ∈ R. Then for any non-negative integer n ≥ 0

yk+n+1 = xk+n − |yk+n| − 1 < yk+n.
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Therefore {yn}∞n=m+1 is decreasing without bound.

2

System(29)

In this section I next consider the system of piecewise linear difference equations
xn+1 = |xn| − 1

, n = 0, 1, ... (29)
yn+1 = xn − |yn|

where the initial conditions x0 and y0 are arbitrary real numbers.

I show that the boundedness character of System(29) is (B,U).

Global Results

Theorem .1.18 Let {(xn, yn)}∞n=0 be a solution of System(29) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 has the boundedness character (B,U), moreover {xn}∞n=0 is

eventually period-2 and {yn}∞n=0 is decreasing without bound.

Proof : By Lemma .1.16, {xn}∞n=m+1, is period-2 and −1 ≤ xj ≤ 0 for all j > m.

Set k = m+ 1 and suppose yk ∈ R. Then for any non-negative integer n ≥ 0

yk+n+1 = xk+n − |yk+n| < yk+n.

Therefore {yn}∞n=m+1 is decreasing without bound. 2

System(30)

I next consider System(30)
xn+1 = |xn| − 1

, n = 0, 1, ... (30)
yn+1 = xn − |yn|+ 1

where the initial conditions x0 and y0 are arbitrary real numbers.

I show that every solution is either the unique equilibrium
(
−1

2
,
1

4

)
, or periodic

with (not necessarily prime) period-4.

Global Results
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Theorem .1.19 Let {(xn, yn)}∞n=0 be a solution of System(30) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 is eventually the equilibrium solution
(
−1

2
,
1

4

)
,

periodic with prime period-2 or periodic with prime period-4.

Proof : By Lemma .1.16 we know {(xn)}∞n=m+1 is period-2. Set M = m+ 1 for the

remainder of this proof. Also recall that −1 ≤ xn ≤ 0 for any natural number n,

where n ≥M.

Lemma .1.20 Suppose there exists a non-negative natural number N such that

N ≥ M , xN = −1
2

and yN ∈ R. Then {(xn, yn)}∞n=N+1 is eventually a period-2

solution.

Proof : Suppose xN = −1
2
. Thus, by Lemma .1.16, xN+k = −1

2
for all k ∈ N.

Suppose further that |yN | ≤ 1
2
. Then

yN+1 = xN − |yN |+ 1 = 1
2
− |yN |

yN+2 = xN+1 − |yN+1|+ 1 = −1
2
− (1

2
− |yN |) + 1 = |yN |

yN+3 = xN+2 − |yN+2|+ 1 = 1
2
− |yN | = yN+1

and so {yn}∞n=N+1 is periodic with period-2.

Now suppose |yN | > 1
2
. Then for each integer 1 ≤ m ≤ K− 1, where K = d2|yN |e,

let P (m) be the following statement

yN+m =
m

2
− |yN | < 0.

The proof will be by induction on m. I shall first show that P (1) is true. We have

yN+1 = xN − |yN |+ 1 =
1

2
− |yN |.

Note that

1

2
− |yN | ≤

K − 1

2
− |yN |

and

K−1
2
− |yN | < 0 iff K < 2|yN |+ 1 iff d2|yN |e < 2|yN |+ 1
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and so P(1) is true. Thus if K = 2 , then I have shown that for 1 ≤ m ≤ K − 1,

P(m) is true. It remains to consider the case K ≥ 3. So assume K ≥ 3. Let m be

an integer such that 1 ≤ m ≤ K − 2 and suppose P (m) is true. I shall show that

P (m+ 1) is true.

yN+m+1 = xN+m − |yN+m|+ 1 = −1
2
− (−m

2
+ |yN |) + 1

= m+1
2
− |yN |

Note that

m+ 1

2
− |yN | ≤

K − 1

2
− |yN |

and

K−1
2
− |yN | < 0 iff K < 2|yN |+ 1 iff d2|yN |e < 2|yN |+ 1

and so P (m + 1) is true. That is P (m) is true for 1 ≤ m ≤ K − 1. Specifically,

P (K − 1) is true. Then

yN+K = xN+K−1 − |yN+K−1|+ 1 = −1
2
− (−K−1

2
+ |yN |) + 1

= K
2
− |yN |.

In particular,

yN+K =
K

2
− |yN | ≥

2|yN |
2
− |yN | = 0.

Thus
yN+K+1 = xN+K − |yN+K |+ 1 = −1

2
− (K

2
− |yN |) + 1

= 1−K
2

+ |yN |.
In particular,

yN+K+1 =
1−K

2
+ |yN | ≥

1− 2|yN |
2

+ |yN | =
1

2
.

Then

yN+K+2 = xN+K+1 − |yN+K+1|+ 1 = −1
2
− (1−K

2
+ |yN |) + 1

= K
2
− |yN | = yN+K

and so the solution is periodic with period-2. Note, if yN = 1
4

then we have the

equilibrium solution. 2
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Lemma .1.21 Suppose there exists a non-negative natural number N such that

N ≥M and |yN | ≥ xN + 1. Then {(xn, yn)}∞n=N is a period-4 solution.

Proof : Suppose −1 ≤ xN ≤ 0 and |yN | ≥ xN + 1. Then

xN+1 = |xN | − 1 = −xN − 1 ≤ 0

yN+1 = xN − |yN |+ 1 ≤ 0

xN+2 = xN

yN+2 = xN+1 − |yN+1|+ 1 = −xN − 1− (−xN + |yN | − 1) + 1

= |yN |+ 1 ≥ 0

xN+3 = xN+1

yN+3 = xN+2 − |yN+2|+ 1 = xN − (|yN |+ 1) + 1

= xN − |yN | < 0

xN+4 = xN

yN+4 = xN+3 − |yN+3|+ 1 = −xN − 1− (−xN + |yN |) + 1

= −|yN | ≤ 0

xN+5 = xN+1

yN+5 = xN+4 − |yN+4|+ 1 = xN − |yN |+ 1

= yN+1.

The proof is complete. 2

To complete the proof of Theorem .1.19 it remains to consider the region enclosed

by |yN | < xN + 1 and xN ∈ (−1,−1
2
) ∪ (−1

2
, 0).

Lemma .1.22 Suppose there exists a non-negative natural number N such that

N ≥M and |yN | < xN + 1. Then {(xn, yn)}∞n=N is eventually a period-4 solution.
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Set
R1 = {(x, y) : −1 < x < −1

2
and 0 < y < x+ 1}

R2 = {(x, y) : −1
2
< x < 0 and 0 < y < x+ 1}

R3 = {(x, y) : −1 < x < 0 and − (x+ 1) < y ≤ 0}.

First, suppose there exists a non-negative integer N, such that (xN , yN) ∈ R3.

Then xN+1 = |xN | − 1 and yN+1 = xN − |yN | + 1 = xN + yN + 1 > 0. Otherwise

yN+1 ≥ xN+1 + 1 then by Lemma .1.21, the solution {(xn, yn)}∞n=N+1 is a period-4

solution. If yN+1 < xN+1 + 1 then (xN+1, yN+1) ∈ R1 ∪R2.

Next, suppose there exists a non-negative integer N, such that (xN , yN) ∈ R2.

Then xN+1 = |xN | − 1 and yN+1 = xN − |yN |+ 1 > 0. So (xN+1, yN+1) ∈ R1.

Finally, suppose there exists a non-negative integer N, such that (xN , yN) ∈ R1.

For each integer m ≥ 0, let P(m) be the following statement:

xN+2m = xN

yN+2m = −2mxN + yN −m > 0

xN+2m+1 = xN+1

yN+2m+1 = (2m+ 1)xN − yN + (m+ 1) > 0.

Claim: P (m) is true for 0 ≤ m ≤ K − 1, where K = dyN−xN−1
2xN +1

e. Note K ≥ 1.

The proof of the Claim will be by induction on m. I shall first show that P (0) is

true. Recall that −1 < xN < 0 and 0 < yN < xN + 1. Then

xN+2(0) = xN

yN+2(0) = yN > 0

xN+2(0)+1 = xN+1

yN+2(0)+1 = xN − |yN |+ 1 = xN − yN + 1 > 0.
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Thus if K = 1, then I have shown that for 0 ≤ m ≤ K − 1, P (m) is true. It

remains to consider the case K ≥ 2. So assume K ≥ 2. Let m be an integer such

that 0 ≤ m ≤ K−2 and suppose P (m) is true. I shall show that P (m+ 1) is true.

Since P (m) is true I know

xN+2m = xN

yN+2m = −2mxN + yN −m > 0

xN+2m+1 = xN+1

yN+2m+1 = (2m+ 1)xN − yN + (m+ 1) > 0.

Then
xN+2(m+1) = |xN+2m+1| − 1 = |xN+1| − 1

= xN

yN+2(m+1) = xN+2m+1 − |yN+2m+1|+ 1

= xN+1 − [(2m+ 1)xN − yN + (m+ 1)] + 1

= −xN − 1− (2m+ 1)xN + yN − (m+ 1) + 1

= −xN − (2m+ 1)xN + yN − (m+ 1)

= −2(m+ 1)xN + yN − (m+ 1).

In particular,

yN+2(m+1) = −2(m+ 1)xN + yN − (m+ 1)

= [−2mxN + yN −m] + [−2xN − 1] > 0

Then
xN+2(m+1)+1 = |xN+2(m+1)| − 1 = |xN | − 1

= xN+1

yN+2(m+1)+1 = xN+2(m+1) − |yN+2(m+1)|+ 1

= xN − [−2(m+ 1)xN + yN − (m+ 1)] + 1

= xN + 2(m+ 1)xN − yN + (m+ 1) + 1

= [2(m+ 1) + 1]xN − yN + [(m+ 1) + 1].
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In particular,

yN+2(m+1)+1 = [2(m+ 1) + 1]xN − yN + [(m+ 1) + 1]

= [2(m+ 1)xN − yN + (m+ 1)] + [xN + 1] > 0.

and so P(m+1) is true. Thus the proof of the Claim is complete. That is P(m) is

true for 0 ≤ m ≤ K − 1. Specifically, P(K-1) is true, and so

xN+2(K−1) = xN

yN+2(K−1) = −2(K − 1)xN + yN − (K − 1) > 0

xN+2(K−1)+1 = xN+1

yN+2(K−1)+1 = [2(K − 1) + 1]xN − yN + [(K − 1) + 1] > 0

= (2K − 1)xN − yN +K > 0.

Then

xN+2(K−1)+2 = xN+2K = xN

yN+2(K−1)+2 = yN+2K = xN+2(K−1)+1 − |yN+2(K−1)+1|+ 1

= xN+1 − [(2K − 1)xN − yN +K] + 1 > 0

= −xN − 1− [(2K − 1)xN − yN +K] + 1 > 0

= −2KxN + yN −K.

Recall K = dyN−xN−1
2xN +1

e, thus

yN+2K = −2KxN + yN −K

= −2dyN−xN−1
2xN +1

exN + yN − dyN−xN−1
2xN +1

e

= b1 + 1−2yN

2xN +1
cxN + yN − d−(−xN−yN

2xN +1
− 1)e

= dxN + xN−2yNxN

2xN +1
e+ yN − dxN +yN

2xN +1
+ 1e

= xN + dxN−2yNxN

2xN +1
e+ yN + 1− dxN +yN

2xN +1
e

= xN + 1 + d−yN (2xN +1)
2xN +1

e+ yN

≥ xN + 1 = xN+2k + 1.
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Therefore by Lemma .1.21 {(xn, yn)}∞n=N+2K is periodic with period-4.

The proof of Theorem .1.19 is complete.

2
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System(31)

I also consider the system of piecewise linear difference equations
xn+1 = |xn| − 1

, n = 0, 1, ... (31)
yn+1 = xn − 1

where the initial conditions x0 and y0 are arbitrary real numbers.

It has the unique equilibrium point
(
−1

2
,−3

2

)
.

Theorem .1.23 Let {(xn, yn)}∞n=0 be a solution of System(31) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 is eventually periodic with (not necessarily prime)

period-2.

The change of variables, xn = Xn and yn = Yn − 1, reduces the system to
Xn+1 = |Xn| − 1

, n = 0, 1, ... (32)
Yn+1 = Xn

which is System(32). See Theorem .1.30.

System(33)

Now consider the system of piecewise linear difference equations
xn+1 = |xn| − 1

, n = 0, 1, ... (33)
yn+1 = xn + 1

where the initial conditions x0 and y0 are arbitrary real numbers.

It has the unique equilibrium point
(
−1

2
,
1

2

)
.

Theorem .1.24 Let {(xn, yn)}∞n=0 be a solution of System(33) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 is eventually periodic with (not necessarily prime)

period-2.
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The change of variables, xn = Xn and yn = Yn + 1, reduces the system to
Xn+1 = |Xn| − 1

, n = 0, 1, ..., (32)
Yn+1 = Xn

which is System(32). See Theorem .1.30.

System(32)

The next system of piecewise linear difference equations I consider is
xn+1 = |xn| − 1

, n = 0, 1, ... (32)
yn+1 = xn

where the initial conditions x0 and y0 are arbitrary real numbers.

The unique equilibrium point of this system is
(
−1

2
,−1

2

)
.

Theorem .1.25 Let {(xn, yn)}∞n=0 be a solution of System(32) with (x0, y0) ∈ R2.

Every solution of this system is eventually periodic with (not necessarily prime)

period-2. In particular, if |x0| = m + α, where m ∈ {0, 1, 2, . . .}, and α ∈ R such

that 0 ≤ α < 1 then the period-2 solution in {xn} is {α− 1,−α}.

The proof is a direct consequence of Lemma .1.16.
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.1.6 System(37)

In this section I consider the system of piecewise linear difference equations
xn+1 = |xn|

, n = 0, 1, ... (37)
yn+1 = xn − |yn| − 1

where the initial conditions x0 and y0 are arbitrary real numbers.

The set of equilibrium points are found on the following line:

{(x, y) : y =
x

2
− 1

2
, if y ≥ 0, and x = 1 if y < 0}.

The period two cycles are:
(x2m−1, y2m−1) = (x0, x0 − y0 − 1)

, m = 1, 2, ...
(x2m, y2m) = (x0, y0)

I show that every solution of System(37) is either an equilibrium point, is a

period-2 solution, or has the boundedness character (B, U).

Global Results

Set
R0 = {(x, y) : y ≤ x− 1, x ≥ 1, and y ≥ 0}

R1 = {(x, y) : y > x− 1, x ≥ 1, and y ≥ 0}

R2 = {(x, y) : x ≥ 1, and y < 0}

R3 = {(x, y) : |x| < 1}

R4 = {(x, y) : x ≤ −1}.
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Theorem .1.26 Let {(xn, yn)}∞n=0 be a solution of System(37) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is either an equilibrium solution, a period-2 solution, or it has

the boundedness character (B,U), that is {yn}∞n=0 is decreasing without bound.

The proof of Theorem 1.5.1 is a direct consequence of the following lemmas.

Lemma .1.27 Suppose the initial condition (x0, y0) is an element of R0. Then

{(xn, yn)}∞n=0 is a period-2 solution.

Proof : Recall that R0 = {(x, y) : y ≤ x− 1, x ≥ 1, and y ≥ 0}. Suppose the initial

condition (x0, y0) is an element of R0. It is clear that xn = x0 for all n ∈ N.

Then
y1 = x0 − |y0| − 1 ≥ 0

y2 = x1 − |y1| − 1 = y0.

So, for any m ∈ N, y2m−1 = x0 − y0 − 1 and y2m = y0. The proof is complete. 2

Lemma .1.28 Suppose the initial condition (x0, y0) is an element of R2. Then

{(xn, yn)}∞n=0 is eventually a period-2 solution.
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Proof : Recall that R2 = {(x, y) : x ≥ 1, and y < 0}. Suppose the initial condition

(x0, y0) is an element of R2.

Then
x1 = |x0| ≥ 1

y1 = x0 − |y0| − 1 = x0 + y0 − 1.

It is clear that xn = x0 for n ≥ 0.

Case 1 : Suppose x0 = 1. Then y1 = y0, and so (xn, yn) = (1, y0) for n ≥ 0.

Case 2 : Suppose y1 = x0 +y0−1 ≥ 0. Recall R0 = {(x, y) : y ≤ x−1, x ≥ 1, and y ≥

0}, so one more condition must be satisfied to utilize Lemma .1.27.

Note that, y1 = x0 + y0 − 1 = x1 + y0 − 1 ≥ x1 − 1

and so by Lemma .1.27, the solution {(xn, yn)}∞n=1 period-2.

Case 3 : Suppose y1 = x0 + y0 − 1 < 0. For each integer m ≥ 1, let P (m) be the

following statement

ym = (m)(x0 − 1) + y0 < 0.

Claim: P (m) is true for 1 ≤ m ≤ K − 1, where K = d −y0
x0−1
e. Note K ≥ 2.

The proof of the Claim will be by induction on m. It is cleat that P (1) is

true. Thus if K = 1, then we know that for 1 ≤ m ≤ K−1, P (m) is true. It

remains to consider the case K ≥ 3. So assume K ≥ 3. Let m be an integer

such that 1 ≤ m ≤ K − 4 and suppose P (m) is true. I shall show that

P (m+ 1) is true.

Since P (m) is true I know

ym = (m)(x0 − 1) + y0 < 0

and so

ym+1 = xm − |ym| − 1

= x0 − [−(m)(x0 − 1)− y0]− 1

= (m+ 1)(x0 − 1) + y0 < 0.
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In particular,

ym+1 = (m+ 1)(x0 − 1) + y0

≤ (K + 1)(x0 − 1) + y0

= (d −y0
x0−1
e − 1 + 1)(x0 − 1) + y0

< 0.

and so P (m+1) is true. Thus the proof of the Claim is complete. Specifically,

P (K − 1) is true and so

yK−1 = (K − 1)(x0 − 1) + y0 < 0

yK = xK − |yK | − 1

= x0 − 1 + (K − 1)(x0 − 1) + y0

= (K)(x0 − 1) + y0.

Recall K = d −y0
x0−1
e, then

yK = (d −y0
x0−1
e)(x0 − 1) + y0 ≥ 0

and so (xK , yK) ∈ R0, and by Lemma .1.27, the solution {(xn, yn)}∞n=1 is

eventually period-2.

2

Lemma .1.29 Suppose the initial condition (x0, y0) is an element of R1∪R4. Then

{(xn, yn)}∞n=0 is eventually a period-2 solution.

Proof : Recall that R1 = {(x, y) : y > x− 1, and x ≥ 1, y ≥ 0} and R4 = {(x, y) :

x ≤ −1}. Suppose the initial condition (x0, y0) is an element of R1.

Then
x1 = |x0| = x0 > 0

y1 = x0 − |y0| − 1 = x0 − y0 − 1 < 0
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and so (x1, y1) ∈ R2 and by Lemma .1.28 the solution {(xn, yn)}∞n=1 is eventually

period-2.

Suppose the initial condition (x0, y0) is an element of R4.

Then
x1 = |x0| > 0

y1 = x0 − |y0| − 1 < 0

and so (x1, y1) ∈ R2 and by Lemma .1.28 the solution {(xn, yn)}∞n=1 is eventually

period-2. 2

Lemma .1.30 Suppose the initial condition (x0, y0) is an element of R3. Then the

boundedness character is (B, U).

Proof : Recall that R3 = {(x, y) : |x| < 1}. Suppose the initial condition (x0, y0) is

an element of R3.

First note that, xn = |x0| < 1 for all n = 1, 2, 3, . . ..

For each integer m ≥ 1, let P (m) be the following statement

ym = y1 − (m− 1)(1− |x0|) < 0.

Claim: P (m) is true for m ≥ 2 The proof of the Claim will be by induction on m.

I shall first show that P (2) is true. Then

y1 = x0 − |y0| − 1 < 0

y2 = x1 − |y1| − 1

= |x0|+ (x0 − |y0| − 1)− 1

= (x0 − |y0| − 1)− (1− |x0|)

= y1 − (2− 1)(1− |x0|) < 0

Let m be an integer such that m ≥ 2 and suppose P (m) is true. I shall show that

P (m+ 1) is true.
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Since P (m) is true I know

ym = y1 − (m− 1)(1− |x0|) < 0

and so

ym+1 = xm − |ym| − 1

= |x0| − (−y1 + (m− 1)(1− |x0|))− 1

= y1 − (m− 1)(1− |x0|)− (1− |x0|)

= y1 −m(1− |x0|) < 0

and so P (m + 1) is true. The proof of the claim is complete. Clearly, {yn}∞n=2 is

decreasing at a constant rate with no lower bound. The proof is complete. 2
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.1.7 System(38)

In this section I consider the system of piecewise linear difference equations
xn+1 = |xn|

, n = 0, 1, ... (38)
yn+1 = xn − |yn|

where the initial conditions x0 and y0 are arbitrary real numbers.

The set of equilibrium points are found on the following line:

{(x, y) : y =
x

2
, if y > 0, and x = 0 if y ≤ 0}.

The period two cycles are:
(x2m−1, y2m−1) = (x0, x0 − y0)

, m = 1, 2, ...
(x2m, y2m) = (x0, y0)

I show that every solution of System(38) is either an equilibrium point or a

period-2 solution.

Global Results

Set
R0 = {(x, y) : x = 0 and y ∈ R}

R1 = {(x, y) : x < y and x > 0}

R2 = {(x, y) : x ≥ y and y > 0}

R3 = {(x, y) : x > 0 and y < 0}

R4 = {(x, y) : x < 0}.
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Theorem .1.31 Let {(xn, yn)}∞n=0 be a solution of System(38) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is either an equilibrium solution or a period-2 solution.

The proof of Theorem 1.6.1 is a direct consequence of the following lemmas.

Lemma .1.32 Suppose the initial condition (x0, y0) is an element of R0. Then

{(xn, yn)}∞n=0 is a equilibrium solution.

Proof : Suppose the initial condition (x0, y0) is an element of R0 = {(x, y) : x =

0 and y ∈ R}. It is clear that xn = 0 for n = 0, 1, 2, ....

Then
y1 = x0 − |y0| = −|y0|

y2 = x1 − |y1| = 0− | − |y0|| = −|y0|
and so (xn, yn) = (0,−|y0|) for n = 1, 2, .... The proof is complete. 2

Lemma .1.33 Suppose the initial condition (x0, y0) is an element of R2. Then

{(xn, yn)}∞n=0 is a period two solution.

Proof : Suppose the initial condition (x0, y0) is an element of R2 = {(x, y) : x ≥

y and y > 0}. First note that, xn = |x0| = x0 for n = 1, 2, 3, . . ..

Then
y1 = x0 − |y0| = x0 − y0 ≥ 0

y2 = x1 − |y1| = x0 − |x0 − y0| = y0.
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So, for any m ∈ N, (x2m−1, y2m−1) = (x0, x0 − y0) and (x2m, y2m) = (x0, y0). The

proof is complete. 2

Lemma .1.34 Suppose the initial condition (x0, y0) is an element of R3. Then

{(xn, yn)}∞n=0 is eventually a period two solution.

Proof : Suppose the initial condition (x0, y0) is an element of R3 = {(x, y) : x >

0 and y < 0}. It is clear that xn = x0 > 0 for n = 0, 1, 2, ....

Then

y1 = x0 − |y0| = x0 + y0.

Case 1 : Suppose y1 = x0 + y0 ≥ 0. Recall R2 = {(x, y) : x ≥ y and y > 0}, so

an additional condition must be satisfied to utilize Lemma .1.33. Note that

y1 = x0 + y0 = x1 + y0 < x1,

and so by Lemma .1.33, the solution {(xn, yn)}∞n=1 period-2.

Case 2 : Suppose y1 = x0 +y0 < 0. For each integer m ≥ 1, let P (m) be the following

statement

ym = mx0 + y0 < 0

Claim: P (m) is true for 1 ≤ m ≤ K − 1, where K = d−y0
x0
e. Note K ≥ 2.

The proof of the Claim will be by induction on m. P (1) is clearly true. Thus

if K = 2, then for 1 ≤ m ≤ K − 1, P (m) is true. It remains to consider the

case K ≥ 3. So assume K ≥ 3. Let m be an integer such that 1 ≤ m ≤ K−2

and suppose P (m) is true. I shall show that P (m+ 1) is true.

Since P (m) is true I know

ym = mx0 + y0 < 0

and so

ym+1 = xm+1 − |ym+1| = x0 +mx0 + y0

= (m+ 1)x0 + y0.
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In particular,

ym+1 = (m+ 1)x0 + y0 ≤ (K − 1)x0 + y0 = Kx0 + y0 − x0 ≤ 0.

The proof of the Claim is complete. So P (m) is true for 1 ≤ m ≤ K − 1.

Specifically, P (K − 1) is true. Hence

yK−1 = (K − 1)x0 + y0 < 0

yK = xK−1 − |yK−1| = x0 + (K − 1)x0 + y0

= Kx0 + y0 = d−y0
x0
ex0 + y0 ≥ 0,

and so (xK , yK) ∈ R2, and by Lemma .1.33, the solution {(xn, yn)}∞n=1 is

eventually period-2.

2

Lemma .1.35 Suppose the initial condition (x0, y0) is an element of R1 = {(x, y) :

x < y and x > 0}. Then {(xn, yn)}∞n=0 is eventually a period two solution.

Proof : We have
x1 = |x0| = x0 > 0

y1 = x0 − |y0| = x0 − y0 < 0

and so (x1, y1) ∈ R3 and by Lemmas .1.34 and .1.33 the solution {(xn, yn)}∞n=0 is

eventually a period two. 2

Lemma .1.36 Suppose the initial condition (x0, y0) is an element of R4 = {(x, y) :

x < 0}. Then {(xn, yn)}∞n=0 is eventually a period two solution.

Proof : We have
x1 = |x0| = −x0 > 0

y1 = x0 − |y0| < 0

and so (x1, y1) ∈ R3 and by Lemmas .1.34 and .1.33 the solution {(xn, yn)}∞n=0 is

eventually a period two. 2
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.1.8 System(43)

In this section I consider the system of piecewise linear difference equations
xn+1 = |xn|

, n = 0, 1, ... (43)
yn+1 = xn + |yn| − 1

where the initial conditions x0 and y0 are arbitrary real numbers.

The set of equilibrium points are found on the following line:

{(x, y) : y =
x

2
− 1

2
< 0 if x ≥ 0, and x = 1 if y ≥ 0}.

I show that every solution of System(43) is either an equilibrium point, a

period-2 solution or has the boundedness characteristic (B, U).

Global Results

Set
R0 = {(x, y) : |x| = 1 and y = x

2
− 1

2
< 0 if x ≥ 0}

R1 = {(x, y) : |x| > 1}

R2 = {(x, y) : |x| < 1}

Theorem .1.37 Let {(xn, yn)}∞n=0 be a solution of System(43) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 is either an equilibrium, a period-2 solution or has

the boundedness character (B,U). In particular, {(xn)}∞n=1 = |x0| and {(yn)}∞n=1 is

increasing without bound.

The proof of Theorem .1.37 is a direct consequence of the following lemmas.

Lemma .1.38 Suppose the initial condition (x0, y0) is an element of R0. Then

{(xn, yn)}∞n=0 is an equilibrium solution.

Proof : Recall R0 = {(x, y) : |x| = 1 and y = x
2
− 1

2
< 0 if x ≥ 0}. Clearly,

{(xn)}∞n=1 = |x0|.
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Case 1 : Suppose x0 = 1. Then

y1 = x0 + |y0| − 1 = |y0| > 0

y2 = x1 + |y1| − 1 = |y1| = y1

and so (x̄, ȳ) = (1, |y0|).

Case 2 : Now suppose x0 = −1 and |y0| ≤ 2. Then

y1 = x0 + |y0| − 1 = |y0| − 2 ≤ 0

y2 = x1 + |y1| − 1 = 1 + |y1| − 1 = −|y0|+ 2 ≥ 0

y3 = x2 + |y2| − 1 = 1 + |y2| − 1 = y2

and so (x̄, ȳ) = (1,−|y0|+ 2).

It remains to consider |y0| > 2. Then

y1 = x0 + |y0| − 1 = |y0| − 2 > 0

y2 = x1 + |y1| − 1 = 1 + |y1| − 1 = y1

and so (x̄, ȳ) = (1, |y0| − 2).

Case 3 : Finally, suppose x0 ≥ 0 and y0 = x0

2
− 1

2
< 0. Then

y1 = x0 + |y0| − 1 = (x0 − 1) + (x0

2
− 1

2
) = x0

2
− 1

2
= y0

and so (x̄, ȳ) = (x0, y0).

2

Lemma .1.39 Suppose the initial condition (x0, y0) is an element of R1. Then

{(xn, yn)}∞n=0 has the boundedness character (B,U). In particular, {yn}∞n=0 is in-

creasing without bound.

Proof : Recall R1 = {(x, y) : |x| > 1}. Clearly, {(xn)}∞n=1 = x0.
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Case 1 : Suppose x0 > 1 and y0 ∈ R. For each integer m ≥ 1, let P (m) be the

following statement:

ym = m(x0 − 1) + |y0| > 0

Claim: P (m) is true for m ≥ 1. The proof of the claim will be by induction

on m. I shall first show that P (1) is true.

y1 = x0 + |y0| − 1 = 1(x0 − 1) + |y0| > 0

Suppose P (m) is true. I shall show that P (m+ 1) is true.

ym+1 = xm + |ym| − 1

= x0 + [m(x0 − 1) + |y0|]− 1

= (m+ 1)(x0 − 1) + |y0| > 0

and so P (m+1) is true. Thus the proof of the claim is complete. So {(yn)}∞n=1

is increasing at a constant rate, therefore the boundedness character is (B,U).

Case 2 : Suppose x0 < −1 and y0 ∈ R. Then

x1 = |x0| = −x0 > 1

y1 = x0 + |y0| − 1 = −x0 + |y0| − 1 ∈ R

and so, by Case 1, the solution {(xn, yn)}∞n=N+1 has the boundedness char-

acter (B,U).

2

Lemma .1.40 Suppose the initial condition (x0, y0) is an element of R2. Then the

solution {(xn, yn)}∞n=0 is eventually periodic with period-2.

Proof : Recall R2 = {(x, y) : |x| < 1}. Clearly, xn = |x0| for all n ≥ 0.
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Case 1 : Suppose 0 ≤ x0 < 1 and |y0| ≤ 1− x0. Then

y1 = x0 + |y0| − 1 ≤ 0

y2 = x1 + |y1| − 1 = x1 + (−x0 − |y0|+ 1)− 1 = −|y0|

y3 = x2 + |y2| − 1 = x0 + |y0| − 1 = y1.

So for n ≥ 1 the periodic solution is

(x2n, y2n) = (x0,−|y0|)

(x2n+1, y2n+1) = (x0, x0 + |y0| − 1).

Case 2 : Suppose 0 ≤ x0 < 1 and |y0| > 1−x0. Then for each integer 1 ≤ m ≤ K− 1,

where K = d−|y0|
x0−1
e, note K ≥ 2, let P (m) be the following statement:

ym = m(x0 − 1) + |y0| > 0

Claim: P (m) is true for 1 ≤ m ≤ K − 1. The proof of the Claim will be by

induction on m. It is clear that P (1) is true because y1 = x0 + |y0| − 1 > 0.

So if K = 2 then I have shown that for 1 ≤ m ≤ K− 1, the claim is true. So

assume K ≥ 3. Let m be an integer such that 1 ≤ m ≤ K − 2 and suppose

P (m) is true. I shall show that P (m+ 1) is true. So

ym+1 = xm + |ym| − 1

= x0 + [m(x0 − 1) + |y0|]− 1

= (m+ 1)(x0 − 1) + |y0| > 0.

The proof of the Claim is complete. So P (m) is true for 1 ≤ m ≤ K − 1. In

particular P (K − 1) is true. Then

yK−1 = (K − 1)(x0 − 1) + y0 > 0

yK = xK−1 + |yK−1| − 1

= x0 + [(K − 1)(x0 − 1) + |y0|]− 1
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= K(x0 − 1) + |y0|

= (d |y0|
x0−1
e)(x0 − 1) + y0 ≤ 0

and so
yK+1 = xK + |yK | − 1

= x0 + [−K(x0 − 1)− y0]− 1

= x0 −K(x0 − 1)− y0 − 1

= (−K + 1)(x0 − 1)− y0

= −[(K − 1)(x0 − 1) + y0]

= −yK−1 < 0

yK+2 = xK+1 + |yK+1| − 1

= x0 + yK−1 − 1

= x0 + [(K − 1)(x0 − 1) + y0]− 1

= K(x0 − 1)− y0 = yK .

So for n ≥ 1 the periodic solution is

(xK+2n, yK+2n) = (x0, K(x0 − 1) + y0)

(xK+2n+1, yK+2n+1) = (x0,−[(K − 1)(x0 − 1) + y0])

and this completes the proof of Case 2.

Case 3 : Suppose −1 < x0 < 0 and y0 ∈ R. Then

x1 = |x0| = − x0 > 1

y1 = x0 + |y0| − 1 = − x0 + |y0| − 1 ∈ R

and so, by Cases 1 and 2, the solution {(xn, yn)}∞n=N is eventually periodic

with period-2.

2
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.1.9 Systems(44 and 45)

In this section I first consider the system of piecewise linear difference equa-

tions 
xn+1 = |xn|

, n = 0, 1, ... (44)
yn+1 = xn + |yn|

where the initial conditions x0 and y0 are arbitrary real numbers.

The set of equilibrium points are found on the following line: {(x, y) : x =

0 and y ≥ 0}.

Global Results

Theorem .1.41 Let {(xn, yn)}∞n=0 be a solution of System(44) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 is either an equilibrium, or has the boundedness

character (B,U). In particular, if |x0| = 0 then the solution is (x̄, ȳ) = (0, |y0|),

and if |x0| 6= 0 then {(xn)}∞n=1 = |x0| and {(yn)}∞n=1 is increasing without bound.

The proof is by computations and will be omitted.

System(45)

Next, I consider the system of piecewise linear difference equations
xn+1 = |xn|

, n = 0, 1, ... (45)
yn+1 = xn + |yn|+ 1

where the initial conditions x0 and y0 are arbitrary real numbers.

Global Results

Theorem .1.42 Let {(xn, yn)}∞n=0 be a solution of System(45) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (B,U). In particular,

{(xn)}∞n=1 = |x0| and {(yn)}∞n=1 is increasing without bound.

The proof is by computations and will be omitted.
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.1.10 Systems(46 - 48, 52, 53)

All five systems share the same first difference equation, xn+1 = |xn|+ 1. It is

clear that xn = |x0|+ n for n ≥ 1 and {xn}∞n=0 is increasing without bound.

System(46)

I first consider the system of piecewise linear difference equations
xn+1 = |xn|+ 1

, n = 0, 1, ... (46)
yn+1 = xn − |yn| − 1

where the initial conditions x0 and y0 are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(46) is

(U,U).

Global Results

Theorem .1.43 Let {(xn, yn)}∞n=0 be a solution of System(46) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U). In particular,

{xn}∞n=N and {xn}∞n=N are both increasing without bound.

Recall {xn}∞n=0 is increasing without bound.

Lemma .1.44 Suppose there exists a non-negative natural number N such that

|yN | ≤ xN − 1 and xN ≥ 0. Then the solution {(xn, yn)}∞n=N has the boundedness

character (U,U).

Proof : Suppose |yN | ≤ xN − 1 and xN ≥ 0. For each integer m ≥ 1, let P (m) be

the following statement:

yN+2m = |yN |+m > 0

yN+2m+1 = xN − |yN |+ (m− 1) > 0.

Claim: P (m) is true for m ≥ 1. The proof of the claim will be by induction on m.

126



I shall first show that P (1) is true. Hence

yN+1 = xN − |yN | − 1 ≥ 0

yN+2(1) = xN+1 − |yN+1| − 1

= |x0|+N + 1− [xN − |yN | − 1]− 1

= |x0|+N + 1− [|x0|+N − |yN | − 1]− 1

= |yN |+ 1 > 0

yN+2(1)+1 = xN+2 − |yN+2| − 1

= |x0|+N + 2− [|yN |+ 1]− 1

= |x0|+N − |yN |

= xN − |yN | > 0.

So P (1) is true. Suppose P (m) is true. I shall show that P (m+ 1) is true. Hence

yN+2(m+1) = xN+2m+1 − |yN+2m+1| − 1

= |x0|+N + 2m+ 1− [xN − |yN |+ (m− 1)]− 1

= xN + 2m− xN + |yN | − (m− 1)

= |yN |+ (m+ 1) > 0

yN+2(m+1)+1 = xN+2m+2 − |yN+2m+2| − 1

= |x0|+N + 2m+ 2− [|yN |+ (m+ 1)]− 1

= xN − |yN |+ [(m+ 1)− 1] > 0

and so P (m + 1) is true and the proof of the Claim is complete. So {yN+2m}∞m=1

and {yN+2m+1}∞m=1 are increasing without bound. 2

Lemma .1.45 Suppose there exists a non-negative natural number N such that

|yN | > xN − 1 and xN ≥ 0. Then the solution {(xn, yn)}∞n=N has the boundedness

character (U,U).
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Proof : It suffices to show that there exists an integer M ≥ 0 such that {yn}∞n=N+M

is increasing without bound (that is, yN+M ≥ 0).

For the sake of contradiction assume that it is false that there exists and integer

M ≥ 0 such that yN+M ≥ 0 and {yn}∞n=N+M is increasing without bound.

Suppose |yN | > xN − 1 and xN ≥ 0. Then yN+1 = xN − |yN | − 1 < 0. For each

integer m ≥ 2, let P (m) be the following statement

yN+m = yN+m−1 + xN+m−2.

Recall by assumption that yN+m < 0 for every integer m ≥ 2. Claim: P (m) is true

for m ≥ 2. The proof of the claim will be by induction on m. I shall first show

that P (2) is true. Hence

yN+2 = xN+1 − |yN+1| − 1

= |x0|+N + 1− [−xN + |yN |+ 1]− 1

= |x0|+N + xN − |yN | − 1

= (xN − |yN | − 1) + xN

= yN+1 + xN .

So P (2) is true. Suppose P (m) is true. I shall show that P (m+ 1) is true. Hence

yN+(m+1) = xN+m − |yN+m| − 1

= |x0|+N +m− (−yN+m−1 − xN+m−2)− 1

= |x0|+N +m+ yN+m−1 + |x0|+N +m− 2− 1

= yN+m−1 + |x0|+N +m− 1 + |x0|+N +m− 2

= yN+m−1 + xN+m−1 + xN+m−2

= yN+m − xN+m−2 + xN+m−1 + xN+m−2

= yN+m + xN+m−1
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and so P(m+1) is true. Clearly, {yn}∞n=N+m is increasing at a growing rate. This

leads to a contradiction. So there exists a smallest M such that yN+M ≥ 0. Then,

by Lemma .1.46, the solution {yn}∞n=N+M is increasing without bound. 2

System(47)

I next consider the system of piecewise linear difference equations
xn+1 = |xn|+ 1

, n = 0, 1, ... (47)
yn+1 = xn − |yn|

where the initial conditions x0 and y0 are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(47) is

(U,U).

Global Results

Theorem .1.46 Let {(xn, yn)}∞n=0 be a solution of System(47) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U). In particular,

{xn}∞n=N and {xn}∞n=N are both increasing without bound.

Recall {xn}∞n=0 is increasing without bound. So there exists a smallest non-negative

integer N such that xN ≥ 0. Suppose n ≥ N then the change of variables, xn =

Xn − 1 and Yn = yn reduces the system to
Xn+1 = |Xn|+ 1

, n = 0, 1, ... (46)
Yn+1 = Xn − |Yn| − 1

which is System(46). See Theorem .1.43.

System(48)

I next consider the system of piecewise linear difference equations
xn+1 = |xn|+ 1

, n = 0, 1, ... (48)
yn+1 = xn − |yn|+ 1
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where the initial conditions x0 and y0 are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(48) is

(U,U).

Global Results

Theorem .1.47 Let {(xn, yn)}∞n=0 be a solution of System(48) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U). In particular,

{xn}∞n=N and {xn}∞n=N are both increasing without bound.

Recall {xn}∞n=0 is increasing without bound. So there exists a smallest non-negative

integer N such that xN ≥ 0. Suppose n ≥ N then the change of variables, xn =

Xn − 2 and Yn = yn reduces the system to
Xn+1 = |Xn|+ 1

, n = 0, 1, ... (46)
Yn+1 = Xn − |Yn| − 1

which is System(46). See Theorem .1.43.

Systems(52 and 53)

I next consider the system of piecewise linear difference equations
xn+1 = |xn|+ 1

, n = 0, 1, ... (52)
yn+1 = xn + |yn| − 1

where the initial conditions x0 and y0 are arbitrary real numbers.

I show that the boundedness characteristic of every solution of System(52) is

(U,U).

Global Results

Theorem .1.48 Let {(xn, yn)}∞n=0 be a solution of System(52) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U). In particular,

{xn}∞n=N and {xn}∞n=N are both increasing without bound.
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Recall {xn}∞n=0 is increasing without bound. So there exists a smallest non-negative

integer N such that xN ≥ 0. Suppose n ≥ N then the change of variables, xn =

Xn + 1 and Yn = yn reduces the system to
Xn+1 = |Xn|+ 1

, n = 0, 1, ... (53)
Yn+1 = Xn + |Yn|

which is System(53). By inspection, it is clear that {yn}∞n=0 of System(53) is

increasing without bound.
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Appendix .2

.2 Summary of Results for the 81 Systems of Piecewise Linear Differ-
ence Equations

System(1) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

It has the unique equilibrium point (1,-1), and the following two prime period-6

solutions:

P1
6 =



x0 = 3 , y0 = −3

x1 = 5 , y1 = −1

x2 = 5 , y2 = 3

x3 = 1 , y3 = 1

x4 = −1 , y4 = −1

x5 = 1 , y5 = −3



or P2
6 =



x0 =
7

5
, y0 = −3

x1 =
17

5
, y1 = −13

5

x2 = 5 , y2 = −1

5

x3 =
21

5
, y3 = −19

5

x4 = −3

5
, y4 = −3

5

x5 =
1

5
, y5 = −11

5



.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(1) with (x0, y0) ∈ R2. Then

either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a non-

negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(1) is either

the prime period-6 cycle P1
6 or the prime period-6 cycle P2

6.

See [5].

.......................................................................
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System(2) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn − |yn|

It has the unique equilibrium point (0, -1) and the following two prime period-5

solutions:

P1
5 =



x0 = −2 , y0 = −1

x1 = 2 , y1 = −3

x2 = 3 , y2 = −1

x3 = 4 , y3 = 3

x4 = 0 , y4 = 1


or P2

5 =



x0 = 0 , y0 =
1

7

x1 = −8

7
, y1 = −1

7

x2 =
2

7
, y2 = −9

7

x3 =
4

7
, y3 = −1

x4 =
4

7
, y4 = −3

7



.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(2) with (x0, y0) ∈ R2. Then

either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a non-

negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(2) is either

the prime period-5 cycle P1
5 or the prime period-5 cycle P2

5.

See [4]. Also see Manuscript 1.

.......................................................................

System(3) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

It has the unique equilibrium point
(
−3

5
,
1

5

)
and the following two prime period-3

and prime period-4 solutions:
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P1
3 =



x0 = −1 , y0 =
1

3

x1 = −1

3
, y1 = −1

3

x2 = −1

3
, y2 =

1

3


or P2

3 =



x0 = −1

5
, y0 = −3

5

x1 = −1

5
, y1 =

3

5

x2 = −7

5
, y2 =

1

3


.

P1
4 =



x0 = −1 , y0 = 1

x1 = −1 , y1 = −1

x2 = 1 , y2 = −1

x3 = 1 , y3 = 1


or P2

4 =



x0 = −3 , y0 = −1

x1 = 3 , y1 = −3

x2 = 5 , y2 = 1

x2 = 3 , y2 = 5


.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(3) with (x0, y0) ∈ R2. Then

either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a non-

negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(3) is either

the prime period-3 cycle P1
3 or the prime period-3 cycle P2

3, or the prime period-4

cycle P1
4 or the prime period-4 cycle P2

4.

See [5].

.......................................................................

System(4) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn − 1

The unique equilibrium point of this system is (0, -1).

We can see that the system can be reduced to the second order difference equation

xn+1 = |xn| − (xn−1 − 1)− 1 = |xn| − xn−1.
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Theorem: Let {(xn, yn)}∞n=0 be a solution of System(4) with (x0, y0) ∈ R2. Then

every solution is periodic with prime period-9.

See [2].

.......................................................................

System(5) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn

The unique equilibrium point of this system is
(
−1

3
,−1

3

)
.

Open problem.

.......................................................................

System(6) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn + 1

The unique equilibrium point of this system is
(
−2

3
,
1

3

)
.

Open problem.

.......................................................................

System(7) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

This system has the unique equilibrium point
(
−1

5
,−3

5

)
and the following two

prime period-3 and prime period-4 solutions:

135



P1
3 =



x0 = −1

3
, y0 = −1

x1 =
1

3
, y1 = −1

3

x2 = −1

3
, y2 = −1

3


or P2

3 =



x0 =
3

5
, y0 =

1

5

x1 = −3

5
, y1 = −1

5

x2 = −1

5
, y2 = −7

5


.

P1
4 =



x0 = −1 , y0 = −1

x1 = 1 , y1 = −1

x2 = 1 , y2 = 1

x3 = −1 , y3 = 1


or P2

4 =



x0 = 1 , y0 = −3

x1 = 3 , y1 = 3

x2 = −1 , y2 = 5

x3 = −5 , y3 = 3


.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(3) with (x0, y0) ∈ R2. Then

either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a non-

negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(3) is either

the prime period-3 cycle P1
3 or the prime period-3 cycle P2

3, or the prime period-4

cycle P1
4 or the prime period-4 cycle P2

4.

See [5].

.......................................................................

System(8) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn + |yn|

This system possesses the unique equilibrium point
(
−2

5
,−1

5

)
and the following

two prime period-3 solutions:
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P1
3 =


x0 = 0 , y0 = −1

x1 = 0 , y1 = 1

x2 = −2 , y2 = 1

 or P2
3 =



x0 = 0 , y0 = −1

3

x1 = −2

3
, y1 =

1

3

x2 = −2

3
, y2 = −1

3


.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(8) with (x0, y0) ∈ R2. Then

either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a non-

negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(8) is either

the prime period-3 cycle P1
3 or the prime period-3 cycle P2

3.

See [3]. Also see Manuscript 2.

.......................................................................

System(9) 
xn+1 = |xn| − yn − 1

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

It has the unique equilibrium point (-1, 1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(10) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (x̄, ȳ).

See [5].

.......................................................................

System(10) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

It has the unique equilibrium point (1, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(10) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=6 is the unique equilibrium (x̄, ȳ).

See Theorem .1.2.
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.......................................................................

System(11) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn − |yn|

It has the unique equilibrium point (0, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(11) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (x̄, ȳ).

See [5].

.......................................................................

System(12) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

It has the unique equilibrium point
(
−1

5
,
2

5

)
and the following two prime period-3

solutions:

P1
3 =


x0 = −1 , y0 = 0

x1 = 1 , y1 = 0

x2 = 1 , y2 = 2

 or P2
3 =



x0 = −1

3
, y0 = 0

x1 =
1

3
, y1 =

2

3

x2 = −1

3
, y2 =

2

3


.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(12) with (x0, y0) ∈ R2. Then

either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a non-

negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(12) is either

the prime period-3 cycle P1
3 or the prime period-3 cycle P2

3.

See [3]. Also see Theorem .1.8.
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.......................................................................

System(13) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn − 1

It has the unique equilibrium point (1, 0).

Open problem. Note: The change of variables, yn = Yn − 1, reduces it to Sys-

tem(23), the Gingerbread man map.

See [1].

.......................................................................

System(14) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn

It has the unique equilibrium point (1, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(14) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is a prime period-9 cycle P2
3.

See [2].

.......................................................................

System(15) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn + 1

It has the unique equilibrium point
(
−1

3
,
2

3

)
.

Open problem.

Note: The change of variables, yn = Yn + 1, reduces it to System(5).

.......................................................................
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System(16) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

It has the unique equilibrium point (1, 0) and the following two prime period-5

solutions:

P1
5 =



x0 = −1 , y0 = 0

x1 = 1 , y1 = −2

x2 = 3 , y2 = 2

x3 = 1 , y3 = 4

x4 = −3 , y4 = 4


or P2

5 =



x0 = 1 , y0 =
4

7

x1 =
3

7
, y1 = −4

7

x2 = −1

7
, y2 = 0

x3 =
1

7
, y3 = −8

7

x4 =
9

7
, y4 =

2

7



.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(16) with (x0, y0) ∈ R2. Then

either {(xn, yn)}∞n=0 is the unique equilibrium (x̄, ȳ), or else there exists a non-

negative integer N ≥ 0 such that the solution {(xn, yn)}∞n=N of System(16) is either

the prime period-5 cycle P1
5 or the prime period-5 cycle P2

5.

Note: The change of variables, xn = −Yn and yn = Xn, reduces it to System(2).

See [4]. Also see Manuscript 1.

.......................................................................

System(17) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn + |yn|

It has the unique equilibrium point (0, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(17) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (0, 0).

See [5].
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.......................................................................

System(18) 
xn+1 = |xn| − yn

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

It has the unique equilibrium point (-1, 2).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(18) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (−1, 2).

See [5].

.......................................................................

System(19) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

It has the unique equilibrium point (3, 1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(19) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is eventually the unique equilibrium (3, 1).

See Theorem .1.10.

.......................................................................

System(20) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn − |yn|

It has the unique equilibrium point (2, 1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(20) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (2, 1).

See [5].
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.......................................................................

System(21) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

It has the unique equilibrium point (1, 1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(21) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (1, 1).

See [5].

.......................................................................

System(22) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn − 1

It possesses the unique equilibrium point (2, 1).

Open problem.

.......................................................................

System(23) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn

It possesses the unique equilibrium point (1, 1).

This system is the Gingerbread man map.

Open problem.

.......................................................................
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System(24) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn + 1

It has the unique equilibrium point (1, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(24) with (x0, y0) ∈ R2. Then

every solution is periodic with prime period-9.

Note: The change of variables, yn = Yn + 2, reduces it to System(4).

See [2].

.......................................................................

System(25) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

It has the unique equilibrium point (1, 1), and the following two prime period-6

solutions:

P1
6 =



x0 = 3 , y0 = 3

x1 = 1 , y1 = 5

x2 = −3 , y2 = 5

x3 = −1 , y3 = 1

x4 = 1 , y4 = −1

x5 = 3 , y5 = 1



or P2
6 =



x0 = −3 , y0 =
7

5

x1 =
13

5
, y1 =

17

5

x2 =
1

5
, y2 = 5

x3 = −19

5
, y3 =

21

5

x4 =
3

5
, y4 = −3

5

x5 = −11

5
, y5 =

1

5



.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(25) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is either the unique equilibrium solution, the prime period-6 cycle P1
6
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or the prime period-6 cycle P2
6.

See [5].

.......................................................................

System(26) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn + |yn|

The unique equilibrium point of this system is (0, 1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(26) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (0, 1).

See Theorem .1.1.

.......................................................................

System(27) 
xn+1 = |xn| − yn + 1

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

The unique equilibrium point of this system is (-1, 3).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(27) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually the unique equilibrium (−1, 3).

See Theorem .1.9.

.......................................................................
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System(28) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

This system has no equilibrium point.

The boundedness characteristic of this system is (B, U).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(28) with (x0, y0) ∈ R2. Then

every solution is eventually period-2 in {xn}. More precisely, if |x0| < 1 then the

period-2 solution is {−|x0|, |x0| − 1}. Every solution is unbounded in {yn}.

See Theorem .1.17.

.......................................................................

System(29) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn − |yn|

This system has no equilibrium point.

The boundedness characteristic of this system is (B, U).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(29) with (x0, y0) ∈ R2. Then

every solution is eventually period-2 in {xn} and every solution is unbounded in

{yn}.

See Theorem .1.18.

.......................................................................
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System(30) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

The unique equilibrium point of this system is
(
−1

2
,
1

3

)
.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(30) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is eventually the equilibrium solution
(
−1

2
,
1

4

)
, periodic

with prime period-2 or periodic with prime period-4. See Theorem .1.19

.......................................................................

System(31) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn − 1

The unique equilibrium point of this system is
(
−1

2
,−3

2

)
.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(31) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is eventually periodic with period-2.

See Theorem .1.23.

.......................................................................
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System(32) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn

The unique equilibrium point of this system is
(
−1

2
,−1

2

)
.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(32) with (x0, y0) ∈ R2. Every

solution of this system is eventually periodic with period-2. In particular, if |x0| =

m+ α, where m ∈ {0, 1, 2, . . .}, and α ∈ R such that 0 ≤ α < 1 then the period-2

solution in {xn} is {α− 1,−α}.

See Theorem .1.25.

.......................................................................

System(33) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn + 1

The unique equilibrium point of this system is
(
−1

2
,
1

2

)
.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(33) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is eventually periodic with period-2.

See Theorem .1.24.

.......................................................................

System(34) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

The unique equilibrium point of this system is
(
−1

2
,−3

4

)
.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(34) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is eventually the equilibrium solution
(
−1

2
,
1

4

)
, periodic

with prime period-2 or periodic with prime period-4. See [5].
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.......................................................................

System(35) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn + |yn|

The unique equilibrium point of this system is
(
−1

2
,−1

4

)
.

Conjecture: The boundedness characteristic is (B, B) and there exist prime period-

4 solutions.

.......................................................................

System(36) 
xn+1 = |xn| − 1

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

This system has no equilibrium point.

The boundedness characteristic of this system is (B, U).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(36) with (x0, y0) ∈ R2.

Then every solution is eventually (not necessarily prime) period-2 in {xn} and

every solution is unbounded in {yn}. In particular, if |x0| = m + α, where

m ∈ {−1, 0, 1, 2, . . .},and α ∈ R such that 0 < α ≤ 1 then the period-2 solu-

tion in {xn} is {α− 1,−α}.

See [5].

.......................................................................

System(37) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn − |yn| − 1
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The equilibrium lines are:

if y ≥ 0, then y =
1

2
x− 1

2
, and if y < 0, then x = 1.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(37) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is either an equilibrium point, a period-2 solution, or it has the bound-

edness character (B,U).

See Theorem .1.26.

.......................................................................

System(38) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn − |yn|

The equilibrium lines are:

if y ≥ 0, then y =
1

2
x, and if y < 0, then x = 0.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(38) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is either an equilibrium solution or a period-2 solution.

See Theorem .1.31.

.......................................................................

System(39) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

The equilibrium lines are:

if y ≥ 0, then y =
1

2
x+

1

2
, and if y < 0, then x = −1.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(39) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is either an equilibrium solution or a period-2 solution. In particular,

if the initial condition is (x0, y0) then the prime period-2 solution in {yn} is {x0−

y0 + 1, y0}.

See [5].
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.......................................................................

System(40) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn − 1

If the initial condition is (x0, y0) then the equilibrium point is (|x0|, |x0| − 1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(40) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually an equilibrium solution.

Note: The change of variables: yn = Yn − 1, reduces it to System(41).

.......................................................................

System(41) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn

If the initial condition is (x0, y0) then the equilibrium point is (|x0|, |x0|).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(41) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is eventually an equilibrium solution.

Clearly, xn = yn = |x0| for n ≥ 2.

.......................................................................

System(42) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn + 1

If the initial condition is (x0, y0) then the equilibrium point is (|x0|, |x0|+ 1).
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Theorem: Let {(xn, yn)}∞n=0 be a solution of System(42) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is eventually an equilibrium solution.

Note: The change of variables: yn = Yn + 1, reduces it to System(41).

.......................................................................

System(43) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

The equilibrium lines are:

if y ≥ 0, then x = 1, and if y < 0, then y =
1

2
x− 1

2
.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(43) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is either an equilibrium point, a period-2 solution, or it has the bound-

edness character (B,U).

See Theorem .1.37.

.......................................................................

System(44) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn + |yn|

The equilibrium line is the positive y-axis.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(44) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness character

(B,U).

See Theorem .1.41.

.......................................................................
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System(45) 
xn+1 = |xn|

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(45) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (B,U).

See Theorem .1.42.

.......................................................................

System(46) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(46) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

See Theorem .1.43.

.......................................................................

System(47) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn − |yn|

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(47) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

See Theorem .1.46.

.......................................................................
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System(48) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(48) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

See Theorem .1.47.

.......................................................................

System(49) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn − 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(49) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

Note: The change of variables: yn = Yn − 1, reduces it to System(50).

.......................................................................

System(50) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(50) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................
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System(51) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn + 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(51) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

Note: The change of variables: yn = Yn + 1, reduces it to System(50).

.......................................................................

System(52) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(52) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

See Theorem .1.48.

.......................................................................

System(53) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn + |yn|

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(53) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................
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System(54) 
xn+1 = |xn|+ 1

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(54) with (x0, y0) ∈ R2. Then

{(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................

System(55) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

The equilibrium point of this system is (3, 1).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(55) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

.......................................................................

System(56) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn − |yn|

The equilibrium point of this system is (2, 1).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(56) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

.......................................................................
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System(57) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

The equilibrium points of this system are (1, 1), (−1,−1), and (−1

3
,
1

3
).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(57) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

.......................................................................

System(58) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn − 1

The equilibrium points of this system are (2, 1), and (−2,−3).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(58) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

.......................................................................

System(59) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn

The equilibrium points of this system are (1, 1), and (−1,−1).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(59) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

.......................................................................
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System(60) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn + 1

The equilibrium point of this system is (0, 1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(60) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

Note: The change of variables: yn = Yn + 2, reduces it to System(76).

.......................................................................

System(61) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

The equilibrium points of this system are (1, 1), and (−1,−1).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(61) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

.......................................................................

System(62) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn + |yn|

The equilibrium points of this system are (0, 1), and
(
−2

3
,−1

3

)
.

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(62) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).
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.......................................................................

System(63) 
xn+1 = |xn|+ yn − 1

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

This system does not possess an equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(63) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................

System(64) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

This system has the equilibrium point (1, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(64) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

Note: The change of variables, xn = −Yn and yn = −Xn, reduces it to System(74).

.......................................................................

System(65) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn − |yn|

The equilibrium point of this system is (0, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(65) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).
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.......................................................................

System(66) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

This system has the equilibrium point (−1,−2).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(66) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 is either an equilibrium point, or periodic with

(not necessarily prime) period-2, or it has the boundedness character (U,U).

Note: The change of variables, xn = −Yn and yn = −Xn, reduces it to System(56).

.......................................................................

System(67) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn − 1

This system has the equilibrium points (1, 0) and (−1,−2).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(67) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

Note: The change of variables, yn = Yn − 1, reduces it to System(59).

.......................................................................

System(68) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn

The equilibrium point of this system is (0, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(68) with (x0, y0) ∈ R2. Then
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the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

Note: The change of variables, yn = Yn − 1, reduces it to System(60).

.......................................................................

System(69) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn + 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(69) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

Note: The change of variables: yn = Yn + 1, reduces it to System(77).

.......................................................................

System(70) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

The equilibrium points of this system are (1, 0), and
(
−1

3
,−2

3

)
.

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(70) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

Note: The change of variables, xn = Yn and yn = Xn, reduces it to System(62).

.......................................................................
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System(71) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn + |yn|

The equilibrium point of this system is (0, 0).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(71) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

.......................................................................

System(72) 
xn+1 = |xn|+ yn

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(72) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................

System(73) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn − |yn| − 1

The equilibrium point of this system is (1,−1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(73) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

See [5].

.......................................................................
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System(74) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn − |yn|

The equilibrium point of this system is (0,−1).

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(74) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point or it has the boundedness

character (U,U).

.......................................................................

System(75) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn − |yn|+ 1

The equilibrium point of this system is (−1,−3).

Conjecture: Let {(xn, yn)}∞n=0 be a solution of System(75) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either an equilibrium point, or periodic with period-2,

or it has the boundedness character (U,U).

.......................................................................

System(76) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn − 1

The equilibrium point of this system is (0,−1).

Theorem:Let {(xn, yn)}∞n=0 be a solution of System(76) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 is either the equilibrium point or it has the boundedness

character (U,U).

Note: The change of variables, yn = Yn − 2, reduces it to System(60).

162



.......................................................................

System(77) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn

This system has no equilibrium point.

The Theorem:Let {(xn, yn)}∞n=0 be a solution of System(77) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

Note: The change of variables, yn = Yn − 1, reduces it to System(69).

.......................................................................

System(78) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn + 1

This system has no equilibrium point.

The Theorem:Let {(xn, yn)}∞n=0 be a solution of System(78) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................

System(79) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn + |yn| − 1

This system has no equilibrium point.

The Theorem:Let {(xn, yn)}∞n=0 be a solution of System(79) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................
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System(80) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn + |yn|

This system has no equilibrium point.

The Theorem:Let {(xn, yn)}∞n=0 be a solution of System(80) with (x0, y0) ∈ R2.

Then the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................

System(81) 
xn+1 = |xn|+ yn + 1

, n = 0, 1, ...
yn+1 = xn + |yn|+ 1

This system has no equilibrium point.

Theorem: Let {(xn, yn)}∞n=0 be a solution of System(81) with (x0, y0) ∈ R2. Then

the solution {(xn, yn)}∞n=0 has the boundedness character (U,U).

.......................................................................
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Appendix .3

.3 On the Global Behavior of xn+1 =
α1

xn + yn
and yn+1 =

α2 + β2xn + yn
B2xn + yn
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.3.1 Abstract

We investigate the system of rational difference equations in the title, where

the parameters and initial conditions are positive real values. We show that the

system is permanent. We also find sufficient conditions to insure that every positive

solution of the system converges.

.3.2 Introduction

We show that the system of rational difference equations
xn+1 =

α1

xn + yn
, n = 0, 1, . . .

yn+1 =
α2 + β2xn + yn
B2xn + yn

(.5)

is permanent, where the parameters α1, α2, β2, B2 and the initial conditions x0, y0 of

the system are positive real numbers. We actually show that there exist positive

real numbers l1, l2, L1, L2 such that for every positive solution {(xn, yn)}∞n=0 of

system (.5), we have

l1 < xn < L1 and l2 < yn < L2 for n ≥ 4.

We also find sufficient conditions to insure that every positive solution of

system (.5) converges.

During the last four years we have been interested in the boundedness char-

acter and the global behavior of systems of rational difference equations. This

paper is part of a general project which involves the system of rational difference

equations 
xn+1 =

α1 + β1xn + γ1yn
A1 +B1xn + C1yn

, n = 0, 1, . . .

yn+1 =
α2 + β2xn + γ2yn
A2 +B2xn + C2yn

(.6)

which includes 2401 special cases. In the numbering system which was introduced

by Camouzis, Kulenović, Ladas, and Merino in ([6]), system (2) is referred to

166



as System(12,48). Related work has recently been given in ([1]-[10]) and ([13]-[15]).

This theorem gives a sufficient condition to insure that a system of k contin-

uous functions have a unique positive equilibrium, and it is a global attractor.

Theorem .3.1 ([11]) Let k be a positive integer. For i ∈ {1, 2, . . . , k}, as-

sume [ai, bi] is a closed and bounded interval of real numbers, and let F i :

[a1, b1] × [a2, b2] × . . . × [ak, bk] → [ai, bi] be a continuous function. For each

i, j ∈ {1, 2, . . . , k}, let Mi,j : [ai, bi] → [ai, bi] and mi,j : [ai, bi] → [ai, bi] be de-

fined as follows: given mi,Mi ∈ [ai, bi]

set

Mi,j(mi,Mi) =

{
Mi, if Fj is increasing in zi
mi, if Fj is non− increasing in zi

and

mi,j(mi,Mi) = Mi,j(Mi,mi).

Assume that for each i ∈ {1, 2, . . . , k}, that the function F i, satisfies the

following conditions:

1. F i(z1, z2, . . . , zk) is weakly monotonic in each of its arguments.

2. If M1,M2, . . . ,Mk,m1,m2, . . . ,mk, where mi ≤Mi for each i ∈ {1, 2, . . . , k},

is a solution of the system of 2k equations:{
Mi = F i(M1,i(m1,M1),M2,i(m2,M2), . . . ,Mk,i(mk,Mk))
mi = F i(m1,i(m1,M1),m2,i(m2,M2), . . . ,mk,i(mk,Mk))

then

Mi = mi, for all i ∈ {1, 2, . . . , k}.

Then the system of k difference equations:
x1
n+1 = F 1(x1

n, x
2
n, . . . , x

k
n)

x2
n+1 = F 2(x1

n, x
2
n, . . . , x

k
n) , n = 0, 1, . . .

...
xkn+1 = F k(x1

n, x
2
n, . . . , x

k
n)
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with initial condition (x1
0, x

2
0, . . . , x

k
0) ∈ [a1, b1]× [a2, b2]× . . .× [ak, bk], has exactly

one equilibrium point (x̄1, x̄2, . . . , x̄k), and it is a global attractor.

.3.3 Permanence

Recall System(12,48)
xn+1 =

α1

xn + yn
, n = 0, 1, . . . (2)

yn+1 =
α2 + β2xn + yn
B2xn + yn

where the parameters α1, α2, β2, B2 and the initial conditions x0, y0 of the system

are positive real numbers.

System(12,48) is permanent if there exist positive real numbers l1, L1, l2, L2

such that for every positive solution {(xn, yn)}∞n=0 of System(12,48), there exists

an integer N ≥ 0 (possibly depending upon the solution {(xn, yn)}∞n=0 of Sys-

tem(12,48) such that

l1 < xn < L1 and l2 < yn < L2

for every integer n ≥ N.

In view of the above, set

U =
α1

α2

max{B2, 1}

and define l1, L1, l2, L2 as follows:

1. l1 =
α1

(U + 1)[α2(B2U + 1) + (β2U + 1)]

2. L1 = U [α2(B2U + 1) + (β2U + 1)]

3. l2 =
1

B2U + 1

4. L2 = α2(B2U + 1) + (β2U + 1).
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In particular, note that

l1 =
α1

L1 + L2

and L1 = UL2.

Let {(xn, yn)}∞n=0 be a positive solution of System(12,48).

Given a non-negative integer n ≥ 0, note that

xn+1

yn+1

=
α1

xn + yn
· B2xn + yn
α2 + β2xn + yn

=
α1

α2 + β2xn + yn
· B2xn + yn
xn + yn

<
α1

α2

· max{B2, 1}(xn + yn)

xn + yn
=

α1

α2

·max{B2, 1}

= U.

Thus

xn < Uyn for all n ≥ 1.

Hence if n ≥ 1 is an integer, then

yn+1 =
α2 + β2xn + yn
B2xn + yn

>
yn

B2xn + yn
>

yn
B2Uyn + yn

=
1

B2U + 1
= l2

and so

yn > l2 for all n ≥ 2.

Hence if n ≥ 2 is an integer, then

yn+1 =
α2 + β2xn + yn
B2xn + yn

<
α2 + β2xn + yn

yn
<

α2 + β2Uyn + yn
yn

=
α2

yn
+ (β2U + 1) <

α2

l2
+ (β2U + 1) = L2.

That is, for every integer n ≥ 3 we have

l2 < yn < L2.

Now if n ≥ 3 is an integer, then

xn < Uyn < UL2 = L1.
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Hence for every integer n ≥ 3, we also have

xn+1 =
α1

xn + yn
>

α1

L1 + L2

= l1.

In conclusion we see that the following theorem is true.

Theorem .3.2 System(12,48) is permanent. In particular, let {(xn, yn)}∞n=0 be a

positive solution of System(12,48). Then for every integer n ≥ 4, we have

l1 < xn < L1

and

l2 < yn < L2.

.3.4 Global Attractivity Analysis

In this section we give the result in the case α1, α2, B2, β2 ∈ (0,∞). The case

α1, α2, B2 ∈ (0,∞) and β2 = 0 was given in [13].

The following theorem gives a sufficient condition for the unique equilibrium

of System(12,48) to be a global attractor.

Theorem .3.3 Suppose that B2 ≥ β2 and

(α2B2 + β2)(B2 − β2)α2
1(max{B2, 1})2 + (α2 + 1)(B2 − β2)α1α2 max{B2, 1} ≤ α3

2.

Then System(12,48) has a unique positive equilibrium point (x̄, ȳ), and every pos-

itive solution of System(12,48) converges to (x̄, ȳ).

Proof : For (x, y) ∈ (0,∞)× (0,∞), set

f(x, y) =
α1

x+ y
and g(x, y) =

α2 + β2x+ y

B2x+ y

and let R = [l1, L1]× [l2, L2], where l1, L1, l2, and L2 are as defined in section 3.2.

We have the following lemma.
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Lemma .3.4 For (x, y) ∈ R, the following statements are true.

1.
∂f

∂x
(x, y) < 0 2.

∂f

∂y
(x, y) < 0

3.
∂g

∂x
(x, y) < 0 4.

∂g

∂y
(x, y) ≤ 0.

Proof : The proofs of Statements (1), (2) are trivial and will be omitted. For the

proofs of Statements (3) and (4), let (x, y) ∈ R.

We shall first show that Statement (3) is true. Note that as B2 ≥ β2, we have

∂g

∂x
(x, y) =

(B2x+ y)β2 − (α2 + β2x+ y)B2

(B2x+ y)2
=
−α2B2 − (B2 − β2)y

(B2x+ y)2
< 0

and so Statement (3) is true.

Finally, we shall show that Statement (4) is true. Note that the proof that

Statement (4) is true depends upon the fact that (x, y) ∈ R. We have

∂g

∂y
(x, y) =

(B2 − β2)x− α2

(B2x+ y)2
≤ (B2 − β2)L1 − α2

(B2x+ y)2

=
(B2 − β2)UL2 − α2

(B2x+ y)2

=
(B2 − β2)U [α2(B2U + 1) + (β2U + 1)]− α2

(B2x+ y)2

=
(B2 − β2)U [α2B2U + α2 + β2U + 1]− α2

(B2x+ y)2

=
(B2 − β2)U [(α2B2 + β2)U + (α2 + 1)]− α2

(B2x+ y)2

=
(α2B2 + β2)(B2 − β2)U2 + (α2 + 1)(B2 − β2)U − α2

(B2x+ y)2

=
(α2B2 + β2)(B2 − β2)α2

1(max{B2, 1})2

α2
2(B2x+ y)2

+
(α2 + 1)(B2 − β2)α1α2 max{B2, 1} − α3

2

α2
2(B2x+ y)2

≤ 0
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and the proof of the lemma is complete. 2

Let T : (0,∞)× (0,∞)→ (0,∞)× (0,∞) be given by

T (x, y) = (f(x, y), g(x, y)).

Lemma .3.5 T [R] ⊂ R.

Proof : Let (x, y) ∈ R. It suffices to show that

f(x, y) ∈ [l1, L1] and g(x, y) ∈ [l2, L2].

1. We shall first show that l1 ≤ f(x, y).

Note that

l1 =
α1

L1 + L2

≤ α1

x+ y
= f(x, y)

as was to be shown.

2. We shall next show that f(x, y) ≤ L1.

We have

f(x, y) =
α1

x+ y
≤ α1

l1 + l2

and so it suffices to show that

α1

l1 + l2
≤ L1.

That is, we must show that

α1 ≤ L1(l1 + l2).

Now

L1(l1+l2) = UL2(l1+l2) = UL2

(
α1

L1 + L2

+
1

B2U + 1

)
=

UL2α1

L1 + L2

+
UL2

B2U + 1

and so

α1 ≤ L1(l1 + l2)
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if and only if

α1 ≤
UL2α1

L1 + L2

+
UL2

B2U + 1

if and only if

α1(L1 + L2)(B2U + 1) ≤ UL2α1(B2U + 1) + UL2(L1 + L2)

if and only if

α1(B2U + 1)L2 ≤ UL2(L1 + L2)

if and only if

α1B2U + α1 ≤ UL1 + U(B2Uα2 + α2 + β2U + 1)

if and only if

α1B2U + α1 ≤ UL1 +B2Uα2
α1

α2

max{B2, 1}+ α2U + β2U
2 + U

if and only if

α1 ≤ UL1 + α1B2U(max{B2, 1} − 1) + α2U + β2U
2 + U

if and only if

α1 ≤ UL1 +B2Uα1(max{B2, 1} − 1) + α2
α1

α2

max{B2, 1}+ β2U
2 + U

if and only if

0 ≤ UL1 +B2Uα1(max{B2, 1} − 1) + α1(max{B2, 1} − 1) + β2U
2 + U

which is true, and so f(x, y) ≤ L1 as was to be shown.
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3. We shall next show that l2 ≤ g(x, y).

Recall that l2 =
1

B2U + 1
and by Lemma 3.2, g(x, y) is decreasing in both

arguments.

So,

g(x, y) ≥ g(L1, L2) =
α2 + β2L1 + L2

B2L1 + L2

and so it suffices to show that

1

B2U + 1
≤ α2 + β2L1 + L2

B2L1 + L2

.

Now

1

B2U + 1
≤ α2 + β2L1 + L2

B2L1 + L2

if and only if

B2L1 + L2 ≤ (B2U + 1)(α2 + β2L1 + L2)

if and only if

B2UL2 + L2 ≤ B2Uα2 +B2Uβ2L1 +B2UL2 + α2 + β2L1 + L2

if and only if

0 ≤ B2Uα2 +B2Uβ2L1 + α2 + β2L1

which is true. Hence l2 ≤ g(x, y).

4. Finally, we shall show that g(x, y) ≤ L2.

Recall that

L2 = B2Uα2 + α2 + β2U + 1 = α2(B2U + 1) + β2U + 1 =
α2

l2
+ β2U + 1.
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By Lemma 3.2, g(x, y) ≤ g(l1, l2) =
α2 + β2l1 + l2
B2l1 + l2

, and so it suffices to show

that

α2 + β2l1 + l2
B2l1 + l2

≤ B2Uα2 + α2 + β2U + 1.

Now

α2 + β2l1 + l2
B2l1 + l2

≤ B2Uα2 + α2 + β2U + 1

if and only if

α2 + β2l1 + l2 ≤ (B2Uα2 + α2 + β2U + 1)(B2l1 + l2)

if and only if

α2+β2l1+l2 ≤ B2Uα2B2l1+B2Uα2l2+α2B2l1+α2l2+β2UB2l1+β2Ul2+B2l1+l2

if and only if

α2 + β2l1 ≤ α2B
2
2Ul1 + α2B2l1 +B2l1 + (B2U + 1)α2l2 + β2UB2l1 + β2Ul2

if and only if

α2 + β2l1 ≤ α2B
2
2Ul1 + α2B2l1 +B2l1 +

1

l2
α2l2 + β2UB2l1 + β2Ul2

if and only if

β2l1 ≤ α2B
2
2Ul1 + α2B2l1 +B2l1 + β2l1B2U + β2Ul2

if and only if

0 ≤
(
α2B

2
2Ul1 + α2B2l1 +B2l1

)
+ [β2l1(B2U − 1) + β2Ul2] .

It suffices to show that β2l1(B2U − 1) + β2Ul2 ≥ 0.
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Now

β2l1(B2U − 1) + β2Ul2 = β2
α1

L1 + L2

(B2U − 1) + β2U
(

1

B2U + 1

)

=
α1β2

(U + 1)L2

(B2U − 1) +
β2U

B2U + 1

=
α1β2

U + 1

 1
α2

l2
+ β2U + 1

 (B2U − 1) +
β2U

B2U + 1

=
α1β2

U + 1
· 1

α2(B2U + 1) + (β2U + 1)
· (B2U − 1)

+
β2U

B2U + 1

Note that

0 ≤ α1β2 ·
1

α2(B2U + 1) + (β2U + 1)
· (B2U − 1) +

β2U

B2U + 1

if and only if

0 ≤ α1β2(B2U − 1)(B2U + 1) + β2U [α2(B2U + 1) + (β2U + 1)]

if and only if

0 ≤ α1β2(B2
2U

2 − 1) + α2β2(B2U + 1)U + β2U(β2U + 1)

if and only if

α1β2 ≤ α1β2B
2
2U

2 + α2β2B2U
2 + α2β2U + β2

2U
2 + β2U

= α1β2B
2
2U

2 + α2β2B2U
2 + α2β2

α1

α2

max{B2, 1}+ β2
2U

2 + β2U

which is true because

α1β2 ≤ α2β2
α1

α2

max{B2, 1}.
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Therefore it follows that

0 ≤
(
α2B

2
2Ul1 + α2B2l1 +B2l1

)
+ [β2l1(B2U − 1) + β2Ul2] .

2

Let ((m1,M1), (m2,M2)) ∈ [l1, L1]2 × [l2, L2]2 be a solution of the system of

equations

m1 =
α1

M1 +M2

, M1 =
α1

m1 +m2

(.7)

m2 =
α2 + β2M1 +M2

B2M1 +M2

, M2 =
α2 + β2m1 +m2

B2m1 +m2

. (.8)

Then it follows by Theorem .3.1 and Theorem .3.2 that the proof of Theorem

.3.3 will be completed by showing

m1 = M1 and m2 = M2. (.9)

By (.7), we see that

m1(M1 +M2) = α1 = M1(m1 +m2)

and hence that

m1M2 = M1m2. (.10)

By (.8), we see similarly that

B2M1m2 +m2M2 = α2 + β2M1 +M2

B2m1M2 +m2M2 = α2 + β2m1 +m2

and so
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B2(M1m2 −m1M2) = β2(M1 −m1) + (M2 −m2). (.11)

Thus by (.10) and (.11) we see that

0 = β2(M1 −m1) + (M2 −m2)

and so as β2 > 0, we must have

m1 = M1 and m2 = M2 (.12)

and so the proof of Theorem .3.3 is complete.

2

Extensive computer simulations lead us to the following conjecture:

Conjecture .3.1 The unique positive equilibrium of System(12,48) is a global at-

tractor for the entire range of the parameters.
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[9] D. Clark, M.R.S. Kulenović, and J.F. Selgrade, On a system of rational dif-
ference equations, J. Difference Equ. Appl., 11 (2005), 565-580.

[10] J.M. Cushing, Periodically forced nonlinear systems of difference equations,
J. Difference Equ. Appl., 3 (1998), 547-561.

[11] E.A. Grove and G. Ladas, 2005, Periodicities in Nonlinear Difference Equa-
tions (Chapman & Hall/CRC Press).
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