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Brownian Motion [nln63]

Early experimental evidence for atomic structure of matter. Historically im-
portant in dispute between ’atomicists’ and ’energeticists’ in late 19th cen-
tury.

Brown 1828:
Observation of perpetual, irregular motion of pollen grains suspended in wa-
ter. The particles visible under a microscope (pollen) are small enough to
be manifestly knocked around by even smaller particles that are not directly
visible (molecules).

Einstein, Smoluchowski 1905:
Correct interpretation of Brownian motion as caused by collisions with the
molecules of a liquid. Theoretical framework of thermal fluctuations grounded
in the assumption that matter has a molecular structure and with aspects
that are experimentally testable.

Perrin 1908:
Systematic observations of Brownian motion combined with quantitative
analysis. Confirmation of Einstein’s predictions. Experimental determina-
tion of Avogadro’s number.

Langevin 1908:
Confirmation of Einstein’s results via different approach. Langevin’s ap-
proach provided more detailed (less contracted) description of Brownian mo-
tion. Langevin equation proven to be generalizable. Foundation of general
theory of fluctuations rooted in microscopic dynamics.



Relevant Time Scales [nln64]

Conceptually, it is useful to distinguish between heavy and light Brownian
particles. For the most part, only Brownian particles that are heavy com-
pared to the fluid molecules are large enough to be visible under a microscope.

Time scales relevant in the observation and analysis of Brownian particles:

• ∆τC: time between collisions,

• ∆τR: relaxation time,

• ∆τO: time between observations.

Heavy Brownian particles: ∆τC � ∆τR � ∆τO.

Light Brownian particles: ∆τC ' ∆τR � ∆τO.



Einstein’s Theory [nln65]

Theory operates on time scale dt, where ∆τR ¿ dt ¿ ∆τO.
Focus on one space coordinate: x.
Local number density of Brownian particles: n(x, t).
Brownian particles experience shift of size s in time dt.
Probability distribution of shifts: P (s).
Successive shifts are assumed to be statistically independent.
Assumption justified by choice of time scale: ∆τR ¿ dt.

Effect of shifts on profile of number density:

n(x, t + dt) =

∫ +∞

−∞
ds P (s)n(x + s, t).

Expansion of n(x, t) in space and in time:

n(x + s, t) = n(x, t) + s
∂

∂x
n(x, t) +

1

2
s2 ∂2

∂x2
n(x, t) + · · · ,

n(x, t + dt) = n(x, t) + dt
∂

∂t
n(x, t) + · · ·

Integrals (normalization, reflection symmetry, diffusion coefficient):∫ +∞

−∞
ds P (s) = 1,

∫ +∞

−∞
ds sP (s) = 0,

1

2

∫ +∞

−∞
ds s2P (s)

.
= Ddt.

Substitution of expansions with these integrals yields diffusion equation:

∂

∂t
n(x, t) = D

∂2

∂x2
n(x, t).

Solution with initial condition n(x, 0) = Nδ(x− x0) and no boundaries:

n(x, t) =
N√
4πDt

exp

(
−(x− x0)

2

4Dt

)
,

No drift: 〈〈x〉〉 = 0.

Diffusive mean-square displacement: 〈〈x2〉〉 = 2Dt.



Diffusion Equation Analyzed [nln73]

Here we present two simple and closely related methods of analyzing the
diffusion equation,

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t), (1)

in one dimension and with no boundary constraints.

Fourier transform:

Ansatz for plane-wave solution: ρ(x, t)k = ρ̃k(t) eikx.

Substitution of ansatz into PDE (1) yields ODE for Fourier amplitude ρ̃k(t),
which is readily solved:

d

dt
ρ̃k(t) = −Dk2ρ̃k(t) ⇒ ρ̃k(t) = ρ̃k(0) e−Dk2t.

Initial Fourier amplitudes from initial distribution:

ρ̃k(0) =

∫ +∞

−∞
dx e−ikxρ(x, 0). (2)

Time-dependence of distribution as superposition of plane-wave solutions:

ρ(x, t) =

∫ +∞

−∞

dk

2π
eikxρ̃k(0) e−Dk2t. (3)

Green’s function:

Green’s function G(x, t) describes time evolution of point source at x = 0:

G(x, 0) = δ(x) ⇒ G̃k(0)
.
=

∫ +∞

−∞
dx e−ikxG(x, 0) = 1 ⇒ G̃k(t) = e−Dk2t.

⇒ G(x, t) =

∫ +∞

−∞

dk

2π
eikx−Dk2t =

1√
4πDt

e−x
2/4Dt. (4)

Superposition of point-source solutions in the form of a convolution integral:

ρ(x, t) =

∫ +∞

−∞
dx′ρ(x′, 0)G(x− x′, t). (5)



[nex128] Release of Brownian particle from box confinement

Consider a physical ensemble of Brownian particles uniformly distributed inside a one-dimensional
box. The initial density is

ρ(x, 0) =
1

2
θ
(
1− |x|

)
,

where θ(x) is the step function. At time t = 0 the particles are released to diffuse left and right.
Use the two methods presented in [nln73] to calculate the analytic solution,

ρ(x, t) =
1

4

[
erf

(
x+ 1√

4Dt

)
− erf

(
x− 1√

4Dt

)]
,

of the diffusion equation, where the error function is defined as follows:

erf(x)
.
=

2√
π

∫ x

0

du e−u2

.

(a) In the Fourier analysis of [nln73] first calculate the initial Fourier amplitudes via (2) and then
use the result in the integration (3).
(b) In the Green’s function analysis of [nln73] perform the involution integral (5) with the point-
source solution (4) and the initial rectangular initial distribution pertaining to this application.
(c) Plot ρ(x, t) versus x for −3 ≤ x ≤ +3 and Dt = 0, 0.04, 0.2, 1, 5.

Solution:



Smoluchowski Equation [nln66]

Einstein’s result derived from different starting point.

Two laws relating number density and flux of Brownian particles:

(a) Conservation law:
∂

∂t
n(x, t) = − ∂

∂x
j(x, t) (continuity equation);

local change in density due to net flux from or to vicinity.

(b) Constitutive law: j(x, t) = −D ∂

∂x
n(x, t) (Fick’s law);

flux driven by gradient in density.

Combination of (a) and (b) yields diffusion equation for density:

∂

∂t
n(x, t) = D

∂2

∂x2
n(x, t). (1)

Solution of (1) yields flux via (b).

Extension to include drift.

Brownian particles subject to external force Fext(x, t).

Resulting drift velocity v, averaged over time scale dt identified in [nln65],
produces drag force Fdrag = −γv due to front/rear asymmetry of collisions.

Damping constant: γ; mobility: γ−1.

Drift contribution to flux j(x, t) has general form n(x, t)v(x, t).

On time scale dt of [nln65], forces are balanced: Fext + Fdrag = 0.

Drift velocity has reached terminal value: vT = −Fext/γ.

(c) Extended constitutive law: j(x, t) = −D ∂

∂x
n(x, t) + γ−1Fext(x, t)n(x, t).

Substitution of (c) into (a) yields Smoluchowski equation:

∂

∂t
n(x, t) = D

∂2

∂x2
n(x, t) − γ−1 ∂

∂x

[
n(x, t)Fext(x, t)

]
. (2)

The two terms on the rhs represent diffusion and drift, respectively.



Einstein’s Fluctuation-Dissipation Relation [nln67]

Consider a colloid of volume V suspended in a fluid.
Excess mass: m = V (ρcoll − ρfluid).
External (gravitational) force directed vertically down: Fext = −mg.

Smoluchowski equation [nln66]:

∂

∂t
n(z, t) = D

∂2

∂z2
n(z, t) + γ−1 ∂

∂z

[
n(z, t)mg

]
.

Stationary solution: ∂n/∂t = 0 ⇒ n = ns(z).

⇒ d

dz

[
D

dns

dz
+

mg

γ
ns

]
= 0; ns(∞) = 0,

dns

dz

∣∣∣∣
z=∞

= 0.

⇒ ns(z) = ns(0) exp

(
−mg

γD
z

)
.

Comparison with law of atmospheres (thermal equilibrium state) [tex150],

neq(z) = neq(0) exp

(
− mg

kBT
z

)
,

implies

D =
kBT

γ
(Einstein relation).

This is an example of a relation between a quantity representing fluctuations
(D) and a quantity representing dissipation (γ).

The Einstein relation was used to estimate Avogadro’s number NA:

• Colloid in the shape of a solid sphere of radius a.

• Motion in incompressible fluid with viscosity η.

• Stokes’ law for drag force: Fdrag = −6πηav = −γv.

• Damping constant γ = 6πηa (experimentally accessible).

• Diffusion constant D (experimentally accessible).

• Ideal gas constant R = NAkB (experimentally accessible).

• Avogadro’s number: NA =
RT

6πηaD
.



Smoluchowski vs Fokker-Planck [nln68]

The Smoluchowski equation [nln66] as derived from a conservation law and
constitutive law can be transcribed into a Fokker-Planck equation [nln57] if
density and flux of particles are replaced by density and flux of probability.

Here we use generic notation:

• density: ρ(x, t),

• flux: J(x, t),

• diffusivity: D(x),

• mobility: Γ,

• external force: F (x).

Conservation law:
∂

∂t
ρ(x, t) = − ∂

∂x
J(x, t).

Constitutive law: J(x, t) = −D(x)
∂

∂x
ρ(x, t) + ΓF (x)ρ(x, t).

⇒ ∂

∂t
ρ(x, t) = − ∂

∂x

[
ΓF (x)ρ(x, t)

]
+

∂

∂x

[
D(x)

∂

∂x
ρ(x, t)

]
︸ ︷︷ ︸ .

∂2

∂x2

[
D(x)ρ(x, t)

]
=

∂

∂x

[
D′(x)ρ(x, t)

]
+

︷ ︸︸ ︷
∂

∂x

[
D(x)

∂

∂x
ρ(x, t)

]
.

⇒ ∂

∂t
ρ(x, t) = − ∂

∂x

[(
ΓF (x) +D′(x)︸ ︷︷ ︸

A(x)

)
ρ(x, t)

]
+

∂2

∂x2

[
D(x)︸ ︷︷ ︸
B(x)

ρ(x, t)
]
.

A(x) and B(x) represent drift and diffusion in the Fokker-Planck equation.



Fourier’s Law for Heat Conduction [nln69]

Heat conduction inside a solid involves three field quantities:

• energy density: ε(x, t),

• heat current: J(x, t),

• local temperature: T (x, t).

Relations between field quantities:

(a) conservation law:
∂

∂t
ε(x, t) = − ∂

∂x
J(x, t) (continuity equation),

(b) constitutive law: J(x, t) = −λ
∂

∂x
T (x, t) (Fourier’s law),

(c) thermodynamic relation: ε(x, t) = cV T (x, t).

Material constants:

• specific heat: cV ,

• thermal conductivity: λ,

• thermal diffusivity: DT = λ/cV .

Diffusion equation from (a)-(c):

∂

∂t
T (x, t) = DT

∂2

∂x2
T (x, t).

Applications:

B Temperature profile inside wall [nex117]



[nex117] Thermal diffusivity

A solid wall of very large thickness and lateral extension (assumed to occupy all space at z > 0)
is brought into contact with a heat source at its surface (z = 0). The wall is initially in thermal
equilibrium at temperature T0. The heat source is kept at the higher temperature T1. The contact
is established at time t = 0. Show that the temperature profile inside the wall depends on time as
follows:

T (z) = T0 + (T1 − T0)erfc

(
z

2
√
DT t

)
,

where DT = λ/cV is the thermal diffusivity, λ the thermal conductvity, and cV the specific heat.
Then plot T (z)/T0 versus z for 0 ≤ z ≤ 5, T1/T0 = 3, and DT t = 0.2, 1, 5. Describe the meaning of
the three curves in relation to each other. The complementary error function is defined as follows:

erfc(x)
.
=

2√
π

∫ ∞
x

du e−u
2

.

Solution:



Shot Noise [nln70]

Electric current in a vacuum tube or solid state device described as a random
sequence of discrete events involving microscopic charge transfer:

I(t) =
∑
k

F (t− tk).

Assumptions:

• uniform event profile F (t) characteristic
of process (e.g. as sketched),

• event times tk randomly distributed,

• average number events per unit time: λ.

Attributes characteristic of Poisson process: [nex25] [nex16]

• probability distribution: P (n, t) = e−λt(λt)n/n!,

• mean and variance: 〈〈n〉〉 = 〈〈n2〉〉 = λt.

Probability that n events have taken place until time t reinterpreted as prob-
ability that stochastic variable N(t) assumes value n at time t:

P (n, t) = prob{N(t) = n}.

Sample path of N(t) and its derivative:

N(t) =
∑
k

θ(t− tk), µ(t)
.
=
dN

dt
=
∑
k

δ(t− tk).

Sample path of electric current:

I(t) =
∑
k

F (t− tk) =

∫ +∞

−∞
dt′F (t− t′)µ(t′).



Event profile: F (t) = q e−αtθ(t) with charge q0 = q/α per event.

Electric current: I(t) =

∫ t

−∞
dt′q e−α(t−t

′)µ(t′).

Stochastic differential equation:

dI

dt
= −αI(t) + qµ(t). (1)

Attributes of Poisson process: 〈〈dN(t)〉〉 = 〈〈[dN(t)]2〉〉 = λdt.

Fluctuation variable: dη(t) = dN(t)− λdt ⇒ 〈dη(t)〉 = 0, 〈[dη(t)]2〉 = λdt.

Average current from (1):1

dI(t) =
[
λq − αI(t)

]
dt+ q dη(t) ⇒ 〈dI(t)〉 =

[
λq − α〈I(t)〉

]
dt

⇒ d

dt
〈I(t)〉 = λq − α〈I(t)〉. (2)

Current fluctuations from (1) and (2):2

dI2
.
= (I + dI)2 − I2 = 2IdI + (dI)2,

〈dI2〉 = 2
〈
I
(
[λq − αI]dt+ qdη

)〉
+
〈(

[λq − αI]dt+ qdη
)2〉

=
(
2λq〈I〉 − 2α〈I2〉+ λq2

)
dt+ O

(
[dt]2

)
⇒ 1

2

d

dt
〈I2〉 = λq〈I〉 − α〈I2〉+

1

2
λq2. (3)

Steady state:
d

dt
〈I〉S = 0,

d

dt
〈I2〉S = 0:

⇒ 〈I〉S =
λq

α
, 〈〈I2〉〉S

.
= 〈I2〉S − 〈I〉2S =

q2λ

2α
. (4)

Applications:

B Campbell processes [nex37]

1Use qµ(t)dt = qdN(t) = qdη(t) + qλdt.
2Use 〈I(t)dη(t)〉 = 0.

2



[nex37] Campbell processes.

Consider a stationary stochastic process of the general form Y (t) =
∑
k F (t− tk), where the times

tk are distributed randomly with an average rate λ of occurrences. Campbell’s theorem then yields
the following expressions for the mean value and the autocorrelation function of Y :

〈Y 〉 = λ

∫ ∞
−∞

dτ F (τ), 〈〈Y (t)Y (0)〉〉 ≡ 〈Y (t)Y (0)〉 − 〈Y (t)〉〈Y (0)〉 = λ

∫ ∞
−∞

dτ F (τ)F (τ + t).

Apply Campbell’s theorem to calculate the average current 〈I〉 and the current autocorrelation
function 〈〈I(t)I(0)〉〉 for a shot noise process with F (t) = qe−αtθ(t), where θ(t) is the step function.
Compare the results with those derived in [nln70] along a somewhat different route.

Solution:



[nex70] Critically damped ballistic galvanometer.

The response of a critically damped ballistic galvanometer to a current pulse at t = 0 is Ψ(t) =
cte−γt. Consider the situation where the galvanometer experiences a steady stream of independent
random current pulses, X(t) =

∑
k Ψ(t−tk), where the tk are distributed randomly with an average

rate n of occurrences.
(a) Use Campbell’s theorem [nex37] to calculate the average displacement 〈X〉 and the autocorre-
lation function 〈〈X(t)X(0)〉〉.
(b) Show that the associated spectral density reads

SXX(ω)
.
=

∫ +∞

−∞
dt eiωt〈〈X(t)X(0)〉〉 =

nc2

(γ2 + ω2)2
.

Solution:



Langevin’s Theory [nln71]

Langevin’s theory of Brownian motion operates on a less contracted level
of description than Einstein’s theory [nln65]. The operational time scale is
small compared to the relaxation time: dt � ∆τR. [nln64]. On this time
scale inertia matters, implying that velocity cannot change abruptly. Velocity
and position variables are kinematically coupled.

The Langevin equation,
mẍ = −γẋ+ f(t), (1)

is constructed from Newton’s second law with two forces acting:

• drag force: −γẋ (parametrized by mobility γ−1),

• random force: f(t) (Gaussian white noise/Wiener process).

Since we do not know f(t) explicitly we cannot solve (1) for x(t). However,
we know enough about f(t) to solve (1) for 〈x2〉 as a function of time [nex118].

First step: derive the linear, 2nd-order ODE for 〈x2〉,

m
d2

dt2
〈x2〉+ γ

d

dt
〈x2〉 = 2kBT, (2)

using

• the white-noise implication that the random force and the position are
uncorrelated, 〈xf(t)〉,
• the equilibrium implication that the average kinetic energy of the Brow-

nian particle satisfies equipartition, 〈ẋ2〉 = kBT/m.

Second step: Integrate (2) twice using

• initial conditions 〈x2〉0 = 0 and d〈x2〉0/dt = 0,

• Einstein’s fluctuation-dissipation relation D = kBT/γ,

• the fact that (2) is a 1st-order ODE for d〈x2〉/dt.

The result reads

〈x2〉 = 2D

[
t− m

γ

(
1− e−γt/m

)]
. (3)



Within the framework of Langevin’s theory, the relaxation time previously
identified [nln64] is

∆τR =
m

γ
.

This relaxation time separates short-time ballistic regime from a long-time
diffusive regime:

• t� m

γ
: 〈x2〉 ∼ Dγ

m
t2 =

kBT

m
t2 = 〈v2〉t2,

• t� m

γ
: 〈x2〉 ∼ 2Dt.

Applications and variations:

B Mean-square displacement of Brownian particle [nex56] [nex57] [nex118]

B Formal solution of Langevin equation [nex53]

B Velocity correlation function of Brownian particle [nex55] [nex119] [nex120]

2



Brownian motion and Gaussian white noise [nln20]

Gaussian white noise: completely factorizing stationary process.

• Pw(y1, t1; y2, t2) = Pw(y1)Pw(y2) if t2 6= t1 (factorizability)

• Pw(y) =
1√

2πσ2
exp

(
− y2

2σ2

)
(Gaussian nature)

• 〈y(t)〉 = 0 (no bias)

• 〈y(t1)y(t2)〉 = Iwδ(t1 − t2) (whiteness)

• Iw = 〈y2〉 = σ2 (intensity)

Brownian motion: Markov process.

• Discrete time scale: tn = n dt.

• Position of Brownian particle at time tn: zn.

• P (zn, tn) = P (zn, tn|zn−1, tn−1)︸ ︷︷ ︸
Pw(yn)δ(yn−[zn−zn−1])

P (zn−1, tn−1) (white-noise transition rate).

• Specification of white-noise intensity: Iw = 2Ddt.

• Sample path of Brownian particle: z(tn) =
n∑
i=1

y(ti).

• Position of Brownian particle:

– mean value: 〈z(tn)〉 =
n∑
i=1

〈y(ti)〉 = 0.

– variance: 〈z2(tn)〉 =
n∑

i,j=1

〈y(ti)y(tj)〉 = 2Dndt = 2Dtn.

Gaussian white noise with intensity Iw = 2Ddt is used here to generate the
diffusion process discussed previously [nex26], [nex27], [nex97]:

P (z, t+ dt|z0, t) =
1√

4πDdt
exp

(
−(z − z0)

2

4Ddt

)
.

Sample paths of the diffusion process become continuous in the limit dt→ 0
(Lindeberg condition). However, in the present context, we must use dt �
τR, where τR is the relaxation time for the velocity of the Brownian particle.

On this level of contraction, the velocity of the Brownian particle is nowhere
defined in agreement with the result of [nex99] that the diffusion process is
nowhere differentiable.



Wiener process [nls4]

Specifications:

1. For t0 < t1 < · · · , the position increments ∆x(tn, tn−1), n = 1, 2, . . . are
independent random variables.

2. The increments depend only on time differences: ∆x(tn, tn−1) = ∆x(dtn),
where dtn = tn − tn−1.

3. The increments satisfy the Lindeberg condition:

lim
dt→0

1

dt
P [∆x(dt) ≥ ε] = 0 for all ε > 0

The diffusion process discussed previously [nex26], [nex27], [nex97],

P (x, t+ dt|x0, t) =
1√

4πDdt
exp

(
−(x− x0)

2

4Ddt

)
,

is, for dt → 0, a realization of the Wiener process. Sample paths of the
Wiener process thus realized are everywhere continuous and nowhere differ-
entiable.

W (tn) =
n∑

i=1

∆x(dti), tn =
n∑

i=1

dti.

[adapted from Gardiner 1985]



[nex54] Autocorrelation function of Wiener process.

The conditional probability distribution,

P (x+ ∆x, t+ dt|x, t) =
1√

4πD dt
exp

(
− (∆x)2

4Ddt

)
,

which characterizes the realization of a Wiener process, depends on ly on dt but not on t. Use the
regression theorem,

〈x(t)x(t+ dt)|[0, 0]〉 =

∫
dx1

∫
dx2 x1x2P (x2, t+ dt|x1, t)P (x1, t|0, 0),

to show that the autocorrelation function only depends on t but not on dt. Find that dependence.

Solution:



Attenuation without memory [nln21]

Langevin equation for Brownian motion:

m
dv

dt
+ γv = f(t).

Random force (uncorrelated noise):

Sff (ω) = 2γkBT, Cff (t) = 2γkBTδ(t).
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[nex53] Formal solution of Langevin equation

Consider a Brownian particle of mass m constrained to move along a straight line. The particle
experiences two forces: a drag force −γẋ and a white-noise random force f(t). The Langevin
equation, which governs its motion, is expressed as follows:

dx

dt
= v,

dv

dt
= − γ

m
v +

1

m
f(t).

Calculate, via formal integration, the functional dependence of (a) the velocity v(t) and (b) the
position x(t) on the random force f(t) for initial conditions x(0) = 0 and v(0) = v0. For part (a)
use the standard solution for the initial-value problem:

dy

dt
= −ay + b(t) ⇒ y(t) = y0e

−at +

∫ t

0

dt′e−a(t−t
′)b(t′).

For part (b) integrate by parts to arrive at the result

x(t) = v0
m

γ

(
1− e−γt/m

)
+

1

γ

∫ t

0

dt′
(
1− e−γ(t−t

′)/m
)
f(t′).

Solution:



[nex55] Velocity correlation function of Brownian particle I

Consider a Brownian particle of mass m constrained to move along a straight line. The particle
experiences two forces: a drag force −γẋ and an uncorrelated (white-noise type) random force f(t).
Calculate the velocity autocorrelation function 〈v(t1)v(t2)〉0 of a Brownian particle for t1 > t2 as
a conditional average from the formal solution (see [nex53])

v(t) = v0e
−γt/m +

1

m

∫ t

0

dt′ e−(γ/m)(t−t′)f(t′)

of the Langevin equation with a random force of intensity If . Show that for t1 > t2 � γ/m the
result only depends on the time difference t1−t2. Use equipartition, 1

2m〈v
2〉 = 1

2kBT , to determine
the temperature dependence of the random-force intensity If .
Comment: By conditional average we mean that the initial velocity has the value v0. For t1 >
t2 � γ/m the memory of that initial condition fades away.

Solution:



[nex56] Mean-square displacement of Brownian particle I

Consider a Brownian particle of mass m constrained to move along a straight line. The particle
experiences two forces: a drag force −γv and a white-noise random force f(t). In [nex118] we
inferred from the Langevin equation an ODE for the mean-square displacement and solved it to
obtain

〈x2(t)〉 = 2D

[
t− m

γ

(
1− e−(γ/m)t

)]
.

Here the task is to calculate 〈x2(t)〉 from the (steady-state) velocity autocorrelation function,

〈v(t1)v(t2)〉 =
kBT

m
e−(γ/m)|t1−t2|

determined in [nex55], via integration with initial condition x(0) = 0.

Solution:



[nex57] Mean-square displacement of Brownian particle II

Consider a Brownian particle of mass m constrained to move along a straight line. The particle
experiences two forces: a drag force −γv and a white-noise random force f(t). In [nex118] and
[nex56] we have taken two different routes to calculate the mean-square displacement,

〈x2(t)〉 = 2D

[
t− m

γ

(
1− e−(γ/m)t

)]
, (1)

from the Langevin equation. The task here is to derive (1) directly from the formal solution
(obtained in [nex53]),

x(t) = v0
m

γ

(
1− e−(γ/m)t

)
+

1

γ

∫ t

0

ds
(

1− e−(γ/m)(t−s)
)
f(s), (2)

of the Langevin equation with a white-noise random force. That random force is uncorrelated,
〈f(t)f(t′)〉 = Ifδ(t− t′) and has intensity If = 2kBTγ. Use equipartition, 1

2m〈v
2〉 = 1

2kBT , when
taking the thermal average 〈v20〉 of initial velocities v0.

Solution:



[nex118] Mean-square displacement of Brownian particle III

Consider a Brownian particle of mass m constrained to move along a straight line. The particle
experiences two forces: a drag force −γẋ and a white-noise random force f(t). Its motion is
governed by the Langevin equation,

mẍ = −γẋ+ f(t). (1)

(a) Construct from (1) the linear ODE for the mean-square displacement,

m
d2

dt2
〈x2〉+ γ

d

dt
〈x2〉 = 2kBT, (2)

by using equipartition, 1
2m〈ẋ

2〉 = 1
2kBT and the fact that position and random force at the same

instant are uncorrelated, 〈xf(t)〉 = 0.
(b) Solve this ODE for initial conditions d〈x2〉/dt|0 = 0 and 〈x2〉|0 = 0. Note that (2) is a first-order
ODE for the variable d〈x2〉/dt.
(c) Identify the quadratic time-dependence of 〈x2〉 in the ballistic regime, t� m/γ, and the linear
time dependence in the diffusive regime, t� m/γ. Express the last result in terms of the diffusion
constant by invoking Einstein’s fluctuation-dissipation relation from [nln67].

Solution:



Ergodicity [nln13]

Consider a stationary process x(t).
Quantities of interest are expectation values related to x(t).

• Theoretically, we determine ensemble averages:
〈x(t)〉, 〈x2(t)〉, 〈x(t)x(t+ τ)〉 are independent of t.

• Experimentally, we determine time averages:
x(t), x2(t), x(t)x(t+ τ) are independent of t.

Ergodicity: time averages are equal to ensemble averages.

Implication: the ensemble average of a time average has zero variance.

The consequences for the correlation function

C(t1 − t2)
.
= 〈x(t1)x(t2)〉 − 〈x(t1)〉〈x(t2)〉

are as follows (set τ = t2 − t1 and t = t1):

〈x2〉 − 〈x〉2 = lim
T→∞

1

4T 2

∫ +T

−T
dt1

∫ +T

−T
dt2 [〈x(t1)x(t2)〉 − 〈x(t1)〉〈x(t2)〉]

= lim
T→∞

1

4T 2

∫ +2T

−2T
dτ C(τ)(2T − |τ |)

= lim
T→∞

1

2T

∫ +2T

−2T
dτ C(τ)

(
1− |τ |

2T

)
= 0.

Necessary condition: lim
τ→∞

C(τ) = 0.

Sufficient condition:

∫ ∞
0

dτ C(τ) <∞.

T
T

T

t
2

t
1

τ=−2

τ=0

τ=

τ=−

τ=2

T

T

T



Intensity spectrum and spectral density [nln14]

Consider an ergodic process x(t) with 〈x〉 = 0.

Fourier amplitude: x̃(ω, T )
.
=

∫ T

0

dt eiωtx(t) ⇒ x̃(−ω, T ) = x̃∗(ω, T ).

Intensity spectrum (power spectrum): Ixx(ω)
.
= lim

T→∞

1

T
|x̃(ω, T )|2 .

Correlation function: Cxx(τ)
.
= 〈x(t)x(t+ τ)〉 = lim

T→∞

1

T

∫ T

0

dt x(t)x(t+ τ).

Spectral density: Sxx(ω)
.
=

∫ +∞

−∞
dτ eiωτCxx(τ).

Wiener-Khintchine theorem: Ixx(ω) = Sxx(ω).

Proof:

Ixx(ω) = lim
T→∞

1

T

∫ T

0

dt′e−iωt
′
x(t′)

∫ T

0

dt eiωtx(t)

= lim
T→∞

1

T

∫ T

0

dτ

[
eiωτ

∫ T−τ

0

dt′x(t′)x(t′ + τ) + e−iωτ
∫ T−τ

0

dt x(t)x(t+ τ)

]
= lim

T→∞
2

∫ T

0

dτ cosωτ
1

T

∫ T−τ

0

dt x(t)x(t+ τ)

= 2

∫ ∞
0

dτ cosωτCxx(τ) =

∫ +∞

−∞
dτ eiωτCxx(τ) = Sxx(ω).

t’

T
t

τ

τ= t−t’

t’−tτ=

τT−

T−

T



[nex119] Velocity correlation function of Brownian particle II

Consider the Langevin equation for the velocity of a Brownian particle of mass m constrained to
move along a straight line,

m
dv

dt
= −γv + f(t), (1)

where γ is the damping constant and f(t) is a white-noise random force, 〈f(t)f(t′)〉 = Ifδ(t− t′),
with intensity If = 2kBTγ in thermal equilibrium (see [nex55]).
(a) Convert the differential equation (1) into the algebraic relation,

−iωmṽ(ω) = −γṽ(ω) + f̃(ω), (2)

between the Fourier amplitudes,

ṽ(ω) =

∫ +∞

−∞
dt eiωtv(t), f̃(ω) =

∫ +∞

−∞
dt eiωtf(t), (3)

of the velocity and the random force, respectively.
(b) Apply the Wiener-Khintchine theorem (see [nln14]) to calculate from (2) and the above speci-
fications of the random force the velocity spectral density and, via inverse Fourier transform, the
velocity correlation function in thermal equilibrium:

Svv(ω) =
2kBTγ

γ2 + ω2m2
, 〈v(t)v(t+ τ)〉 =

kBT

m
e−γτ/m. (4)

Solution:



Generalized Langevin Equation [nln72]

The Langevin equation,

m
dv

dt
= −γv + fw(t), (1)

was designed to describe Brownian motion [nln71]. The two forces on the
rhs represent an instantaneous attenuation, specified by a damping constant
γ and a white-noise random force fw(t).

The generalized Langevin equation,

m
dv

dt
= −

∫ t

−∞
dt′α(t− t′)v(t′) + fc(t), (2)

is constructed to describe fluctuations of any mode in a many-body system. A
consistent generalization requires synchronized modifications of both forces:

• The instantaneous attenuation is replaced by attenuation with memory
(retarded attenuation) represented by some attenuation function α(t).

• The white-noise random force is replaced by a random force fc(t) rep-
resenting correlated noise.

Fluctuation-dissipation relation:

• Instantaneous attenuation:

〈fw(t)fw(t′)〉 = 2kBTγδ(t− t′). (3)

• Retarded attenuation:

〈fc(t)fc(t′)〉 = kBTαs(t− t′) (4)

where αs(t)
.
= α(t)θ(t) + α(−t)θ(−t) is the symmetrized attenuation

function.

A justification of relations (3) and (4) is based on the fluctuation-dissipation
theorem derived from microscopic dynamics [nln39]. The special case (3) of
instantaneous attenuation is a consequence of Einstein’s relation [nln67].

The width of the (symmetrized) attenuation function αs(t) is a measure for
the memory that governs the time evolution of the stochastic variable. In
the limit of short memory (instantaneous attenuation) we have

αs(t− t′)→ 2γ δ(t− t′).



Fourier analysis:

Definitions:

ṽ(ω)
.
=

∫ +∞

−∞
dt eiωtv(t), f̃c(ω)

.
=

∫ +∞

−∞
dt eiωtfc(t), α̂(ω)

.
=

∫ ∞
0

dt eiωtα(t).

⇒ v(t) =

∫ +∞

−∞

dω

2π
e−iωt ṽ(ω), fc(t) =

∫ +∞

−∞

dω

2π
e−iωtf̃c(ω).

Substitution of definitions in (2) yields (with t′′ = −t′, τ = t+ t′′)

m

∫ +∞

−∞

dω

2π
e−iωt(−iω)ṽ(ω) = −

∫ +∞

−∞

dω

2π

∫ t

−∞
dt′α(t− t′) e−iωt′ ṽ(ω)︸ ︷︷ ︸
(a)

+

∫ +∞

−∞

dω

2π
e−iωtf̃c(ω).

(a)︷ ︸︸ ︷
−
∫ +∞

−∞

dω

2π

∫ ∞
−t

dt′′α(t+ t′′) eiωt
′′
ṽ(ω) = −

∫ +∞

−∞

dω

2π

∫ ∞
0

dτ α(τ) eiωτ︸ ︷︷ ︸
α̂(ω)

e−iωtṽ(ω).

⇒ − iωmṽ(ω) = −α̂(ω)ṽ(ω) + f̃c(ω).

Relation between Fourier amplitudes:

ṽ(ω) =
f̃c(ω)

α̂(ω)− iωm
.

Spectral densities:

Svv(ω)
.
=

∫ +∞

−∞
dτ eiωτ 〈v(t)v(t+ τ)〉, Sff (ω)

.
=

∫ +∞

−∞
dτ eiωτ 〈fc(t)fc(t+ τ)〉.

Correlations of Fourier amplitudes [nex119]:

〈ṽ(ω)ṽ∗(ω′)〉 = 2πSvv(ω)δ(ω − ω′), 〈f̃c(ω)f̃ ∗c (ω′)〉 = 2πSff (ω)δ(ω − ω′).

2



Relation between spectral densities:

Svv(ω) =
Sff (ω)

|α̂(ω)− iωm|2
. (5)

Fluctuation-dissipation relation (4) in frequency domain:

〈f̃c(ω)f̃ ∗c (ω′)〉 = 2πkBT

α̃s(ω)=α̂(ω)+α̂∗(ω)︷ ︸︸ ︷∫ +∞

−∞
dτ eiωταs(τ) δ(ω − ω′)

= 4πkBTRe{α̂(ω)}δ(ω − ω′).

⇒ Sff (ω) = 2kBTRe{α̂(ω)}. (6)

Note: If Sff (ω) ≥ 0 then α(t) has a global maximum at t = 0.

Solution of generalized Langevin equation (2) expressed by the spectral den-
sity of the stochastic variable assembled from (5) and (6):

Svv(ω) =
2kBTRe{α̂(ω)}
|α̂(ω)− iωm|2

. (7)

Limit of instantaneous attenuation: α̂(ω)→ γ

Svv(ω)→ 2kBTγ

γ2 + ω2m2
. (8)

3



Velocity autocorrelation function:

Stationary state. Use α̂(−ω) = α̂∗(ω).

〈v(t)v(0)〉 = kBT

∫ +∞

−∞

dω

2π
e±iωt

symmetric in ω︷ ︸︸ ︷
2Re{α̂(ω)}
|α̂(ω)− iωm|2

=
kBT

2π

∫ +∞

−∞
dωe±iωt

α̂(ω) + α̂∗(ω)

[α̂(ω)− iωm][α̂∗(ω) + iωm]

=
kBT

2π

∫ +∞

−∞
dωe±iωt

[
1

α̂(ω)− iωm︸ ︷︷ ︸
(a)

+
1

α̂∗(ω) + iωm︸ ︷︷ ︸
(b)

]
.

(a) analytic for Im{ω} > 0,

(b) analytic for Im{ω} < 0.

C

C+

−

Re{  }ω

Im{  }ω

〈v(t)v(0)〉 =
kBT

2π

∮
C−
dω

e−iωt

α̂(ω)− iωm
=
kBT

2π

∮
C+
dω

eiωt

α̂∗(ω) + iωm
.

Limit of instantaneous attenuation: α̂(ω)→ γ [nex120]

〈v(t)v(0)〉 =
kBT

2π

∮
C−
dω

e−iωt

γ − iωm
=
kBT

2π

∮
C+
dω

eiωt

γ + iωm
=
kBT

m
e−γt/m.

C+

Re{  }

Im{  }ω

ω

i γ/m

ωRe{  }

Im{  }ω

C −

−iγ/m

4



Attenuation with memory [nln22]

Generalized Langevin equation for Brownian harmonic oscillator:

m
dx

dt
+

∫ t

−∞
dt′α(t− t′)x(t′) =

1

ω0

f(t), α(t) = mω2
0e
−(γ/m)t.

Random force (correlated noise):

Sff (ω) =
2kBTγm

2ω2
0

γ2 +m2ω2
, Cff (t) = kBTmω

2
0e
−(γ/m)t.
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γ
2m

t
[
cosω1t+ γ

2mω1
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]
, ω1 =

√
ω2

0 − γ2/4m2 > 0

kBT
mω2

0
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γ
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t
[
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2m
t
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, ω0 = γ/2m

kBT
mω2

0
e−

γ
2m

t
[
cosh Ω1t+ γ
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[nex120] Velocity correlation function of Brownian particle III

The generalized Langevin equation for a particle of mass m constrained to move along a straight
line,

m
dv

dt
= −

∫ t

−∞
dt′α(t− t′)v(t′) + f(t),

is known to produce the following expression for the spectral density of the velocity:

Svv(ω) =
Sff (ω)

|α̂(ω)− iωm|2
, α̂(ω)

.
=

∫ ∞
0

dt eiωtα(t), Sff (ω) = 2kBT <[α̂(ω)],

where the relation between the random-force spectral density, Sff (ω), and the Laplace-transformed
attenuation function, α̂(ω), is dictated by the fluctuation-dissipation theorem.
The special case of Brownian motion (see [nex55], [nex119]) uses attenuation without memory:
α(t−t′) = 2γδ(t−t′)θ(t−t′). Calculate the velocity correlation function, 〈v(t)v(t′)〉, of the Brownian
particle in thermal equilibrium from the above expression for Svv(ω) via contour integration in the
plane of complex ω.

Solution:



Brownian Harmonic Oscillator [nln75]

A Brownian particle of mass m, immersed in a fluid, is constrained to move
along the x-axis and subject to a restoring force. The motion is simultane-
ously propelled and attenuated by the fluid particles. We analyze this system
in several different ways with consistent results.

Two equivalent specifications of the system by Langevin-type equations:

• Attenuation without memory and white-noise:

mẍ + γẋ + kx = fw(t), (1)

γ: damping constant representing instantaneous attenuation,

k = mω2
0: stiffness of the restoring force,

fw(t): white-noise random force.

• Attenuation with memory and correlated-noise:

m
dx

dt
+

∫ t

−∞
dt′α(t− t′)x(t′) =

1

ω0

fc(t), (2)

α(t) = mω2
0e
−(γ/m)t: attenuation function,

fc(t): correlated-noise random force.

The random forces and their associated types of attenuation must satisfy the
the fluctuation-dissipation relation of [nln72].

Tasks carried out in a series of exercises:

- Equivalence of (1) and (2) shown via derivation of (1) from (2) [nex129].

- Fourier analysis of (1) yields spectral density Sxx(ω) for position vari-
able of Brownian particle [nex121].

- Position correlation function 〈x(t)x(0)〉 via inverse Fourier transform.
Cases of underdamping, critical damping, and overdamping [nex122].

- Calculation of Sxx(ω) from (2) and 〈x(t)x(0)〉 via contour integrals
[nex123]. Physical significance of pole structure in Sxx(ω).

- Spectral density Svv(ω) and correlation function 〈v(t)v(0)〉 for velocity
variable of Brownian particle [nex58].

- Langevin-type equation for velocity variable v(t) and formal solution
of that equation [nex59].

- Nonequilibrium velocity correlation function 〈v(t2)v(t1)〉 and station-
arity limit t1, t2 →∞ with 0 < t2 − t1 < ∞ [nex60].



[nex129] Brownian harmonic oscillator VII: equivalent specifications

In [nln75] we have introduced two alternative specifications for the Brownian harmonic oscillator:

mẍ+ γẋ+ kx = fw(t), (1)

m
dx

dt
+

∫ t

−∞
dt′α(t− t′)x(t′) =

1

ω0
fc(t), α(t) = mω2

0e
−(γ/m)t, (2)

where the white-noise random force fw(t) and the correlated-noise random force fc(t) each satisfy
the fluctuation-dissipation relation introduced in [nln72]. Derive specification (1) from specification
(2) including the change in random force.

Solution:



[nex121] Brownian harmonic oscillator I: Fourier analysis

The Brownian harmonic oscillator is specified by the Langevin-type equation,

mẍ+ γẋ+ kx = f(t), (1)

where m is the mass of the particle, γ represents attenuation without memory, k = mω2
0 is the

spring constant, and f(t) is a white-noise random force. Convert the ODE (1) into a an algebraic
equation for the Fourier amplitude x̃(ω) of the position and the Fourier amplitude f̃(ω) of the
random force. Proceed as in [nex119] to infer the spectral density

Sxx(ω) =
2γkBT

m2(ω2
0 − ω2)2 + γ2ω2

.

of the position coordinate. In the process use the result Sff (ω) = 2kBTγ for the random-force
spectral density as dictated by the fluctuation-dissipation theorem.

Solution:



[nex122] Brownian harmonic oscillator II: position correlation function

The Brownian harmonic oscillator is specified by the Langevin-type equation, mẍ+γẋ+kx = f(t),
where m is the mass of the particle, γ represents attenuation without memory, k = mω2

0 is the
spring constant, and f(t) is a white-noise random force.
(a) Start from the result Sxx(ω) = 2γkBT/[m2(ω2

0 − ω2)2 + γ2ω2] for the spectral density of the
position coordinate as calculated in [nex121] to derive the position correlation function

〈x(t)x(0)〉 .=
∫ +∞

−∞

dω

2π
e−iωtSxx(ω) =


kBT
mω2

0
e−

γ
2m t

[
cosω1t+ γ

2mω1
sinω1t

]
kBT
mω2

0
e−

γ
2m t

[
1 + γ

2m t
]

kBT
mω2

0
e−

γ
2m t

[
cosh Ω1t+ γ

2mΩ1
sinh Ω1t

]
for the cases ω1 =

√
ω2

0 − γ2/4m2 > 0 (underdamped), ω2
0 = γ2/4m2 (critically damped), and

Ω1 =
√
γ2/4m2 − ω2

0 > 0 (overdamped), respectively.
(b) Plot Sxx(w) versus ω/ω0 and 〈x(t)x(0)〉mω2

0/kBT versus ω0t with three curves in each frame,
one for each case. Use Mathematica for both parts and supply a copy of the notebook.

Solution:



[nex123] Brownian harmonic oscillator III: contour integrals

The generalized Langevin equation for the Brownian harmonic oscillator,

m
dx

dt
+

∫ t

−∞
dt′α(t− t′)x(t′) =

1

ω0
f(t), α(t) = mω2

0e
−(γ/m)t, (1)

where α(t) is the attenuation function, mω2
0 the spring constant, and f(t) a correlated-noise ran-

dom force, is known to produce the following expression for the spectral density of the position
coordinate:

Sxx(ω) =
Sff (ω)/ω2

0

|α̂(ω)− iωm|2
, α̂(ω) =

∫ ∞
0

dt eiωtα(t), Sff (ω) = 2kBT<[α̂(ω)], (2)

where the relation between the random-force spectral density, Sff (ω), and the Laplace-transformed
attenuation function, α̂(ω), is dictated by the fluctuation-dissipation relation introduced in [nln72].
(a) Calculate Sff (ω) or restate the result used in [nex129] and determine its singularity structure.
(b) Evaluat Sxx(ω) and identify its singularity structure for the cases (i) γ/2m < ω0 (under-
damped), (ii) γ/2m = ω0 (critically damped), and (iii) γ/2m > ω0 (overdamped).
(c) Calculate

〈x(t)x(0)〉 .=
∫ +∞

−∞

dω

2π
e−iωtSxx(ω) (3)

via contour integration for the cases (i)-(iii) and check the results against those obtained in [nex122].

Solution:



[nex58] Brownian harmonic oscillator IV: velocity correlations

The Brownian harmonic oscillator is specified by the Langevin-type equation,

mẍ+ γẋ+ kx = f(t), (1)

where m is the mass of the particle, γ represents attenuation without memory, k = mω2
0 is the

spring constant, and f(t) is a white-noise random force.
(a) Find the velocity spectral density by proving the relation

Svv(ω) = ω2Sxx(ω) (2)

and using the result from [nex121] for the position spectral density Sxx(ω).
(b) Find the velocity correlation function by proving the relation

〈v(t)v(0)〉 = − d2

dt2
〈x(t)x(0)〉 (3)

and using the result from [nex122] for the position correlation function. Distinguish the cases (i)
ω1 =

√
ω2
0 − γ2/4m2 > 0 for underdamped motion, (ii) ω2

0 = γ2/4m2 for critically damped motion,

and (iii) Ω1 =
√
γ2/4m2 − ω2

0 > 0 for overdamped motion.
(c) Plot Svv(ω) versus ω/ω0 and 〈v(t)v(0)〉m/kBT versus ω0t with three curves in each frame, one
for each case.

Solution:



[nex59] Brownian harmonic oscillator V: formal solution for velocity

Convert the Langevin-type equation, mẍ+γẋ+kx = f(t), for the overdamped Brownian harmonic
oscillator with mass m, damping constant γ, spring constant k = mω2

0 , and white-noise random
force f(t) into a second-order ODE for the stochastic variable v(t). Then show that

v(t) = v0e
−Γtc(t) − ω2

0

Ω1
x0e
−Γt sinh Ω1t+

1

m

∫ t

0

dt′f(t′)e−Γ(t−t′)c(t− t′)

with Γ = γ/2m, Ω1 =
√

Γ2 − ω2
0 , c(t) = cosh Ω1t− (Γ/Ω1) sinh Ω1t is a formal solution for initial

conditions x(0) = x0 and v(0) = v0.

Solution:



[nex60] Brownian harmonic oscillator VI: nonequilibrium correlations

Use the formal solution for the velocity from [nex59],

v(t) = v0e
−Γtc(t)− ω2

0

Ω1
x0e
−Γt sinh Ω1t+

1

m

∫ t

0

dt′f(t′)e−Γ(t−t′)c(t− t′),

with Γ = γ/2m, Ω1 =
√

Γ2 − ω2
0 , c(t) = cosh Ω1t− (Γ/Ω1) sinh Ω1t of the Langevin-type equation,

mẍ + γẋ + kx = f(t), for the overdamped Brownian harmonic oscillator with mass m, damping
constant γ, spring constant k = mω2

0 , initial conditions x(0) = x0 and v(0) = v0, and white-noise
random force f(t) with intensity If to calculate the velocity correlation function 〈v(t2)v(t1)〉 for
the nonequilibrium state. Then take the limit t1, t2 → ∞ with 0 < t2 − t1 < ∞ to recover the
result of [nex58] for the stationary state.

Solution:



Langevin Dynamics fromMicroscopic Model [nln74]

Brownian particle harmonically coupled to N otherwise free particles that
serve as a primitive form of heat bath. [Wilde and Singh 1998]

Classical Hamiltonian:

H =
p2

2m
+

N∑
i=1

(
p2i

2mi

+
1

2
miω

2
i x̄

2
i

)
, x̄i

.
= xi −

cix

miω2
i

, (1)

where miω
2
i is the stiffness of the harmonic coupling between the Brownian

particle and one of the heat-bath particles. The ci are conveniently scaled
coupling constants.

Canonical equations:

dx

dt
=
∂H
∂p

=
p

m
,

dp

dt
= −∂H

∂x
=

N∑
i=1

cix̄i, (2a)

dxi
dt

=
∂H
∂pi

=
pi
mi

,
dpi
dt

= −∂H
∂xi

= −miω
2
i x̄i; i = 1, . . . , N. (2b)

Elimination of momenta yields 2nd-order ODEs:

m
d2x

dt2
= m

dẋ

dt
= F (t), F (t)

.
=

N∑
i=1

cix̄i, (3a)

mi
d2xi
dt2

= −miω
2
i xi + cix, i = 1, . . . , N. (3b)

Formal solution of (3b):

xi(t) = xi(0) cos(ωit) +
ẋi(0)

ωi

sin(ωit) +
ci

miωi

∫ t

0

dt′x(t′) sin
(
ωi(t− t′)

)
︸ ︷︷ ︸

A(t)

. (4)

Integrate by parts:

A(t) =
1

ωi

[
x(t)− x(0) cos(ωit)−

∫ t

0

dt′ẋ(t′) cos
(
ωi(t− t′)

)]
. (5)

Assemble parts, then use (1) and (3a):

xi(t) =

(
xi(0)− ci

miω2
i

x(0)

)
cos(ωit) +

ẋi(0)

ωi

sin(ωit)

+
ci

miω2
i

[
x(t)−

∫ t

0

dt′ẋ(t′) cos
(
ωi(t− t′)

)]
, (6)



x̄i(t) = x̄i(0) cos(ωit) +
ẋi(0)

ωi

sin(ωit)−
ci

miω2
i

∫ t

0

dt′ẋ(t′) cos
(
ωi(t− t′)

)
,

F (t) =
N∑
i=1

[
cix̄i(0) cos(ωit) +

ci
ωi

ẋi(0) sin(ωit)

− c2i
miω2

i

∫ t

0

dt′ẋ(t′) cos
(
ωi(t− t′)

)]
. (7)

Expectation values at thermal equilibrium:

〈x̄i(0)〉 = 0, 〈ẋi(0)〉 = 0, ω2
i 〈x̄i(0)x̄j(0)〉 = 〈ẋi(0)ẋj(0)〉 =

kBT

mi

δij.

〈F (t)〉 = −
∫ t

0

dt′ẋ(t′)αs(t− t′), αs(t− t′) =
N∑
i=1

c2i
miω2

i

cos
(
ωi(t− t′)

)
︸ ︷︷ ︸

attenuation function

.

Random force:

f(t)
.
= F (t)− 〈F (t)〉 =

N∑
i=1

[
cix̄i(0) cos(ωit) +

ci
ωi

ẋi(0) sin(ωit)

]
. (8)

Generalized Langevin equation:

m
dẋ

dt
= −

∫ t

0

dt′ẋ(t′)αs(t− t′) + f(t). (9)

Fluctuation-dissipation relation:

〈f(t)f(t′)〉 =
N∑
i=1

c2i cos(ωit) cos(ωit
′) 〈x̄i(0)x̄i(0)〉︸ ︷︷ ︸

kBT/miω2
i

+
c2i
ω2
i

sin(ωit) sin(ωit
′) 〈ẋi(0)ẋi(0)〉︸ ︷︷ ︸

kBT/mi


= kBT

N∑
i=1

c2i
miω2

i

cos
(
ωi(t− t′)

)
= kBTαs(t− t′). (10)

2



Brownian motion: panoramic view [nln23]

• Levels of contraction (horizontal)

• Modes of description (vertical)

−→ contraction −→

relevant N -particle 1-particle configuration
space phase space phase space space

dynamical {xi, pi} x, p x
variables

theoretical Hamiltonian Langevin Einstein
framework mechanics theory theory

... for generalized Langevin Langevin
dynamical Langevin equation equation

variables equation (for dt� τR) (for dt� τR)

... for quant./class. Fokker-Planck Fokker-Planck
probability Liouville equation (Ornstein- equation (diffusion

distribution equation Uhlenbeck process) process)

• Here dt is the time step used in the theory and τR is the relaxation
time associated with the drag force the Brownian particle experiences.

• The generalized Langevin equation is equivalent to the Hamiltonian
equation of motion for a generic classical many-body system and equiv-
alent to the Heisenberg equation of motion for a generic quantum many-
body system.


	08. Brownian Motion
	Abstract
	Recommended Citation

	ntc8
	nln63
	nln64
	nln65
	nln73
	wnex128
	nln66
	nln67
	nln68
	nln69
	wnex117
	nln70
	wnex37
	wnex70
	nln71
	nln20
	nsl4
	wnex54
	nln21
	wnex53
	wnex55
	wnex56
	wnex57
	wnex118
	nln13
	nln14
	wnex119
	nln72
	nln22
	wnex120
	nln75
	wnex129
	wnex121
	wnex122
	wnex123
	wnex58
	wnex59
	wnex60
	nln74
	nln23

