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Casimir effect modified surface energy of a nanocavity in homogeneous media

Yi Zheng∗

Department of Mechanical, Industrial and Systems Engineering,
University of Rhode Island, Kingston, RI 02881, USA

Arvind Narayanaswamy†

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA

We determine the regularized van der Waals contribution to pressure within a spherical cavity of
vapor in a homogeneous, isotropic, infinite medium. The spherical Hamaker function, As, has been
defined, for the first time, in contrast to the conventional Hamaker function for planar surfaces,
Ah. For the materials under consideration, the pressure inside the cavity varies as As/6πa

3, where
a is the radius of the cavity. For radii below a transition radius, the surface energy (or surface
tension) becomes size dependent and could have important implications for homogeneous nucleation
of nanosized bubbles in liquids, as well as cavitation of bubbles.

I. INTRODUCTION

Dispersion forces, such as van der Waals force and
Casimir force, arise due to the modification in the fluc-
tuations of the electromagnetic field by the presence of
boundaries. Current understanding of van der Waals
force (we will use the term van der Waals to include
Casimir forces too) between macroscopic objects is based
on Lifshitz theory. Lifshitz [1] used Rytov’s theory of
fluctuational electrodynamics [2] to determine the force
between two semi-infinite half-spaces separated by a vac-
uum gap (a planar cavity). Recent works have shown
that the generalization of Lifshitz theory can be applied
not only to the multilayered media [3–9], but also to the
objects of arbitrary shapes [10], such as ellipsoids [11, 12],
cylinders [13, 14] and cubes [10, 15]. In this work, we find
the van der Waals contribution to pressure within a cav-
ity of vapor, the electromagnetic properties of which is
assumed to be identical with that of vacuum, in a homo-
geneous, isotropic, infinite liquid (see Fig. 1).

The earliest work on the fluctuational contribution to
pressure within a sphere is that of Boyer, who, inspired
by Casimir’s model for a charged particle, determined
the forces on an uncharged conducting spherical shell
[16]. Milton et al. [17] also studied the same prob-
lem using the source theory formalism of Schwinger et
al. [18] and reached the same conclusion as Boyer that
the self stress on the sphere is repulsive. Subsequently,
Milton [19] and Milton and Ng [20] also determined the
van der Waals self-stress on a dielectric sphere, the lat-
ter motivated by applications to sonoluminescence. In
parallel to the works mentioned above, Belosludov and
Nabutovskii, motivated by applications to homogeneous
nucleation in superheated liquids, computed the van der
Waals pressure in a spherical cavity within a homoge-
neous, infinite, isotropic medium [21]. The key result of
Belosludov and Nabutovskii is the appearance of a size-
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dependent surface tension or surface energy at the vapor-
liquid interface. Though the importance of dispersion
forces in phase change phenomena has long been recog-
nized, the focus has been, to the best of our knowledge,
on the effect of long-range interactions between solid and
liquid on evaporation from a microlayer of liquid, or on
homogeneous nucleation very close to solid surfaces [22–
32]. It is well known that the van der Waals/Casimir
energy and stress diverges in the spherical configurations
[16, 33–35]. The divergence requires the regularization of
the Casimir effects by either (1) imposing a length-scale
dependent cut-off in the angular momentum [36, 37], or
(2) regularizing the expression by subtracting an “infi-
nite” term corresponding to the bare surface tension of
the liquid-vacuum interface [21, 38]. A similar regular-
ization procedure was imposed in the case of a perfect
metal shell, and the corresponding and finite result was
found to be repulsive [39]. However, recent work by Ken-
nth et al. [40] have demnstrated that such a repulsion is
impossible. One of the culprits has been identified as
arising from the otherwise neglected mechanical energy
that is expended as a result of variations in the dielctric
of the objects as they either expand or contract, requiring
a more nuanced microscopic treatment of the various en-
ergy pathways in such a transformation. Regularization
of the divergence of the spherical Casimir energy and
stress, in this work, requires the evaluation of Casimir
stress tensors on both sides of the vapor-liquid interface.
They have been expressed as infinite series in terms of
the spherical Riccati-Bessel (Hankel) functions, in which
the “infinite” stress term in the vapor side (inside the
cavity) is subtracted by the same “infinite” term in liq-
uid (outside the cavity), that is corresponding to surface
tension/interfacial energy on the boundary.

Though a vapor cavity in an infinite medium has only
one interface, the corresponding problem in the planar
multilayer configuration is that of a layer of vapor con-
tained between two half-spaces of liquid, i.e., the config-
uration studied by Lifshitz. For a planar layer of vapor
of thickness d, the van der Waals pressure in the vapor
layer is given by Ah/6πd

3, where Ah is the Hamaker coef-
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FIG. 1. Schematic of a vacuum cavity with a radius of a
in a liquid. Maxwell stress tensors Trr,vap(a) and Trr,liq(a)
are evaluated at the interior and exterior of the vapor–liquid
interface, corresponding to radii r = a∓ δ (δ/a→ 0), respec-
tively.

ficient [41, 42]. Ah is dependent on the optical properties
of the half-spaces and the vapor. At larger values of va-
por layer thickness h, such that retardation effects are
important, the pressure drops of as h−4. The only ge-
ometric length scale in this problem is the thickness of
the vapor layer, d. Any other length scale related to a
resonant frequency in the optical properties of the media
influences the pressure through Ah. Since the only geo-
metric length scale for the cavity in an infinite medium is
the radius, we should expect from dimensional analysis
that the van der Waals pressure within the cavity be-
haves as As/6πr

3. Determining As, which is a spherical
Hamaker coefficient, is described in Sec. II. The van der
Waals pressure in the vapor layer is usually attractive (by
convention Ah > 0 and As > 0 is associated with attrac-
tive pressure), i.e., the pressure of the vapor has to be
larger than the pressure in the surrounding medium by
Ah/6πd

3 (for a planar cavity) or As/6πr
3 (for a spherical

cavity) to overcome the effect of attractive van der Waals
forces. We are adding to the main results of Belosludov
and Nabutovskii by (1) identifying a relation between
the spherical and planar Hamaker coefficients, (2) giving
results for liquids other than water, and (3) presenting
results in a more useful form.

II. THEORY AND CALCULATION FOR VAN
DER WAALS FORCE

To determine the Maxwell stress tensor, we rely on Ry-
tov’s theory of fluctuational electrodynamics. The cross-
spectral correlations of the electric and magnetic field
componetnts can be written as [43, 44]:

〈
Ei(r, ω)E∗j (r, ω)

〉
=
~ω2

π
µ0 coth

(
~ω

2kBTl

)
×= [ε(ω)µ(ω)Ge,ij(r, r;ω)]

(1a)

〈
Hi(r, ω)H∗j (r, ω)

〉
=
~ω2

π
ε0 coth

(
~ω

2kBTl

)
×= [ε(ω)µ(ω)Gm,ij(r, r;ω)]

(1b)

where 〈〉 denotes the ensemble average, =(z) denotes the
imaginary part of z, kB is Boltzmann constant, 2π~ is
the Planck constant, Tl is the absolute temperature of
liquid, ε0, µ0 are permittivity and permeability in free
space respectively, and, ε(ω), µ(ω) are frequency depen-
dent permittivity and permeability of the region in which
r is located. ε(ω) = µ(ω) = 1 for vacuum. For liquids,√
ε(ω) = n(ω)+iκ(ω) and µ(ω) = 1. The optical data for

n and κ can be obtained from Refs. [41, 45]. Gp,ij(r, r)

is the ij component of Gp(r, r), where p = e refers to the
electric dyadic Green’s function, and p = m refers to the

magnetic dyadic Green’s function. Ge(r, r) and Gm(r, r)
are electromagnetic duals of each other [43? ]. The van
der Waals pressure on the interior and exterior surfaces
of a cavity in an otherwise homogeneous medium (see
Fig. 1) can be obtained from the r̂r̂ component of the
electromagnetic or Maxwell stress tensor. The rr com-
ponent of the Maxwell stress tensor can be expressed in
terms of Ge(r, r) and Gm(r, r) as [44]:

Trr(r) =

∞∫
0

dω
~ω2

πc2
coth

(
~ω

2kBT

)
×=

{
ε(ω)µ(ω) [Se (r, ω) + Sm (r, ω)]

} (2)

where Se (r, ω) = Ge,r̂r̂(r, r;ω) − 1
2TrGe(r, r;ω), Sm =

Gm,r̂r̂(r, r;ω) − 1
2TrGm(r, r;ω). Tr is the trace of the

tensor, that is TrGp = Gp,r̂r̂ + Gp,θ̂θ̂ + Gp,φ̂φ̂. The in-

tegral on the right hand side of Eq. 2 is of the form
∞∫
0+
dω coth

(
~ω

2kBTl

)
=f(ω), in which the function f(ω+iξ)

is analytic in the upper–half of the complex plane (ξ > 0).
Since G (r, ω) is analytic in the upper–half of the com-
plex plane, the integral along the real frequency axis can
be transformed into summation over Matsubara frequen-

cies, iξn = in2πkBTl/~, as −2πkBT

~

∞∑
n=0

′
f(iξn).

∞∑
n=0

′

indicates that the n = 0 term is multiplied by 1/2 [1].
Sp (r, ω) can be split into two parts: (1) a part which

arises from the dyadic Green’s function in an infinite ho-
mogeneous medium, and (2) a part which arises from the
scattered dyadic Green’s function due to the presence of

boundaries, as Sp (r, ω) = S(o) (r, ω)+S
(sc)
p (r, ω). Since

S(o) (r, ω) is the stress tensor contribution from the ho-
mogeneous medium, there is no distinction between the
p = e or p = m contributions. The dyadic Green’s func-

tion G
(o)

(r, r̃;ω) that gives rise to S(o) (r, ω) is given by:

G
(o)

(r, r̃;ω) = iki

l=∞,
m=l∑

m=−l,
l=0

i2m

[
M

(3)
l,m (kir)M

(1)
l,−m (kir̃)

+N
(3)
l,m (kir)N

(1)
l,−m (kir̃)

]
(3)
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when |r| > |r̃|. ki = ω
√
εi(ω)µi(ω)/c is the wavenumber

in region i (i = 1, 2 refer to the cavity and medium re-

spectively), M
(p)
l,m(kia) and N

(p)
l,m(kia) are vector spher-

ical wave functions of order (l,m), and superscript (p)
refers to the radial behavior of the waves, given by [46]

M
(p)
l,m(kia) =

u
(p)
l (kia)

kia
√
l(l + 1)

(
θ̂
imYl,m

sin θ
− φ̂∂Yl,m

∂θ

)
(4a)

N
(p)
l,m(kia) = r̂

u
(p)
l (kia)

(kia)2

√
l(l + 1)Yl,m

+
v
(p)
l (kia)

kia
√
l(l + 1)

(
θ̂
∂Yl,m
∂θ

+ φ̂
imYl,m

sin θ

)
(4b)

For p = 1, both M and N waves are regular vector

spherical waves and u
(1)
l is the spherical Riccati–Bessel

function of first kind of order l. For p = 3, both M and

N waves are outgoing spherical waves and u
(3)
l is the

spherical Riccati–Hankel function of first kind of order l.

v
(p)
l is first derivative of Riccati-Bessel (Hankel) function,

defined as v
(p)
l (x) =

d

dx

[
u
(p)
l (x)

]
. Yl,m is the spherical

harmonic of order (l,m). Substituting Eqs. 3, 4a and 4b
into Eq. 2, we obtain the homogeneous contribution to
stress tensor as:

T (o)
rr (a) = <

∞∫
0

dω
~ω3

4π2c3
coth

[
~ω

2kBTl

] l=∞∑
l=0

(2l + 1)

×


(

1− l(l + 1)

k2i a
2

)
u
(3)
l (kia)

kia

u
(1)
l (kia)

kia

+
v
(3)
l (kia)

kia

v
(1)
l (kia)

kia

 (5)

Applying the following summation identities of spherial
Riccati-Bessel (Hankel) function

l=∞∑
l=0

(2l + 1)

(
u
(1)
l (x)

x

)2

= 1, (6a)

l=∞∑
l=0

l (l + 1) (2l + 1)

(
u
(1)
l (x)

x

)2

= 0, (6b)

l=∞∑
l=0

(2l + 1)

(
v
(1)
l (x)

x

)2

=
1

3
, (6c)

we can see that the free space or homogeneous dyadic
Green’s function does not contribute to a configuration–
dependent (radius of vacuum region for the configuration
in Fig. 1) stress tensor.

Because the homogeneous part of the dyadic Green’s
function does not contribute to van der Waals stress ten-
sor, we focus only on the scattered part of dyadic Green’s

functions from now on. The expressions for G
(sc)

e (r, r̃;ω)
when r, r̃ ∈ V1 and r, r̃ ∈ V2 are given by:

G
(sc)

e (r, r̃;ω) = ik1×
l=∞,
m=l∑

m=−l,
l=0

(−1)m

[
RM1,lM

(1)
l,m (k1r)M

(1)
l,−m (k1r̃) +

RN1,lN
(1)
l,m (k1r)N

(1)
l,−m (k1r̃)

]
(7a)

G
(sc)

e (r, r̃;ω) = ik2×
l=∞,
m=l∑

m=−l,
l=0

(−1)m

[
RM2,lM

(3)
l,m (k2r)M

(3)
l,−m (k2r̃) +

RN2,lN
(3)
l,m (k2r)N

(3)
l,−m (k2r̃)

]
(7b)

where, Rji,l is the Mie refection coefficient due to the

source in region i due to j(= M,N) waves. The Mie
reflection coefficients RM1,l and RM2,l due to M waves are

obtained from the boundary condition equations as [47]:

RM1,l = −

(
k1
µ1

v
(3)
l (k1a)

u
(3)
l (k1a)

− k2
µ2

v
(3)
l (k2a)

u
(3)
l (k2a)

)
(
k1
µ1

v
(1)
l (k1a)

u
(1)
l (k1a)

− k2
µ2

v
(3)
l (k2a)

u
(3)
l (k2a)

) u
(3)
l (k1a)

u
(1)
l (k1a)

(8)

RM2,l = −

(
k2
µ2

v
(1)
l (k2a)

u
(1)
l (k2a)

− k1
µ1

v
(1)
l (k1a)

u
(1)
l (k1a)

)
(
k2
µ2

v
(3)
l (k2a)

u
(3)
l (k2a)

− k1
µ1

v
(1)
l (k1a)

u
(1)
l (k1a)

) u
(1)
l (k2a)

u
(3)
l (k2a)

(9)

Similarly, RN1,l and RN2,l due to N waves can be ob-
tained by simply exchanging functions of ul and vl.

G
(sc)

m (r, r̃;ω) can be obtained by replacing εi by µi and
vice–versa (i = 1, 2) in Eq. 7a–9 [43? ]. Substituting
the scattered part of spherical dyadic Green’s functions
Eqs. 7a and 7b into Eq. 2, we find that the r̂r̂ compo-
nent of the stress tensor on either side of the vapor–liquid
interface, i.e., at r = a± δ as δ → 0, can be written as:

T (sc)
rr,vap(a) = −<

∫ ∞
0

dω
~ω2

4π2c2
1

k1a2
coth

(
~ω

2kBTl

) ∞∑
l=0

(2l + 1)
(
R

(M)
1,l +R

(N)
1,l

)
×
[(

1− l(l + 1)

k21a
2

)
u
(1)2
l (k1a) + v

(1)2
l (k1a)

]
(10a)
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T (sc)
rr,liq(a) = −<

∫ ∞
0

dω
~ω2

4π2c2
ε2µ2

k2a2
coth

(
~ω

2kBTl

) l=∞∑
l=0

(2l + 1)
(
R

(M)
2,l +R

(N)
2,l

)
×
[(

1− l(l + 1)

k22a
2

)
u
(3)2
l (k2a) + v

(3)2
l (k2a)

]
(10b)

where the subscripts vap and liq refer to the vapor and
liquid regions, namely, inside and outside the cavity. It
can be shown that the stress tensor in radial direction on
the interior side of the vapor-liquid interface (Eq. 10a) is
divergent when summing up the infinite series of Riccati-
Bessel (Hankel) functions with respect to l. It is also well
known that the van der Waals/Casimir energy and stress
diverges in the spherical configurations [16, 33–35], that
requires a proper regularization of the Casimir effects.
Here, the treatment of interfacial forces in a bounded
geometry is taken into account. It yields the correspond-
ing mechanical stress/energy on the exterior side of the
vapor-liquid interface, and its “infinite” stress term in
liquid (Eq. 10b) subtracts the same “infinite” term in
vapor (Eq. 10a), and it gives rise to the convergent and
finite result (please refer to Eq. 11 in Sec. III).

III. RESULTS AND DISCUSSION

In the preceding section, we have derived the expres-
sions for the van der Waals pressure of a vacuum cavity
of radius a surrounded by a dissipative liquid medium
in Eqs. 10a and 10b. The van der Waals pressure in
a vacuum layer sandwiched between two half–spaces is
given by the zz component of the Maxwell stress ten-

sor, T (sc)
zz (d), where the z–axis is perpendicular to the

planar interfaces. T (sc)
zz (d) is related to the optical prop-

erties of the materials involved and the thickness of the
vacuum layer, d, as T (sc)

zz (d) = Ah/6πd
3 [41, 42]. The

thickness of vacuum film d is the unique dimensional pa-
rameter for a thin–film configuration. Similarly, in this
work, the radius a of vacuum cavity embedded in dissipa-
tive medium is the unique geometric parameter. Hence,
we are able to define a spherical Hamaker function with
a definition similar to the planar Hamaker function, i.e.,

T (sc)
rr,vap(a) = As/6πa

3, which can be used to evaluate the
van der Waals pressure on the interior surface of a spher-
ical cavity of radius a. In Table I, we list the planar
and spherical Hamaker coefficients, Ah and As, as well
as As/Ah for various materials. The optical properties
needed to calculate Ah and As are obtained from Refs.
[41, 45]. It can be seen clearly that the dimensionless ra-
tio of Hamaker function As/Ah is approximately around
9.0 ∼ 9.5. The increase in spherical Hamaker constant
is attributed to a stronger confinement of fluctuational
electromagnetic waves within a nanoscale sphere (a 3–D
cavity) in comparison to a thin film (a planar cavity).

Let the hydrostatic pressures in the vapor and liq-
uid regions be pvap and pliq respectively. The total r̂r̂

TABLE I. Planar and spherical Hamaker constants for various
materials. Planar Hamaker constant Ah has been calculated
by using Lifshitz’ technique, in comparison with the values
as shown in Hough and White’s paper [41]. As, the spheri-
cal Hamaker constant for a vacuum cavity in a homogeneous
substance, can be calculated using Eq. 12.

Substance Ah (zJ) As (zJ)
Ours Hough [41]

Water 54.21 55.1 519.19
n-Pentane 37.51 37.5 357.72
n-Hexane 40.68 40.7 378.60
n-Heptane 43.11 43.2 396.38
n-Octane 44.94 45.0 405.28
n-Nonane 46.62 46.6 443.84
n-Decane 48.19 48.2 454.21
Polystyrene 65.87 65.8 606.03
Polyvinylchloride 78.13 77.8 697.58
Polyisoprene 60.06 59.9 561.53

stress tensor on either side of the interface in the vapor

and liquid regions are given by −pvap + T (sc)
rr,vap(a) and

−pliq + T (sc)
rr,liq(a) respectively. Balance of forces at the

interface yields a modified Young–Laplace equation as
shown below:(
pvap−T (sc)

rr,vap(a)
)
−
(
pliq−T (sc)

rr,liq(a)
)

=
2σ∞(Tl)

a
(11)

where σ∞(Tl) is temperature dependent surface tension.

The stress tensors T (sc)
rr,vap(a) and T (sc)

rr,liq(a) are plotted

for water and n-Heptane (we chose n-Heptane as an ex-
ample of an hydrocarbon/non–polar material) in Fig. 2.

It can be seen clearly that the r̂r̂ component T (sc)
rr,vap(a)

obeys a a−3 rule, while T (sc)
rr,liq(a) behaves as a−1, which

is negligible compared to the inner stress unless a cav-
ity grows up to one of radius as large as 40 nm. Since

aT (sc)
rr,liq(a) � σ∞, T (sc)

rr,liq(a) does not contribute signifi-

cantly to σ∞; aT (sc)
rr,liq(a)/σ∞ ≈ 10−4 for water and 10−3

for n-Heptane.
Manipulation of Eq. 11 gives rise to a temperature as

well as size dependent surface energy σ(a, Tl) of a cav-
ity of radius a at temperature Tl (neglecting the term

T (sc)
rr,liq(a) as it is negligible compared to T (sc)

rr,vap(a) for

small radii):

σ(a, Tl) ≈ σ∞(Tl)+
a

2
T (sc)
rr,vap(a) = σ∞(Tl)+

As
12πa2

(12)

It is known that surface tension σ∞ of liquid varies as the
liquid temperature Tl, and it also depends on the criti-
cal temperature Tc and critical pressure Pc of the liquid.
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FIG. 2. (a) Stress tensor at surface of a vacuum cavity in
water. The blue curve with circular markers and the green
curve with square markers are Maxwell stress tensors at the

interior [T (sc)
rr,vap(a) ∼ a−3] and exterior [T (sc)

rr,liq(a) ∼ a−1] of
the vacuum–water interface. The van der Waals pressure in
a vacuum layer between two half–spaces of water (light blue
curve with “+” markers) and the capillary pressure due to
surface tension of water at room temperature Tl = 300 K
(cyan curve with “×” markers) are also shown. (b) Similar
plot for n-Heptane.

We use Vargaftik’s expression [48] for surface tension for
water, which is given by:

σ∞(Tl) = B

(
1− Tl

Tc

)µ [
1 + b

(
1− Tl

Tc

)]
, (13)

where B = 235.8×10−3 N/m, b = −0.625 and µ = 1.256.
Similarly, we use the expression proposed by Riedel [49]
and Carey [50] for surface tension for hydrocarbons,
which is given by:

σ∞(Tl) = P 2/3
c T 1/3

c

(
0.133Rc − 0.281

1000

)(
1− Tl

Tc

)11/9

(14)
Rc is the Riedel parameter [49, 50] defined as

Rc = 0.9076

(
1 +

Tb
Tc

lnPc

)(
1− Tb

Tc

)−1
, (15)

where Tb is the boiling point of the hydrocarbon. In
these relations, temperature Tb and Tc are in Kelvin, Pc
is in atmospheres. The critical temperature and pres-
sure, boiling point, and Riedel parameter at standard at-
mospheric pressure for n–Heptane are 540.3 K, 26.9 atm,
371.6 K, and 9.49 respectively.

In Fig. 2, along with the Maxwell stress tensor compo-

nents T (sc)
rr,vap(a) and T (sc)

rr,liq(a), we also show the variation
with radius a of the excess pressure within the vapor cav-
ity due to surface tension, 2σ∞/a, and the van der Waals
pressure in a film of thickness a, Ah/6πa

3. Equation 12
suggests that we can define a transition radius rtr when
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FIG. 3. Surface energy σ(a, Tl) = σ∞(Tl) + As/12πa2 varies
as radius a at different temperature, for (a) water and (b)
n-Heptane.

the curvature dependent contribution to pressure within
the vapor cavity becomes comparable to the usual sur-
face tension dependent part. Here, we define rtr to be

such that T (sc)
rr,vap(a) is 10 % of 2σ∞/a. Such a radius is

given by:

As
6πr3tr

= 0.1
2σ∞(Tl)

rtr
⇒ rtr(Tl) =

√
As

1.2πσ∞(Tl)
(16)

As a � rtr, surface tension dominates, whereas a < rtr,
van der Waals pressure plays a significant role in surface
energy of a nanoscale cavity, as shown in Fig. 3. Figures
3a and 3b show the dependence of surface energy, σ(a, Tl)
[Eq. 12] on temperature and cavity size for water and n-
Heptane respectively. Substituting Eqs. 13 and 14 and
spherical Hamaker constants (As) from Table I into Eq.
16, it can be found that the transition radius is rtr ≈ 10
nm and ≈ 40 nm for water and n-Heptane respectively.
Surface energy σ(a, Tl) ≈ As/12πa2 when a � rtr, and
σ(a, Tl) ≈ σ∞(Tl) when a� rtr.

We apply this result to the theory of homogeneous nu-
cleation of bubbles in liquids. A key quantity in the the-
ory of homogeneous nucleation is the equilibrium radius,
re(Tl, Pl), which is the radius at which vapor bubbles are
in equilibrium (unstable) with a liquid at temperature Tl
and pressure Pl. The dependence of re on Tl and Pl is
given by [50]:

re(Tl, Pl) =
2σ∞(Tl)

Psat(Tl) exp

(
vl[Pl − Psat(Tl)]

RTl

)
− Pl

(17)

where Tl < Tc and Pl < Psat(Tl) for a superheated liq-
uid. Figure 4 shows the dependence of equilibrium radius
of a cavity on temperature (Tl < 0.95Tc) and pressure
Pl = Patm = 1.01 × 105 Pa and Pl = 10Patm for wa-
ter and n-Heptane. It can be seen that the equilibrium
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radius decreases with increasing temperature and, even-
tually, becomes comparable to the transition radius. To
illustrate this effect better, we plot the ratio of radii of
rtr(Tl) and re(Tl, Pl) as a function of Tl at different liq-
uid pressures in Fig. 5. When rtr(Tl)/re(Tl, Pl) & 1,
then classical theory of homogeneous nucleation should
be modified in order to take curvature dependent van
der Waals contribution into effect. The numerical val-
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FIG. 4. Temperature and pressure dependent critical size,
re(Tl, Pl), of a cavity surrounded by a superheated liquid, for
(a) water and (b) n-Heptane.
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ues of As given here cannot be extended to the case when
Tl & 0.95Tc because the vapor inside the cavity can no
longer be approximated as vacuum. Making appropriate
allowance for this by defining a density–dependent dielec-
tric function of the vapor phase can extend this theoret-
ical model up to Tl = Tc. However, the anaylsis of van
der Waals interactions at all temperatures up to Tc, and
the effect of van der Waals interactions on homogeneous
nucleation will be pursued in a separate manuscript.

IV. SUMMARY

We have used fluctuational electrodynamics to de-
termine the van der Waals pressure inside a spheri-
cal nanocavity within a homogeneous, isotropic, infinite
medium. The van der Waals pressure inside the cavity
of radius a is shown to behave as As/6πa

3, in agree-
ment with dimensional analysis. The size-dependent sur-
face energy (or tension) can be written as σ(a, Tl) =
σ∞(Tl) + As/12πa2. Unlike σ∞, As only has a weak
temperature dependence when Tl < 0.95Tc. We define
a transition radius at which the van der Waals pressure
contributes an unnegligible amount (assumed to be 10%
here) to the surface tension of liquid, and compare it
with the prediction of the classical theory of homoge-
neous nucleation for the equilibrium radius of a vapor
cavity surrounded by a superheated liquid. Since the
surface energy of the liquid–vapor interface is important
to the classical theory of homogeneous nucleation, we ex-
pect the work presented here to have a direct impact on
our understanding of homogeneous nucleation inside mi-
cro/nanocavity.

ACKNOWLEDGMENTS

This work is funded by the Start-up Grant through the
College of Engineering at the University of Rhode Island.

REFERENCES

[1] E. Lifshitz, Sov. Phys. JETP 2, 73 (1956).
[2] S. Rytov, Theory of Electric Fluctuations and Ther-

mal Radiation (Air Force Cambridge Research Center,
Bedford, Mass., 1959), Tech. Rep. (AFCRC-TR-59-162,

1967).
[3] I. E. Dzyaloshinskii, E. Lifshitz, and L. P. Pitaevskii,

Physics-Uspekhi 4, 153 (1961).



7

[4] V. A. Parsegian and B. W. Ninham, Journal of Theoret-
ical Biology 38, 101 (1973).

[5] Y. Zheng and A. Narayanaswamy, Physical Review A 83,
042504 (2011).

[6] A. Narayanaswamy and Y. Zheng, Physical Review A 88,
012502 (2013).

[7] M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B.
Svetovoy, Physical Review A 77, 022901 (2008).

[8] Y. Zheng and A. Narayanaswamy, Physical Review A 89,
022512 (2014).

[9] Y. Zheng, Advances in Condensed Matter Physics 2015
(2015).

[10] A. W. Rodriguez, F. Capasso, and S. G. Johnson, Nature
photonics 5, 211 (2011).

[11] S. Kondrat, L. Harnau, and S. Dietrich, The Journal of
chemical physics 131, 204902 (2009).

[12] E. Noruzifar and M. Oettel, Physical Review E 79,
051401 (2009).

[13] H. Gies and K. Klingmüller, Physical review letters 96,
220401 (2006).

[14] M. Bordag, Physical Review D 73, 125018 (2006).
[15] B. Geyer, G. Klimchitskaya, and V. Mostepanenko, The

European Physical Journal C-Particles and Fields 57,
823 (2008).

[16] T. H. Boyer, Physical Review 174, 1764 (1968).
[17] K. A. Milton, L. L. DeRaad Jr, and J. Schwinger, Annals

of Physics 115, 388 (1978).
[18] J. Schwinger, J. L. L. DeRaad, and K. A. Milton, Ann.

Phys. (N. Y.) 115, 1 (1978).
[19] K. A. Milton, Annals of Physics 127, 49 (1980).
[20] K. A. Milton and Y. J. Ng, Physical Review E 55, 4207

(1997).
[21] V. Belosludov and V. Nabutovskiy, Zh. eksp. i teor. fiz

68, 2177 (1975).
[22] V. P. Carey and A. P. Wemhoff, International journal of

heat and mass transfer 48, 5431 (2005).
[23] A. P. Wemhoff and V. P. Carey, Microscale Thermophys-

ical Engineering 9, 331 (2005).
[24] S. J. Gokhale, J. L. Plawsky, and P. C. Wayner Jr, Jour-

nal of colloid and interface science 259, 354 (2003).
[25] P. C. Wayner Jr, International Journal of Heat and Mass

Transfer 25, 707 (1982).
[26] P. Wayner Jr, AIChE journal 45, 2055 (1999).
[27] S. DasGupta, I. Y. Kim, and P. C. Wayner, Journal of

Heat Transfer 116, 1007 (1994).

[28] A. Chatterjee, J. L. Plawsky, and P. C. Wayner Jr, Ad-
vances in colloid and interface science 168, 40 (2011).

[29] J. N. Chung, T. Chen, and S. Maroo, Frontiers in Heat
and Mass Transfer (FHMT) 2 (2011).

[30] S. C. Maroo and J. N. Chung, International Journal of
Heat and Mass Transfer 53, 3335 (2010).

[31] S. C. Maroo and J. N. Chung, Journal of Heat Transfer
135, 061501 (2013).

[32] J. L. Plawsky, A. G. Fedorov, S. V. Garimella, H. B.
Ma, S. C. Maroo, L. Chen, and Y. Nam, Nanoscale and
Microscale Thermophysical Engineering 18, 251 (2014).

[33] V. Nesterenko and I. Pirozhenko, Physical Review D 57,
1284 (1998).

[34] G. Barton, Journal of Physics A: Mathematical and Gen-
eral 34, 4083 (2001).

[35] S. Lim and L. Teo, New Journal of Physics 11, 013055
(2009).

[36] I. Affleck, arXiv preprint cond-mat/9512099 (1995).
[37] X. Ai-Min and C. Xiao-Song, Communications in Theo-

retical Physics 50, 1317 (2008).
[38] V. M. Nabutovskii and V. R. Belosludov, International

Journal of Modern Physics B 3, 171 (1989).
[39] O. Kenneth, I. Klich, A. Mann, and M. Revzen, Physical

review letters 89, 033001 (2002).
[40] O. Kenneth and I. Klich, Physical review letters 97,

160401 (2006).
[41] D. B. Hough and L. R. White, Advances in Colloid and

Interface Science 14, 3 (1980).
[42] J. N. Israelachvili, Intermolecular and surface forces: re-

vised third edition (Academic press, 2011).
[43] A. Narayanaswamy and G. Chen, Journal of Quantitative

Spectroscopy and Radiative Transfer 111, 1877 (2010).
[44] A. Narayanaswamy and Y. Zheng, Journal of Quantita-

tive Spectroscopy and Radiative Transfer 132, 12 (2014).
[45] E. D. Palik, Handbook of optical constants of solids, Vol. 3

(Academic press, 1998).
[46] A. Narayanaswamy and G. Chen, Physical Review B 77,

075125 (2008).
[47] Y. Zheng and A. Ghanekar, Journal of Applied Physics

117, 064314 (2015).
[48] N. Vargaftik, B. Volkov, and L. Voljak, Journal of Phys-

ical and Chemical Reference Data 12, 817 (1983).
[49] L. Riedel, Chem.-Ing.-Tech 26, 259 (1954).
[50] V. P. Carey, Liquid-vapor phase-change phenomena

(Hemisphere, New York, NY, 1992).


	Casimir effect modified surface energy of a nanocavity in homogeneous media
	Citation/Publisher Attribution

	Casimir effect modified surface energy of a nanocavity in homogeneous media
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use

	tmp.1439490797.pdf.2x6jB

