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Commentary

A novel avian-origin H7N9 influ-
enza strain emerged in China in 

April 2013. Since its re-emergence in  
October–November 2013, the number 
of reported cases has accelerated; more 
than 220 laboratory-confirmed cases 
and 112 deaths (case fatality rate of 
20–30%) have been reported. The resur-
gence of H7N9 has re-emphasized the 
importance of making faster and more 
effective influenza vaccines than those 
that are currently available. Recombi-
nant H7 hemagglutinin (H7-HA) vac-
cines have been produced, addressing 
the first problem. Unfortunately, these 
recombinant subunit vaccine products 
appear to have failed to address the sec-
ond problem, influenza vaccine efficacy. 
Reported unadjuvanted H7N9 vaccine 
seroconversion rates were between 6% 
and 16%, nearly 10-fold lower than rates 
for unadjuvanted vaccine seroconversion 
to standard H1N1 monovalent (recombi-
nant) vaccine (89% to pandemic H1N1). 
Could this state of affairs have been pre-
dicted? As it turns out, yes, and it was.1 
In that previous analysis of available 
H7-HA sequences, we found fewer T-cell 
epitopes per protein than expected, and 
predicted that H7-HA-based vaccines 
would be much less antigenic than recent 
seasonal vaccines. Novel approaches to 
developing a more immunogenic HA 
were offered for consideration at the 
time, and now, as the low immunogenic-
ity of H7N9 vaccines appears to indicate, 
they appear to be even more relevant. 

More effective H7N9 influenza vaccines 
can be produced, provided that the role 
of T-cell epitopes is carefully considered, 
and accumulated knowledge about the 
importance of cross-conserved epitopes 
between viral subtypes is applied to the 
design of those vaccines.

Introduction

A new avian-origin influenza, known 
initially as H7N9 A/Anhui/1/2013 
(H7N9), emerged near Shanghai begin-
ning in February, peaking in May–June 
and losing momentum in July 2013.2 
After a period of quiescence, case reports 
accelerated in October 2013: more than 
220 cases of H7N9 have occurred as of 
February 2014.3 The high mortality rate 
(case fatality rate or CFR of 20–30%) and 
rapid spread of the new strain of H7N9 
throughout China4 is renewing concern 
about the availability of effective anti-
H7N9 vaccines. A number of H7N9 vac-
cines are in clinical trials; however, the 
efficacy of these vaccines is reported to 
be extremely low compared with other 
subunit and seasonal influenza vaccines, 
as shown in Figure 1. While the addition 
of adjuvant to the vaccines did increase 
the antigenicity of the vaccines in young, 
healthy adults, adjuvant is not currently 
used in standard seasonal influenza vac-
cines. Experts have expressed some con-
cern about the use of adjuvant in influenza 
vaccination due to the recently reported 
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association between adjuvanted influenza 
vaccines and narcolepsy in Finnish (and 
Swedish) children.5

The H7N9 genome was first made 
available on the GISAID website on April 
2, 2013; it was rapidly analyzed and com-
pared with other circulating H7-type 
viruses6-8 and examined for potential 
antigenicity by our group.1 By early 2013, 
European, American, and Asian influenza 
vaccine companies were entering clini-
cal trials with recombinant subunit vac-
cines produced in protein-production cell 
lines.9,10

Our group viewed this approach to the 
production of H7N9 vaccines with some 
concern, because our previous analysis 
of the H7-HA sequence indicated that 
it had fewer than expected T-cell epi-
topes and would be poorly antigenic.1 
This analysis appears to be even more 
relevant in light of the new H7N9 vac-
cine efficacy data. Briefly, we estimated 
the immunogenic potential of the new 
influenza using well-established immu-
noinformatics tools.11-13 We then normal-
ized the H7-HA T-cell epitope content to 
protein length, and compared it to other 
circulating influenza strains. As shown in 
Figure 2, H7-HA proteins and HA tested 
in H7N7 and H7N1 vaccines were found 
to contain 14–24% fewer T-cell epit-
opes (per length) than other circulating 

strains of IAV (A/California/07/2009, 
A/Victoria/361/2011, and A/
Texas/50/2012).

H7-HA also appeared to be “de-
immunized” and “tolerized” with respect 
the quantity and quality of T-cell epit-
opes expected in proteins of similar size 
(Fig.  2). De-immunization, or removal 
of T-cell epitopes, is a method employed 
by some viruses to evade human immune 
response. Tolerization relates to the intro-
duction of T-cell epitopes that are highly 
conserved, on the T-cell receptor face, 
with a large number of other similar epi-
topes contained in the human genome. 
We recently observed de-immunization 
and tolerization of T-cell epitopes to be 
prevalent among viruses that are known to 
be commensal in human beings, such as 
Herpes simplex virus, Cytomegalovirus, 
and Epstein Barr virus.14 This type of 
epitope analysis is especially relevant 
to influenza vaccine design, since the 
principles of protein engineering could 
be applied to correct these features and 
improve the antigenicity of recombi-
nant subunit HA-based vaccines. Using 
a similar approach, we correctly pre-
dicted the antigenicity of influenza A/
California/04/2009 (H1N1), which is due 
in part to its substantial ration of T helper 
epitopes with the potential to cross-react 
with other seasonal H1N1 strains,15,16 a 

finding that was later validated in studies 
performed by other groups.17-19

H7-HA stands out as a uniquely non-
immunogenic protein, which may be due 
to the paucity of T-cell epitopes that we 
described previously and to cross-con-
served epitopes (with the human genome) 
that may further reduce its antigenicity. 
Here, we reiterate our hypothesis that 
the emerging avian-origin H7N9 2013 
might behave like a “stealth” virus, using 
the T-cell epitope deimmunization and 
tolerization methods to evade human 
cellular and humoral immune response, 
and review these findings in the context 
of recently published vaccine efficacy and 
human serology reports.

H7N9 Vaccines: Current Status

Two vaccine studies20,21 and one clini-
cal serology study of H7N9-infected and 
exposed subjects22 have been published 
or announced in the last few months. 
Novartis produced a monovalent inac-
tivated vaccine in MDCK cells,9 and 
Novavax produced a virus-like particle 
vaccine in insect cells.10 The reported sero-
conversion rates to unadjuvanted H7N9 
HA vaccines were extremely low (6–16%) 
as compared with the 89% seroconver-
sion rate observed in response to subunit 
influenza vaccines in comparable studies 
of pandemic H1N1 HA.23-25 According 
to the Novartis media release, the vac-
cine’s protective immune response was 
only achieved after two doses of 15 µg of 
the MF59-adjuvanted vaccine (protective 
HAI titers in 85% of healthy subjects, 400 
healthy volunteers, 18–64 y of age). In 
contrast, “…only 6% of subjects achieved 
a protective response when given two 
doses of the 15 µg unadjuvanted vaccine.” 
Similarly low hemagglutination-inhibi-
tion (HAI) titers were achieved in the 
Novavax study: seroconversion and recip-
rocal antibody titers of 40 or more (…the 
value cited by regulatory authorities as 
having a potential association with clinical 
benefit) were only detected in 5.7% and 
15.6% of participants receiving 15 μg and 
45 μg of HA, respectively, without adju-
vant. Addition of adjuvant to the Novavax 
vaccine significantly increased the level 
of HAI titers; more than 80% of partici-
pants receiving 5 μg of the HA vaccine 

Figure  1. Comparative effectiveness of unadjuvanted monovalent recombinant vaccines (IAV 
H7N9 and H1N1) and seasonal trivalent vaccine. Percent effectiveness is shown, as percent of study 
cohort achieving “significant” seroconversion (see text). The Novartis vaccine company reported 
that H7N9 cell culture-produced vaccine without adjuvant produced seroconversion rates of 6%.20 
In contrast, the rate of seroconversion to unadjuvanted monovalent pandemic H1N1 was 89% in 
one study.23 Rates of seroconversion to trivalent seasonal vaccine are 84% on average to the three 
strains of virus in the vaccine.25



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

258	 Human Vaccines & Immunotherapeutics	 Volume 10 Issue 2

with 60 units of adjuvant saponin-based 
ISCOMATRIX adjuvant seroconverted.

The low immunogenicity of H7-HA 
has been previously reported in pre-clin-
ical (mouse) and clinical (human) studies. 
In one such previous study, a low-patho-
genicity recombinant H7N7 virus was 
generated by reverse genetics and shown 
to protect mice against lethal infection 
with a high-pathogenicity H7N7 virus. 
Importantly, protection was only achieved 
with co-administration of adjuvant.26 This 
subunit vaccine was developed by cloning 
the HA of influenza virus A/Mallard/
Netherlands/12/00 (H7N3) and the NA 
of influenza virus A/Netherlands/33/03 
(H7N7) into the cell culture-adapted 
strain A/PR/8/34.

In a second study, a split H7N1 vac-
cine was prepared by reverse genetics and 
produced in a specialized cell line (PER.
C6). The vaccine contained the internal 
genes of A/PR/8/34 with surface antigens 
of the highly pathogenic avian strain (A/
Chicken/Italy/13474/l99(H7N1). This 
vaccine was also observed to be poorly 
immunogenic in a Phase I clinical trial27 
even when given in two doses containing 
either 12 μg or 24 μg of HA alone or with 
aluminum hydroxide (Alum) adjuvant. 
This vaccine was found to induce only low 
antibody responses in humans, and again, 
only when formulated with the adjuvant.

These findings may have contributed 
to the decision by vaccine developers to 
compare unadjuvanted and adjuvanted 
H7N9 vaccines in side-by-side cohorts in 
the recent clinical studies described above. 
Adjuvanting H7N9 influenza vaccines is 
one approach to improving the antigenic-
ity of H7-HA, and it may become neces-
sary, but emerging associations between 
adjuvanted influenza vaccination and nar-
colepsy in Finland and Sweden5,28,29 raise 
concern about the potential for adverse 
immune responses to occur.

Human Infection  
and Seroconversion

In the recent noteworthy seroepide-
miology study performed by Guo et  al., 
the protective antibody response against 
influenza A (H7N9) virus was investi-
gated in 48 acute-phase and convales-
cent serum samples from 21 subjects 

with laboratory-confirmed infection.24 
Neutralizing anti-H7-HA antibodies 
were undetectable in samples collected 
up to 28 d after symptom onset but were 
observed at 29–37 d. This differs signifi-
cantly from responses in pandemic H1N1 
and H5N1 infections, which are observed 
at days 14–21. The avidity of serum IgG 
antibodies for H7-HA was also lower than 
that observed for H1-HA and H3-HA. 
Thus, the H7N9 virus infection stimulated 
delayed and weak antibody responses in 
the cases investigated by Guo et  al., sug-
gesting that vaccination using conventional 
approaches may also be inefficient.

According to the authors, weak anti-
body response and low avidity of the result-
ing anti-HA antibodies might play a role in 
the severity and duration of infections and 
the pathogenesis of H7N9 disease. The low 
titer of antibodies to HA resulting from 
infection is also noteworthy since serology 
is also used to detect infection in large pop-
ulation studies. If antibody titers are low 
among infected individuals, it is possible 
that the prevalence of exposure to H7N9 
might be underreported. One consequence 

of under-diagnosis is known as the tip of 
the iceberg phenomenon (prevalence is 
underestimated due to under-reporting). 
Indeed, a number of H7N9 cases in China 
were only identified following routine sero-
surveillance.30 Should human-to-human 
transmission of H7N9 begin, other means 
of identifying infected individuals in large 
surveys (such as T-cell assays) may be 
needed, as they may prove to be more accu-
rate than serology.

Epidemiology, Morbidity,  
and Mortality

The first cases of human infec-
tion with H7N9 were detected in resi-
dents of the city of Shanghai and in 
residents of Anhui province.2 The num-
ber of cases peaked in May–June and 
decreased during the summer, but the 
virus re-emerged in October 2013.6 As of 
February 1st 2014, more than 280 labo-
ratory-confirmed cases of human infec-
tion have already been reported. That 
is nearly half as many as have occurred 
for H5N1 (566, as of December 2014), 

Figure 2. EpiMatrix Immunogenicity scale comparing the potential antigenicity of H7-HA to recent 
seasonal influenza A strain HA proteins. Using EpiMatrix and assessing each protein for overall 
T-cell epitope content, the protein scores are plotted on an immunogenicity scale that ranks the 
immunogenic potential of HA protein derived from recently-circulating strains of seasonal IAV 
(H1N1, H3N2) as compared with strains of avian-origin influenza. The set of avian-origin IAV strains 
have a low immunogenicity potential (below zero), EpiMatrix scores that are commonly associ-
ated with low immunogenicity proteins that do not effectively trigger IgG antibody responses. 
Scores are shown for H7-HA from several different sources, including the vaccines described in 
the text (refs. 22 and 23 [Anhui, scoring – 6.49], 28 [mallard, –7.12], and 29 [chicken, –6.43]). In con-
trast, H1N1 California, H3N2 Victoria, and H2N3 Texas, rank +19.22, +16.23, and +14.25 respectively). 
The EpiMatrix Immunogenicity Scale is derived by analyzing more than 10 000 random protein 
sequences for T cell epitope content and producing a score that reflects the normal distribution of 
T cell epitope content per protein length. Proteins scoring higher than 10 on this scale are usually 
antigenic; proteins scoring lower than 10 are generally poorly antigenic. Details on the methodol-
ogy are available in reference 13 and other publications by the group.
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and they are accumulating at a pace that 
is five times faster than H5N1. Even 
more worrisome, the number of cases 
reported in a single province (Zhejiang) 
over the last two-month period  
(December 2013–January 2014) already 
exceeds the peak number of cases in the 
same region, per two month period, last 
year.31

H7N9 is “non-pathogenic” in birds 
but pathogenic in humans. In humans, 
the CFR is 22%3; some experts believe 
that there are quite a few cases that are not 
laboratory-confirmed, thus the CFR may 
be lower. Most patients initially developed 
an influenza-like illness that progressed to 
respiratory distress syndrome.2 The median 
age of laboratory-confirmed cases is 56 y, 
but there is a wide age range (from infant to 
91). Infections in men are more frequently 
reported than in women. In a recent study 
of 82 confirmed cases with information on 
possible exposures, 63 (77%) of the cases 
had contact with live animals at or near 
the time of infection.4,5 Poultry and other 
live birds (including pet birds) have been 
identified as the likely source of infection, 
although the prevalence of H7N9 influenza 
in poultry flocks remains extremely low, 
and a direct link has not yet been proven. 
The lack of any evidence of circulating 
H7N9 in poultry has lead some to postu-
late that another, potentially mammalian, 

vector is transmitting H7N9 to humans. 
Of note, the virus appears to have a “mam-
malian signature,” according to experts 
at the National Institute for Infectious 
Disease.9

Public Health Concerns

There are four important reasons why 
public health officials are on high alert 
regarding H7N9: First, individual cases of 
nearly identical H7N9 viral infections have 
been identified in a wide range of loca-
tions within China in a very short period 
of time. Cases have been reported from 11 
provinces in China and two municipalities 
(Beijing and Shanghai). Taiwan reported 
two cases imported from Jiangsu, and 
Hong Kong reported three cases imported 
from Guangdong.4 The wide distribution 
of cases strongly suggests that the virus is 
already widespread in an as-yet-unidenti-
fied reservoir population, although human-
to-human transmission is rare.32 Second, 
H7N9 subtype influenza has never before 
infected humans to a significant extent, 
meaning the human population has little 
or no pre-existing immunity. This clearly 
contributes to the extremely high mortal-
ity rate, which ranges between 20 and 30% 
of individuals.33,34 Third, higher rates of 
human infection by the emerging H7N9, 
as reported to occur over the most recent 

time period, are worrisome because each 
transmission may be associated with muta-
tions in the viral sequence that increase the 
likelihood of human-to-human transmis-
sion. The pace of human infection appears 
to have accelerated in recent months.3 
According to a recently-published report, 
the virus can be transmitted between 
mammals (guinea pigs and ferrets).35,36 
More infections may lead to the chance 
occurrence of the one or two mutations 
that would enable either drug resistance to 
occur,37 or enable the virus to achieve full 
adaptation for human-to-human transmis-
sion.30 And fourth, there is no reason to 
believe that the H7N9 virus will remain 
geographically confined to China. Not 
only do wild bird flyways provide a conve-
nient route of spread to Africa, Europe, and 
North America,38,39 but also human fly-
ways40 (see the recent report of the arrival of 
H5N1 in North America, ref. 41) provide 
an easy means to transmit H7N9, should 
mutations to H7N9 that enable human-to-
human transmission occur.

Transport of H7N9 along poultry trade 
routes or wild bird migration routes appears 
to be highly likely (Fig. 3). Should H7N9 
spill over the borders of China to nearby 
countries such as Vietnam (through local, 
unregulated poultry trade), or more dis-
tantly by bird flyways to Africa, it is likely 
to cause an even greater number of human 
cases. Poultry stock is ubiquitous and con-
tact between humans and food animals 
is extensive in most developing world 
countries. In addition, influenza vaccina-
tion campaigns are unheard of, although 
infrastructure does exist for door-to-door 
vaccination programs; these have been 
implemented in the context of polio out-
breaks. Little is known about the epidemic 
burden of IAV among African communi-
ties, and information about IAV circula-
tion in the population has only emerged 
recently (with H1N1 in 2009).42 From 
those studies, it is clear that IAV can be 
introduced by two routes: first by travel-
ers, (e.g., Malian workers returning home 
from Europe42); and second by birds. One 
important location where avian transmis-
sion might occur is the inner Niger Delta 
in Mali, a wetland of 3 000 000 hectares 
with flood plains, lakes, river branches, 
and small pockets of flood forest that 
plays an extremely important role in bird 

Figure  3. Contrasting TCR-epitope networks of ‘classic’ T-cell epitopes from pH1N1 and H7N9 
HA. Human genome T cell epitope conservation defined by JanusMatrix53 is illustrated using 
Cytoscape. Here, the more limited human conservation of TCR-facing residues for the T cell epitope 
in Influenza A/H1N1 2009/CA (pH1N1; three 9-mers, with 0, 2, or 8 human conserved epitopes), 
contrasts with a similar epitope in H7N9 (three 9-mers, with 9, 13, or 2 human conserved epitopes). 
A detailed description of the JanusMatrix tool is available in reference 53.
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migration throughout Africa. Endogenous 
circulation of H1N1 has been observed on 
the Inner Niger Delta, where the human 
seroconversion rate has been reported to be 
about 13%.43 A third factor that may also 
contribute to the spread of H7N9 to devel-
oping world countries, should human-to-
human transmission become possible, is 
the increased mobility of Chinese workers 
worldwide.44 Taken together, the potential 
for H7N9 is of great concern for develop-
ing world countries in Asia and Africa. 
Scientists, infectious disease experts, and 
public health officials are watching the re-
emergence of H7N9 and its spread within 
China with growing concern.

Novel Vaccines: Strategies That 
Will Work

Should H7N9 develop pandemic 
potential, novel strategies for improv-
ing the immunogenicity of vaccines for 
this unique low-immunogenicity strain 
of avian-origin influenza will be needed. 
Several approaches to improving the next 
generation of H7N9 or other IAV vaccines 
are reviewed here.

Introduction of cross-conserved T-cell 
epitopes

In 2009, we anticipated the impor-
tance of cross-conserved epitopes in the 
context of pandemic H1N1 influenza in 
a comprehensive analysis that was pub-
lished shortly after the emergence of 
the new strain.15 There was considerable 
support for this hypothesis in published 
studies involving exposure or vaccina-
tion and heterotypic challenge in animal 
models.21,45-47 Thus, we argued, the reason 
for the unusual age distribution of H1N1 
2009 cases was that older individuals 
might have established a cross-reactive 
cell-mediated immune response to novel 
H1N1 due to vaccination or exposure to 
previously-circulating influenza H1N1 
(from strains circulating after the 1918 
epidemic and again in 197748). While 
cross-reactive memory T-cell responses 
(in the absence of a cross-reactive 
humoral immune response) may not have 
provided complete protection against 
infection, it is possible that the severity of 
the illness was reduced, leading to a lower 
hospitalization rate and lower reports of 
H1N1 in this age group, as was observed 

in a case-control study from Mexico.49 
Since then, we have carried this work fur-
ther by confirming the predictions and 
developing novel vaccines that incorpo-
rate highly cross-strain-conserved CD4+ 
T-cell epitopes across a broad range of 
H1N1 influenza sequences.50-52 Similarly, 
H7N9 epitopes that are conserved in cir-
culating seasonal influenza strains may 
contribute to recovery from infection. 
Serum IgG samples from H7N9-infected 
patients were shown to recognize H1 and 
H3 hemagglutinins,24 suggesting that a 
portion of their influenza memory CD4+ 
T-cell repertoire may cross-react with 
H7N9 sequences. Thus, introduction of 
T-cell epitopes that are highly cross-con-
served (with other seasonal influenza A 
strains), or attaching an epitope string to 
HA, might boost the humoral immune 
response to H7-HA. We are currently 
engaged in the production of an epitope-
boosted H7 protein.

Reduction of T-cell epitopes that 
might lower immunogenicity

Before moving forward with vaccines 
containing highly cross-conserved T-cell 
epitopes, we have become interested in 
determining whether epitopes conserved 
with the human genome might also 

influence the immunogenicity of H7N9 
HA. We recently published a descrip-
tion of the differential distribution of 
epitopes that are highly cross-conserved 
with the human genome among human 
viral pathogens. Not surprisingly, com-
mensal viruses such as Herpes simplex 
virus 1 and 2, Epstein Barr virus, and 
Cytomegalovirus had more of these types 
of epitopes that are cross-conserved with 
the human genome, than human patho-
gens that are not commensal (Variola and 
Marburg viruses, for example14). Access to 
advanced computational TCR-modeling 
technology such as the JanusMatrix tool53 
make it possible to screen for such poten-
tial cross-reactivities. In research that is 
in preparation for publication, we have 
identified human genome-conserved 
epitopes derived from H7N9 influenza 
that may diminish T-cell responsiveness 
and significantly influence the outcome 
of vaccination and infection. Shown in 
Figure  4 are similar HA protein epit-
opes derived from H1N1 and H7N9. In 
preliminary studies using PBMCs from 
H7N9-naïve donors, we found that (1) 
H7N9-unique epitopes generated lim-
ited immune responses in human IFNγ 
ELISpot assays; (2) H7N9 epitopes that 

Figure 4. Wild bird flyways showing the connection between Asia and Africa. From Ian Mackay’s 
blog “Viruses Down Under,” bird flyways that may contribute to H7N9 spread. Used with permis-
sion from http://virologydownunder.blogspot.com/2013/09/h7n9-in-wild-birdsa-review-of-litera-
ture.html, accessed 1 February 2014.
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were highly cross-conserved with other 
circulating strains generated strong T-cell 
responses, and (3) epitopes that are cross-
conserved with the human genome and 
with other circulating strains generated 
diminished T-cell responses, by compari-
son (Rui Liu, unpublished). What is not 
yet known, and will be critical to define, 
is how these opposing T-cell responses 
are integrated in an individual’s protec-
tive immune response, as measured by 
the generation of effective neutralizing 
(HAI) and binding antibodies.

Conclusion

H7N9 viruses, along with many other 
emerging subtypes influenza, challenge 
our thinking on how to develop faster, 
more efficacious vaccines. Seasonal influ-
enza viruses have adapted to the human 
host for many years following the intro-
duction of a novel subtype. Therefore, 
humans have memory immune responses 
that can be recalled in a traditional influ-
enza vaccine each flu season. In contrast, 
people have no memory responses to new, 
emerging influenza. Following the emer-
gence of novel H1N1, we determined that 
many cross-reactive T-cell epitopes were 
present in the viral genome, and a cross-
reactive T-cell response was subsequently 
shown to contribute to significant protec-
tion against the novel strain. In contrast, 
as the analysis of critical H7N9 gene 
products (HA, NA) demonstrates, there 
is only limited potential for cross-reactive 
immune responses to this novel, avian-
origin influenza strain.

The challenge of developing an effica-
cious H7N9 vaccine is further heightened 
by the presence of T-cell epitopes in the 
H7N9 HA that may cross-react with the 
human genome, which may alter or sup-
press immune response to the emerging 
H7N9 virus. This landscape forces vac-
cinologists and vaccine manufacturers to 
think outside the box and develop novel 
strategies to enhance the immunogenic 
potential for vaccines against these viruses. 
Careful vaccine engineering that enriches 
for immunogenic T-cell epitopes appears 
to be an excellent strategy to enhance 
both the antibody and cellular responses 
against H7N9 antigens, thereby reducing 
viral titers in the nasal and lung mucosa, 

reducing transmission, and protecting 
against severe morbidity and death.
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