University of Rhode Island DigitalCommons@URI

PHY 204: Elementary Physics II (2015)

Physics Open Educational Resources

11-19-2015

08. Capacitors II

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/elementary_physics_2 Abstract

Lecture slides 8 for Elementary Physics II (PHY 204), taught by Gerhard Müller at the University of Rhode Island.

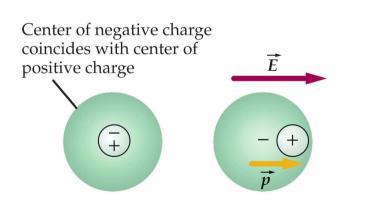
Some of the slides contain figures from the textbook, Paul A. Tipler and Gene Mosca. Physics

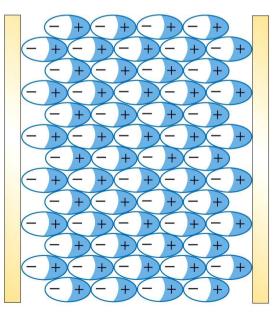
for Scientists and Engineers, 5th/6th editions. The copyright to these figures is owned by W.H. Freeman. We acknowledge permission from W.H. Freeman to use them on this course web page. The textbook figures are not to be used or copied for any purpose outside this class without direct permission from W.H. Freeman.

Recommended Citation

Müller, Gerhard, "08. Capacitors II" (2015). *PHY 204: Elementary Physics II (2015)*. Paper 15. https://digitalcommons.uri.edu/elementary_physics_2/15

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II (2015) by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

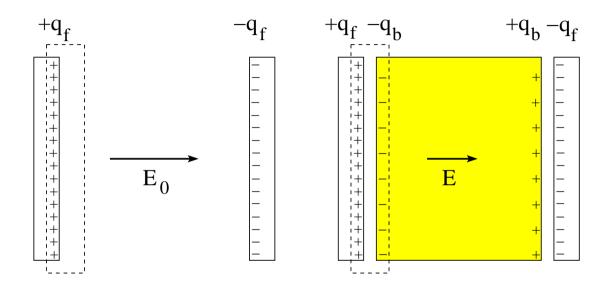

Capacitor with Dielectric



Most capacitors have a dielectric (insulating solid or liquid material) in the space between the conductors. This has several advantages:

- Physical separation of the conductors.
- Prevention of dielectric breakdown.
- Enhancement of capacitance.

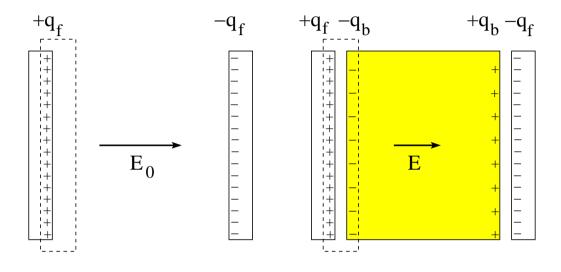
The dielectric is polarized by the electric field between the capacitor plates.



Parallel-Plate Capacitor with Dielectric (1)

The polarization produces a bound charge on the surface of the dielectric.

The bound surface charge has the effect of reducing the electric field between the plates from \vec{E}_0 to \vec{E} .


- A: area of plates
- *d*: separation between plates
- $\pm q_f$: free charge on plate

- $\pm q_b$: bound charge on surface of dielectric
- \vec{E}_0 : electric field in vacuum
- \vec{E} : electric field in dielectric

Parallel-Plate Capacitor with Dielectric (2)

Use Gauss' law to determine the electric fields \vec{E}_0 and \vec{E} .

• Field in vacuum: $E_0 A = \frac{q_f}{\epsilon_0} \Rightarrow E_0 = \frac{q_f}{\epsilon_0 A}$

• Field in dielectric: $EA = \frac{q_f - q_b}{\epsilon_0} \Rightarrow E = \frac{q_f - q_b}{\epsilon_0 A} < E_0$

• Voltage: $V_0 = E_0 d$ (vacuum), $V = E d = \frac{V_0}{\kappa} < V_0$ (dielectric)

Dielectric constant: $\kappa \equiv \frac{E_0}{E} = \frac{q_f}{q_f - q_b} > 1$. Permittivity of dielectric: $\epsilon = \kappa \epsilon_0$.

TABLE 24-1

Dielectric Constants and Dielectric Strengths of Various Materials

Material	Dielectric Constant κ	Dielectric Strength, kV/mm
Air	1.00059	3
Bakelite	4.9	24
Glass (Pyrex)	5.6	14
Mica	5.4	10-100
Neoprene	6.9	12
Paper	3.7	16
Paraffin	2.1–2.5	10
Plexiglas	3.4	40
Polystyrene	2.55	24
Porcelain	7	5.7
Transformer oil	2.24	12

- Dielectrics increase the capacitance: $C/C_0 = \kappa$.
- The capacitor is discharged spontaneously across the dielectric if the electric field exceeds the value quoted as dielectric strength.

What happens when a dielectric is placed into a capacitor with the **charge on the capacitor** kept constant?

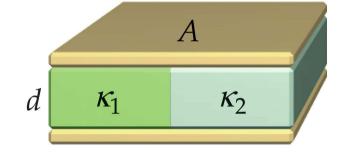
	vacuum	dielectric
charge	Q_0	$Q = Q_0$
electric field	E_0	$E = \frac{E_0}{\kappa} < E_0$
voltage	V_0	$V = \frac{V_0}{\kappa} < V_0$
capacitance	$C_0 = \frac{Q_0}{V_0}$	$C = \frac{Q}{V} = \kappa C_0 > C_0$
potential energy	$U_0 = \frac{Q_0^2}{2C_0}$	$U = \frac{Q^2}{2C} = \frac{U_0}{\kappa} < U_0$
energy density	$u_E^{(0)} = \frac{1}{2}\epsilon_0 E_0^2$	$u_E = \frac{u_E^{(0)}}{\kappa} = \frac{1}{2}\kappa\epsilon_0 E^2 < u_E^{(0)}$

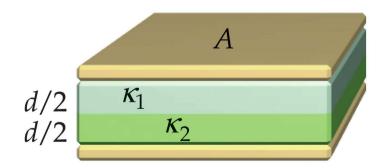
Impact of Dielectric (2)

What happens when a dielectric is placed into a capacitor with the voltage across the capacitor kept constant?

	vacuum	dielectric
charge	Q_0	$Q = \kappa Q_0$
electric field	E_0	$Q = \kappa Q_0$ $E = E_0$
voltage	V_0	$V = V_0$
capacitance	$C_0 = \frac{Q_0}{V_0}$	$C = \frac{Q}{V} = \kappa C_0 > C_0$
potential energy	$U_0 = \frac{1}{2}C_0 V_0^2$	$U = \frac{1}{2}CV^2 = \kappa U_0 > U_0$
energy density	$u_E^{(0)} = \frac{1}{2}\epsilon_0 E_0^2$	$u_E = \kappa u_E^{(0)} = \frac{1}{2} \kappa \epsilon_0 E^2 > u_E^{(0)}$

Stacked Dielectrics


Consider a parallel-plate capacitor with area A of each plate and spacing d.


- Capacitance without dielectric: $C_0 = \frac{\epsilon_0 A}{d}$.
- Dielectrics stacked in parallel: $C = C_1 + C_2$

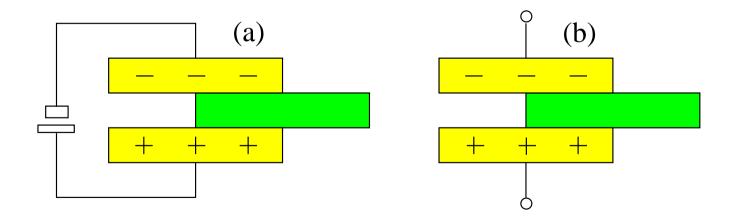
with
$$C_1 = \kappa_1 \epsilon_0 \frac{A/2}{d}, C_2 = \kappa_2 \epsilon_0 \frac{A/2}{d}.$$

 $\Rightarrow C = \frac{1}{2} (\kappa_1 + \kappa_2) C_0.$

• Dielectrics stacked in series: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$

with
$$C_1 = \kappa_1 \epsilon_0 \frac{A}{d/2}, \ C_2 = \kappa_2 \epsilon_0 \frac{A}{d/2}$$

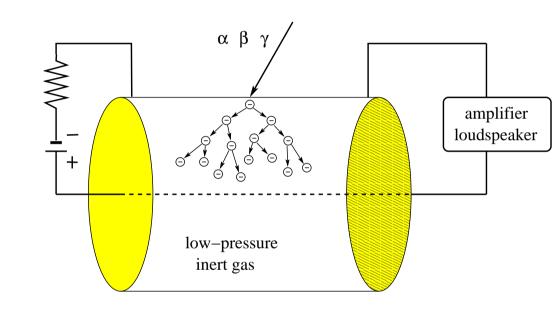
 $\Rightarrow C = \frac{2\kappa_1 \kappa_2}{\kappa_1 + \kappa_2} C_0.$



Consider two charged capacitors with dielectrics only halfway between the plates.

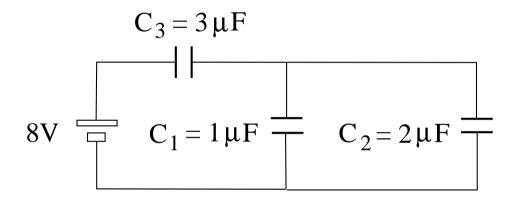
In configuration (a) any lateral motion of the dielectric takes place at **constant voltage** across the plates.

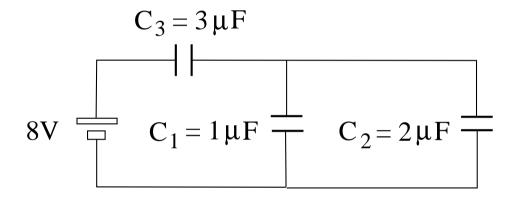
In configuration (b) any lateral motion of the dielectric takes place at **constant charge** on the plates.


Determine in each case the direction (left/zero/right) of the lateral force experienced by the dielectric.

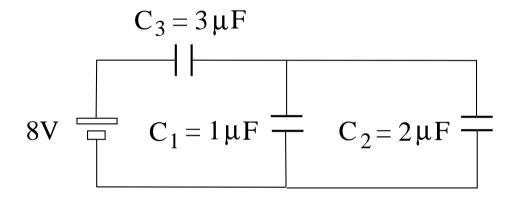
Radioactive atomic nuclei produce high-energy particles of three different kinds:

- α -particles are ⁴He nuclei.
- β-particles are electrons or positrons.
- γ -particles are high-energy photons.


- Free electrons produced by ionizing radiation are strongly accelerated toward the central wire.
- Collisions with gas atoms produce further free electrons, which are accelerated in the same direction.
- An avalanche of electrons reaching the wire produces a current pulse in the circuit.


Geiger Counter

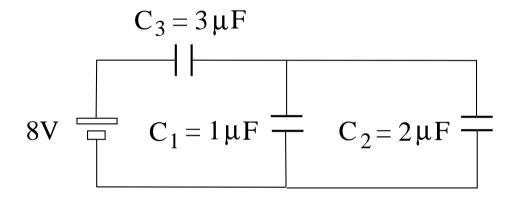
- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .



- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .

(a)
$$C_{12} = C_1 + C_2 = 3\mu F$$
, $C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = 1.5\mu F$.

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .



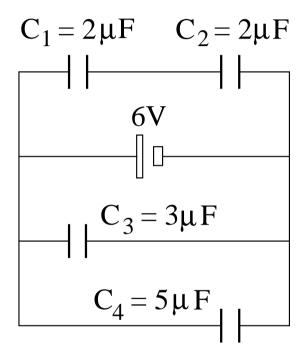
(a)
$$C_{12} = C_1 + C_2 = 3\mu F$$
, $C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = 1.5\mu F$.

(b)
$$Q_3 = Q_{12} = Q_{eq} = C_{eq}(8V) = 12\mu C$$

 $\Rightarrow V_3 = \frac{Q_3}{C_3} = \frac{12\mu C}{3\mu F} = 4V.$

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .

Solution:


(a)
$$C_{12} = C_1 + C_2 = 3\mu F$$
, $C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = 1.5\mu F$.

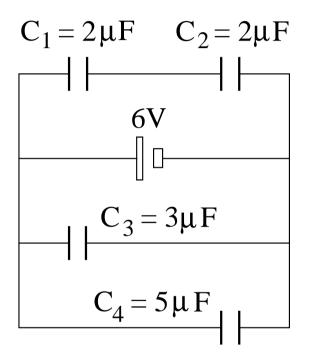
(b)
$$Q_3 = Q_{12} = Q_{eq} = C_{eq}(8V) = 12\mu C$$

 $\Rightarrow V_3 = \frac{Q_3}{C_3} = \frac{12\mu C}{3\mu F} = 4V.$

(c) $Q_2 = V_2 C_2 = 8\mu C.$


- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .

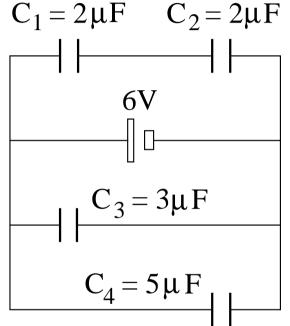
- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .


(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$

- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .

(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$

(b) $V_4 = 6V.$

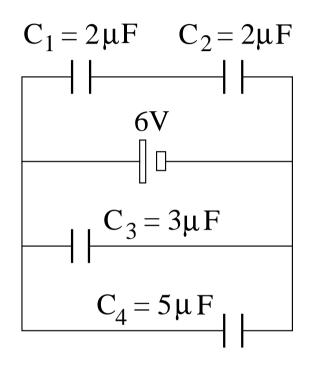

- (a) Find the energy U_3 stored on capacitor C_3 .
- Find the voltage V_4 across capacitor C_4 . (b)
- Find the voltage V_2 across capacitor C_2 . (C)
- (d) Find the charge Q_1 on capacitor C_1 .

Solution:

(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$

(b)
$$V_4 = 6V$$
.

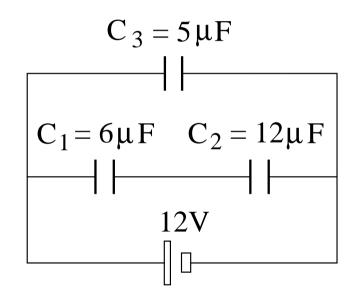
(c)
$$V_2 = \frac{1}{2}6V = 3V.$$

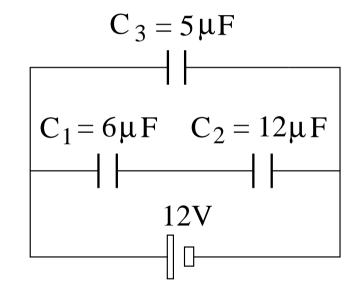

14/9/2015

[tsl362 - 11/13]

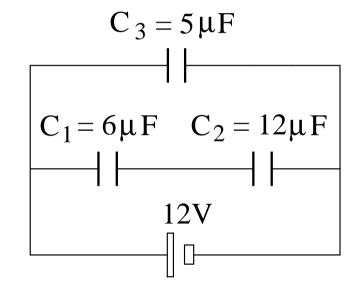
- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .

(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$


- (b) $V_4 = 6V$.
- (c) $V_2 = \frac{1}{2}6V = 3V.$
- (d) $Q_1 = (2\mu F)(3V) = 6\mu C.$

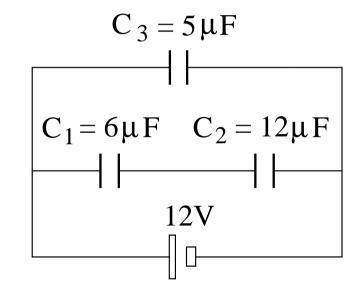

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.


(a)
$$C_{12} = \left(\frac{1}{6\mu F} + \frac{1}{12\mu F}\right)^{-1} = 4\mu F,$$

 $Q_1 = Q_2 = Q_{12} = (4\mu F)(12V) = 48\mu C.$

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.

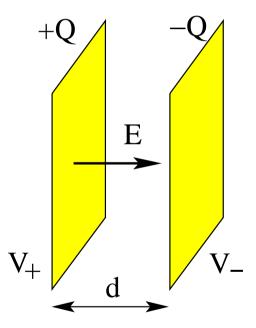

(a)
$$C_{12} = \left(\frac{1}{6\mu F} + \frac{1}{12\mu F}\right)^{-1} = 4\mu F,$$

 $Q_1 = Q_2 = Q_{12} = (4\mu F)(12V) = 48\mu C.$
(b) $V_1 = \frac{Q_1}{C_1} = \frac{48\mu C}{6\mu F} = 8V,$
 $V_2 = \frac{Q_2}{C_2} = \frac{48\mu C}{12\mu F} = 4V.$

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.

(a)
$$C_{12} = \left(\frac{1}{6\mu F} + \frac{1}{12\mu F}\right)^{-1} = 4\mu F,$$

 $Q_1 = Q_2 = Q_{12} = (4\mu F)(12V) = 48\mu C$
(b) $V_1 = \frac{Q_1}{C_1} = \frac{48\mu C}{6\mu F} = 8V,$
 $V_2 = \frac{Q_2}{C_2} = \frac{48\mu C}{12\mu F} = 4V.$
(c) $Q_3 = (5\mu F)(12V) = 60\mu C,$
 $U_3 = \frac{1}{2}(5\mu F)(12V)^2 = 360\mu J.$


d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.

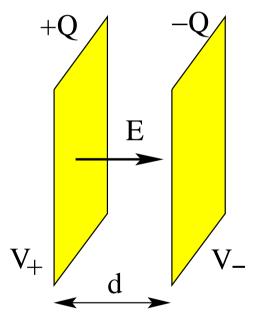
(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.


(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

(a)
$$E = \frac{V}{d} = \frac{3V}{1mm} = 3000 V/m.$$

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.

(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

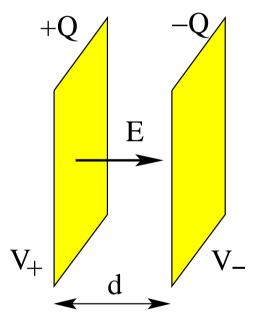
V_+ d V_-

(a)
$$E = \frac{V}{d} = \frac{3V}{1mm} = 3000V/m.$$

(b) $Q = CV = (6pF)(3V) = 18pC.$

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.


(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

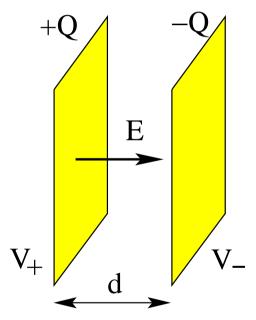
(d) Find the area A of each plate.

(a)
$$E = \frac{V}{d} = \frac{3V}{1mm} = 3000V/m.$$

(b) $Q = CV = (6pF)(3V) = 18pC.$
(c) $U = \frac{1}{2}QV = 0.5(18pC)(3V) = 27pJ$

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.


(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

(a)
$$E = \frac{V}{d} = \frac{3V}{1\text{mm}} = 3000\text{V/m}.$$

(b) $Q = CV = (6\text{pF})(3\text{V}) = 18\text{pC}.$
(c) $U = \frac{1}{2}QV = 0.5(18\text{pC})(3\text{V}) = 27\text{pJ}.$
(d) $A = \frac{Cd}{\epsilon_0} = \frac{(6\text{pF})(1\text{mm})}{8.85 \times 10^{-12}\text{C}^2\text{N}^{-1}\text{m}^{-2}} = 6.78 \times 10^{-4}\text{m}^2.$

