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On representing signals using only timing information
Ramdas Kumaresana) and Yadong Wang
Department of Electrical Engineering, Kelley Hall, 4 East Alumni Avenue, University of Rhode Island,
Kingston, Rhode Island 02881

~Received 7 December 1999; revised 20 July 2001; accepted 1 August 2001!

It is well known that only a special class of bandpass signals, called real-zero~RZ! signals can be
uniquely represented~up to a scale factor! by their zero crossings, i.e., the time instants at which the
signals change their sign. However, it is possible to invertibly map arbitrary bandpass signals into
RZ signals, thereby, implicitly represent the bandpass signal using the mapped RZ signal’s zero
crossings. This mapping is known as real-zero conversion~RZC!. In this paper a class of novel
signal-adaptive RZC algorithms is proposed. Specifically, algorithms that are analogs of well-known
adaptive filtering methods to convert an arbitrary bandpass signal into other signals, whose zero
crossings contain sufficient information to represent the bandpass signal’s phase and envelope are
presented. Since the proposed zero crossings arenot those of the original signal, but only indirectly
related to it, they are called hidden or covert zero crossings~CoZeCs!. The CoZeCs-based
representations are developed first for analytic signals, and then extended to real-valued signals.
Finally, the proposed algorithms are used to represent synthetic signals and speech signals processed
through an analysis filter bank, and it is shown that they can be reconstructed given the CoZeCs.
This signal representation has potential in many speech applications. ©2001 Acoustical Society of
America. @DOI: 10.1121/1.1405523#

PACS numbers: 43.60.Lq, 43.72.Ar, 43.64.Bt@JCB#

I. INTRODUCTION

A key issue in sampling theory is the construction of a
sequence of samples that unambiguously represent a signal
s(t). There are two major approaches to constructing such a
sequence of samples.1

~1! The first is the familiar ‘‘Shannon sampling,’’2 i.e.,
define samples$sn% as the values taken bys(t) on a given set
of sampling points,$tn%, i.e., sn5s(tn).

~2! The second approach is the less familiar notion of
representing signals by certain time instants...,t21 ,t0 ,t1 ,
t2 ,... . Specifically, for example, in certain cases the zero-
crossings or level-crossing locations ofs(t) can be used to
represents(t) to within a scale factor.

Reconstruction is the process of the pointwise recovery
of s(t) given the sampling sequence. In this paper we are
primarily concerned with the second approach, i.e., repre-
senting bandpass signals by certain time instants. However,
in the proposed signal representation schemes, these timing
instants are not the zero-crossing locations ofs(t) them-
selves~as in, for example, Refs. 3, 4!, but the zero-crossing
locations of certain functions that are related to the phase and
envelope of the signals(t).

A motivation for signal representation based on timing
instants comes from our desire to understand certain aspects
of biological signal processing. The cochlea, or inner ear, is
known to decompose an acoustic stimulus into frequency
components along the length of the basilar membrane. This
phenomenon is called atonotopicdecomposition.5 Further, it
is also known that the nerve fibers emanating from the co-
chlea convey information to the brain in the form of trains of
almost identically shaped nerve impulses or spikes. Since the

nerve spikes are all essentially stereotyped waveforms, the
information about the acoustic signal is carried in the timing
information contained in these spike trains in the form of
spike rate or interspike intervals. See, for example, Refs.
6–8. This fact raises a fundamental question: can signals
~except for a scale factor! be represented by timing informa-
tion alone? Our purpose in this paper is to affirmatively an-
swer this question and in the process propose a phenomeno-
logical model for signal processing by the cochlea. A model
of such a signal processing system is shown in Fig. 1. We
emphasize that this model is not intended to be an accurate
physiological model of the inner ear but just a means to show
that signals can be represented almost entirely by timing in-
formation. In this paper we are primarily concerned with the
real-zero conversion~RZC! box in Fig. 1.

A. Previous related research

Bandpass signals whose zeros are distinct and real are
called real-zero~RZ! signals.1 They are described fully~up to
a scale factor! by their zero crossings. For example, a sinu-
soid with frequencyf 0 Hz is a RZ signal. It may be ex-
pressed in terms of its distinct zero crossings~located along
the time axis at integer multiples of 1/2f 0 ! as sin 2pf0t
5Ct)2`,k,`,kÞ0(122tf0 /k)e2tf0 /k. This is known as the Had-
amard factorization9 of a sinusoid. Extending this observa-
tion one step further, Voelcker and Requicha10 raised the fol-
lowing interesting question: what are the conditions under
which a bandpass signal,s(t), might be recovered from its
traditional zero crossings? Logan,11 following up on their
work, showed that a bandpass signals(t) can be represented
by its traditional zero crossings in two special cases.

~1! If s(t) and its Hilbert transformŝ(t), have no common
zeros other than distinct real zeros and that the band-a!Electronic mail: kumar@ele.uri.edu

2421J. Acoust. Soc. Am. 110 (5), Pt. 1, Nov. 2001 0001-4966/2001/110(5)/2421/19/$18.00 © 2001 Acoustical Society of America



width of s(t) does not exceed an octave@one can get an
intuitive understanding of this condition based on the
following: If s(t) andŝ(t) have a common zero, then the
envelope itself goes to zero. The distinct real zero con-
dition is required to ensure that the signal waveform has
a zero crossing~i.e., a change of sign!. Double real zeros
will not produce a sign change in the waveform. The
octave bandwidth constraint comes from the fact that the
wider the bandwidth of a signal, the greater the number
of zero crossings of the waveform are required to iden-
tify the signal uniquely, which, in turn, implies thats(t)
is a sufficiently high-frequency signal.# Logan provides a
rigorous justification.

~2! If s(t) is a full-carrier lower sideband~LSB! signal@i.e.,
s(t) is a bandpass signal which has a large carrier at the
high-frequency band edge#. Note that a full-carrier upper
sideband signal may not have sufficient number of zero
crossings to identify the signal uniquely.

Requicha,1 in his lucid review paper, places Logans re-
sults in the general context of the theory of zeros of entire
functions.

Although Logan’s observations are interesting, there are
two difficulties in using his results. First, they are existence
theorems and do not provide a practical way to represent
arbitrary bandpass signals by zero crossings or reconstruc-
tion algorithms. Second, most practical signals of interest
like speech are time-varying signals, which need to be rep-
resented over short durations and hence Logan’s theory
based on strictly bandlimited signals is of limited use. Lo-
gan’s final assessment in his paper is also pessimistic and
states that ‘‘recovering a signal from its sign changes appears
to be very difficult and impractical.’’11

In light of Logan’s pessimism, researchers have at-
tempted to find an invertible mapping that converts an arbi-
trary bandpass signal into a RZ signal; then one could use the
zero crossings of the RZ signal to implicitly represent the
bandpass signal. This process was dubbed ‘‘real zero conver-
sion’’ ~RZC! by Requicha.1 This approach to the bandpass
signal representation was investigated by Voelcker and his
student, Haavik12,1 and Bar-David.13 Haavik12,1 presented

two transformations to accomplish RZ conversion:~1! re-
peated differentiation of the bandpass signals(t); and~2! the
addition of a sine wave of known frequency equal to or
higher than the highest frequency present in the signal and of
sufficiently large amplitude, i.e., conversion ofs(t) into a
full-carrier LSB signal. Zeevi and colleagues, in a series of
insightful publications,14,15 have extended the above ideas
and applied them to one- and two-dimensional signals.
Marvasti16 and Hurt9 have summarized and reviewed these
ideas. Hurt9 has compiled an extensive list of references re-
lated to zero crossings in one and two dimensions. Since the
Fourier transform of atime-limited signalis the dual of a
bandpass signal, many of the above results have counterparts
in the frequency domain. This duality is explored in Ref. 15
~see also the references in Ref. 17!. The above-mentioned
RZC methods have practical drawbacks.1 The repeated dif-
ferentiation method is not very useful, because, differentiat-
ing a function more than a few times requires the use of
extremely sharp filters to control the out-of-band noise. The
sine wave addition method may introduce too many zero
crossings than are needed to represent the bandpass signal.

In this paper we propose a novel signal-adaptive ap-
proach to RZC. Specifically we propose algorithms that are
analogs of well-known adaptive filtering methods to convert
s(t) into other signals whose zero crossings contain suffi-
cient information to represent the phase and envelope of
s(t). Since the zero crossings we advocate arenot those of
the original signal s(t), we call them hidden or covert zero
crossings~CoZeCs!.

B. Organization of the paper and main results

The basic idea of our work is to try to represent signals
by discrete time instants over short time intervals and fre-
quency regions. The signals are confined to frequency re-
gions by using a traditional filter bank. At the output of each
filter, over a short duration, the envelope and phase of the
signal is modeled using rational models. This is achieved by
using an elegant signal adaptive algorithm called linear pre-
diction in spectral domain~LPSD!18 ~Sec. IV!. These rational
models are then represented by certain zero crossings~CoZ-
eCs!, which then implicitly but essentially completely char-
acterize the original signal. In effect, our results that exploit
signal-adaptive methods are a significant extension of those
due to Logan and Voelcker. Adaptive processing algorithms
were not known or not yet prevalent during Logan and Voel-
cker’s time~the 1960s and 1970s!. The main results and the
layout of the paper are as follows.

~i! Modeling envelope and phase of bandpass signals:In
speech literature, the spectral envelope of a speech signal is
traditionally modeled using all-pole or pole-zero models.19

This approach is motivated by the speech production model.
In contrast, in this paper, we model the phase and envelope
of a bandpass filtered speech signal, over aT second dura-
tion, directly in the time domain using poles and zeros. That
is, in our case the poles and zeros are located in the complex-
time plane, called thez plane. If a complex signal has all the
zeros inside~outside! the unit circle (uzu51) in thez plane,
it is called a minimum phase or MinP~maximum phase or
MaxP! signal. If the signal has poles and zeros in reciprocal
complex conjugate pairs, then the signal is called an all-

FIG. 1. Tonotopic real zero-crossing converter~RZC!: The input signal is
decomposed into bandpass signals by a set of bandpass filters. The bandpass
signals are then viewed through an observation window ofT seconds. Using
a signal-adaptive algorithm over this time–frequency window, the signal is
represented by a set of ‘‘covert zero crossings.’’~See the text for details.!
This approach is motivated by the auditory periphery in which a composite
signal is decomposed by a bank of frequency selective filters, and the infor-
mation contained in the filtered signals is conveyed to the brain via timing
information carried by nerve impulses.
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phase or AllP signal~similar to an all-pass filter!. These types
of signal models are the duals of well-known filter types in
the systems theory literature. The basic notation for these
types of signal models is developed in Sec. II.

~ii ! Zero crossings associated with certain analytic sig-
nals: In Sec. III we show that the real~or imaginary! part of
MinP or MaxP or AllP signals are RZ signals. That is, if the
zero crossings of these RZ signals are known, then the cor-
responding MinP or MaxP or AllP signals can be recon-
structed from the zero-crossing locations, to within a scale
factor and a frequency translation. For a reader who is famil-
iar with speech analysis literature, we point out that these
zero crossings are the time-domain analogs of what is known
as sine spectral frequencies~LSF! in linear prediction
analysis.20,21

~iii ! Decomposition of arbitrary analytic bandpass sig-
nals into component analytic signals:In Sec. IV we show
that an arbitrary bandpass signal can be decomposed into
MinP/MaxP and AllP signals by a model fitting method that
is analogous to the well-known all-pole or LPC method in
speech analysis. An important distinction is that in our case
the all-pole modeling is accomplished in thez plane instead
of the traditional complexz plane. We call this approach
inverse signal analysis.18 This result sets the stage for repre-
senting arbitrary bandpass signals by CoZeCs and hence ex-
tends Logan’s work.

~iv! Zero-crossing representation algorithm for real-
valued bandpass signals:In Sec. V, we apply the results
obtained in Secs. III and IV to real-valued signals. The key
result in this section is that if a real-valued bandpass signal
has negligible energy in the low-frequency region of the
spectrum then the MinP and MaxP parts of the underlying
analytic signal can be represented by CoZeCs without actu-
ally computing the corresponding analytic signal. A com-
puter simulation of an algorithm that extracts these zero
crossings, called the RZC algorithm, is given to illustrate the
basic idea.

~v! Filter banks for speech signal representation:In Sec.
VI we have applied the RZC algorithm to speech signals. It
is shown that the speech signal can be reconstructed given
the CoZeCs. Conclusions are presented in Sec. VII.

II. DUALITY BETWEEN SIGNALS AND SYSTEMS

In this section we propose rational signal models to de-
scribe the envelope and phase of an analytic signal.22 In tra-
ditional engineering literature, linear time-invariant,
continuous-time systems are described by a rational system
function,

H~s!5c0)
k51

Q

~s2zk!Y )
k51

P

~s2pk!,

wheres is the complex-frequency variable, defined ass,s
1 j v, j 5A21. pk and zk are the poles and zeros of the
system. From the pole/zero plot one could often get a sense
of the frequency response of the system,H( j v), immedi-
ately. Analogously, for discrete-time systems, a system func-
tion H(z) is defined as

H~z!5c1)
k51

Q

~z2zk!Y )
k51

P

~z2pk!,

wherez is the corresponding complex-frequency variable. In
this case the frequency response of the system is the function
H(z) evaluated around the unit circleuzu51.23 The fre-
quency response of the discrete time system is 2p periodic.
In the above cases the frequency is regarded as a complex
variable. Analogously, we could also regardtime as a com-
plex variableand thereby define a complex-time~t! plane,
wheret,s1 j t . In thet plane, we may model a nonperiodic
complex-valued signal as

x~t!5c2

)k51
Q ~t2zk!

)k51
P ~t2pk!

~1!

given sufficient number of polespk and zeroszk .
Analogous to the frequency responseH( j v), the signal

x(t) is obtained by evaluatingx(t) along thejt axis. Carry-
ing the above analogy further, the dual of a complex-
frequencyz plane, is a complex-timez plane, suitable for
modeling complex-valued periodic signals. In this case the
signal function in terms of poles and zeros is

x~z!5c3

)k51
Q ~z2zk!

)k51
P ~z2pk!

. ~2!

We obtain the periodic signalx(t) by evaluatingx(z) around
the unit circleuzu51, i.e.,z5e2 j Vt, whereV52p/T is the
fundamental frequency andT is the period. Hence, the unit
circle in thez plane corresponds to the time interval 0 toT
seconds. Figure 2 shows typical pole/zero plots in the two
complex-time planes. From the location of poles and zeros in
the z plane, we can generally infer where in time~0 to T
seconds! the peaks and troughs in the envelope ofx(t) are
located. Voelcker24 called this way of modeling signals as a
‘‘product representation of signals.’’ Also refer to recent
work by Poletti,25 Picinbono,26 and Kumaresan.18

Further, the concept of causality in the systems domain
~i.e., the impulse response of a causal system is zero for
negative time! is the dual of analyticity in the signal domain
@i.e., the spectrum of an analytic signalx(t) is zero for nega-
tive frequency#. Also, the group delay~the negative of the
derivative of the phase response of a system with respect to
frequency! is the dual of instantaneous frequency~IF! ~the
time derivative of the phase! of x(t). In the next section we
shall consider periodic and analytic signal models that are
analogs of finite impulse response~FIR! systems. Real-
valued signals are dealt with in a later section.

A. FIR-like signal models in the z plane

Consider a periodic analytic signalsa(t), with periodT
seconds. LetV52p/T denote its fundamental angular fre-
quency. Ifsa(t) has a finite bandwidth, it may be described
by the following model for a sufficiently largeM, over an
interval of T seconds:

sa~ t !5ej v l t(
k50

M

ake
jkVt, ~3!
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wherev l>0, which represents a frequency translation, is the
low-frequency band edge, that we take to be an integer mul-
tiple of V, sayv l5KV. ak are the complex amplitudes of
the sinusoidsejkVt;a0 ,aMÞ0. By analytic continuation we
may regardsa(t) as the functionsa(z)5z2K(a01a1z21

1a2z221¯aMz2M) evaluated around the unit circle,z
5e2 j Vt. In sa(z) we use the negative powers ofz in order to
maintain the analogy with the traditional use of negative
powers ofz in the complex-frequency domain. We may fac-
tor this polynomial into itsM (5P1Q) factors and rewrite
sa(t) as

~4!

wherep1 ,p2 ,...,pP , andq1 ,q2 ,...,qQ denote the polynomi-
al’s roots; pi5upi uej u i, qi5uqi uej f i and upi u,1 and uqi u
.1. Thus,pi ’s denote roots inside the unit circle in the com-
plex plane, andqi are outside the unit circle. Currently we
assume that there are no roots on the unit circle. Each factor
of the form (12pie

j Vt) in the above is called an ‘‘elemen-
tary signal.’’24 The pi and qi are referred to as~nontrivial!
zeros of the signalsa(t). The above expressions, represent-
ing a bandlimited periodic signal, are, of course, the counter-
part of the frequency responses of the standard finite impulse
response~FIR! filters.27

The factors corresponding to the zeros inside the unit
circle, ) i 51

P (12pie
j Vt), constitute the minimum phase

~MinP! signal. Similarly the factors corresponding to the ze-
ros outside the circle,ej v l t) i 51

Q (12qie
j Vt), constitute the

~frequency translated! maximum phase~MaxP! signal. These
are the direct counterparts of the frequency responses of the
well-known minimum and maximum phase FIR filters in
discrete-time systems theory.23 Just as in systems theory~see
Sec. 10.3 in Ref. 23! the phase of the MinP signal is the
Hilbert transform of its log envelope. That is, the MinP sig-
nal may be expressed in the formea(t)1 j â(t), whereâ(t) is

the Hilbert transform ofa(t). See Ref. 18 for details. Simi-
larly, since a maximum phase~MaxP! signal has zeros out-

side the unit circle, it may be expressed aseb(t)2 j b̂(t), where
b̂(t) is the Hilbert transform ofb(t). Thus, the envelope or
phase alone is sufficient to essentially characterize a MinP or
a MaxP signal. Along the same lines, an all-phase~AllP!
analytic signal~the analog of an all-pass filter! would be of
the formej c(t). Thus,sa(t) may be expressed as

~5!

Ac is a0 ) i 51
Q (2qi). The formulas fora(t) andb(t) depend

on the particular values ofpi andqi , respectively. See Ref.
18 for details.

Just as the MixP systems~with zeros inside and outside
the unit circle! may be decomposed into all-pass and mini-
mum phase systems~see Sec. 5.6 in Ref. 23!, so toosa(t)
may be decomposed into two component signals. Note that
in Eq. ~4! the zeros,qi andpi are assumed to be outside and
inside the unit circle, respectively. To obtain the AllP factor,
we shall reflect theqi to inside the circle~as 1/qi* ! and can-
cel them using poles. Then we may group all the zeros inside
the unit circle to form a different MinP signal and the zeros
outside the circle and the poles that are their reflections in-
side the unit circle to form the all-phase or AllP part of the
signal. That is,

~6!

FIG. 2. Poles and zeros in complex-time planes: Thet plane is suitable for modeling nonperiodic signals and thez plane for modeling periodic signals.
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Equivalently, multiplying and dividing Eq.~5! by ej 2b̂(t) and
collecting terms, we get

~7!

This grouping of signals is, of course, analogous to the well-
known decomposition of a linear discrete-time system into
minimum phase and all-pass systems~Sec. 5.6 in Ref. 23!.
Analogous to the fact that the group delay of the all-pass
filters is always positive~Sec. 5.5 in Ref. 23!, the instanta-
neous frequency~IF! of the AllP part will always be
positive18 ~even if v l , the lower band edge, is zero!. Hence
we18 called the IF of the AllP part the positive instantaneous
frequency or PIF. Later in this paper we use the above mod-
els to represent the envelopes and phases of successive over-
lapping segments of a signal. A real bandpass signals(t) is
modeled as the real part ofsa(t). For a slowly varying signal
one can imagine that thepi andqi are slowly drifting param-
eters that characterize the signal’s envelope and phase varia-
tions. We wish to capture in certain zero-crossing locations
the behavior of the slowly varying parameterspi andqi .

III. ZERO CROSSINGS THAT CHARACTERIZE
ANALYTIC BANDPASS SIGNALS

In this section we show that the real~or imaginary! part
of analytic bandpass signals~i.e., the MinP, MaxP, and AllP
signals! we introduced in the previous section are RZ sig-
nals, i.e., their zero crossings are sufficient to reconstruct
these signals.

A. Zero crossings related to minimum Õmaximum
phase signals

Consider a MinP signal,hm(t), defined as follows:

hm~ t !5h01h1ej Vt1h2ej 2Vt1¯1hmejmVt. ~8!

An analytic continuation ofhm(t) in the z plane is denoted
by Hm(z),

Hm~z!5h01h1z211h2z221¯1hmz2m. ~9!

Sincehm(t) is MinP, the roots ofHm(z) lie strictly inside the
unit circle. LetHm* (1/z* ) denote the reciprocal polynomial
~with roots in reciprocal conjugate locations, i.e., outside the
unit circle!:

Hm* ~1/z* !,h0* 1h1* z11h2* z21¯1hm* zm. ~10!

We define two other polynomials usingHm(z) and
Hm* (1/z* ):

P~z!5zp/2Hm~z!1z2p/2Hm* ~1/z* !, ~11!

Q~z!5zp/2Hm~z!2z2p/2Hm* ~1/z* !. ~12!

Note that the coefficients ofP(z) and Q(z) have
conjugate-even and conjugate-odd symmetry, respectively.
We now show that ifp>m, all the roots ofP(z) andQ(z)
are on the unit circle and interlaced with each other. This
result is a direct analog of results known in the speech lit-
erature as ‘‘line spectrum frequencies.’’20,21

Rewriting Eqs.~11! and~12! in a product form, we have

P~z!5zp/2Hm~z!@11G~z!#, ~13!

Q~z!5zp/2Hm~z!@12G~z!#, ~14!

whereinG(z) is an all-pass or all-phase function,

G~z!,z2p
Hm* ~1/z* !

Hm~z!
. ~15!

G(z) can be factored as

G~z!5ej ~Vt01mp!z2~p2m!)
i 51

m
z i* 2z21

12z iz
21 , ~16!

where z i ’s are the roots ofHm(z). z i5r ie
j Vt i, and r i,1.

Vt05/(h0* /h0). SinceG(z) is an all-pass function, we can
write

G~z!uz5e2 j Vt5ej c~ t !. ~17!

It should be clear from Eqs.~13! and ~14! that P(z) and
Q(z) have roots at the locations whereej c(t) equals21 and
1, respectively.

The phase functionc(t) can further be expressed as
follows ~similar to the phase of all-pass filters as in Sec. 5.5
in Ref. 23!:

c~ t !5Vt01mp1~p2m!Vt

1(
i 51

m

2 tan21S r i sin@V~ t1t i !#

12r i cos@V~ t1t i !#
D . ~18!

The instantaneous frequency,f (t), of G(e2 j Vt) is (1/2p)
3@dc(t)/dt# and is given by

f ~ t !5
v

2p S ~p2m!1(
i 51

m 12r i
2

u12r ie
j @V~ t1t i !#u2D . ~19!

If p>m, and since allr i,1, we conclude thatf (t).0, i.e.,
f (t) is a PIF. Thereforec(t) is a monotonically increasing
function. Letf0 denote the phase ofG(e2 j Vt) at t50, i.e.,
c(0)5f0 , and c(2p/V)5f012pp. Therefore, c(t)
crosses lines corresponding to each integer multiple ofp
@odd and even multiples ofp for P(z) and Q(z), respec-
tively# exactly once, resulting in 2p crossing points for 0
<Vt,2p. Because the solution toP(z)50 or Q(z)50
requires thatG(z)561, these points constitute the total 2p
roots ofP(z) andQ(z) alternately on the unit circle.20,21

SinceHm(z) is MinP, the phase ofHm(z) ~when evalu-
ated around the unit circleuzu51! and its log envelope are
related by the Hilbert transform.18,23 That is,

Hm~z!uz5e2 j Vt5eg~ t !1 j ĝ~ t !, ~20!

where the phase functionĝ(t) is the Hilbert transform of the
log-magnitude function g(t). Similarly, evaluating
Hm* (1/z* ) around the unit circle we have

Hm* ~1/z* !uz5e2 j Vt5eg~ t !2 j ĝ~ t !. ~21!

Plugging Eq.~20!, Eq.~21! andz5e2 j Vt in Eq. ~11! and Eq.
~12!, we have

p~ t !5P~ej Vt!52eg~ t ! cosS p

2
Vt2ĝ~ t ! D . ~22!
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Similarly,

q~ t !5 jQ~ej Vt!52eg~ t ! sinS p

2
Vt2ĝ~ t ! D . ~23!

Sinceeg(t) has no real zero crossings, all real zero crossings
of p(t) andq(t) are due to the cosine and the sine term.

Given the zero-crossing locationst1 ,t2 ,...,tp corre-
sponding to p(t), we can compute the roots
ej Vt1,ej Vt2,...,ej Vtp. Then the product of the factors (1
2ej Vt iz21), i 51,2,...,p gives P(z) ~up to a scale factor!.
Similarly, one obtainsQ(z) from the zero crossings ofq(t).
Using P(z) andQ(z) @in Eqs.~11! and~12!#, we can deter-
mine Hm(z) and hencehm(t). Thus, only zero-crossing in-
formation is sufficient to reconstruct signals that are the real
(or imaginary) part of frequency translated MinP signals. As
mentioned before, such signals are called real zero (RZ) sig-
nals. If the given hm(t) is a MaxP signal, we can simply
interchange the roles ofHm(z) and Hm* (1/z* ) in the previ-
ous discussion, and all the above results are still valid.

A simple example is shown in Fig. 3. We picked a MinP
signalhm(t) with

Hm~z!51.01~0.69312 j 1.7071!z211~21.2025

2 j 0.7020!z221~20.23171 j 0.4913!z23

1~0.14361 j 0.0461!z241~0.0002

2 j 0.0290!z251~20.00562 j 0.0003!z26

1~0.00021 j 0.0007!z27,

wherem57. P(z) andQ(z) were calculated from Eq.~11!
and Eq.~12!, wherep58. Their corresponding RZ signals,
p(t) andq(t), are plotted in Figs. 3~a! and 3~b!. The roots/
zeros ofP(z) and Q(z) are shown in Figs. 3~c! and 3~d!,
respectively. Note thatP(z) andQ(z) have all their zeros on
the unit circle and they are interlaced. Note also the relation-

ship between the roots ofP(z) andQ(z) in thez plane with
the zero crossings ofp(t) andq(t).

B. Zero crossings related to all-phase signals

All-phase ~AllP! signals are analytic signals that have
both poles and zeros. If the poles are inside the unit circle@as
in E(e2 j Vt) below#, then the spectrum of the signal is con-
fined to the positive side of the frequency axis~analogous to
causal IIR filters!. If the poles are outside the unit circle@as
in F(e2 j Vt) below#, then the spectrum of the signal is con-
fined to the negative side of the frequency axis. Consider an
all-phase~AllP! signalE(e2 j Vt) defined as follows:

E~e2 j Vt!5
1

u) i 51
Q ~2qi !u

) i 51
Q ~12qie

j Vt!

)
i 51

Q S 12
1

qi*
ej VtD . ~24!

As before, by analytic continuation we can writeE(z) as
follows:

E~z!5ej f1z2Q
B~z!

B* ~1/z* !
, ~25!

whereB(z),) i 51
Q (12qi

21z). One may verify Eq.~24! by
substitutingz5e2 j Vt in Eq. ~25!. The roots ofB(z) areqi ,
i 51,2,...,Q, with 1/qi* 5r ie

j Vt i, and r i,1. Since all the
roots of B(z) fall outside the unit circle,B(z) is a MaxP
signal and theB* (1/z* ) is a MinP signal. Clearly,E(z) is
already in the form ofG(z) encountered in the previous
section. Hence, the instantaneous frequency ofE(e2 j Vt) is
always positive and the phase function ofE(e2 j Vt) is a
monotonically increasing function. Therefore the zeros of 1
1E(z) and 12E(z) have properties identical to those of
polynomialsP(z) and Q(z) discussed in the previous sec-
tion. That is, 11E(z) and 12E(z) each haveQ zeros on the
unit circle and they are interlaced. Further, using the notation
in Eqs.~6! and ~7! we can writeE(e2 j Vt) as follows:

E~e2 j Vt!5ej @QVt1f122b̂~ t !#. ~26!

Thus the unit magnitude root locations of 16E(z) corre-
spond to zero crossings of the waveform 16cos@QVt1f1

22b̂(t)# or the waveform sin@QVt1f122b̂(t)#. We shall de-
fine the imaginary part ofE(e2 j Vt) ase3(t):

e3~ t !5sin@QVt1f122b̂~ t !#. ~27!

Given the zero-crossing locationst1 ,t2 ,...,t2Q correspond-
ing to sin@QVt1f122b̂(t)# or 16cos@QVt1f122b̂(t)#, we
can compute the rootsej Vt1,ej Vt2,...,ej Vt2Q. Then we shall
definePB(z)5) i(12ej Vt iz21), where the set$i% consists of
odd integers 1,3,5,...,2Q21. Similarly, we shall define
QB(z)5) i(12ej Vt iz21), where the set$i% consists of even
integers 2,4,6,...,2Q. Using PB(z) and QB(z) @similar to
Eqs.~11! and~12!#, we can determineB(z) and henceE(z)
to within a scale factor.Thus, the zero-crossing information
of e3(t) alone is sufficient to reconstruct the AllP signal
E(e2 j Vt) up to a complex scale factor. Hencee3(t) is a RZ
signal.

Similarly, we may consider

FIG. 3. Real-zero~RZ! signals related to MinP signals: Thep(t) andq(t)
calculated from a minimum phase signalhm(t) are plotted in~a! and ~b!.
The roots/zeros of correspondingP(z) and Q(z) with p58.m are dis-
played in~c! and ~d!.
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F~e2 j Vt!5U)
i 51

P

~2pi* !U ) i 51
P ~12pie

j Vt!

)
i 51

P S 12
1

pi*
ej VtD . ~28!

The zeros ofF(e2 j Vt) arepi , i 51,2,...,P. pi5gie
j Vt i, and

gi,1. The poles ofF(e2 j Vt) are outside the unit circle.
ThusF(e2 j Vt) has a spectrum confined to the negative side
of the frequency axis and its IF is always negative~NIF!. As
before, 11F(e2 j Vt) and 12F(e2 j Vt) each haveP zeros on
the unit circle that are interlaced. Again, if the zero crossings
of e4(t),

e4~ t !5sin@PVt1f222â~ t !#, ~29!

are known, then we can reconstruct~using the same algo-
rithm described above! the AllP signalF(e2 j Vt) to within a
scale factor. We will make use ofe3(t) and e4(t) in Sec.
V B.

In summary, in this section we have shown that the zero
crossings of certain special functions implicitly represent the
underlying analytic signals. In other words, the real or imagi-
nary parts of the MinP, MaxP, and AllP signals, are RZ sig-
nals, since they are essentially characterized by their real
zero crossings. In general, analytic signals are neither MinP/
MaxP nor AllP, but mixed-phase~MixP! signals. Hence we
have to first decompose an arbitrary MixP signal into MinP/
MaxP and AllP signals as shown in Eqs.~6! and ~7!. An
elegant algorithm for achieving this decomposition is pre-
sented next. In Sec. V we consider real-valued signals.

IV. SEPARATING THE MINP AND ALLP PARTS OF AN
ANALYTIC BANDPASS SIGNAL USING LPSD

In this section we present a simple algorithm called the
linear prediction in the spectral domain~LPSD!.18 The de-
tails of the LPSD algorithm, which separates the MinP and
AllP components of a MixP signal, were presented in Ref.
18. Here we summarize these results for completeness. Con-
sider the MixP signal in Eq.~3! or Eq. ~4!:

sa~ t !5ej v l t(
k50

M

ake
jkVt ~30!

5a0ej v l t)
i 51

P

~12pie
j Vt!)

i 51

Q

~12qie
j Vt!. ~31!

Using the notation in Sec. II, we may expresssa(t) as

sa~ t !5uAcue@a~ t !1b~ t !#ej ~~v l1QV!t1â~ t !2b̂~ t !1f1!. ~32!

Note thatAce
@a(t)1b(t)# is the envelope ofsa(t). The LPSD

algorithm separates the MinP and AllP components of MixP
signal. This decomposition is achieved by minimizing the
energy in an error signale(t) that is defined ase(t)
5hm(t)sa(t). The energy ine(t) is defined as follows:

E
0

T

ue~ t !u2 dt5E
0

T

usa~ t !hm~ t !u2 dt. ~33!

hm(t) is synthesized using the following formula:

hm~ t !5h01h1ej Vt1h2ej 2Vt1¯1hmejmVt, ~34!

whereV52p/T. Note thathm(t) is identical to that defined
in Sec. III A. The LPSD algorithm minimizes the energy in
the error signale(t) @the integral in Eq.~33! is replaced by a
discrete approximation# by choosing the coefficientshl ,
whereh0 is constrained to be 1. Thus, the above minimiza-
tion problem is the direct analog of the autocorrelation
method of the linear prediction well-known in spectral/
speech analysis28 as LPC or all-pole modeling or inverse
filtering. hm(t) is the analog of the inverse filter used in LPC
and hence is called the ‘‘inverse signal.’’18 The LPSD algo-
rithm finds an inverse signalhm(t) such that the envelope of
the error signale(t) is flattened. This can be achieved if the
order m of hm(t) is sufficiently high.m has to be large if
there are deep nulls in the signal envelope. After the mini-
mization, since the error signale(t) has a constant envelope,

hm~ t !'e2@a~ t !1b~ t !#e2 j @â~ t !1b̂~ t !#. ~35!

Figure 4 gives an illustrative example. An analytic signal
sa(t) was synthesized from Eq.~3! using seven Fourier co-
efficients (M56): a051, a1520.602423.2827i , a2

525.644111.5835i , a3520.145417.4390i , a456.4822
21.1832i , a5524.630626.7388i , a651.073712.7369i .
The real part ofsa(t) is plotted in Fig. 4~a!. The analytic
signal sa(t) has two zeros inside the unit circle and four
outside, as shown in Fig. 4~b!. Note thathm(t) computed
using the LPSD algorithm is always a MinP signal for any
orderm, i.e., all of its zeros are inside the unit circle. Figure
4~d! displays the roots ofHm(z). This result is well known
in spectral analysis literature.28 The estimated envelope

FIG. 4. Envelope of a MixP signal represented by zero crossings: A complex
signal sa(t) is synthesized with six zeros~four outside the unit circle and
two inside the unit circle!. The zeros ofsa(t) are plotted in~b!. The real part
of sa(t) is plotted in ~a!. The roots ofHm(z) calculated using the LPSD
algorithm are shown in~d!. Note thatHm(z) is MinP. The estimated enve-
lope 1/uhm(t)u is shown~solid line! in ~c!; the true envelope is shown by a
dotted line. In~e!, both RZ functionsp(t) and q(t) are plotted by a solid
line and a dashed line, respectively. Since they are described fully~to within
a scale factor! by their zero crossings, we can representp(t) and q(t) by
only marking their zero-crossing time locations. We show those locations by
spikes along the time axis in~e!. The roots ofP(z) andQ(z), all on the unit
circle, are displayed in~f!. The roots ofP(z) are denoted by a ‘‘s’’ and
those ofQ(z) are denoted by a ‘‘L.’’
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1/uhm(t)u is shown~solid line! in Fig. 4~c!; the true envelope,
usa(t)u, is also shown using a dotted line. In Fig. 4~e!, both
RZ functionsp(t) andq(t) @computed using Eqs.~11!, ~12!,
~22!, and ~23! with p58.m# are plotted with a solid line
and a dashed line, respectively. Since they are described fully
~to within a scale factor! by their zero crossings, we can
representp(t) andq(t) by only marking their zero-crossing
time locations. We show these locations in Fig. 4~e!, by a
train of ‘‘spikes’’ along the time axis. Note that we can
uniquely reconstructhm(t) from these spike locations. Com-
paring the envelope in Fig. 4~c! and the spike train in Fig.
4~e!, note that when the envelope is large, the density of
spikes@due to bothp(t) andq(t) together# around that time
location is higher. The zeros ofP(z) ~denoted by a ‘‘s’’ !
and Q(z) ~denoted by a ‘‘L’’ ! are displayed in Fig. 4~f!.
From the above we conclude that the envelope part of the
analytic signalsa(t) has been successfully converted into
two RZ signals or two spike trains.

The error signale(t)5sa(t)hm(t) obtains the approxi-
mation to the AllP part in Eq.~7!,

e~ t !'ej @~v l1QV!t1f122b̂~ t !#5ej c~ t !. ~36!

Note thate(t) is identical to the functionE(e2 j Vt) in Sec.
III B, except for the frequency translation termej v l t. e(t)
~with v l50! and its real and imaginary parts are shown in
Fig. 5. The PIF ofe(t) is shown in Fig. 5~a!. The phase of
e(t), denoted byc(t), is plotted in Fig. 5~b!. Because the IF
of e(t) is always positive, the phasec(t) is a monotonically
increasing function. The real part ofe(t) ~i.e., cos@(QV)t
1f122b̂(t)#! and its imaginary part, sin@(QV)t1f122b̂(t)#
are shown in Fig. 5~c! and Fig. 5~d!, respectively. As ex-
plained in Sec. III B@between Eqs.~26! and ~27!# the alter-

nate zero crossings sin@(QV)t1f122b̂(t)# occur at the loca-
tions where cos@(QV)t1f122b̂(t)# reaches 1 and21. These
locations are indicated by spikes in Fig. 5~c! and Fig. 5~d!.
There is sufficient information to reconstructe(t) to within a
scale factor and a frequency translation. Figure 6 summarizes
the steps involved in representing a mixed-phase~MixP!
analytic signal by zero crossings.

In summary, in this section we have shown that we can
use the LPSD algorithm to separate an analytic signal into
MinP and AllP components, each of which can be repre-
sented by CoZeCs, as described in Sec. III. However, the
above results are only applicable to analytic signals. In prac-
tice, one observes real-valued signals. Is it possible to repre-
sent real-valued bandpass signals directly by CoZeCs with-
out having to compute their analytic version by using a
Hilbert transformer? The answer is yes and in the next sec-
tion we describe the algorithm.

V. EXTENDING THE ZERO-CROSSING
REPRESENTATION TO REAL-VALUED BANDPASS
SIGNALS

In this section we assume that we are given a real-valued
bandpass signals(t). Let s(t) be defined as the real part of
sa(t) given in Eq.~3!:

s~ t !5 (
k50

M

uakucos@~v l1kV!t1uk#. ~37!

~Recall thatv l5KV, is the lower band edge.! Our main
purpose in this section is to extend the results in Secs. III and
IV ~which were meant for analytic signals! to processing and
representing real-valued bandpass signals by modifying the
inverse signal approach slightly, taking into account the fact
that real-valued signals have spectral components on both
sides of the frequency axis. In Sec. V A we show that the
LPSD algorithm can be directly applied tos(t) provided that
the low-frequency region of the spectrum ofs(t) has negli-
gible energy. This sets the stage for Sec. III B, which de-
scribes the RZC algorithm. In Sec. V B we define two real-
valued inverse signals,q(t) and r (t), such that the error
signalse1(t)5s(t)q(t) and e2(t)5s(t)r (t) when low-pass
filtered, result in RZ signalse3(t) and e4(t). The zero-

FIG. 5. All-phase~AllP! signal represented by zero crossings: The IFs~i.e.,
PIFs! of e(t) @both true~solid line! and estimated# are shown in~a!; the
phase ofe(t), denoted byc(t), is plotted in~b!; because the instantaneous
frequency ofe(t) is positive, the phasec(t) ~with v l50! is a monotoni-
cally increasing function. The real part and imaginary part ofe(t) are shown
in ~c! and ~d!, respectively. The indicated spike locations are sufficient in-
formation for reconstructing the AllP signal except for a scale factor and a
frequency translation. Note that in~c! the spikes correspond to the locations
when the real part ofe(t) equals61.

FIG. 6. Algorithm for representing an analytic signal by zero-crossings: The
algorithm for representing an analytic signal by zero crossings of RZ signals
associated with the MinP/MaxP and AllP parts. ISG stands for ‘‘inverse
signal generator,’’ ZCD stands for the ‘‘zero-crossing detector.’’ ‘‘Con-
verter’’ block computesp(t) andq(t) from hm(t) using Eqs.~11! and~12!.
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crossing locations ofe3(t) ande4(t) are sufficient to recon-
struct the MinP and MaxP parts ofsa(t) and hence charac-
terizes(t).

A. Computing the inverse signal h m„t … from a real
bandpass signal s „t …

Considers(t) over an interval of 0 toT seconds. We
shall rewrites(t) for convenience as follows:

s~ t !5 (
k52N

N

bke
jkVt. ~38!

Since s(t) is real-valued,b2k5bk* . Comparing Eqs.~37!
and ~38!, we note thatbK1 i5ai , for i 50,1,...,M . N5K
1M . vh5NV is the higher band edge. Lets(t), be such
that the Fourier coefficientsb2K11 ,...,b0 ,...,bK21 are equal
to zero for someK,N. An example of the spectrum is
shown in Fig. 7~a!. Following the development in Sec. IV, let
us define an error signale(t) over 0 toT seconds as follows:

e~ t !5s~ t !hm~ t !, ~39!

wherehm(t)511( l 51
m hle

jl Vt. As before, our goal is to find
an inverse signal,hm(t) ~i.e., choose the coefficients,hl!,
such that the energy in the error signale(t) is minimized.
Plugging in the expression fors(t) from Eq. ~38! into the
error-energy expression, we get

E
0

T

ue~ t !u2 dt5E
0

2

us~ t !hm~ t !u2 dt ~40!

5T (
n52N

N1m

ugnu2, ~41!

where gn5bn* hn ~* denotes linear convolution!, and h0

51. The inverse signal coefficients,hl , can be determined
by solving linear equations using the LPSD algorithm.

Since the Fourier coefficientsb2K11 to bK21 are all
assumed to be zero, the expression for the error energy can
be written as a sum of two terms, ifm<2K21:

E
0

T

ue~ t !u2 dt5T (
n52N

2K1m

ugnu21T (
n5K

N1m

ugnu2 ~42!

5E
0

T

u@s~ t !2 j ŝ~ t !#hm~ t !u2 dt

1E
0

T

u@s~ t !1 j ŝ~ t !#hm~ t !u2 dt. ~43!

Since the analytic@sa(t)5s(t)1 j ŝ(t)# and antianalytic
@sa* (t)5s(t)2 j ŝ(t)# signals are complex conjugates of each
other, the two terms in the above expression are equal. Thus
the inverse signal obtained by minimizing any one of the
terms in the above expression is equal to thehm(t) obtained
by minimizing the error in Eq.~40! @using the real-valued
s(t)#. Note that the second integral in Eq.~42! is identical to
the one in Eq.~33!. This is a crucial observation, because the
hm(t) obtained by minimizing the error energy in Eq.~40! is
not only a MinP signal, but further, 1/uhm(t)u also gives the
Hilbert envelope of the analytic signalsa(t), although it is
computed directly from the real-valueds(t). However, for
the latter to be true,s(t) must have sufficient number of
zero-valued Fourier coefficients in the low-frequency region,
i.e., m must be less than or equal to 2K21.

Some simulation results are provided in Fig. 7. A real
signals(t) @the real part of the analytic signalsa(t) used in
Fig. 4# is plotted in Fig. 7~b!. It was synthesized using seven
Fourier coefficients, whose magnitudes are shown in~a!. In
this simulation, we letK515 to ensure that there are suffi-
cient number of zero-valued Fourier coefficients in the low-
frequency region. The envelope of the signal was estimated
using the above algorithm form57,2K21. The resulting
hm(t) is MinP, so all the roots are inside the unit circle, as
shown in Fig. 7~d!. Figure 7~c! displays the envelope esti-
mate against the true envelope obtained from the analytic
signal. The higher the value ofm ~as long asm<2K21! the
better is the approximation. The above method tends to
match the peaks of the envelope much more precisely than
the valleys. This behavior is well known in traditional LP
analysis.19

B. Computation of CoZeCs that represent the
bandpass signal s „t …

In this section we show that if we choose two real-
valued inverse signalsq(t) and r (t) ~defined below! appro-
priately, then we can obtain two RZ signals whose zero
crossings in effect represents(t) up to a scale factor and a
frequency translation. Again, considers(t) over an interval
of 0 to T seconds. Now let us defineq(t) and r (t),

q~ t !5@ej vqthm~ t !2ej vqthm* ~ t !#/2j , ~44!

r ~ t !5@ej vr thm~ t !2e2 j vr thm* ~ t !#/2j . ~45!

v r andvq are specified later, but they are integer multiples
of V. Further, let us define two error signals,e1(t) ande2(t):

FIG. 7. Inverse signal that represents the envelope of a real signal:~a! shows
the magnitude spectrum of original real signals(t) @the real part of the
analytic signalsa(t) used in Fig. 4#; the time waveform ofs(t) is plotted in
~b!; ~c! shows the estimated envelope together with the true envelope
usa(t)u. The roots ofHm(z) are plotted in~d!. m57.
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e1~ t !5s~ t !q~ t !, ~46!

e2~ t !5s~ t !r ~ t !. ~47!

Our goal is to computeq(t) andr (t) such that the energy in
the error signalse1(t) and e2(t) is minimized. In other
words, we shall minimize *0

Tue1(t)u2 dt @and/or
*0

Tue2(t)u2 dt# by choosing the coefficients,hl . Since these
two error energies are almost the same, here we takee1(t) as
an example. The error-energy expression fore1(t) is

E
0

T

ue1~ t !u2 dt5E
0

T

us~ t !q~ t !u2 dt. ~48!

The inverse signal coefficients,hl , can be determined by
solving linear equations similar to those in LPSD. Refer to
the example in Fig. 8. Let us rewrites(t) andq(t) in terms
of their analytic and antianalytic parts ass(t)51/2@s(t)
1 j ŝ(t)1s(t)2 j ŝ(t)# and q(t)5(1/2j )$q̂(t)1 jq(t)
2@ q̂(t)2 jq(t)#%. Then the error can be expressed as the
sum of four terms as follows, provided the Fourier coeffi-

FIG. 8. The spectrum associated with
e1(t): ~a! The magnitude spectrum of
real signal s(t); ~b! the magnitude
spectrum of real signalq(t); ~c! the
magnitude spectrum of error signal
e1(t)5s(t)q(t).
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cients corresponding to each of the four kernels do not overlap:

~49!

~50!

The spectrum associated with each of the kernelse11, e12,
e13, ande14 is clearly marked in Fig. 8.@Here we have used
the same real signals(t) shown in Fig. 7.# If this nonoverlap
condition is met, then, as in the previous section all the four
terms in the above expression will be equal. In that case the
inverse signal,hm(t), obtained by minimizing any one of the
terms in the above expression is equal to theq(t) obtained
by minimizing the error in Eq.~48! @using the real-valued
s(t) and q(t)#. This guarantees a MinPhm(t) and hence
1/uq̂(t)1 jq(t)u gives an estimate of the Hilbert envelope of
the analytic ~and the antianalytic! signal. An example is
given in Fig. 8. The spectrum ofs(t) andq(t) are shown in
Figs. 8~a! and ~b!, respectively. The spectrum ofs(t)q(t) is
given in Fig. 8~c!.

The nonoverlap condition requires thatq(t) must have a
suitable carrier frequencyvq . There are two possible over-
laps in the spectrum ofs(t)q(t), i.e., betweene11 ande14,
and betweene14 ande12. To avoid overlap betweene11 and
e14, vq should be such that,vq<v l . In order to be able to
determineq(t) uniquely from the coefficientshl and vice
versa@see Eq.~44!#, vq should be greater than (m11)V. To
avoid overlap betweene14 ande12 ~or e11 ande13! we should
choosem, the order ofq(t), such thatmV,vq21/2(vh

2v l). In summary, we should choose (m11)V,vq<v l

and mV,vq21/2(vh2v l). Similar comments also apply
to r (t), which is a real-valued signal on the higher-frequency
side ofs(t). ~See Fig. 9.! In this case,v r>vh to avoid the
overlap betweene21 and e24; and mV,2v l to avoid the
overlap betweene24 ande22.

The real signals(t) could also be written in terms of
envelope and phase as follows@see Eq.~32!#:

s~ t !5uAcue@a~ t !1b~ t !#cos@~KV1QV!t1â~ t !2b̂~ t !1f1#.
~51!

The real signalsq(t) and r (t) calculated by the above-
mentioned process are

q~ t !52 imag$e2@a~ t !1b~ t !#e2 j @vqt1â~ t !1b̂~ t !#% ~52!

52e2@a~ t !1b~ t !# sin@KVt1â~ t !1b̂~ t !#, ~53!

r ~ t !52 imag$e2@a~ t !1b~ t !#ej @vr t2â~ t !2b̂~ t !#% ~54!

52e2@a~ t !1b~ t !# sin@NVt2â~ t !2b̂~ t !#, ~55!

where we chosevq5KV andv r5NV. Then the two error
signals are

e1~ t !52uAcusin@~2KV1QV!t12â~ t !1f1#

1uAcusin@QVt22b̂~ t !1f1#, ~56!

e2~ t !52uAcusin$@~K1N!V1QV#t12b̂~ t !1f1%

1uAcusin@P~Vt22â~ t !1f2#. ~57!

Low pass filtering thee1(t) and e2(t) with the cut-off fre-
quencyKV @refer to Fig. 8~c! and Fig. 9~c!#, we have

e3~ t !5uAcusin@QVt22b̂~ t !1f1#, ~58!

e4~ t !5uAcusin@PVt22â~ t !1f2#. ~59!

These two signals are the same as in Eq.~27! and Eq.~29!,
but for a scale factor. From the discussions in Sec. III B, we
know that bothe3(t) and e4(t) are RZ signals and they
determine the corresponding AllP factors. Using these, we
can reconstruct the corresponding analytic signals up to a
complex scale factor and a frequency translation. The filtered
error signalse3(t) ande4(t) together with their ‘‘true’’ val-
ues are displayed in Figs. 10~a! and ~b!.

C. Summary of RZC algorithm

The steps involved in the RZC algorithm are listed be-
low and shown in Fig. 11.

Real Zero Conversion (RZC) Algorithm
(Analysis)

Given: Real-valued bandpass signal s ( t ).

1. Calculate h m( t ) (i.e. the coefficients
of h m( t )) by applying LPSD algorithm to
real signal s ( t )
2. Compute q( t ) and r ( t ) from h m( t ) using
Eqs. 44 and 45.
3. Compute e 1( t ) 5s ( t ) q ( t ), and e 2( t )
5s ( t ) r ( t ).
4. Low-pass filter e 1( t ) and e 2( t ) to pro-
duce e 3( t ) and e 4( t ). Determine the zero-
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crossings (CoZeCs) of e 3( t ) and e 4( t ).

5. Compute the MinP part ( e a( t ) 1 j â( t ) ) and

MaxP part ( e b( t ) 2 j b̂( t ) ) using the CoZeCs
(see Section III).
6. Estimate v l , uAc u and f1 by means of
standard least squares using Eqs. 61–63.

Output: Two sets of CoZeCs, v l , uAc u and
f1 .

Real Zero Conversion (RZC) Algorithm
(Synthesis)

Given: Two sets of CoZeCs, v l , uAc u and f1 .

1. Compute the MinP part ( e a( t ) 1 j â( t ) ) and

MaxP part ( e b( t ) 2 j b̂( t ) ) using the CoZeCs
(see Section III). (Same as step 5 in the
RZC analysis algorithm).
2. Use the MinP and MaxP parts in conjunc-
tion with the estimates of v l , uAc u and f1 ,
to reconstruct s ( t ) using Eq. 60.

Output: Estimate of the signal s ( t ).

Note that the final outcome of the above algorithm is
that the 2P plus 2Q zero-crossing locations corresponding to
the filtered error signalse3(t) ande4(t) determine the poly-
nomial sa(t), whose order isP1Q. Note that the polyno-
mial sa(t) is a complex polynomial and hence there are 2P
12Q real numbers that determine the polynomial~ignoring

FIG. 9. The spectrum associated withe2(t): ~a! the
magnitude spectrum of real signals(t); ~b! the magni-
tude spectrum of real signalr (t); ~c! the magnitude
spectrum of error signale2(t)5s(t)r (t).
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the first coef ficient a0 that is absorbed in the scale factor
Ac). Hence the RZC algorithm is a way of transforming the
P1Q complex Fourier coefficients corresponding to the
trigonometric polynomial that represents s(t) into 2(P
1Q) zero-crossing locations that implicitly determine the
underlying analytic signal sa(t).

We wish to make clear the conditions under which the
above transformation can be achieved. Recall that the key
idea in Sec. IV is to flatten the signal envelope by using the
all-pole model~LPSD algorithm! thereby turning the error
signal e(t) into an AllP signal. The desirable properties as-
sociated with the zero crossings ensue from this AllP signal.
There are two situations under which it may not be possible
to completely flatten the envelope of a bandpass signal. First,
if s(t) is such that its envelope dips to zero for somet @i.e.,
sa(t) has one or more zeros on the unit circle#, then, clearly
the LPSD algorithm would require an extremely largem to
fit an all-pole model to the signal envelope and hence the
nonoverlap conditions mentioned above may not be met.
Second, ifs(t) is such that the Fourier coefficients in the
low-frequency region are not sufficiently small, then again
the above nonoverlap conditions are not met. These two con-

ditions may impact the accuracy with which the signals(t) is
reconstructed from the CoZeCs. However, by choosing the
filter bank appropriately the situation can be mitigated. It is
interesting to note that ifm is chosen large, ignoring the
above overlap conditions, then 1/uq̂(t)1 jq(t)u, instead of
approximating the Hilbert envelope@ usa(t)u# just approxi-
mates the full-wave rectified signal envelope,us(t)u.

VI. APPLICATION TO SPEECH ANALYSIS

In order to analyze speech using the RZC algorithm, we
first bandpass filter the signal using a filter bank. We split the
input speech signal intoM uniformly or nonuniformly dis-
tributed frequency bands. We use two different filter banks in
this section: a linear-phase perfect reconstruction filter bank,
and a gamma-tone filter bank that supposedly mimics the
cochlear filtering.

A. Perfect reconstruction filter bank

In this section we use a linear phase perfect reconstruc-
tion filter bank followed by the RZC algorithm to process a
speech signal obtained from the ISOLET database~http://
cslu.cse.ogi.edu/corpora/isolet/!, isolet/isolet1/mjc1/mjc1-P2-
t.adc. The speech signal corresponds to the spoken utterance
/p/ by a male speaker. The signal waveform@Fig. 15~a!# is
sampled at 16 kHz and is 7392 samples long. The signal is
first preemphasized using a filter with a transfer function 1
20.98z21. Our general speech analysis and synthesis model
is shown in Fig. 12. We filter the speech signal usingM
532 uniformly distributed linear-phase FIR filters. The fil-
ters were designed using a Matlab program provided by the
Multirate Signal Processing Group at the University of
Wisconsin—Madison ~http://saigon.ece.wisc.edu/waveweb/
QMF.html!. The filtersGk(z) all have unity transfer function
andHk(z) are chosen such that(k50

31 Hk(z)51. The order of
the filter is 192. The 3-dB bandwidth of each bandpass filter
Hk(z) is approximately 250 Hz. The filters closest to dc~1st
channel! and the Nyquist frequency~26th to 32nd! are ig-
nored since there is little energy in those regions.

1. Speech analysis

The output of each bandpass filter is viewed through
sliding ~Hamming! windows shown in Fig. 13. The windows
overlap each other by 50%. We set the length of the windows
to roughly that of a pitch period. In this example,T

FIG. 10. CoZeCs:~a! Estimated~solid line! and true~dotted line! e3(t) are
plotted. ~b! Estimated~solid line! and true~dotted line! e4(t) are plotted.
Note that the number of zero crossings ofe3(t) is 2Q and those ofe4(t) is
2P.

FIG. 11. RZC algorithm for real bandpass signals: The signalsq(t) andr (t)
are obtained by minimizing the energy ine1(t) ande2(t), respectively. In
fact, one has to determinehm(t) and then formq(t) and r (t). The error
signalse1(t) ande2(t) are low-pass filtered to obtaine3(t) ande4(t), which
fully represent the original real signal~up to a scale factor and a carrier
frequency translation!. This block is called the real-zero converter~RZC! in
Fig. 1.

FIG. 12. Analysis–synthesis filter bank: In Sec. VI A the analysis filters are
FIR and have the same bandwidth, while in Sec. VI B gamma-tone filters are
employed that have different bandwidths.
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56.9 ms, except in the lower-frequency channels~channel 6
and lower!, whereT513.8 ms~' twice the pitch period!.

Note that the spectrum of the windowed signal is the
convolution of the spectrum of the speech signal and the
spectrum of the window function. Hence, using the Ham-
ming window tends to reduce the magnitude of the Fourier
coefficients in the low-frequency region as required for the
RZC algorithm~see Sec. V B!.

We estimate the lower band edgev l and the higher band
edgevh of s(t) from the cut-off frequencies of each band-
pass filter. Then we setvq5v l2dV and v r5vh1dV,
whered>0. d is a ‘‘guard’’ band and in this simulationd
51. The orderm of hm(t) is chosen to be 7 in channels 2 to
6 and 9 in channels 7 to 25. To each block of the windowed
signal in each channel, we apply the RZC algorithm. For
each block we obtaine3(t) ande4(t) as in Eq.~27! and Eq.
~29! and determine their zero crossings~CoZeCs!. Using
these zero crossings we estimate the MinP (ea(t)1 j â(t)) and

MaxP (eb(t)2 j b̂(t)) components. Note that the model of the
real signal is

s~ t !5uAcue@a~ t !1b~ t !# cos@~v l1QV!t1â~ t !2b̂~ t !1f1#.
~60!

After we have the estimates of MinP and MaxP components,
the estimates ofv̂ l , uAcu, andf1 are obtained by standard
least squares~see, for example, pp. 261–269 in Ref. 29!. The
least squares estimate ofv l is obtained by finding the maxi-
mum of the function

4

T U E
2T/2

T/2

s~ t !e2@a~ t !1b~ t !#e2 j @v l t1QVt1â~ t !2b̂~ t !# dtU2

.

~61!

MagnitudeuAcu, and the phasef1 can be shown to be ap-
proximatelyAc5Aâ1

21â2
2 andf15arctan(2â2 /â1), where

â15
2

T E
2T/2

T/2

s~ t !e2@a~ t !1b~ t !# cos$2@v̂ l t1QVt1â~ t !

2b̂~ t !#%dt, ~62!

â25
2

T E
2T/2

T/2

s~ t !e2@a~ t !1b~ t !# sin$2@v̂ l t1QVt1â~ t !

2b̂~ t !#%dt. ~63!

Thus, each channel outputs the zero-crossing locations of
e3(t) ande4(t) and estimates ofAc , v l , andf1 .

2. Synthesis

Using the two sets of zero crossings, we reconstructa,
b, â, b̂, and the corresponding MinP and MaxP compo-
nents.~See the details in Sec. III B.! These are then com-
bined with the estimatesv l , uAcu, andf1 , to reconstruct the
windowed signal as in Eq.~60!. Because each window over-
laps the other by 50%, adding the reconstructed blocks to-
gether gives the reconstructed signal for each channel.

The first example simply uses an impulse input to dem-
onstrate the analysis/synthesis idea. Figure 14 shows the out-
puts of the filter bank when an impulse is input. In the top
panel we just plot the input impulse that is applied at the 81st
sample. The output of the filter bank without any RZC pro-
cessing is shown in the middle panel. Although the filter
bank has perfect reconstruction property, the output is not an
impulse ~but close! because we have included in the filter-
bank only filters numbered 2 to 25 as mentioned before. The
group delay of the filters@the cascade ofHk(z) andGk(z)# is
96 samples. The reconstruction of the impulse when the RZC

FIG. 13. One segment of filtered speech with overlapped sliding windows:
We used a Hamming window~6.9 ms duration!. Each window overlaps the
previous one by 50%.

FIG. 14. Reconstruction of an impulse with and without RZC using the
linear phase perfect reconstruction filter bank: We compare the reconstructed
impulse with and without RZC, where the reconstruction without RZC is
plotted in the middle panel and the reconstruction with RZC is displayed in
the bottom panel. They are closely matched to each other. The top panel
shows the input impulse location. Since the filter bank is a perfect recon-
struction variety, we know that if the input is an impulse the output must be
an impulse with a delay. The delay is equal to the group delay of the filter
~96 samples!. However, the output is not exactly an impulse because we
omit the filters 1 and 26 to 32 from our filter bank.
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algorithm is used to represent the filter outputs using CoZeCs
is displayed in the bottom panel. It closely matches the one
in the middle panel.

We have also compared the reconstructed speech signal
with and without RZC in Fig. 15, where the reconstruction
without RZC ~just add the output from channel 2 to 25 to-
gether with a suitable delay! is plotted in the left panel and
the reconstruction with the RZC algorithm is displayed in the
right panel. They are closely matched to each other. The
difference signal obtained by subtracting the reconstructed
signal with CoZeCS@Fig. 15~a!# from the reconstructed sig-
nal without using CoZeCs@Fig. 15~b!# is plotted in Fig.
15~c!. The spectrograms associated with each signal are also
displayed in Fig. 16, where~a! is reconstructed without RZC,
~b! is reconstructed with RZC and~c! is the spectrogram of
the difference signal.

B. Fixed gamma-tone filter bank

In this section we apply the RZC algorithm to a segment
of speech~obtained from the TIMIT database! processed

through a physiologically motivated auditory filter bank. The
speech signal corresponds to the spoken utterance ‘‘She had
your dark suit in greasy wash water all year’’ by a female
speaker~timit/train/dr1/fcjf0/sa1.wav!. The original wave-
form is sampled at 16 kHz. We consider only samples with
indices 2000 to 9150, which corresponds to the utterance
‘‘She had.’’ The signal is preemphasized using a filter with a
transfer function 120.98z21. Our analysis and synthesis
system is the same as in Fig. 12, but with different analysis
and synthesis filters. The analysis filter bank is similar to
those used in many other physiologically motivated auditory
models,30–33which simulates the motion of the basilar mem-
brane. We use the well-known gamma-tone filter bank,34 for
this purpose. The magnitude responses of 23-channel filters
used in this filter bank are shown in Fig. 17~a!. It is designed
by using an auditory toolbox provided by Malcolm Slaney.35

As in the previous section the output of each gamma-tone
filter is viewed through sliding observation windows. We
choose a longer window (T527.5 ms) in the low-frequency
band ~channels 13–20! and a shorter window~T513.8 ms,

FIG. 15. Reconstruction of the speech signal with and without RZC using a linear phase perfect reconstruction filter bank: We compare the reconstructed
speech signal with RZC~b! and without RZC~a!. They are closely matched to each other. The difference between these two signals, i.e., the error signal is
displayed in~c!. The error contribution is larger at lower frequencies.
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approximately two times the pitch period! in the high-
frequency band~channels 4 to 12!. The rest of the processing
is identical to that described in the previous section.

Given the analysis filtersHk(z), k50,...,M21, the syn-
thesis filters are chosen asGk(z)5Hk* (z), i.e., the synthesis
filter bank is just the analysis filter bank with time-reversed
impulse response. This leads to good~but not perfect! signal
reconstruction. If necessary, an equalizing filter bank can be
used to compensate for any imperfections in the reconstruc-
tion. Without this equalization we found that the magnitude
fluctuations are less than 2 dB@shown in Fig. 17~b!#.

We compared the reconstructed signal with and without
RZC in Fig. 18, where the reconstruction without RZC is

plotted in the top panel and the reconstruction with the RZC
algorithm is displayed in the bottom panel. Clearly, the Co-
ZeCs represent the speech signal reasonably accurately.

VII. CONCLUSIONS

From Logan’s work11 it is clear that traditional zero
crossings of a real-valued bandpass signal cannot uniquely
represent it, except in some special cases mentioned in the
Introduction. Hence, in this paper, we have sought and found
alternate signal-adaptive methods that can be used to re-

FIG. 16. Spectrograms of the reconstructed speech sig-
nal with and without RZC: The figures show the spec-
trograms of the reconstructed speech signal with and
without RZC and the difference signal. Again, note that
the error contribution at lower frequencies is larger.
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present arbitrary bandpass signals by timing information
~CoZeCs!. A key first step is to localize the signal in fre-
quency~by filtering! and in time~by using aT second win-
dow! and then compute its representation. The information
that needs to be extracted from such a time–frequency local-
ized signal,s(t), consists ofAc , the overall amplitude of the
signal,vc , the nominal carrier frequency of the signal, and

the details of the modulationsea(t)1 j â(t) and eb(t)2 j b̂(t).
Clearly this information is contained in theP1Q complex
Fourier coefficients corresponding to the trigonometric poly-
nomial that modelss(t) over the time intervalT seconds.
The proposed RZC algorithm is a way of transforming these
P1Q Fourier coefficients into 2(P1Q) zero-crossing loca-
tions ~CoZeCs! that implicitly determine the underlying ana-

lytic signal sa(t) @s(t) is the real part ofsa(t)#. Ac andvc

are constants over a block ofT seconds and are expected to
vary only slowly from block to block. They constitute the
‘‘place’’ information in the parlance of cochlear signal
analysis.5 Typically, Ac andvc are the obviously visible in-
formation in a spectrogram of the signal. The information

about the modulationsea(t)1 j â(t) and eb(t)2 j b̂(t) ~which are
not obvious from a spectrogram! are in the zero crossings of
e3(t) and e4(t) and they constitute the so-called ‘‘rate’’
information.5 In this paper we have used only a fixed filter
bank to analyze and represent the signal. Eventually the fil-
ters may be made signal adaptive, thereby cutting down the
number of filters needed. As mentioned in Sec. III, the line
spectrum frequencies~LSFs! used in speech processing to

FIG. 16. ~Continued.!

FIG. 17. Magnitude response of the gamma-tone filter bank: Magnitude
responses of 23 channels of the gamma-tone filters are show in~a!. The
overall response of the analysis and synthesis filter bank is shown in~b!. The
combined analysis–synthesis filter bank exhibits less than 2 dB ripple.

FIG. 18. Reconstruction with and without RZC using the gamma-tone filter
bank: Gamma-tone filter bank is used to analyze and synthesize one segment
of speech. We compare the reconstructed speech signal without and with
RZC, where the reconstruction without RZC is plotted in the top panel and
the reconstruction with the RZC is displayed in the bottom panel.
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represent the spectral envelope of a signal are the duals of
the CoZeCs that represent the signal envelope and phase. It
is known that LSFs are statistically robust with respect to
quantization and coding,36 and we expect similar results to
hold for CoZeCs as well. This will be a topic for future work.

The proposed approach has a number of potential appli-
cations. Although it is not at all certain that the proposed
approach has anything to do with the way the inner ear rep-
resents signals, the proposed representation is at least an
‘‘existence proof’’ that bandpass signals can be represented
exclusively by timing information a` la the inner ear. Further
similarities to the inner-ear signal representation need to be
pursued. Second, note that the representation by CoZeCs is
an alternative to sub-band coding,37 in which the signal is
processed through a filter bank, down-sampled, and the
samples are allotted bits based on the strength of the signal
and other perceptual criteria. A similar approach could be
applied to the representation by CoZeCs. Third, determining
precisely the arrival time differences between spatially dis-
tributed receivers is one of the most important issues in es-
timating the direction of arrival~DOA! of signals. It is easy
to visualize a DOA estimator based on comparing the time
delays between CoZeCs-based representations of the same
signal received at two or more spatially distributed locations.

Finally, it is instructive to compare our approach to the
LPC-based methods~such as code-excited linear prediction
~CELP!38! which are based on a speech production model.
CELP coding uses LPC~or equivalently the LSFs! to repre-
sent the spectral envelope of the signal. Unfortunately, the
spectral phase~or equivalently the prediction error sequence!
has contributions from many components~pitch related har-
monics! and is hence a ‘‘rough’’ function of frequency.
Therefore in order to fit the spectral phase, the CELP ap-
proach uses an exhaustive search of a code book for a func-
tion that is as close to the spectral phase of the prediction-
error signal as possible. In contrast, our RZC algorithm
captures both the temporal envelope and temporal phase in-
formation together in the CoZeCs after decomposing the sig-
nal into frequency bands. Further, the pitch information can
be extracted by post-processing the CoZeCs from different
frequency bands.
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