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Stronger at Depth: Jamming Grippers as Deep 
Sea Sampling Tools

 

Abstract— In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers 

increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be 

used for deep sea grasping tasks in ambient pressures exceeding one hundred atmospheres, where such high jamming 

pressures can be readily achieved.  Laboratory experiments in a pressurized, water filled test cell are used to measure the 

holding force of a 'universal' style jamming gripper as a function of the pressure difference between internal membrane 

pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, 

and operated from, remotely operated vehicles (ROVs) at depths in excess of 1200m. In both experiments, the jamming 

gripper consists of a latex balloon filled with a mixture of fresh water and ~200 micron glass beads, which are cheaply 

available in large quantities as sand blasting media.  The use of a liquid, rather than gas, as the fluid media allows 

operation of the gripper with a closed loop fluid system; jamming pressure is controlled with an electrically driven water 

hydraulic cylinder in the lab, and with an oil hydraulic driven large-bore water hydraulic cylinder at sea.  

Keywords—soft robotics; compliant grippers; universal jamming gripper; underwater manipulation; remotely operated 

vehicles. 

I. INTRODUCTION 

Robotic sampling of fragile and irregularly shaped objects is often a critical component of deep sea biological and 

archaeological investigations.  The current state of the art for underwater sampling is the use of one or two 

manipulators with multiple rigid links and rigid end-effectors driven with high pressure oil hydraulics.  Even with 

highly skilled pilots, collecting samples at any reasonably complex site with an ROV is difficult and time consuming.  

It is not atypical for a >2000kg robot with a potential grip closure strength of >1000N to be used to sample objects 

with a weight of only a few grams in water.  The fundamental danger in these sampling tasks is that a rigid gripper on 

a non-back drivable arm could make unintended contact with a priceless, fragile object with a huge amount of 

momentum driving the gripper and the arm. Soft robotics are attractive in large part because their inherently 

compliant structures can passively eliminate accidental shock loading on sampled objects.   

For the present study, we use a 'universal' particle jamming gripper.  Particle jamming is accomplished by creating 

a pressure differential between the inside of a particle filled flexible membrane and the fluid surrounding the 

membrane [1]. When the flexible membrane is filled with fluid at the same pressure of the surrounding fluid, the 

membrane does not obstruct the motion of the particles inside.  The particles can move around each other freely, and 

the membrane is free to take the shape of any object that it is pressed against. To make the membrane harden in its 

current shape, fluid is removed from the inside of the membrane. The grains inside are jammed together by the 

membrane, which constricts under the external pressure. The grains can no longer flow around each other and the 

whole mass becomes rigid.   



A universal jamming gripper uses a single elastic membrane filled with particles, where the membrane is 

suspended below a rigid disc or shallow cup [1]. As shown in Figure 1, the membrane is lowered onto the object to be 

grasped, fluid is pumped out to jam the particles together, and the object can then be picked up along with the gripper. 

The performance of universal jamming grippers has been a topic of extensive quantitative characterization in air [2] 

[3] [4].  It has been commercialized for factory automation Empire Robotics, albeit not yet successfully [5]. Particle 

jamming has also been proposed and demonstrated in a wide variety of more mechanically complex manipulation 

applications including, e.g. control of joint stiffness and 2-DOF actuation in pneumatically actuated fingers [6, 7], 

articulated motion in an octopus like manipulator arm [8], two degree motion in and in a multi-fingered hand [9]. We 

have chosen to focus on the universal gripper as a test case for jamming grippers at depth for reasons of simplicity 

and robustness. 

Soft robotics is particularly attractive in underwater applications because soft components can have densities close 

to that of the surrounding fluid.  When operated underwater, soft robotics can use liquid, rather than gas, within the 

internal fluid circuits without making the robot too heavy to support itself.  Indeed, an incompressible liquid is 

required to avoid the use of high pressure gas reservoirs and attendant regulation apparatus which would otherwise be 

needed to compensate for pressure at depth.  The feasibility of using water for both pressure compensation and fluid 

actuation has been demonstrated at depths greater than 500m with fiber reinforced finger-like actuators [10]. A further 

benefit of using liquid, as noted in [11] is that it allows the use of  a low volume closed-circuit fluid system to control 

particle jamming, however this was proposed as a means of creating compact terrestrial vehicles. Liquid water as a 

medium for jamming in a submerged universal gripper was first described in [12] where various objects were 

recovered from the bottom of a 4m deep fresh water tank. 

Intriguingly, [1] hypothesized that the strength of the grasp of a universal jamming gripper should be linear 

function of the vacuum pressure with respect to the ambient air, particularly for the case where an interlocking grasp 

was achieved on a sample. The mechanism postulated was an increase in the shear strength of the jammed mass as the 

jamming pressure increases.  Given that the jamming pressure is limited by the absolute ambient pressure, and that 

ambient pressure increases with water depth, a particle jamming based gripper should increase in strength as it is 

carried deeper in the water column, making it an attractive choice as a deepwater tool. 

The experiments described below were performed to test the hypotheses that (a) the maximum lifting force that 

can be achieved by a universal jamming gripper is dependent on the jamming pressure, i.e. the pressure drop across 

the confining membrane between ambient and internal; that (b) this increase in gripper performance occurs when the 

ambient and interstitial internal fluid consists of liquid water; and that (c) the force continues to increase for jamming 

pressures greater than one atmosphere. 

II. METHODS 

Our goal in developing underwater soft gripper technologies is to support deep water archaeological and 

biological sampling, particularly deep water intervention tasks using remotely operated vehicles (ROVs) tethered to a 

surface ship. Our target platform is the scientific work class ROV Hercules, pictured in Figure 2, which can be 



operated to depths of up to 4000m from the dedicated 64-m support ship E/V Nautilus1.  The ROV pilots aboard the 

surface ship communicate with and command the actuators and sensors onboard the ROV via the tether. The ROV 

Hercules uses electric power transmitted over the tether to drive onboard systems, including a 15-kW rated hydraulic 

pressure unit (HPU) capable of supply pressures up to 3000psi. A Kraft PredatorTM 7-DOF hydraulic arm with a rigid 

pincer end-effecter is used for all physical sampling tasks.  Samples are either grasped directly with the end-effecter, 

or acquired using tools that can be picked up by the end effecter from the ROV 'front porch'. The Kraft arm uses joint 

fluid pressure to transmit force information to the pilot's control joystick, however pilots are justifiably reluctant to 

rely on the rigid end-effecter to grasp potentially priceless, non-renewable cultural artifacts. In this effort, we focus on 

a 'universal' style jamming gripper which can be picked up and applied by the rigid end-effecter, as shown in Figure 

3.   

The gripper design includes a linear bearing, which limits the maximum vertical force applied to any sample to the 

in-water weight of the gripper itself. A closed-circuit hydraulic system converts high-pressure, low volume oil 

hydraulics to low-pressure, high volume water hydraulics through an in-line cylinder pair. A schematic showing the 

design of the gripper membrane, manifold, cap, and handle is shown in Figure 4. The fluid manifold is machined from 

a 6061aluminum rod and connects a single inlet-outlet port from the side to an internal cavity bored out from the 

bottom of the manifold.  The bottom hole is covered with a filter (400x400 mesh stainless steel woven wire cloth) that 

allows water flow but blocks the particles from entering the manifold.  The manifold is inserted through the cap (3-D 

printed in ABS using a Stratysys Dimension printer) and then in to the neck of a latex balloon (Qualatex 18" Diamond 

Clear Round) that is partially filled with 94g of solid glass beads (Potters Ballotini® 212-300μ Impact Beads).  The 

average density of the bead material is 2.5g/cc, the average density of the packed beads is 1.66g/cc, and the uninflated 

volume of the membrane is approximately 225cc. The beads are thus 25% of maximum amount that can be contained 

without inflating the membrane. A blind threaded hole in the top of the cylinder is used to attach to the gripper handle 

shaft  of nominal 0.5in diameter ceramic-coated aluminum. 

The fluid drive system consists of a 127mm bore stainless steel water filled cylinder (TRD Mfg., RS Series) and a 

25mm bore oil filled  cylinder (HydroLek 11060).  The piston rods of the two cylinders are concentric and directly 

connected end to end, as indicated in cross-section in Figure 4. A three-position four-way proportional valve, which is 

integrated with an existing 1500psi oil-hydraulic system on-board the ROV, is used to control the high pressure 

cylinder.  The maximum jamming pressure across the jamming membrane is 58psi (3.95atm), resulting from the 

hydraulic system pressure of 1500psi and the 26:1 area ratio of the two cylinders.  The pilot controls the valve from 

the surface through manual setting of the solenoid valve PWM duty cycle; fine control of jamming pressure was not 

possible during the experiments described here due to the nearly 10 second latency in valve control and pressure 

response.  Jamming pressure was observed using an analog gauge pressure sensor (Thuemling SPAN series) 

referenced to ambient pressure with a range of ±60psi (±414kPa). The installed locations on the ROV Hercules of the 

gripper apparatus, the fluid drive system, the analog pressure gauge, all of which are connected using flexible thick 

walled polyurethane tubing (1.8in ID, 3/8in OD), are indicated in Figure 5. 

                                                           
1 http://www.nautiluslive.org/tech 



A linear bearing was used to enable the robot manipulator to apply full strength upwards while at the same time 

passively limiting the downwards force applied to the in-water weight of the gripper apparatus.  The gripper handle 

shaft slides in the linear bearing, and is constrained in the downward direction by a shaft collar clamped around the 

top of the shaft.  In field operation, the robot manipulator grasps the apparatus via the outer bearing cylinder which 

has a plain thrust bearing (Rulon J self-lubrciating PTFE) press fit into each end.  Handling with the pincer 

mechanism is made easier by the addition of two 2.5in (64mm) diameter rigid polyurethane ball handles to the 

bearing cylinder, as shown in the image Figure 3, which gives the pilots view of operations when the ROV is at depth. 

 As illustrated in Figure 1, the weight of the gripper and its load are supported by the shaft collar when the gripper 

is not in contact with the substrate.  The arm is then lowered until the weight of the gripper is fully supported by the 

sample and/or substrate.  The pilot can see that this has occurred by observing when by the bearing cylinder begins 

sliding down the shaft, thus losing contact with the shaft collar. Once the gripper is in contact, fluid is removed from 

the membrane via the fluid inlet port, developing a pressure difference across the membrane and jamming the 

particles. 

For the deployed gripper, and for all experiments in this effort, the membrane was only partially filled with 

particles.  As described in [12] the partially filled membrane is able to drape around the objects that it is applied to, 

and the weight of the freely flowing particles then forces the membrane to extend slightly underneath overhangs.  

This shape promotes the gripping modality referred to in [1] as 'interlock', as opposed to the 'friction' and 'suction' 

modes.  The interlock mode is the mode that is most clearly dependent on the shear strength of the rigid gripper 

shape, as the grip fails only with large scale shape changes. For the purposes of this effort, the primary effect of this 

design choice is that the partially filled membrane achieves an effective interlocking grip without the need to shape 

the membrane around the object, whether manually as in [1], or with some additional actuation step which would add 

potentially unacceptable complexity to fielded operation. 

One consequence of the use of a partially filled membrane is that there is a significant difference in the volume of 

the membrane before and after the jamming step, as illustrated in Figure 1 (b)-(c).  In order for the gripper to achieve 

a high quality grasp on the object, it is critical that the apparatus be free to fall under its own weight and thus continue 

to press down on the membrane as the fluid is removed.  In previous work [12] this was accomplished by allowing the 

cap to slide on the manifold, but pinching of the membrane between the cap and the manifold during the relative 

motion was found to be a primary failure mode.  For this effort, the membrane and cap move together as the bearing 

shaft slides within the bearing cylinder.  This proved to be a more reliable solution and made it possible to change the 

total range of motion simply by increasing the shaft length. 

III. EXPERIMENTAL APPARATUS: LABORATORY 

As operational time at depth on a work class scientific ROV is extremely costly, the gripper design was 

extensively tested using a triaxial load frame (GeoComp LoadTrac-II) with an integrated pressure chamber and flow 

control system (GeoComp FlowTrac-II). The experimental apparatus is pictured in Figure 6. The pressure chamber is 

an acrylic cylinder with gasket-sealed removable top and bottom caps. The pressure chamber is mounted rigidly to the 

movable platen of the load frame. The platen can follow pre-programmed velocity or force profiles, where force is 



measured using a single-axis S-beam load cell mounted to the load frame above the pressure chamber, and velocity is 

measured using a spring loaded linear probe in contact with the platen. 

The top cap of the pressure chamber contains a shaft penetration consisting of a linear bearing with a dynamic o-

ring seal.  The gripper apparatus is contained inside the pressure chamber, supported from above by the gripper 

handle, which passes through the  shaft penetration.  Two fluid inputs to the chamber, accessed through fittings in the 

bottom cap, are connected externally to two independent FlowTrac-II systems, which consist of electrically driven 

water hydraulic cylinders instrumented for pressure and volume control.  One flow control system is plumbed directly 

to the interior of the pressure chamber, and controls ambient chamber pressure.  The other flow control system is 

plumbed to a pass through, which is connected inside the chamber to a length of flexible tubing, which is in turn 

connected to the manifold. The flexible tubing is arranged in a spiral configuration to minimize vertical forcing on the 

gripper. The fluid circuits are isolated from one another and closed. All fluid used in these experiments is fresh water 

at room temperature. 

The manifold, cap, membrane, and beads tested are identical to those used at sea, however a longer handle shaft is 

needed to provide sufficient length to protrude from the pressure chamber regardless of the gripper vertical position 

relative to the chamber.  Eyebolts are threaded in to the bottom of the S-beam load cell (Artech 20210 series, max. 

load 11N) which is attached to the load frame above the chamber, and in to the top of the gripper handle shaft. A 

weight tray is mounted to the lower shaft, allowing weight to be added to compensate for the vertical pressure force 

resulting from chamber pressures which are higher than the ambient pressure in the laboratory. The pressure force is 

proportional to this pressure differential and the internal cross-sectional area of the linear bearing. 

The sample object in all tests is a 110mm long, 10mm diameter stainless steel tube. The sample was mounted 

parallel to the surface of the aluminum base plate, with the lower surface held 6mm above the substrate with a 4-40 

rod, which was threaded into a blind tapped hole in the center of the length. During all experiments the rigid cone of 

the gripper apparatus makes contact with the ends of the sample rod.  As a result,  the entire weight of the gripper 

apparatus rests on the sample, with the exception of some portion of the bead and membrane weight which is 

supported by the substrate.  The downward load on the sample is thus approximately equal to the in-water weight of 

the gripper. This sample geometry was chosen to simplify estimates of the downwards force applied, eliminating the 

need for a submersible force sensor to distinguish between loads applied to the sample and the substrate. 

For each experiment, as shown in Figure 7, the gripper mechanism is allowed to come to rest on the sample before 

jamming, and to settle on the sample during jamming, under the weight of the gripper mechanism, shaft, and weight 

tray.  Once the gripper is fully jammed, the shaft is connected to the load cell by a tension member, and the platen is 

lowered until the jammed gripper loses contact with the sample. In this manner, we are able to measure the total 

upwards force applied by the gripper to the sample, while ensuring that the downward force applied does not exceed 

the total in water weight of the gripper and the handle, thus simulating operation at sea.  Gripper holding force is 

calculated as the difference between the maximum load recorded by the load cell, and the load recorded immediately 

after all contact with the sample is lost, with the platen still in downward motion. 



The two flow control systems are used to independently control pressure and flow inside the membrane and 

surrounding the membrane. Throughout each experiment, the chamber pressure was regulated by injecting or 

removing fluid using PID feedback control, with external piston volume as the control input.  The volume of fluid 

external to the membrane is directly tied to the total displacement of the gripper and the gripper support structure; thus 

when fluid is added or removed from the membrane to control either membrane volume or membrane pressure, fluid 

must be removed or added to the chamber to maintain pressure. Lowering or raising the gripper structure changes the 

displacement of the gripper, as the shaft penetrates to different distances, again requiring fluid to be removed or 

added. 

The membrane fluid flow is used to regulate either volume or pressure depending on the current stage of the 

grasping process. Prior to grasping, fluid is removed from the membrane in pressure regulation mode to achieve a 

small (10kPa) difference between internal and external pressure, indicating the start of jamming. A controlled volume 

of fluid is then injected in to the membrane to inflate it partially prior to application to the sample. This initial fluid 

volume is one of the parameters varied in the experiments described below.  All tests are performed with the starting 

internal membrane pressure equal to the surrounding ambient pressure, as the balloon is never inflated to the point of 

elastic stretching.  Once the gripper is applied to the sample, the gripper is 'jammed' by removing fluid from the 

membrane, regulating pressure to achieve the desired jamming pressure. 

IV. LABORATORY EXPERIMENT: RESULTS 

The gripper lifting force, FL, was recorded while varying four experimental parameters: system weight in water, 

FW, ambient pressure, PA, jamming pressure, PJ, and initial membrane fluid volume VI.  A series of 23 experiments 

was performed. 

Jamming pressure. 

We recorded FL as a function of PJ=(30, 60, 85, 170, 255, 340) kPa with PA = 4 atm, FW = 5N, and VI =120mL.  

As seen in Figure 8, FL increases more than three-fold, from 3.8N to 15.3N when PJ is increased from 30 to 85kPa.  

FL doubles again to 29.9N when PJ is increased to 340kPa. The relationship is linear within the upper range; recorded 

mean values with error bars representing variance are plotted against a linear fit to the experiments within this range, 

where FL =0.057 x10-3 PJ + 10.  There is a significant difference in sensitivity above and below PJ =85kPa, and the 

linear fit to the lower range is FL =0.21 x10-3 PJ - 2.6. 

Effects of ambient pressure. 

To determine sensitivity of FL to ambient pressure, three experiments were performedat reduced ambient 

pressures for a subset of the jamming pressures above,: PJ=85kPa at 1atm, and PJ=(85, 170) kPa at 2atm. PJ cannot 

exceed the ambient pressure in any experiment. VI =120mL was maintained in order to ensure that the initial volume 

threshold for repeatable gripper performance was met, based on the results of tests across varying VI described below.  

There was no significant change in the gripper performance when PA is varied between 1, 2, or 4atm, as seen in Figure 

8. Results from the three field trials described below, with PA ≈120atm and PJ=404kPa, also shown for comparison in 



Figure 8, and are consistent with the linear fit developed between FL and PJ at PA =4atm, suggesting that the FL is 

independent of PA across two orders of magnitude in PA. 

Initial membrane volume. 

We recorded FL as a function of VI =(40, 80, 100, 120, 140, 160) mL, while holding PA=4 atm and drawing 

PJ=340kPa. FL increased monotonically with VI, ranging from an average of 18N at VI =40mL to 34N at VI=160mL, 

as seen in Figure 9. Using n=5 trials for each operating condition, we found that measured FL was repeatable for VI 

=100 mL and higher.  In contrast, for VI =100mL and lower, the results show much higher variability, with an 

apparently bimodal distribution of measured FL.  For the lowest initial volume, individual trials ranged from a 

minimum of 9N to a maximum of 23N. Images of the membrane at four different stages are shown in Figure 11 for 

one trial each with VI =40 and VI =120ml, resulting in FL = 9N and FL =30N, respectively. The membrane shape just 

before contact with the sample is closer to symmetric with VI = 120mL, without the sharp folds evident when VI 

=40mL. For VI = 120mL and above, the membrane prevents the cap from making contact with sample before 

jamming, and is slightly pressurized from holding gripper weight; the membrane is also more compact and 

symmetrically positioned around the sample once jammed. 

System weight. 

We tested the sensitivity of gripper performance to system weight, FW, first by varying FW and PJ while holding VI 

constant (see Figure 8) and then by varying FW and VI while holding PJ constant (see Figure 9.) FW  was increased to 

10 N with PJ=(30, 85, 340) kPa, holding constant PA =4atm, and VI =120 mL.  In each case, mean gripper lift strength 

varied by less than 1N when the system weight was increased.  We recorded FL for FW =(1, 10) N with VI =(40, 120) 

mL, holding constant PA =4atm, and PJ=340kPa. Gripper lift strength varied by less than 2N between the three system 

weights for the case where VI =120mL. For VI =40 mL and lower system weight FW =1N, FL remained bimodal, with 

similar maximum and minimum values compared to the case where FW = 5N.  For the higher system weight, 

however, the results were repeatable for n=5, and the mean value of all trials matched the higher of the two modes for 

the case where FW = 5N. 

V. FIELD TESTS 

In July 2016, we were able to deploy the gripper prototype on the ROV Hercules during the E/V Nautilus field 

campaign at the Southern California Margin. The gripper was tested at depth, where it successfully grasped a number 

of man-made and naturally occurring objects at the sea floor.  We modified the gripper shown in Figure 3 to allow for 

in-situ measurement of the lifting force, using the target object from experimental program described above. 

The stainless steel rod sample target was mounted on a flat PVC disc on the front porch of the ROV Hercules, 

again parallel to the surface at a height of 6mm. Two stainless steel linear compression springs were installed on 

longer gripper handle shaft, between the shaft collar and the linear bearing as pictured in Figure 12(a). Solder was 

wrapped around the cap of the gripper to increase in-water weight of the modified gripper apparatus to 5N. 

 The ROV manipulator was used to lower the gripper on to the sample from above, and then fluid was removed 

from the membrane to jam the gripper. The ROV manipulator was then used to raise the bearing cylinder. Each of the 



spring in series was compressed by the combined force of the gripper weight and the vertical force applied by the 

sample on the gripper. Initial fluid volume could not be either precisely controlled or accurately measured; the on/off 

control channel for fluid injection was subject to an approximately 10 second lag, and feedback was entirely based on 

observing the outside of the membrane through the ROV main camera.  Before each experiment, fluid was injected in 

five second bursts until the membrane appeared to be smooth and slightly inflated, ensuring VI  >120mL. PJ=404kPa 

(4 atm) was repeatably reached in all trials by actuating the drive cylinder long enough to ensure that full pressure was 

reached within in the high pressure piston, resulting in maximum jamming pressure in the water hydraulic system. 

Gripper strength, FL, was measured by using the maximum length change in the lower spring when compared to 

the length of the spring under the gripper weight alone. The linear spring constant, k, for the lower spring was found 

to be k = 0.60N/mm during testing prior to deployment. The deformation of the upper spring cannot be used as it is 

clearly compressed beyond the linear compression range. The vertical length of the upper plain bearing was taken as a 

reference length of 25.4mm (1.0in), to account for changes in camera view angle. Three trials were performed on this 

target with the ROV at a depth of 1200m, i.e. with an ambient pressure > 120 atm.  

FL = 32N, 38N, and 35N for trials I, II, and III, respectively, based on isolated images in video frame captures as 

shown in Figure 12. While all operations were performed by the same ROV pilot in an attempt to maintain consistent 

trajectories across trials, the manipulator was manually controlled, resulting in motions that were not exactly vertical. 

An image showing the typical shape of the gripper immediately after grip failure is shown in Figure 14. The results 

from all three individual trials are plotted along with the results from laboratory experiments in Figure 8 for 

comparison.  While these are necessarily relatively crude estimates given the significant sources of measurement error 

and unavoidable variability in gripper motion, the measured gripper performance is consistent with the linear 

relationship developed from experiments performed at much lower ambient pressures. 

VI. DISCUSSION 

We make a number of observations related to the combined laboratory and field experiments, and expand on them 

below: 

 (1) Better gripper performance can be achieved at higher ambient pressures.  
 (2) For a given jamming pressure, gripper strength is independent of ambient pressure.  
 (3) Gripper strength increases with increased initial fluid volume, and grasping is more reliable above a  
       threshold initial fluid volume.  

 (4) Gripper pull strength is insensitive to system weight.   
 (5) Interaction of target shape with operational parameters is a necessary area of future investigation.   

 
 

1) Better gripper performance can be achieved at higher ambient pressures.  

The lifting force of the gripper increases with the jamming pressure, regardless of the ambient pressure.  The 

jamming pressure must be lower than the ambient pressure. Therefore higher ambient pressures make it possible to 

achieve higher grip strengths, subject to the limits of the mechanisms used to create the jamming pressure differential. 

When operating at sea level jamming pressure is limited to less than 101kPa.  When submerged in water, ambient 

pressure increases by approximately 1atm for every 10m increase in depth.  In laboratory tests, gripper lifting force 



doubled as jamming pressure increased from 85kPa, which can be achieved at sea level, to 340kPa, which can be only 

be achieved at water depths greater than 24m.   

If we assume that the failure mode is shear failure at the base of the interlock tabs that extend underneath the 

sample, we are able to make a first order prediction of the holding strength based on the estimated material properties 

of the jammed particles.  The force required to cause shear failure should be proportional to the ultimate shear 

strength of the material, τ, and the area, Ashear, of the shear plane according to FL = τ Ashear.   

We assume τ for the jammed particulate mass is proportional to the effective stress according to the Mohr-

Coulomb failure criterion, τ = σ’ tan ’, where ’ is the effective stress friction angle [13]. For  σ’= PJ, we expect FL = 

PJ tan ’ Ashear. We assume that the geometry of the gripper is constant after jamming occurs, and can thus treat Ashear 

as independent of jamming pressure. The length of the tabs along the sample is on the order of two diameters of the 

sample rod (20mm), as shown by the view from below in Figure 14, and the thickness of the tabs protruding beneath 

the sample cannot exceed the height of the sample rod (6mm), implying that the two tabs would have a maximum 

combined shear area of approximately 480mm2. ’ for fine spherical glass beads is taken to be 32 degrees [13]. Using 

the slope of the linear fit to the recorded lifting force below 85kPa jamming pressure, we would expect that the area of 

the shear plane is on the order Ashear = 320 mm2.  

This first order prediction does not, however, adequately account for the abrupt change in sensitivity to PJ above 

85kPa.  A possible explanation for this discrepancy highlights one difference between jamming in air and in water, 

which is that liquid water is effectively incompressible. Because the membrane is sealed after PJ is applied and the 

water is incompressible, any deformation of the jammed particles during lifting occurs under constant volume 

conditions. Depending on the initial packing of the particles, there will be a tendency for volume change during lifting 

(i.e. shear) that will result in a corresponding change in pore pressure [13]. The pore pressure that develops modifies 

the effective stress on the jammed particles in the membrane, and at the failure point, σ’ ≠ PJ, if PJ  is the pressure 

drop across the membrane when the volume is sealed. 

Change in pore pressure during gripper loading was available from a pressure tap during two trials at initial 

jamming pressures, PJ =85kPa and PJ =340kPa.  The change in pore pressure as a function of gripper displacement is 

shown in Figure 15 for these two cases, with the pressure occurring at maximum recorded lifting force highlighted for 

each.  At PJ =85kPa, the membrane internal pressure has increased by 5kPa when failure occurs, reducing σ’ to 

80kPa, a 6% drop from the initial value.  At PJ =340kPa,  the pressure has increased by 65kPa when failure occurs, 

reducing σ’ to 275kPa, a 19% drop from the initial value.  These results indicate that the assumption that σeff = PJ 

overstates the effective pressure for jamming pressures above 85kPa. 

The results are also consistent with the fact that, for a given packing of particles, at low effective stresses the 

particles have a tendency to dilate during shear, which will inhibit pore pressure development and can even lead to 

negative pore pressures. At higher effective stresses, however, the particles have a tendency to contract during shear, 

with corresponding positive pore pressures. This transition from dilative to contractive behavior of the particles 

during constant volume shear may explain the change in slope in Figure 8.  



2) For a given jamming pressure, gripper strength is independent of ambient pressure.  

The relationship between the lifting force of the gripper and the ambient pressure is indirect, and is entirely 

dependent on the fact that ambient pressure serves as a hard limit to jamming pressure. Varying the ambient pressure 

within the test cell between 1atm and 4atm had no apparent effect on the gripper pull strength for a given jamming 

pressure.  At a water depth of 1200m, the ambient pressure exceeds 100atm. Trials performed at that depth, although 

limited in scope, closely follow the linear relationship between jamming pressure and gripper strength found with 

ambient pressures two orders of magnitude lower, supporting this conclusion.   

3) Gripper strength increases with increased initial fluid volume, and grasping is more reliable above a 

threshold initial fluid volume.  

 The importance of initial fluid volume is shown by the increase in lifting force from 18N to 34N across the range 

of volumes tested.   Notably, however, at and below 100mL there is a significant chance that the gripper will fail to 

achieve an effective grasp on the sample, resulting in lifting force as low as 9N.  Recalling that the uninflated volume 

of the membrane is 225mL, and that the beads and interstitial fluid surrounding them occupy 25% of that volume the 

membrane is 69% full when VI =100mL. Based on images of the membrane shape before and after contact, we 

believe that this represents a threshold above which the elastic membrane forms around the sample in an organized, 

symmetric fashion, possibly due to the slight inflation of the membrane required to support the weight of the 

apparatus.  Where the initial volume is too low, deeper folds and asymmetries in the membrane prior to and after 

contact may make the success of the grasp highly sensitive to rotation of the gripper apparatus about the vertical shaft.   

4) Gripper pull strength is insensitive to system weight.   

Experiments performed above the initial volume threshold suggest that the gripper performance does not depend 

on the system in water weight, across an order of magnitude (from 1 to 10N). For the higher initial fluid volumes 

(120mL and above) the weight of the system is entirely supported by the internal pressure of the inflated membrane 

prior to jamming, as shown in Figure 11-b. However, the full weight of the system is applied to the sample as the 

fluid is removed from the membrane and the cap comes to rest on the ends of the sample.  This result suggests that 

system in water weight can and should be minimized, potentially reducing downwards force without reducing gripper 

performance. 

5) Interaction of target shape with operational parameters is a necessary area of future investigation.   

It is important to recognize that the discussion above, particularly as related to (3) and (4), comes with the caveat 

that a single regularly shaped object was used as the grasping target. Targets with dimensions smaller than the cap 

diameter are of particular interest.  The membrane of a partially filled gripper may be able to form around a small 

target without ever resting the entire weight of the gripper on the target. In that case, higher system weights and 

higher initial fluid volumes may generate higher internal membrane pressures; even if the rigid portion of the gripper 

never contacts the sample, a pressurized membrane will still transmit the weight of the gripper to the target.  

Grippers for objects resting on soft substrates, such as fine bottom sediment and water logged ship timbers, must 

minimize downward forces or risk burying their targets.  There is a design imperative to minimize gripper weight and 



initial fluid volume if it can be done without unduly reducing gripper strength. The influence of initial volume and 

gripper weight on performance for different target geometries is thus a necessary area of future work.   

VII. CONCLUSION 

In this effort we demonstrate that the universal jamming gripper is a viable deep water sampling technology. The 

performance of jamming grippers in a lifting task is shown to improve with operational depth through experiments in 

a pressure chamber and as deployed on the ROV Hercules at a water depth of 1200m.  Jamming gripper performance 

improves at depth because the maximum holding force that can be sustained is dependent on the jamming pressure, 

and higher ambient pressures allow higher jamming pressures to be reached. Extreme changes in ambient pressure, 

from 1 atm at the surface to over 100 atm below 1000m depth, dictate the use of an incompressible liquid as fluid 

media, but this also provides the opportunity to use a piston driven closed-circuit system to actuate jamming.  Piston 

driven systems are readily installed, actuated, and pressure compensated on any ROV with a high pressure oil 

hydraulic system.  The design of a universal gripper that can be used by an ROV manipulator is shown to be 

mechanically straightforward, with no actuated mechanical components.  

ROV size typically increases with depth rating; as the robot travels deeper, the individual components increase in 

size and mass to withstand increasing pressure, and the tether itself becomes heavier.  ROV size is also driven 

upwards by the need to do as much as possible on each dive to justify ship operational costs. Ship costs can easily 

exceed US$50,000/day, thus a dive to and from a depth of 1000m at 0.5m/s, plus an hour of launch and recovery 

time, costs in excess of US$5,000 before the first task is even attempted. Soft manipulators and grippers have the 

potential to (a) reduce exploration cost by eliminating tool changes while collecting samples with complex and 

variable geometry, and (b) allow safe sampling of fragile biological and cultural artifacts in the deep-sea. 
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Figure 1: Grasp and recovery of an object using a partially filled jamming gripper with weight‐limited downwards force. The 

gripper is positioned using a robotic manipulator which holds a cylindrical bearing installed on the handle shaft. (a) Prior to 

contact  with  the  object  and  the  substrate,  the  membrane  contains  an  initial  fluid  volume  at  the  ambient  pressure,  in 

addition to the fluid surrounding the unjammed particles. The weight of the gripper apparatus is supported by the top of the 

bearing, which is  in contact with a collar at the top of the handle shaft. (b) Upon contact, the jamming gripper membrane 

conforms  to  the  object  and  the  substrate  under  the weight  of  the  apparatus.  The  bearing  slides  down  the  handle  shaft, 

keeping the shaft aligned vertically without applying vertical force. (c) Fluid is removed from the membrane until the desired 

jamming pressure is reached, jamming the particles into a rigid shape. The gripper apparatus settles down on to the particles 

under its own weight as the fluid is removed, ensuring that the jammed shape remains conformed to the object rather than 

pulling up and away. (d) The object is picked up along with the gripper apparatus.  

 



 

Figure  2:  The  remotely  operated  vehicle  (ROV) Hercules  is  a  science  work‐class  ROV  deployed  from  the  dedicated  64m 

support  ship  E/V  Nautilus,  operated  by  the  Ocean  Exploration  Trust.    The  gripper,  fluid  drive,  and  pressure  gauge were 

installed  in  the  port‐forward  lower  corner  of  the  ROV  (see  detail  in  Figure  5.)  The manipulator  arm used  to  operate  the 

gripper is stowed at the starboard‐forward corner (to the left in the view shown.) 



  

Figure 3: Image of the gripper held by the manipulator, captured from the main camera view used by the ROV pilot.   Two 

2.5in diameter rigid polyurethane balls are mounted on the cylinder bearing handle to give the manipulator pincer a secure 

grasp.  The flexible blue polyurethane tubing connects the membrane to the pressure gauge to the left of the image, and to 

the fluid drive system out of view to the left. 

  

      



 

Figure 4: Annotated schematic of gripper apparatus and fluid drive system.   

 



 

Figure  5:  Detail  of    ROV  Hercules  showing  installed  location  of  three  components:  1  ‐gripper,  2‐  fluid  drive  system,  3‐

membrane  internal pressure gauge. The gripper  itself  is  resting  in an open container on the  'front porch' of  the ROV. The 

fluid drive system is partially occluded  in this view. The pressure gauge showing pressure across  the gripper membrane  is 

mounted to the secondary manipulator arm, allowing it to be repositioned within the camera field of view during operation 

of the gripper. 

 



 

Figure 6: Annotated schematic of bench top gripper experiments in a pressurized water chamber.  The object to be grasped is 

rigidly mounted to the lower section of the pressure chamber, which is in turn rigidly mounted to the movable platen.  The 

gripper is supported by the shaft which runs through the linear bearing in the upper cap of the pressure chamber.  Weights in 

the weight tray compensate for the upwards force caused by difference between the elevated pressure inside the chamber 

and ambient air pressure in the lab. Two FlowTrak II controllers are used to set either pressure or volume in the chamber and 

in the membrane.  Control of each independent closed (fixed fluid mass) system is  accomplished by driving the cylinder 

connected to that fluid volume.  The motion of the gripper and the platen are described in Figure 7. 

 

 



    

Figure 7: Schematic illustrating motion of gripper and platen during bench top experiments.  (a)‐(b) The gripper settles on to 

the object under its own weight until the gripper membrane is jammed. (c)‐(d) The gripper shaft is connected to overhead 

load cell and then the platen is lowered until the gripper completely  loses contact with the object.   The lifting force is the 

difference between the maximum vertical  load during the downward motion, and the vertical  load after the gripper  loses 

contact.  Both platen position and load are recorded at 10Hz. 

 



 

Figure 8: Gripper lifting force, FL, is shown at six jamming pressures, PJ where ambient pressure PA = 4atm, gripper weight 

FW=5N, and initial fluid volume VI =120mL. n=5 trials per operating point. FL is clearly dependent on PJ, and exhibits a linear 

relationship for PJ > 85kPa, with the linear regressions shown as the dashed lines. Three experiments were performed at 

reduced ambient pressures: PJ=85 kPa at PA=1atm, and PJ=(85, 170) kPa at PA=2atm; no dependence on PA was found.  Four 

experiments were performed with varying in water weight FW=(1, 10)N and three different values of PJ, no dependence on 

FW was found.  Results from three individual field trials of the gripper with PJ=4 atm operated at a water depth of 1200m 

(PA≈120 atm) suggests that the gripper performance remains independent of ambient pressure even at these depths. 
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Figure 9: Mean pull strengths, FL, for six initial fluid volumes, VI , are shown for the case where ambient pressure is 4atm, 

gripper weight is 5N, and jamming pressure is 340kPa  (n=5 trials each).  The mean pull strength shows a strong dependence 

on VI. Results from all individual trials with gripper weight of 5N are also shown (empty black circles). There appears to be a 

bimodal distribution of recorded pull strength for VI ≤100mL.  Mean results from four experiments with varying gripper 

weight are also shown, with FW=(1,10)N with VI=(40,120)mL 

  



 

 

Figure  10:  Cross‐section  showing  typical  deformation  of  jammed  gripper  from  initial  grasp  to  release  of  the  sample  rod, 

based  in time‐lapse video  images from the case with  jamming pressure PJ=340kPa, ambient pressure PA=4atm,  initial  fluid 

volume VI=120mL, and in water gripper weight FW=5N.  The grip fails through deformation of tabs that extend underneath 

the sample rod from both sides.  The resulting shape can be seen from a bottom view in Figure 14. 

 

 

Figure 11: Comparison of membrane shape during grasp with VI=40mL and VI=120mL. (a) Just before contact, the lower initial 

volume creates deeper folds resulting in a less organized membrane.  (b) Prior to jamming, the weight of the gripper is 

supported by the membrane when VI=120mL, rather than resting directly on the sample through the rigid cap as when 

VI=40mL. (c) After jamming, the effect of asymmetry for the lower initial volume is evident, with a larger mass of beads 

situated to one side of the sample than the other. (d) For the higher initial volume, the jammed gripper consistently pulled 

upward on the sample without rotating or stretching the membrane, as compared to the lower initial volume case where in 

some cases the jammed gripper experienced significant rotation and stretching. 



 

Figure  12:  Estimates  of maximum  lift  forces were  derived  from  video  frame  captures  showing  compression  of  the  lower 

spring, both at maximum compression and after  shortly after  release. Note  that while  the  shaft  is obscured by  the  lower 

polyurethane ball,  the cylinder bearing is not in contact with the fluid manifold in images (a), (c), or (e).   Arm motion was 

manually controlled, resulting in motions that were not perfectly vertical.  All operations were performed by the same ROV 

pilot in an attempt to maintain consistency in speed and accuracy. 

 



             

Figure 13:  Isolated and rotated  images of  the gripper  from the video  frames used  to determine vertical  force  from spring 

deformation  for  the  three  trials performed.   Arrow  indicates  the  lower spring  in each case. The  lower spring has a spring 

constant  k=0.60  N/mm.  Variations  in  camera  angle were  accounted  for  using  the  known  along  axis  length  of  the  spring 

spacer (1.0in).  The estimated vertical forces are 32N, 38N, and 35N for trials I, II, and III, respectively.  

 

 

Figure  14:  Jammed  gripper  shape  immediately  after  pulling  free  from  the  sample  rod  during  tests  at  depth  on  the ROV 

Hercules.    The  impression of  the  rod  is  visible,  as well  as  the deformed  'tabs'  that were  initially  extended under  the  rod 

during the approach and grasp.  The formation of the tabs indicates that interlock was achieved.  To lift the gripper off of the 

sample, enough force must be applied to sufficiently deform these tabs to allow the object to be released. 



 

Figure 15: Effective stress change, ∆ σ', as a function of gripper displacement,  at initial jamming pressures, PJ =85kPa and PJ 

=340kPa.  The pressure occurring at maximum recorded lifting force is highlighted for each.  At PJ =85kPa, pressure has 

increased by 5kPa when failure occurs, reducing σ' to 80kPa, a 6% drop from the initial value.  At PJ =340kPa,  the pressure 

has increased by 65kPa when failure occurs, reducing σ' to 275kPa, a 19% drop from the initial value. 
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