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TECHNICAL ADVANCE Open Access

Diagnostic accuracy and prediction
increment of markers of epithelial-
mesenchymal transition to assess cancer
cell detachment from primary tumors
Evan L. Busch1,2,3*, Prabhani Kuruppumullage Don4,5,6, Haitao Chu7, David B. Richardson3, Temitope O. Keku8,
David A. Eberhard9, Christy L. Avery3 and Robert S. Sandler3,8

Abstract

Background: Metastases play a role in about 90% of cancer deaths. Markers of epithelial-mesenchymal transition
(EMT) measured in primary tumor cancer cells might provide diagnostic information about the likelihood that cancer
cells have detached from the primary tumor. Used together with established diagnostic tests of detachment—lymph
node evaluation and radiologic imaging—EMT marker measurements might improve the ability of clinicians to assess
the patient’s risk of metastatic disease. Translation of EMT markers to clinical use has been hampered by a lack of valid
analyses of clinically-informative parameters. Here, we demonstrate a rigorous approach to estimating the sensitivity,
specificity, and prediction increment of an EMT marker to assess cancer cell detachment from primary tumors.

Methods: We illustrate the approach using immunohistochemical measurements of the EMT marker E-cadherin in a
set of colorectal primary tumors from a population-based prospective cohort in North Carolina. Bayesian latent class
analysis was used to estimate sensitivity and specificity in a setting of multiple imperfect diagnostic tests and no gold
standard. Risk reclassification analysis was used to assess the extent to which addition of the marker to the panel of
established diagnostic tests would improve mortality prediction. We explored how changing the latent class conditional
dependence assumptions and definition of marker positivity would impact the results.

Results: All diagnostic accuracy and prediction increment statistics varied with the choice of cut point to define marker
positivity. When comparing different definitions of marker positivity to each other, numerous trade-offs were observed in
terms of sensitivity, specificity, predictive discrimination, and prediction model calibration. We then discussed several
implementation considerations and the plausibility of analytic assumptions.

Conclusions: The approaches presented here can be extended to any EMT marker, to most forms of cancer, and to
different kinds of EMT marker measurements, such as RNA or gene methylation data. These methods provide valid,
clinically-informative assessment of whether and how to use a given EMT marker to refine tumor staging and
consequent treatment decisions.

Keywords: Metastasis, Epithelial-msenchymal transition, Biomarker, Diagnostic accuracy, Prediction, Risk
reclassification, No gold standard, Latent class, Sensitivity, Specificity
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Background
Metastases play a role in about 90% of cancer deaths [1],
making accurate assessment of whether cancer cells have
detached from the primary tumor an essential component
of cancer diagnosis. Physicians use two diagnostic tests
jointly to assess detachment as part of tumor staging:
examination of lymph nodes near the primary tumor and
radiologic imaging. While highly useful, these methods do
not always successfully detect metastases. An example of
this imperfect accuracy is the fact that roughly 25% of
colorectal cancer (CRC) patients diagnosed with local dis-
ease later are found to have a recurrence [2]. Many of
these recurrences could be due to metastases that were
too small to be detected by imaging or lymph node evalu-
ation at diagnosis. Adding a third test might substantially
reduce the number of patients with false negative results
across the entire panel of tests, alerting clinicians to the
possible presence of metastatic disease that might other-
wise have gone undetected. This could lead to more ap-
propriate adjuvant chemotherapy decisions for patients
who stand to benefit from it.
Given that roughly 80% of cancer originates in epithelial

cells [1], markers of epithelial-mesenchymal transition
(EMT), a mechanism of metastasis, might be able to serve
as a third test of detachment [3]. The mechanism consists
of increased cellular expression of EMT inducers leading to
temporarily decreased expression of epithelial markers and
increased expression of mesenchymal markers [4]. These
molecular changes promote detachment and cellular motil-
ity. An EMT marker can be any gene or molecule—inducer,
epithelial marker, or mesenchymal marker—for which the
cellular expression level would be expected to temporarily
change as part of the process of EMT.
Measurements of EMT marker expression in primary

tumor cancer cells at diagnosis could suggest whether
the tumor contained a substantial number of cells that
were capable of detaching, thereby informing assessment
of the risk that cancer cells had already detached [3].
Used in this way, they could refine the accuracy of
tumor staging. Such EMT measurements have often,
though not always, been associated with patient
outcomes [3, 5–10]. However, to our knowledge, no
study has evaluated the ability of an EMT marker to
assess cancer cell detachment from the primary tumor
in terms of several parameters that are more relevant
than measures of association to deciding whether and
how to use the marker clinically to refine tumor staging:
sensitivity and specificity (collectively “diagnostic
accuracy”), as well as improvement of patient outcomes
prediction when adding the marker to standard tests
compared to prediction based only on standard tests (i.e.
“prediction increment”).
Estimating diagnostic accuracy and prediction increment

is complicated by the fact that imaging and lymph node

evaluation, considered singly or jointly, do not predict indi-
vidual patient outcomes perfectly, nor do they have 100%
sensitivity and 100% specificity to assess detachment. La-
tent class analysis provides a way to estimate the sensitivity
and specificity of a diagnostic test in settings with multiple
imperfect tests but no gold standard [11–13]. Risk reclassi-
fication analysis is an approach to statistical prediction that
can evaluate the prediction increment of a new predictor
by comparing classification of individuals as high risk or
low risk for an outcome of interest based on established
predictors to classification based on established predictors
plus the new predictor [14–16].
The purpose of this paper is to demonstrate, for any

EMT marker measured in primary tumor cancer cells
from virtually any kind of cancer, how to use latent class
analysis to estimate the sensitivity and specificity of the
marker to assess detachment, and how to use risk reclas-
sification to evaluate an outcomes prediction increment
of the marker. To illustrate, we provide a worked
example using immunohistochemical (IHC) measure-
ments of the EMT epithelial marker E-cadherin mea-
sured in a cohort of CRC tumors, then discuss analytic
assumptions and recommendations for the design of
future studies. These statistical approaches can be
extended to forms of EMT marker data other than IHC
measurements, such as RNA or gene methylation data.
Although our focus is on markers of EMT, the methods
presented here can be applied to any candidate marker
of detachment that could be measured in primary tumor
cancer cells, regardless of whether the marker is impli-
cated in the mechanism of EMT.

Methods
The study population [6, 17–19], laboratory work [6],
IHC digital image analysis [6], and image scoring
methods [6] have been described previously. Representa-
tive staining images are in Additional file 2 (Figure S1).
Here, we present only those details needed to under-
stand the approach to estimating diagnostic accuracy
and prediction increment.

Study population
Subjects were 188 CRC patients enrolled in the North
Carolina site of the Cancer Care Outcomes Research
and Surveillance Consortium (CanCORS) for whom E-
cadherin was measured in primary tumor specimens [6].
CanCORS was a population-based, case-only, multi-site
prospective cohort study of colorectal and lung cancer
that enrolled subjects during 2003–06 [17]. North
Carolina enrolled only CRC patients and was the only
site to collect tissue specimens. Survey and medical re-
cords data were collected, including physician-diagnosed
TNM tumor stage [19]. Tissue microarrays were con-
structed for primary tumor and tumor-adjacent
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specimens [6, 18]. The present analysis used E-cadherin
measurements from tumor tissue only. The protocol was
approved by the Institutional Review Board of the
University of North Carolina at Chapel Hill, and all
subjects provided written informed consent.

E-cadherin measurements
Protein expression of E-cadherin was measured in epi-
thelial cancer cells in primary tumor tissue cores, gener-
ally with 3 cores per subject. Regions of each core image
other than epithelial cells were excluded from analysis.
For an individual cell, E-cadherin measurement

included plasma membrane and cytoplasmic staining,
but excluded nuclear staining. For included cells within
a core, staining intensity was measured for each cell,
then averaged across all cells to produce a continuous
average intensity score for that core on a scale of 0–3.
To collapse scores from multiple cores for the same per-
son into a summary score, the core average intensities
were combined as a weighted average, weighted by the
amount of core area analyzed.

Diagnostic tests of detachment
Except when E-cadherin was included in a prediction
model as a continuous variable, each test was coded as
dichotomous test-positive versus test-negative. To make
the interpretation of test results consistent across all
tests, each test was coded so that a positive result meant
evidence supporting detachment and a negative result
meant no evidence of detachment.
Test results for lymph node evaluation and imaging

were not available in CanCORS. These two tests were
handled differently for estimation of diagnostic accuracy
than for estimation of prediction increment (see
Discussion for rationale). For models of diagnostic
accuracy, information from prior literature about lymph
node evaluation and imaging was used to develop
Bayesian priors for these tests. See the Statistical
Analysis section below and Additional file 1 for further
details. When estimating various statistical measures of
prediction increment, results for lymph node evaluation
and imaging were imputed based on each subject’s TNM
tumor stage as follows:
Local disease (Stage I or II) was assigned as lymph

node-negative and imaging-negative; regional disease
(Stage III) as lymph node-positive and imaging-negative;
and distant disease (Stage IV) as imaging-positive, with
lymph node status assigned using the N-stage compo-
nent of overall stage when available. Among 23 subjects
diagnosed with distant disease, 3 who were N0 were
assigned as lymph node-negative, 11 who were N1 or
N2 were assigned as lymph node-positive, and 9 with
unknown N-stage were assigned as lymph node-positive.

Lymph node-positive status meant that cancer cells
had been observed in the regional lymph nodes, while
lymph node-negative meant that no cancer cells had
been observed in the nodes. Imaging-positive meant that
evidence of cancer cells away from the primary tumor
had been observed in an imaging study (e.g. MRI, CT),
while imaging-negative meant that all scans performed
on the patient had been interpreted as not showing evi-
dence of cancer cells away from the primary tumor.
The coding of the EMT diagnostic test was based on the

biological role of E-cadherin in EMT. E-cadherin is an epi-
thelial cell transmembrane protein that serves as a critical
adhesion molecule between adjacent epithelial cells, help-
ing to anchor the cells in the epithelial layer [1, 4]. Loss of
plasma membrane E-cadherin expression is thought to be
a key step in a cancer cell detaching from the primary
tumor. Consequently, E-cadherin membrane expression
would be expected to be low in an epithelial cell undergo-
ing EMT and high in an epithelial cell not undergoing
EMT. For a given cut point dichotomizing continuous E-
cadherin expression into high expression (at or above the
cut point) and low expression (below the cut point) groups,
low E-cadherin was considered EMT-positive and high E-
cadherin was considered EMT-negative.
For an EMT inducer or mesenchymal marker—either

of which increases in expression during EMT—high
expression would be coded as EMT-positive and low
expression as EMT-negative, but the present example
uses only an epithelial marker.

Diagnostic accuracy conceptual model
To estimate EMT marker sensitivity and specificity, we
conceived the relationship between cancer cell detach-
ment and the diagnostic tests that assess it in terms of the
latent class framework (Fig. 1) [12]. Detachment was the
latent variable, meaning the variable that was of prime
interest but was not observed directly. We thought of the
latent variable as binary, or in other words, as having two
latent classes: tumors from which substantial numbers of
cancer cells had, or had not, detached. For present pur-
poses, it was not necessary to define “substantial numbers”
quantitatively. We merely needed to group tumors as high
risk or low risk for metastatic disease based on observed
patterns of diagnostic test results.
The latent variable was measured indirectly by the

three diagnostic tests: E-cadherin measurements in pri-
mary tumor cancer cells, lymph node evaluation, and
imaging. The observed data for each diagnostic test were
regarded as being generated jointly by the extent of de-
tachment and a random error term specific for that test.

Statistical analysis
Estimation of E-cadherin sensitivity and specificity to
assess detachment was conducted using Bayesian latent
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class analysis following the framework of Zhang et al.
[20]. Based on our previous finding that dichotomous E-
cadherin defined by cut points of 0.52, 0.60, and 0.85
were each associated with time to all-cause mortality in
this dataset [6], we estimated the diagnostic accuracy of
each of these dichotomous E-cadherin variables.
Let Yij be the classification result of the jth of three

tests (EMT, lymph node evaluation, and imaging) for
individual i (i = 1, …, n), the latent variable Di denote the
true disease status, and πi denote the disease probability
of the ith subject. The correlation in disease misclassifi-
cation is accommodated by a latent continuous variable
Zi ~ N(0, 1). The positive result for the jth assessment is
assumed to depend on both the latent true disease status
Di of the ith subject and the Gaussian latent variable Zi

through a generalized linear mixed regression model,
such as a probit model [20],

P Y ij ¼ 1jDi ¼ di;Zi ¼ zi
� � ¼ Φ adij þ cdijzi

� �

where di = 0,1. Here, the latent Gaussian random vari-
able Zi is assumed to be independent of the latent dis-
ease status Di. Based on Zhang et al. [20], the likelihood
for latent class estimation in our 3-test setting is:

L θð Þ ¼
Yn

i¼1

(

πi

Z∞

−∞

Y3

j¼1

Φ a1j þ c1jzi
� �yij 1−Φ a1j þ c1jzi

� �1−yij
h in o

dΦ zið Þ

þ 1−πið Þ
Z∞

−∞

Y3

j¼1

n
Φ a0j þ c0jzi
� �yij�1−Φ

�
a0j

þc0jziÞ1−yij
�o

dΦ zið Þ
)

For Bayesian estimation of diagnostic accuracy, lymph
node evaluation and radiologic imaging were each
assigned a prior distribution of sensitivity 60–70% and
specificity 95–99%. Additional file 1 provides the ration-
ale for assigning this prior to each of these two tests, as
well as sample WinBUGS code for the latent class ana-
lysis. E-cadherin was assigned an uninformative prior.
Bayesian analyses were performed using Markov Chain

Monte Carlo methods with a burn-in period of 5000
iterations followed by chains of 50,000 iterations, with
initial values generated by a fixed seed.
In the latent class framework, when errors for different

diagnostic tests are not correlated with each other, those
tests are said to be conditionally independent, that is,
independent within each latent class [11, 12]. However, it
is possible that errors for different tests are correlated with
each other, meaning those tests would not be independent
after conditioning on latent class. Per Zhang et al., for
Bayesian estimates of diagnostic accuracy, we assessed the
sensitivity of the results to different assumptions about
conditional dependence among the tests [20].
Analysis of the outcomes prediction increment of E-

cadherin used all-cause mortality as the outcome and
consisted of a combination of receiver operating charac-
teristic [ROC] curves, risk stratification tables and
reclassification statistics [15, 16]. The predicted prob-
ability of death was estimated for each subject using Cox
proportional hazards models of time from diagnosis to
all-cause mortality, censored at 5 years after diagnosis.
The base prediction model had independent variables of
the established diagnostic tests (lymph node evaluation
and radiologic imaging). Predicted probabilities from the
base model were compared to predicted probabilities
from a model with independent variables of the estab-
lished tests and E-cadherin. Across multiple runs, the
model with E-cadherin was implemented with different
forms of the E-cadherin variable: continuous or dichoto-
mized at 0.52, 0.60, or 0.85.
Prediction models were evaluated using four measures

of discrimination—area under the ROC curve for cen-
sored outcomes (c-index; range: 0% to 100%) [15], Inte-
grated Discrimination Improvement (IDI; range: −100%
to 100%) [21], event Net Reclassification Index (event
NRI; range: −100% to 100%) [22], and non-event NRI
(range: −100% to 100%) [22]—as well as a goodness-of-
fit test of calibration (reclassification calibration statistic)
[15]. For model discrimination, larger values meant

Fig. 1 Latent class model of cancer cell detachment from primary tumors and diagnostic tests of detachment (EMT, epithelial-mesenchymal transition)
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better discrimination according to all four measures.
Statistically significant reclassification calibration statis-
tic p-values at alpha = 0.05 indicated poor calibration.
To construct risk stratification tables as well as calcu-

late NRI and reclassification calibration statistics, mor-
tality risk category cut points of 20%, 30%, and 40% were
chosen based on the observed distribution in the base
prediction model of individual-level predicted probabil-
ities of death. Confidence intervals and p-values for
c-indices and reclassification statistics were obtained
using 1000 bootstrap samples.
Bayesian latent class analysis was performed using

WinBUGS 1.4.3 (Medical Research Council Biostatistics
Unit, United Kingdom). All other analyses were
performed using SAS 9.4 (SAS Institute, Cary, NC). C-
indices and risk reclassification statistics were estimated
using SAS macros available via the Brigham and
Women’s Hospital Division of Preventive Medicine Risk
Prediction Modeling website [23].

Results
Subjects were mainly non-Hispanic whites, about evenly
divided by sex, and had a mean age close to the United
States national average age at diagnosis for colorectal
cancer patients (Table 1) [24]. Of 188 subjects, 89 (47%)
were diagnosed with regional or distant disease, which is
similar to the approximately 56% of colorectal cancer
cases in the United States diagnosed with regional or
distant disease [24]. 62 subjects died within 5 years of
diagnosis (Additional file 2: Tables S1-S4).
Bayesian latent class estimates of diagnostic accuracy

are presented in Table 2. Across different E-cadherin cut
points and assumptions about conditional dependence
of diagnostic tests, the sensitivity of E-cadherin ranged
from 46% to 57%. The specificity of E-cadherin varied
more widely, ranging from 14% to 49%.
When lymph node evaluation and radiologic imaging

were the only predictors of all-cause mortality, the distri-
bution of individual predicted probabilities ranged from
22% to 69%, with most subjects having the minimum
probability of 22% (Table 3). Addition of E-cadherin
measurements to the panel of predictors consistently
lowered the minimum, and raised the maximum, of the
range of predicted mortality probabilities. Including E-
cadherin in the panel also increased the variation ob-
served within the range of predicted risks, with a smaller
proportion of subjects having the minimum predicted
probability for the model compared to the model with-
out E-cadherin. However, the extent of the increase in
range and variation of predicted probabilities due to
addition of E-cadherin to the model depended on the
form of the E-cadherin variable. Greater variation was
introduced into the set of predicted probabilities when
adding E-cadherin that was continuous or dichotomized

at 0.85 compared to dichotomization at 0.52 or 0.60.
Graphical comparisons of predicted probabilities based
only on established diagnostic tests to predicted prob-
abilities based on established diagnostic tests and E-
cadherin are in Additional file 2 (Figures S2-S5).
Table 4 presents c-indices and risk reclassification statis-

tics; corresponding risk stratification tables (Tables S1-S4)
are in Additional file 2. The c-index for a model of lymph
node evaluation and imaging was 45% (95% CI 36%, 53%)
(Table 4). Addition of E-cadherin to the model increased
the c-index, though the magnitude of the change
depended on the form of the E-cadherin variable and
the confidence intervals for most of the estimates

Table 1 Subject characteristics (n = 188)

Mean SD

Age (years) 67 13

N %

Sex

Male 89 47

Female 99 53

Race

Non-Hispanic White 149 79

Hispanic or non-White 39 21

Tumor Stage

Local (I or II) 99 53

Regional (III) 66 35

Distant (IV) 23 12

Lymph Node Diagnostic Statusa

Positive 86 46

Negative 102 54

Radiologic Imaging Diagnostic Statusa

Positive 23 12

Negative 165 88

EMT Diagnostic Status, Cut Point = 0.52b

Positive 11 6

Negative 177 94

EMT Diagnostic Status, Cut Point = 0.60b

Positive 28 15

Negative 160 85

EMT Diagnostic Status, Cut Point = 0.85b

Positive 108 57

Negative 80 43
aInferred from tumor stage. See Methods section for assignment rules
bBased on E-cadherin expression in primary tumor cancer cells measured as a
weighted average of tumor cores on a continuous average intensity scale of
0–3. Low E-cadherin expression (below the cut point) is evidence of
EMT (EMT-positive)
EMT Epithelial-mesenchymal transition
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with E-cadherin overlapped with the confidence interval
for the estimate without E-cadherin. Continuous E-
cadherin produced the largest increase, with more modest
increases for different dichotomous E-cadherin variables.
All prediction models with E-cadherin were well-

calibrated (Table 4). Addition of E-cadherin to the panel of
predictors increased prediction model discrimination ac-
cording to the IDI, which had a similar magnitude across
all forms of the E-cadherin variable that we examined.
Addition of E-cadherin to the model presented different
trade-offs between the event NRI and non-event NRI that
depended on the form of the E-cadherin variable.

Discussion
We demonstrated how to obtain valid, clinically-
informative estimates of the sensitivity, specificity, and
mortality prediction increment of an EMT marker mea-
sured in primary tumor cancer cells to assess cancer cell
detachment from the primary tumor. The approaches can

be applied to any EMT marker, for most forms of cancer,
and to different types of EMT marker measurements, such
as protein, RNA, or gene methylation data. The approach
to estimating prediction increment can also be applied to
outcomes other than all-cause mortality, such as cancer-
specific mortality or metastasis-free survival. In our worked
example, we observed that the choice of cut point to define
marker positivity influenced all of the statistics we
examined and that numerous trade-offs existed between
different cut points. The statistical approaches and consid-
eration of many different cut points to define marker posi-
tivity can help to evaluate whether and how an EMT
marker should be used clinically to assess detachment
and refine tumor staging for the form of cancer under
study. By improving the accuracy of tumor staging, suc-
cessful addition of an EMT marker to the established
diagnostic tests of lymph node evaluation and radio-
logic imaging could lead to more appropriate treatment
decisions.

Table 2 Bayesian latent class estimates of sensitivity and specificity of E-cadherin measurements in colorectal primary tumor cancer cells
to assess cancer cell detachment from primary tumor (n = 188)

Fully Fully Partial Dependent Models

Independent Dependent PDM 1 PDM 2 PDM 3 PDM 4 PDM 5 PDM 6

Constraints Set to 0 All None Se(Ecad) Se(LN) Se(RI) Se(Ecad) Se(Ecad) Se(LN)

Sp(Ecad) Sp(LN) Sp(RI) Sp(Ecad) Sp(Ecad) Sp(LN)

Se(LN) Se(RI) Se(RI)

Sp(LN) Sp(RI) Sp(RI)

E-cadherin Variable Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

Dichotomized at 0.52 47 28 54 44 52 49 52 42 53 44 47 28 52 48 52 43

Dichotomized at 0.60 49 22 57 43 53 40 53 41 53 43 49 22 53 40 52 42

Dichotomized at 0.85 46 14 53 43 52 41 52 42 53 43 46 14 52 41 52 41

Cellular membrane E-cadherin expression measured as protein in primary tumor cancer cells on a continuous average intensity scale (0–3), then dichotomized at
the indicated cut point (coded EMT positive versus EMT negative). LN and RI were each coded as dichotomous positive versus negative. LN and RI each assigned
the same prior of Se 60–70% and Sp 95–99%. For all dichotomous test variables, positive results mean evidence supporting detachment of cancer cells from the
primary tumor and negative results mean no evidence of detachment. All Se and Sp estimates are reported as percentages
Ecad E-cadherin, LN lymph node evaluation, PDM partial dependent model, RI radiologic imaging, Se sensitivity, Sp specificity

Table 3 Distributions of predicted probabilities for individuals of all-cause mortality within 5 years of diagnosis among colorectal
cancer patients for prediction models with and without primary tumor E-cadherin measurements (n = 188)

Predicted Mortality Probability as Percentage

Model Range 10th
percentile

25th
percentile

50th
percentile

75th
percentile

90th
percentile

Mean SD

Lymph Node Evaluation + Radiologic Imaging (Base Model) 22–69 22 22 22 38 69 33 14

Base Model + Continuous E-cadherin 9–87 15 21 29 41 60 33 17

Base Model + E-cadherin Dichotomized at 0.52 20–79 20 20 35 35 69 33 17

Base Model + E-cadherin Dichotomized at 0.60 19–93 19 19 33 40 67 33 17

Base Model + E-cadherin Dichotomized at 0.85 15–83 15 25 28 45 58 33 17

Base Model includes standard diagnostic tests of lymph node evaluation and radiologic imaging (each coded as dichotomous positive versus negative). Each of
the other models includes standard diagnostic tests and cellular membrane E-cadherin expression measured by immunohistochemistry in primary tumor cancer
cells on a continuous average intensity scale (0–3), then modeled as continuous or dichotomized at the indicated cut point (if dichotomized, then coded as
dichotomous EMT positive versus EMT negative). For all dichotomous predictors, a positive result means evidence supporting detachment of cancer cells from the
primary tumor and a negative result means no evidence of detachment. Each model is a Cox proportional hazards models of time from cancer diagnosis to
all-cause mortality, censored at 5 years after diagnosis. 62 subjects died within 5 years of diagnosis
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Proper interpretation of the results requires that they
be viewed in the context of several assumptions and
analytic considerations. Lymph node evaluation and
radiologic imaging each provide diagnostic information
on two related questions: have cancer cells detached
from the primary tumor, and if so, where are they? EMT
marker measurements in primary tumor cancer cells can
inform the first question but not the second. These mea-
surements are cross-sectional in time and only taken in
a sample of the primary tumor cancer cells after resec-
tion. Consequently, diagnostic use of EMT markers as-
sumes that the observed EMT expression provides an
informative representation of whether cancer cells were
likely to have detached from the primary tumor as a
whole at some point during the history of the tumor
from initiation to surgery. This assumption would be
difficult to evaluate, but it is probably reasonable to the
extent that the behavior of the tumor is stable in the
weeks or months immediately before surgery.
Another assumption is conditional independence of

diagnostic test errors [12]. Whether errors for different
diagnostic tests are correlated with each other cannot be
evaluated in a frequentist latent class analysis when
there are fewer than four tests, but can be evaluated in a
Bayesian analysis due to the use of priors [20]. While we
had three tests, our Bayesian estimates suggested that
the estimate of E-cadherin sensitivity did not vary much
by dependence assumptions, but the estimate of specifi-
city did vary by dependence assumptions.
In general, each test is measured in a different part of

the body, using different technology, and evaluated by

different personnel. Lymph nodes are taken from near
the primary tumor and examined under a microscope by
a pathologist. While imaging is sometimes performed on
the regional lymph nodes, it is usually applied to parts of
the body distant from the primary tumor, uses imaging
machines such as MRI or CT, and is evaluated by a radi-
ologist. As envisioned here, clinical measurement of
EMT markers would be performed in the primary tumor
and could be automated to scoring by computer. Based
on these qualitative considerations and our findings, the
three diagnostic tests probably do not strictly meet the
conditional independence assumption, but could be rea-
sonably close to satisfying it.
Our estimation of the prediction increment of E-

cadherin in CRC must be interpreted as assessing the
extent to which the marker improves the ability of
tumor staging to predict all-cause mortality. It does
not assess the extent to which E-cadherin measure-
ments improve the ability of the total set of clinical
CRC predictors to predict all-cause mortality, as add-
itional predictors besides stage could include age,
tumor grade, and comorbid conditions, among other
variables. While the prediction increment of an EMT
marker is of interest in both cases—in relation to
stage and to the full panel of predictors—adequate
data were not available in CanCORS to evaluate the
prediction increment for the full panel. Nevertheless,
the major clinical role of EMT markers would be to
refine tumor staging.
Our approach to evaluating an EMT marker had several

notable strengths. First, the latent class framework provided

Table 4 Prediction of all-cause mortality after adding continuous or dichotomous E-cadherin measurements to standard diagnostic
tests of cancer cell detachment from colorectal primary tumors (n = 188)

E-cadherin Variable Added to Standard Tests

Dichotomous E-cadherin Cut Point

Continuous 0.52 0.60 0.85

C-Index, % (95% CI)a 66 (58, 72) 51 (41, 59) 54 (45, 62) 56 (48, 63)

Reclassification Metricb

Number (%) moved to higher risk category 47 (25) 11 (6) 27 (14) 41 (22)

Number (%) moved to lower risk category 55 (29) 93 (49) 83 (44) 70 (37)

Total number (%) reclassified 102 (54) 104 (55) 110 (59) 111 (59)

Reclassification Calibration Statistic P-value 0.1 0.1 0.1 0.2

Event Net Reclassification Index, % (95% CI) 14 (−11, 30) −22 (−38, −7) −7 (−23, 10) 3 (−15, 21)

Non-Event Net Reclassification Index, % (95% CI) 13 (3, 35) 54 (44, 63) 41 (29, 52) 24 (12, 37)

Integrated Discrimination Improvement, % (95% CI) 3.4 (1.9, 5.6) 4.3 (2.2, 6.8) 3.4 (1.8, 5.3) 3.7 (1.7, 5.9)

E-cadherin measured on a continuous average intensity scale of 0–3, then modeled as either continuous or dichotomized (EMT positive versus EMT negative) at a
given cut point. For dichotomous E-cadherin, EMT positive status was expression below the cut point while EMT negative status was expression at or above the
cut point. 62 subjects died within 5 years of diagnosis
aEach c-index value in the table is for a Cox model estimating 5-year risk of all-cause mortality based on standard diagnostic tests of cancer cell detachment
(lymph node evaluation and radiologic imaging) plus the respective continuous or dichotomous E-cadherin variable. C-index for a model of standard diagnostic
tests only was 45% (95% CI 36%, 53%)
bReclassification metrics compare a Cox model estimating 5-year risk of all-cause mortality based on standard diagnostic tests of cancer cell detachment (lymph
node evaluation and radiologic imaging) to a Cox model based on standard diagnostic tests plus continuous or dichotomous E-cadherin status defined by a given
cut point. Mortality risk categories were 0 – 20%, 20 – 30%, 30 – 40%, and > 40%
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a realistic description of the relationship between cancer cell
detachment from primary tumors, which is never directly
observed in the clinic, and the diagnostic tests that assess it.
More importantly, the framework permitted estimation of
the diagnostic accuracy of an EMT marker in a setting with
multiple imperfect tests but no gold standard. Cross-
tabulation calculations of sensitivity and specificity based on
a 2 × 2 table assume that the new test is being compared to
an absolute gold standard having both 100% sensitivity and
100% specificity [25]. While lymph node evaluation and
radiologic imaging perform well to assess detachment, espe-
cially when used together, their excellent joint performance
does not constitute an absolute gold standard. By avoiding
this assumption, latent class analysis gave more valid
estimates than would cross-tabulation calculations.
Also advantageous was our use of Bayesian estimation

of diagnostic accuracy. With fewer than four diagnostic
tests, statistical theory shows that frequentist estimates
of a fully dependent model are not identifiable, although
partially dependent models can be assessed [20]. Bayes-
ian estimation overcomes this limitation for a fully
dependent model by the use of priors, which can also
enhance the analysis because the informative priors for
lymph node evaluation and imaging can be based on
information from much larger datasets than our own.
A further strength of our approach was the use of risk re-

classification analysis to estimate the prediction increment
of an EMT marker. Unlike measures of association [26] or
ROC curves [27], reclassification is a prediction method
that focuses on individual-level assignment of subjects with
different values for predictors into clinically-relevant risk
categories [16]. We showed how the distribution of individ-
ual predicted probabilities of dying within 5 years of CRC
diagnosis displayed greater variation when going from pre-
diction based only on lymph node evaluation and imaging
to prediction based on lymph node evaluation, imaging,
and E-cadherin (Table 3).
Finally, our use of digital image analysis to obtain con-

tinuous marker expression data allowed us the deepest
possible assessment of whether and how E-cadherin
should be used clinically to improve tumor staging.
Besides comparing the impact of modeling continuous
versus dichotomous marker expression in the reclassifi-
cation analysis, we compared different dichotomous
marker expression variables to each other, with each
defined by a different cut point. Previously, we noted
several trade-offs between E-cadherin cut points to de-
fine marker positivity: the proportion of subjects defined
as high expression as well as the magnitude and preci-
sion of the association with all-cause mortality [6].
The present analysis showed that the trade-offs between

cut points are even more extensive than our previous re-
port demonstrated. Varying the cut point changed the
range and distribution of individual predicted probabilities

(Table 3), the improvement across different measures of
prediction model discrimination (c-index, event NRI, non-
event NRI, IDI) (Table 4), and how well calibrated the pre-
diction model was (Table 4). Curiously, as the cut point to
dichotomize continuous E-cadherin was raised to increase
the proportion of subjects considered EMT-positive, sen-
sitivity did not necessarily increase and specificity decrease
accordingly (Table 2). While this may have been due to
idiosyncrasies of our small dataset, in general one would
expect to find such sensitivity-specificity trade-offs as the
marker cut point changes.
The dataset used for the example analysis had several

limitations. The small sample size, unavailability of out-
comes other than time to all-cause mortality (e.g. cancer-
specific mortality, recurrence, response to therapy), and
lack of consistent sampling of similar portions across
tumors—such as sampling the invasive front of each
tumor—have been noted before [6]. When running pre-
diction models to estimate risk reclassification statistics,
not having test results available for lymph node evaluation
and imaging forced us to infer them from tumor stage.
While our rules for inferring results of established diag-
nostic tests based on tumor stage were probably reason-
ably accurate, we had no way to verify this and doubtless
our imputations do not exactly reflect what was observed
clinically. Since most datasets that could be used for simi-
lar analyses probably include tumor stage but not test re-
sults, our assignment rules could be useful for carrying
out risk reclassification analyses in other datasets.
The lack of systematic sampling of certain portions of

each tumor deserves special attention. It is possible that
the diagnostically important information is EMT marker
expression at the invasive front rather than other parts of
the tumor or average expression throughout the tumor.
Ideally, for each tumor, one would want to sample both
invasive front and tumor center, then run separate ana-
lyses for expression data from the two locations. However,
in CanCORS, the tumors were sampled randomly, so that
the available tumor specimens were an unknown mixture
of invasive front, tumor center, and other parts of the tu-
mors. This meant that our results could be different from
what would be observed using expression data exclusively
from the invasive front of each tumor.
A final limitation that was not specific to this dataset was

the availability of just three diagnostic tests of detachment,
since besides the candidate test (EMT markers measured in
primary tumor cancer cells) there are only two tests used in
current practice. This prevented us from formally evaluat-
ing correlations of errors among the tests and meant that
frequentist estimates of diagnostic accuracy were not iden-
tifiable for a fully-dependent model. Note that measuring
multiple EMT markers would not overcome this limitation
because expression of EMT markers in a given set of tumor
samples would be expected to be correlated.

Busch et al. BMC Cancer  (2018) 18:82 Page 8 of 11



In our CRC example, E-cadherin measurements had a
modest sensitivity of about 50% (Table 2) that, when used
together with lymph node evaluation and radiologic im-
aging, could provide an additional opportunity to avoid
false negative test results across the entire panel of tests,
thereby decreasing the number of false diagnoses of local
disease. The major potential drawback would be the appar-
ently high number of false positive results that E-cadherin
might introduce, given its low estimated specificity.
Whether E-cadherin also improved the ability of stage to
predict patient mortality was unclear (Table 4). Across dif-
ferent forms of the E-cadherin variable, models with E-
cadherin were well calibrated and had a positive IDI. How-
ever, there were clear trade-offs between the event NRI and
non-event NRI, especially when looking across multiple
forms of the E-cadherin variable. Given that dichotomous
E-cadherin is more easily interpretable in a clinical setting
than continuous E-cadherin, the small or even negative
event NRI values for the dichotomous E-cadherin variables
suggest that the marker might not improve identification of
patients at the greatest risk of dying.
As noted earlier, test results for lymph node evaluation

and imaging were not available in CanCORS. We incor-
porated information about these tests into estimation of
both EMT marker diagnostic accuracy and prediction
increment, but the manner of doing so was different in
each case. For diagnostic accuracy, we accounted for
lymph node evaluation and imaging using informative
Bayesian priors that were developed using external infor-
mation. For estimation of prediction increment statistics,
we imputed test results based on each person’s TNM
stage. Each approach seemed appropriate for the statis-
tics for which it was used. Sensitivity and specificity are
calculated using group-level data, making the use of ex-
ternal population data about the diagnostic accuracy of
lymph node evaluation and imaging a valid method, es-
pecially if the external data is based on a much larger
sample. However, the usefulness of risk reclassification
statistics is closely tied to the change in an individual’s
predicted probability of the outcome when classified
with and without the new predictor. For prediction in-
crement, it seemed best to use values for lymph node
evaluation and imaging test results that were specific for
that individual, even if these had to be inferred from
other information such as tumor stage.
Given the use of IHC data in this analysis, we note the

decision to restrict digital image analysis to the epithelial
cells in each image. Non-epithelial cells could potentially
be cancer cells that have undergone a complete EMT.
However, if a cell has undergone a complete EMT, it
might not be clear whether it is a cancer cell at all, and
might have already detached from the primary tumor. The
potential diagnostic test considered in this manuscript is
the measurement of EMT markers in cancer cells that are

still attached to the primary tumor, but which might or
might not be in the process of detaching at the time of
tumor resection. The idea is to get an assessment of risk
of metastatic disease based exclusively on measurements
in the primary tumor, regardless of whether any detached
cancer cells are observed. This is what makes the test a
genuine third test of risk of metastatic disease, independ-
ent of radiologic imaging and lymph node evaluation.
Given the aim of the proposed diagnostic test, it seemed
reasonable to restrict analysis to those cells retaining at
least some epithelial morphology.
For design of future analyses of EMT marker diagnostic

accuracy and prediction increment, Table 5 presents sev-
eral implementation recommendations specific for the
topic, which expand upon our earlier work [3]. General
principles of biomarker evaluation, such as the importance
of external validation, are omitted but remain relevant.

Table 5 Study design recommendations for future analyses of
EMT marker diagnostic accuracy and prediction increment

1. Use Bayesian estimation of diagnostic accuracy latent class models, as
the use of priors avoids the identifiability problem of three diagnostic
tests (lymph node evaluation, radiologic imaging, and EMT marker
expression in primary tumor cancer cells)

2. Estimate EMT marker prediction increment for both tumor stage and
full panel of predictors of a given outcome. Models for stage would
consist of tumor stage as the base predictor (either overall TNM stage
or component T-stage, N-stage, and M-stage) to which EMT marker
expression is added as a new predictor. Models for the full panel could
include, in addition to tumor stage, other predictors of the outcome—-
such as age, tumor grade, or tumor subtype—as appropriate.

3. Estimate EMT marker prediction increment using a variety of outcomes,
e.g. time to all-cause mortality, time to cancer-specific mortality, time to
recurrence or metastasis-free survival, response to therapy.

4. When interpreting prediction increment results, give greater emphasis
to risk reclassification statistics than ROC curves or measures of
association. For reclassification, examine the event NRI and non-event
NRI separately. Do not rely exclusively on the overall NRI that sums
the event NRI and non-event NRI together.

5. Sample primary tumors systematically so that EMT marker expression
can be measured in, for example, both the invasive front and the center
of every tumor. Present portion-specific estimates in manuscripts, for
example, diagnostic accuracy and prediction increment for EMT marker
expression at the invasive front, and separately, diagnostic accuracy and
prediction increment for EMT marker expression at the center of the
tumor.

6. Measure multiple EMT markers in the primary tumors, preferably at
least one for which expression goes down during EMT (epithelial
markers) and at least one for which expression increases during EMT
(mesenchymal markers and/or EMT inducers).

7. Measure multiple forms of EMT marker data (e.g. protein expression,
RNA expression, gene methylation) in the same set of tumors to
evaluate which type of data has the best diagnostic accuracy or
prediction increment.

8. Measure EMT marker expression as continuous data whenever possible.
Starting from continuous EMT marker expression data, create as many
dichotomous EMT marker status variables defined by different cut points
as the data permit, then evaluate the diagnostic accuracy and prediction
increment of dichotomous EMT marker status for each cut point.

EMT epithelial-mesenchymal transition, NRI net reclassification index, ROC
receiver operating characteristic, TNM tumor, node, metastasis
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When interpreting results for the prediction increment of
an EMT marker, we recommend emphasizing reclassifica-
tion statistics such as event NRI, non-event NRI, and the
reclassification calibration statistic over measures based on
ROC curves (such as the c-index) because the reclassifica-
tion framework is more readily interpretable in terms of
clinical settings than ROC curves [16]. EMT marker ex-
pression should be measured as continuous data whenever
possible, such as by using digital image analysis of IHC
staining. After obtaining continuous data, and given that
dichotomous EMT marker status corresponds to a clinical
decision more readily than continuous expression, we sug-
gest evaluating the diagnostic accuracy and prediction in-
crement of every possible cut point that the data permit to
dichotomize EMT marker expression. An example of this
kind of exhaustive cut point analysis is provided in Tables 2,
3, and 4 of a paper by Busch et al. [28], though in the
present context, the consideration of many cut points
would be applied to estimation of diagnostic accuracy and
various measures of prediction increment.

Conclusions
We have illustrated how Bayesian latent class estimation
of diagnostic accuracy, and reclassification analysis of
prediction increment, are valid and clinically-informative
tools to evaluate whether and how an EMT marker
should be used clinically to improve tumor staging. This
is especially true when continuous marker data are avail-
able to be dichotomized at multiple cut points to iden-
tify trade-offs between different definitions of high
versus low marker expression. Such considerations of
cut points, diagnostic accuracy, and prediction incre-
ment could allow EMT markers to fulfill their potential
to improve diagnosis and treatment decisions for
patients with many different kinds of cancer.
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