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Central Force Motion: Two-Body Problem [mln66]

Mechanical system with six degrees of freedom:

Consider two masses m1, m2 interacting via a central force.

Central-force potential: V (r1, r2) ≡ V (|r1 − r2|).

Lagrangian of two-body problem: L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − V (|r1 − r2|).

Conservation laws inferred from translational and rotational symmetries:

• Energy: E =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 + V (|r1 − r2|).

• Linear momentum: P = p1 + p2 = m1ṙ1 + m2ṙ2.

• Angular momentum: L = r1 × p1 + r2 × p2.

Reduction to three degrees of freedom:

Center-of-mass position vector: R
.
=

m1r1 + m2r2

m1 + m2

.

Distance vector: r
.
= r2 − r1.

Total mass: M
.
= m1 + m2.

Reduced mass: m
.
=

m1m2

m1 + m2

.

Lagrangian (after point transformation):

L = LM(Ṙ) + Lm(r, ṙ) =
1

2
MṘ2 +

1

2
mṙ2 − V (|r|).

Center-of-mass motion: LM(Ṙ) =
1

2
MṘ2.

• Rx, Ry, Rz are cyclic coordinates.

• Conserved center-of-mass momentum: P = MṘ = const.

• Uniform rectilinear center-of-mass motion: R(t) = R0 +
P

M
t.

Effective one-body problem: Lm(r, ṙ) =
1

2
mṙ2 − V (|r|).

• Three degrees of freedom.

• Particle of mass m moving in a stationary central potential V (|r|).



Central Force Motion: One-Body Problem [mln67]

Reduction to one degree of freedom:

Consider a particle of mass m moving in a central potential:

Lagrangian: L(r, ṙ) =
1

2
mṙ2 − V (|r|).

Conservation of angular momentum: L = r×mṙ = const.

• Case L = 0: One degree of freedom.

– Purely radial motion: r ‖ ṙ ⇒ L(r, ṙ) =
1

2
mṙ2 − V (r).

– Energy conservation: E(r, ṙ) =
1

2
mṙ2 + V (r).

– Reduction to quadrature (see [mln4]).

• Case L 6= 0: Two separable degrees of freedom.

– Motion in plane perpendicular to L.

– Transformation to polar coordinates: x = r cos ϑ, y = r sin ϑ.

– Lagrangian: L(r, ṙ, ϑ̇) =
1

2
m(ṙ2 + r2ϑ̇2)− V (r).

– Cyclic coordinate: ϑ.

– Conserved angular momentum: ` =
∂L

∂ϑ̇
= mr2ϑ̇ = const.

– Routhian: R(r, ṙ; `) = L− `ϑ̇ =
1

2
mṙ2 − `2

2mr2
− V (r).

– Effective potential for radial motion: Ṽ (r; `)
.
= V (r) +

`2

2mr2
.

– Conserved energy: E(r, ṙ; `) =
1

2
mṙ2 + Ṽ (r; `).

– Reduction to quadrature (see [mln4]).

– Integral for angular motion: ϑ(t) = ϑ0 +
`

m

∫ t

0

dt

mr2(t)
.



Central Force Problem: Formal Solution [mln18]

Lagrangian: L =
1

2
m

(
ṙ2 + r2ϑ̇2

)
− V (r).

Lagrange equations (coupled 2nd order ODEs):

mr̈ = mrϑ̇2 − ∂V

∂r
,

d

dt

(
mr2ϑ̇

)
= 0.

Integrals of the motion (angular momentum and energy):

[A] ` = mr2ϑ̇ = const, [B] E =
1

2
mṙ2 +

`2

2mr2
+ V (r) = const.

Motion in time (solution by quadrature):

[B]
dr

dt
= ±

√
2

m

[
E − V (r)− `2

2mr2

]
⇒ t = ±

∫ r

r0

dr√
2
m

[
E − V (r)− `2

2mr2

]
⇒ r(t) = . . .

[A]
dϑ

dt
=

`

mr2
⇒ ϑ(t) =

`

m

∫ t

0

dt

r2(t)
+ ϑ0.

Integration constants: E, `, r0, ϑ0.

Orbital integral: eliminate t from r(t), ϑ(t) to obtain r(ϑ) or ϑ(r).√
2

m

[
E − V (r)− `2

2mr2

]
=

dr

dt
=

dr

dϑ

dϑ

dt
=

dr

dϑ

`

mr2
.

⇒
∫ r

r0

dr
`/mr2√

2
m

[
E − V (r)− `2

2mr2

] =

∫ ϑ

ϑ0

dϑ = ϑ− ϑ0 ⇒ ϑ(r) = ϑ0 + . . .

Orbital integral for power-law potentials V (r) = − κ

rα
: set u

.
= 1/r.

ϑ− ϑ0 = −
∫ u

u0

du√
2mE

`2
+ 2mκ

`2
uα − u2

.

For the cases α = 6, 4, 3, 2, 1,−1,−2,−4,−6, the orbit can be expressed in
terms of elementary functions.



Orbits of Power-Law Potentials [msl21]

E =
1

2
mv2 + V (r) =

1

2
mṙ2 + Ṽ (r), Ṽ (r) = V (r) +

`2

2mr2
, E > Ṽ (r) > V (r).

E − V (r) =
1

2
mv2, E − Ṽ (r) =

1

2
mṙ2, Ṽ (r)− V (r) =

1

2
mr2ϑ̇2.

particle speed: v ∝
√
E − V .

radial speed: |ṙ| ∝
√
E − Ṽ .

angular speed: r|ϑ̇| ∝
√
Ṽ − V .

(i) V (r) = − κ

rα
, 0 < α < 2 :

Ṽ (r) has minimum at r0 = (`2/ακm)1/(α−2).

E = E1: unbounded orbit, turning point (ṙ = 0) at Ṽ (rmin) = E1.

E = E3: bounded orbit, turning points at Ṽ (rmin) = Ṽ (rmax) = E3.

E = E4: circular orbit at r0: ṙ = 0, ϑ̇ = const.

(ii) V (r) = − κ

rα
, α > 2 :

Ṽ (r) has maximum at r0 = (ακm/`2)1/(α−2).

E < Ṽ (r0) and large r: unbounded orbit at r > r2, where Ṽ (r2) = E.

E < Ṽ (r0) and small r: bounded orbit at r < r1, where Ṽ (r1) = E.

E > Ṽ (r0): Unbounded orbit with particle spiraling through center.

E = Ṽ (r0): Unstable circular orbit exists.

(iii) V (r) = κ′rα
′
, κ′ = −κ > 0, α′ = −α > 0 :

Ṽ (r) has minimum at r0 = (`2/α′κ′m)1/(α
′+2).

All orbits are bounded: r1 < r < r2, where Ṽ (r1) = Ṽ (r2) = E

E = Ṽ (r0): circular orbit exists.

1



(i) α = 1 (gravitation):

(ii) α = 3:

(iii) α′ = 2 (harmonic oscillator):

[Goldstein 1981]

2



[mex51] Unstable circular orbit

The central force potential V (r) = −κ/r4 has an unstable circular orbit of radius R centered at the
center of force. (a) Find the angular momentum `, the energy E, and the period τ of this circular
orbit. (b) Find a second orbit r(ϑ) for the same values of E and ` which starts at the center of
force and approaches the circular orbit of radius R asymptotically.

Solution:



[mex46] Orbit of the inverse-square potential at large angular momentum

Consider the central force potential V (r) = −κ/r2. If κ < `2/2m, all orbits are unbounded and
have energies E > 0. (a) Show that the orbits can be expressed in the form

1

r
=

√
2mE

`2 − 2mκ
cos

(
ϑ

√
1− 2mκ

`2

)
.

(b) Determine the total angle an orbit describes between the incoming and outgoing asymptotes.

Solution:



[mex47] Orbit of the inverse-square potential at small angular momentum

Consider the central force potential V (r) = −κ/r2. If κ > `2/2m, all orbits at E > 0 are unbounded
and all orbits at E < 0 are bounded. (a) Show that these orbits can be expressed in the form

E > 0 :
1

r
=

√
2mE

2mκ− `2
sinh

(
ϑ

√
2mκ

`2
− 1

)
, E < 0 :

1

r
=

√
2m|E|

2mκ− `2
cosh

(
ϑ

√
2mκ

`2
− 1

)
.

(b) Determine the time it takes the particle to move along the bounded orbit from rmax to the
center of force (r = 0).

Solution:



[mex41] In search of some hyperbolic orbit

A particle of unit mass (m = 1) moves from infinity along a straight line which, if continued, would
allow it to pass a distance d = b

√
2 from a point P . Instead, the particle is attracted toward P by

the central force F (r) = −k/r5. If the angular momentum of the particle relative to P is ` =
√
k/b,

show that the orbit is r(θ) = b coth(θ/
√

2).

P

r
d

θ

Solution:

1



Virial Theorem [mln68]

Consider a system of interacting particles in bounded motion.

Newton’s equations of motion: ṗi = mir̈i = Fi, i = 1, . . . , N.

Fi: sum of external and interaction forces acting on particle i.

Definition: G(t)
.
=
∑

i

pi · ri.

For bounded motion G(t) is finite.

Time derivative:
dG

dt
=
∑

i

(pi · ṙi + ṗi · ri) =
∑

i

mi|ṙi|2 +
∑

i

Fi · ri.

Kinetic energy: T =
∑

i

1

2
mi|ṙi|2.

Time average:
dG

dt
=

1

τ

∫ τ

0

dt
dG

dt
=

1

τ
[G(τ)−G(0)]

τ→∞−→ 0.

⇒ 2T +
∑

i

Fi · ri = 0.

Virial: T = −1

2

∑
i

Fi · ri.

Application to particle in bounded orbit of central-force motion.

Power-law central force potential: V (r) = − κ

rα
.

T = −1

2

(
−r

dV

dr

)
= −1

2
α V .

• Gravity (α = 1): T = −1

2
V .

• Harmonic oscillator (α = −2): T = V .



[mex163] Changing orbit by brief rocket boost

A satellite orbits the Earth in a circular orbit of radius r0, traveling with velocity v0. Then a
rocket on the satellite fires such that it acquires an additional velocity v1 of the same magnitude
as v0 in a very short time. Give a detailed description of the nature of the subsequent orbit of the
satellite for the four cases with different directions of v1 as shown.

(d)

v
0

r
0

v
1

v

v

v

1

1

1

(a)

(b)

(c)

Solution:



[mex40] Discounted gravity: 50% off

A particle of mass m moves in a circular orbit of radius r0 in a central force potential V (r) = −κ/r.
Suddenly the value of κ decreases to half its original value and the particle changes its orbit as a
result of the reduced attractive force. Give a detailed description of the new orbit.

Solution:



Bounded Orbits Open or Closed [mln79]

Consider an effective potential Ṽ (r) = V (r) + `2/(2mr2) for the radial part
of a central force motion as shown.

The radial coordinate r oscillates between rP (periapsis) and rA (apsis).

Between successive instances of r = rP and r = rA the angular coordinate ϑ
always advances the same amount ∆ϑ.

Apsidal vectors: position vectors r with |r| = rP or |r| = rA.

Orbits are reflection symmetric at apsidal vectors. Hence the complete orbit
can be constructed from one segment between successive apsidal vectors.

Apsidal angle: ∆ϑ =

∫ rA

rP

dr
`/mr2√

2
m

[
E − V (r)− `2

2mr2

] .

Condition for closed orbit: ∆ϑ/2π must be a rational number.

V

E
r

rArP

A

P

A
∆θ ∆θ

~
.

Examples of closed bounded orbits:

• V (r) = −κ

r
⇒ ϑ− ϑ0 = arccos

`2

mκr
− 1√

1 + 2E`2

mκ2

⇒ ∆ϑ = π.

• V (r) =
1

2
kr2 ⇒ ϑ− ϑ0 =

1

2
arccos

`
mr2 − E

`√
E2

`2
− k

m

⇒ ∆ϑ =
π

2
.

Bertrand’s theorem [mln44] proves that only for these two potentials are all
bounded orbits closed.



Bertrand’s Theorem [mln44]

The only central force potentials V (r) for which all bounded orbits are closed
are the following:

• Kepler system: V (r) = −κ

r
(ellipses with r = 0 at one focus)

• Harmonic oscillator: V (r) = κ′r2 (ellipses with r = 0 at center)

J. Bertrand’s proof of 1873 is based on a 2nd order perturbation calculation
about stable circular orbits. The following derivation follows Arnold [1989]
and rests on five lemmas:

1. The central force potential V (r) has a circular orbit at r = R if V ′(R) =
`2/mR3. This circular orbit is stable if V ′′(R) + (3/R)V ′(R) > 0.
[mex53] [mex125]

2. For a central force potential V (r) with a circular orbit at r = R, the
apsidal angle for orbits in the vicinity of this circular orbit is ∆ϑ =
π
√

V ′(R)/[3V ′(R) + RV ′′(R)]. [mex126]

3. The only central force potentials for which the apsidal angle of nearly
circular orbits is independent of the radius are the power-law potentials
V (r) = −κ/rα, α < 2, α 6= 0 and the logarithmic potential V (r) =
κ ln r. The value of the apsidal angle is ∆ϑ = π/

√
2− α, where the

value α = 0 pertains to the logarithmic potential. [mex127]

4. For central force potentials with limr→∞ V (r) = ∞, the apsidal angle
has the property limE→∞∆ϑ = π/2. [mex128] [mex129]

5. For power-law central force potentials V (r) = −κ/rα, 0 ≤ α < 2, the
apsidal angle has the property limE→−∞∆ϑ = π/(2− α). [mex130]

Proof of Bertrand’s theorem:

• Closed orbits require ∆ϑ = 2π(m/n) for integer m, n.

• Lemma 3 restricts the class of potentials with no open bounded orbits
to potentials (a) V (r) = κ′r−α, α < 0, (b) V (r) = −κ/rα, 0 < α < 2,
(c) V (r) = κ ln r (representing α = 0).

• For the cases α < 0, lemma 4 requires π/
√

2− α = π/2, which rules
out all exponents except α = −2 (harmonic oscillator). The apsidal
angle is ∆ϑ = π/2 for all orbits of this system.

• For the cases 0 ≤ α < 2, lemma 5 requires π/
√

2− α = π/(2 − α),
which rules out all exponents except α = 1 (Kepler system). The
apsidal angle is ∆ϑ = π for all orbits of this system.



[mex53] Stability of circular orbits

Consider a particle of mass m and angular momentum ` subject to a central force F (r) = −V ′(r).
(a) Show that the condition for the existence of a circular orbit at radius R is F (R)+ `2/mR3 = 0.
(b) Show that the stability condition of this circular orbit is F ′(R) + (3/R)F (R) < 0.

Solution:



[mex125] Small oscillations of radial coordinate about circular orbit

Consider a particle of mass m and angular momentum ` subject to a central force F (r) = −V ′(r).
Under the conditions stated in [mex53] that a stable orbit at radius r = R exists, show that on
an orbit starting at radius r = R+ x with |x| � R next to a stable circular orbit of radius R, the
radial coordinate oscillates about R with angular frequency ω2

0 = −3F (R)/mR− F ′(R)/m.

Solution:



[mex126] Angle between apsidal vectors for nearly circular orbits

Consider a particle of mass m and angular momentum ` subject to a central force F (r) = −V ′(r)
and moving in a stable circular orbit of radius r = R. Show that nearly circular orbits in the
immediate vicinity have an apsidal angle

∆ϑ = π

√
V ′(R)

3V ′(R) +RV ′′(R)
.

Solution:



[mex127] Robustness of apsidal angles

(a) Given the result of [mex126], namely that nearly circular orbits at radius r = R of a central
force potential V (r) have apsidal angle ∆ϑ = π

√
V ′(R)/[3V ′(R) +RV ′′(R)], show that the only

cases for which this apsidal angle is independent of the radius are the power-law potentials V (r) =
−κ/rα, α < 2, α 6= 0 and the logarithmic potential V (r) = κ ln r. (b) Show that the value of the
apsidal angle is ∆ϑ = π/

√
2− α, where the value α = 0 pertains to the logarithmic potential.

Solution:



[mex128] Apsidal angle reinterpreted

Consider a particle of mass m in a bounded orbit with energy E and angular momentum ` of a
central force potential V (r). Show that the angle ∆ϑ between successive apsidal vectors (between
pericenter and apocenter) is related to the period T of the oscillatory motion of a fictitious particle
in a 1D potential W (x) as investigated in [mex5]:

∆ϑ ≡
∫ rmax

rmin

dr
`/mr2√

2
m

[
E − V (r)− `2

2mr2

] =
T

2
√
m
, T = 2

∫ xmax

xmin

dx√
2
m [E −W (x)]

.

Find the relation between the variables r and x and determine the function W (x).

Solution:



[mex129] Apsidal angle at very high energies

Use the result of [mex128] to show that for a central force potential with the property limr→∞ V (r) =
∞, the apsidal angle of orbits with given angular momentum approaches a universal value at very
high energy:

lim
E→∞

∆ϑ =
π

2
.

Solution:



[mex130] Apsidal angle at very low energies

Use the result of [mex128] to show that for a power-law central force potential V (r) = −κ/rα, 0 ≤
α < 2 the apsidal angle of orbits with given angular momentum ` approaches an `-independent
value at very low energy:

lim
E→−∞

∆ϑ =
π

2 − α
.

Hint: Consider first the case α = 1.

Solution:
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