
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Chemistry Faculty Publications Chemistry 

3-24-2005 

Combining Smart Darting with Parallel Tempering Using Eckart Combining Smart Darting with Parallel Tempering Using Eckart 

Space: Application to Lennard–Jones Clusters Space: Application to Lennard–Jones Clusters 

Pablo Nigra 
University of Rhode Island 

David L. Freeman 
University of Rhode Island, dfreeman@uri.edu 

J. D. Doll 

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Nigra, P., Freeman, D. L., & Doll, J. D. (2005). Combining Smart Darting With Parallel Tempering Using 
Eckart Space: Applications to Lennard-Jones Clusters. Journal of Chemical Physics, 122(11), #114113. 
doi: 10.1063/1.1858433 
Available at: http://dx.doi.org/10.1063/1.1858433 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Chemistry 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/chm_facpubs
https://digitalcommons.uri.edu/chm
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1063/1.1858433
mailto:digitalcommons-group@uri.edu


Combining Smart Darting with Parallel Tempering Using Eckart Space: Combining Smart Darting with Parallel Tempering Using Eckart Space: 
Application to Lennard–Jones Clusters Application to Lennard–Jones Clusters 

Publisher Statement Publisher Statement 
© 2005 American Institute of Physics. 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/chm_facpubs/8 

https://digitalcommons.uri.edu/chm_facpubs/8


Combining smart darting with parallel tempering using Eckart space:
Application to Lennard–Jones clusters

Pablo Nigraa! and David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

sReceived 20 October 2004; accepted 20 December 2004; published online 24 March 2005d

The smart-darting algorithm is a Monte Carlo based simulation method used to overcome
quasiergodicity problems associated with disconnected regions of configurations space separated by
high energy barriers. As originally implemented, the smart-darting method works well for clusters
at low temperatures with the angular momentum restricted to zero and where there are no transitions
to permutational isomers. If the rotational motion of the clusters is unrestricted or if permutational
isomerization becomes important, the acceptance probability of darting moves in the original
implementation of the method becomes vanishingly small. In this work the smart-darting algorithm
is combined with the parallel tempering method in a manner where both rotational motion and
permutational isomerization events are important. To enable the combination of parallel tempering
with smart darting so that the smart-darting moves have a reasonable acceptance probability, the
original algorithm is modified by using a restricted space for the smart-darting moves. The restricted
space uses a body-fixed coordinate system first introduced by Eckart, and moves in this Eckart space
are coupled with local moves in the full 3N-dimensional space. The modified smart-darting method
is applied to the calculation of the heat capacity of a seven-atom Lennard–Jones cluster. The
smart-darting moves yield significant improvement in the statistical fluctuations of the calculated
heat capacity in the region of temperatures where the system isomerizes. When the modified
smart-darting algorithm is combined with parallel tempering, the statistical fluctuations of the heat
capacity of a seven-atom Lennard–Jones cluster using the combined method are smaller than
parallel tempering when used alone. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1858433g

I. INTRODUCTION

Small clusters of atoms and molecules have received
much attention in recent years1 owing to their central role in
such diverse areas as homogeneous nucleation and heteroge-
neous catalysis. In addition to their importance, the physical
properties of the clusters themselves are inherently interest-
ing, especially when contrasted with the properties of corre-
sponding bulk materials. An important example of such cor-
respondence is the phenomenon of phase change2 where
clusters undergo rapid changes in physical properties with
respect to their energy in a way that is reminiscent of bulk
phase transitions. To study these important and interesting
phase change regions, many computational methods have
been either developed or used in ways that have proved to be
generically important to the simulation community. Impor-
tant examples of computational methods that have either par-
tially or entirely evolved from the study of the phase change
regions in clusters includeJ walking,3 parallel tempering,4–6

smart darting,7 and applications of Tsallis statistics.8 The par-
allel tempering method has proved to be particularly power-
ful in overcoming quasiergodicity difficulties in the phase

change region as evidenced by the application of the parallel
tempering algorithm to the study of the temperature depen-
dent heat capacity of 38-atom Lennard–Jones clusterssLJ38d
in both the canonical9 and microcanonical ensembles.10 The
complexity of the double-funneled potential energy surface
in this system11 had defied previous simulation attempts prin-
cipally owing to the difficulties in sampling both the icosa-
hedral and cuboctahedral basins with the proper frequencies.
With parallel tempering, the determination of the correct heat
capacity has proved possible albeit with a large number of
sampling points. Both the melting and solid-solid phase
change regions can be resolved in LJ38 with parallel temper-
ing methods. Recent studies using parallel tempering to ex-
amine the properties of mixed clusters12,13 have also illus-
trated the power of the approach.

Because of the success of the parallel tempering method
in resolving details of the phase change regions in LJ38, it is
natural to attempt to apply the method to even more complex
problems. A good candidate is LJ75 sRef. 14d which has a
double-funnel potential surface much like LJ38 but with a
transition state barrier about twice that found in LJ38. Our
attempts to simulate the properties of LJ75 with parallel tem-
pering have been unsuccessful. Although we have been able
to find both basins in low temperature simulations of the
system using parallel tempering, the results of our simula-
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tions have not been reproducible, probably because the tran-
sitions between the two primary basins in the system have
not occurred at the correct frequency as dictated by the Bolt-
zmann weight and phase space volumes. The purpose of the
current work is to set the foundation for exploring an alter-
native sampling approach that has the potential for solving
complex problems of which LJ75 is representative.

There have been a series of approaches designed to im-
prove the performance of Monte Carlo based methods that
combine sampling strategies. For example, Xu and Berne15

have combinedJ walking and multicanonical based ap-
proaches, and separately Calvo and Doye16 have combined
parallel tempering with multicanonical methods. Both stud-
ies have shown improvements in the performance of the
combined methods when compared with the performance of
multicanonical,J walking, or parallel tempering when ap-
plied in isolation. In the current work we examine the smart
darting method7 which we believe has the potential to en-
hance parallel tempering simulations in cases where parallel
tempering is not sufficient. Our motivation for this particular
choice comes from what we believe to be the shortcomings
of parallel tempering in the simulation of LJ75. As we have
indicated, we have found that a parallel tempering simulation
of LJ75 does manage to find the two important and known
basins of the potential energy surface, but over the length of
simulations accessible by currently available computer re-
sources, the frequency that the basins are accessed has fluc-
tuations that are too large to enable reproducible results.
Smart darting has virtues that can be expected to overcome
this problem of ensuring transitions between basins with the
proper frequency.

Smart darting has been formulated as a modification of
the smart-walking method.17 Like some approaches devel-
oped to determine free-energy differences and transition
theory rate constants,18 in smart darting a set of “dart” vec-
tors is constructed that connect directly all the minima or sets
of minima on the potential energy surface. In a pure smart
darting calculation, Metropolis Monte Carlo simulations19

are enhanced with some predefined probability by transform-
ing a current configuration to a new configuration by the
addition of one of the constructed dart vectors. These darting
moves enable efficient sampling of the disconnected basins
on the potential energy surface. Darting moves are accepted
or rejected in such a fashion that detailed balance is satisfied.

In the original implementation of smart darting7 the set
of dart vectors is fixed in configuration space and chosen so
that specific particles in specific orientations in one potential
energy minimum connect specific particles in another poten-
tial energy minimum again with a specific orientation. Dart-
ing moves using such predefined vectors have a reasonable
probability of acceptance provided the clusters do not rotate
and provided permutational isomerization does not occur. If
dart vectors are applied to configurations of atoms that have
rotated or where the particle indices have effectively been
permuted, the probability that a darting move is accepted
becomes too small to modify the efficiency of ordinary Me-
tropolis Monte Carlo simulations. To ensure reasonable ac-
ceptance of the darting moves, the original implementation is

useful for systems having their angular momenta constrained
to zero at temperatures where particle exchanges do not oc-
cur over the time scale of the simulation.

In this work we aim for an effective combination of
smart darting with parallel tempering. In parallel tempering
configurations from high temperature simulations are ex-
changed with simulations at lower temperatures. These high
temperature structures have permuted configurations even if
the angular momentum is constrained to zero. Because we
want to include the effect of vibrational-rotational coupling
in our simulations, we relax the angular momentum con-
straint used in Ref. 7 as well. Consequently, to have reason-
able acceptance of the smart-darting moves, the original
implementation requires modification.

In this work we demonstrate a useful modification of the
smart-darting algorithm that allows the parallel tempering
and smart-darting methods to be merged. Unlike the original
algorithm, our modified approach permits the dart vectors to
act on any geometry and any permutational isomer of the
configuration and allows reasonable acceptance of dart
moves for configurations differing significantly from any of
the geometries of the potential energy minima. We accom-
plish this modification by performing the Metropolis moves
in the full configuration space, but performing the darting
moves within a restricted space first introduced by Eckart20

to solve problems concerned with molecular vibrations. For
the moves in the restricted space it is necessary to introduce
a correction to the usual Boltzmann acceptance probability.
The correction is a Jacobian originating from a coordinate
transformation in the full configurational space. This “Eckart
space” has been used previously in other contexts,21 but we
believe our current application of Eckart space to be differ-
ent. The Eckart space techniques developed in this work may
prove to be useful in other contexts. For example, similar use
of Eckart space might enable the extension of the methods in
Ref. 18 from surface reactions to reactions in the gas phase
where rotations and isomerization events can also be ex-
pected to be important.

In the following section of this paper, we present the
theoretical developments including a necessary review of
Eckhart space, and how we apply this restricted space to
smart darting moves in the context of Monte Carlo simula-
tions. In Sec. III we apply our approach to simulate the prop-
erties of a seven-atom Lennard–Jones cluster and compare
the efficiencies of both Metropolis and parallel tempering
methods with and without smart darting. We summarize our
conclusions in Sec. IV and propose future directions for the
method.

II. THEORY

In this section we develop the theoretical tools needed to
modify the original smart darting algorithm7 so that the an-
gular momentum constraints can be removed. To accomplish
this objective, we begin by introducing the notion of Eckart
space. While various pieces of the development in Sec. II A
have been formulated elsewhere,21 we find the review and
organization to be essential in order to establish notation and
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make the subsequent sections clear. Following our discussion
of Eckart space, we explain how we use Eckart space in the
context of smart darting.

A. Eckart space

We consider a system ofN particles each having mass
mi , i =1,2, . . . ,N described by theN position vectorsr i in
physical spaceR3 relative to an inertial frame.22–24 The ref-
erence frames used in the present work are right-handed sys-
tems. We use the notationhr ij to represent the entire set ofN
position vectors. It is convenient to use mass-weighted posi-
tion vectorssr i →Îmir id. Because the potential energy is in-
variant under translations, we fix the center of mass at the
origin of the inertial frame, eliminating three degrees of free-
dom. As a result, we need only the firstsN−1d position vec-
tors in the sethr ij to specify a configuration;r N can be ob-
tained from the center of mass condition,

o
i=1

N

Îmir i = 0. s1d

In addition to the inertial frame defined in the previous
paragraph, we can also use a body-fixed frame to describe
the location of anN-particle system, where the origin of the
body-fixed frame is placed at the center of mass. For a par-
ticular configuration, the position vectorr i of particle i is
seen as either a rotating vector or a constant vector depend-
ing on the frame used to express the vector. The three Euler
angleshuij are used to determine the position of the rotating
frame relative to the inertial frame. To describe any configu-
ration in the body-fixed frame, we must specify fewer coor-
dinates than those given by the firstsN−1d position vectors
in hr ij. In other words, more than three Cartesian compo-
nents are redundant now inhr ij, because a second condition
arises that removes three rotational degrees of freedom. C.
Eckart20 has proposed a particular form for that condition.
The Eckart approach begins by specifying a set of coordi-
nateshr̃ ij that we call thereference configuration. Then any
instantaneous configurationhr ij is described relative to the
reference by the relation,

o
i=1

N

r̃ i 3 r i = 0, s2d

which is satisfied in both the inertial and body-fixed refer-
ence frames. Equations2d is called the Eckart condition and
plays a key role in the theory of molecular vibrations, where
the reference configuration is taken to be the coordinates of
some minimum of the potential energy.23,24 In fact, the ref-
erence configuration can be chosen arbitrarilyshowever, see
Theorems II.2 and II.3 and the discussion that follows Theo-
rem II.3d. A more detailed explanation of the Eckart condi-
tion can be found in Ref. 21. The Eckart condition introduces
three linear relations that remove three degrees of freedom.
Consequently, a total ofs3N−6d degrees of freedom are nec-
essary to specify any configuration of the system. Those
s3N−6d degrees of freedom constitute a vector spaceR3N−6

that we callEckart space.

In describing the current state of someN-particle system,
it is important to distinguish configurations that represent
different structures. To that end, we define two configura-
tions a andb to beequivalentin R3 if they can be superim-
posed by a proper rotation around the center of mass. In
other words,a and b are equivalent if there exits some ro-
tation matrix R defined by a particular set of three Euler
angleshuij such that

r b,i = Rr a,i . s3d

Sets of equivalent instantaneous configuration of a system in
R3 can be identically mapped onto one or more
s3N−6d-dimensional vectors in Eckart space. As stated pre-
viously, we choose some reference configuration with a par-
ticular orientation inR3. To develop the expressions for the
rotations needed to bring some instantaneous configuration
to the orientations that comply with the Eckart conditionfEq.
s2dg, we define the auxiliary function

Lshr ijd = o
i=1

N

sr i − r̃ id2, s4d

whereL is clearly the sum of the squares of the differences
between the coordinates of the instantaneous configuration
and the reference configuration. BecauseL is a function only
of the Euler angleshuij, L is represented by a bounded three-
dimensional surface. We now prove a theorem that enables
us to ensure the Eckart condition is satisfied.

Theorem II.1. Given an instantaneous configuration for
someN-particle system and a defined reference configuration
in R3, the Eckart condition is fulfilled at the extrema of
Lshr ijd.

Proof. We begin with the observation thatr i =r isu jd. Dif-
ferentiating,

]Lshr ijd
]u j

= − 2o
i=1

N
]r i

]u j
· r̃ i = 2ñ j ·So

i=1

N

r̃ i 3 r iD ∀ j , s5d

where we have used the identity22 ]r i /]u j = ñ j 3 r i with ñ j a
unit vector along the rotation axis ofu j. The directions of the
three rotation axes of thehu jj depend on the arbitrary choice
of orientation of the Cartesian frame. For the derivatives to
be zero, the vector in the parenthesis of Eq.s5d must be the
null vector, and the condition expressed in Eq.s2d is satis-
fied. h

Theorem II.1 implies that there exist as many solutions
to the Eckart condition as extrema inLshr ijd. We next estab-
lish the specific number of solutions to the Eckart condition
by using the extrema ofLshr ijd.

Theorem II.2. Given an instantaneous configuration for
anN-particle system and a nonlinear reference configuration
in R3, the Eckart condition admits four solutions at most.

Proof. To prove this theorem, it is convenient to rewrite
Eq. s4d so that the terms not dependent on the Euler angles
are eliminated. Takingr i

* to be a particular coordinate vector,
when we expand

sr i
* − r̃ id2 = r i

*2 + r̃ i
2 − 2r i

* · r̃ i , s6d

we see that only the last term depends on the Euler angles.
Consequently, the functionG defined by the equation
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Gshr i
*jd = − o

i=1

N

r i
* · r̃ i s7d

has extrema with Euler angles coincident with the Euler
angles at the extrema ofLshr i

*jd. For that reason, we can now
focus onGshr i

*jd. Next, we writer i
* =Rr i, where ther i rep-

resent some initial orientation, and introduce this expression
into Eq. s7d,

GshRr ijd = − o
i=1

N

sRr id · r̃ i , s8d

where the dependence on the rotation matrixR is explicit.
We next express Eq.s8d in terms of quaternions22 rather than
Euler angles. The quaternions are related by22

o
i=1

4

ei
2 = 1 s9d

and the rotation matrix expressed in terms of the quaternions
is given by

R

= 3e1
2 + e2

2 − e3
2 − e4

2 2se2e3 + e1e4d 2se2e4 − e1e3d
2se2e3 − e1e4d e1

2 − e2
2 + e3

2 − e4
2 2se3e4 + e1e2d

2se2e4 + e1e3d 2se3e4 − e1e2d e1
2 − e2

2 − e3
2 + e4

24 .

s10d

Introducing Eq.s10d into Eq. s8d we obtain

Gsheijd = o
i=1

N

he1
2s− xix̃i − yiỹi − ziz̃id + e2

2s− xix̃i + yiỹi

+ ziz̃id + e3
2sxix̃i − yiỹi + ziz̃id + e4

2sxix̃i + yiỹi

− ziz̃id + 2e1e2sziỹi − yiz̃id + 2e1e3sxiz̃i − zix̃id

+ 2e1e4syix̃i − xiỹid + 2e2e3s− xiỹi − yix̃id

+ 2e2e4s− xiz̃i − zix̃id + 2e3e4s− yiz̃i − ziỹidj. s11d

Noting thatG is a quadratic form in theheij, we can write

Gsheijd = o
l=1

4

o
k=1

4

Pl,kelek, s12d

with P a 434 symmetric matrix whose elements are given
by

P1,1= − o
i=1

N

sxix̃i + yiỹi + ziz̃id,

P1,2= o
i=1

N

sziỹi − yiz̃id,

P1,3= o
i=1

N

sxiz̃i − zix̃id,

P1,4= o
i=1

N

syix̃i − xiỹid,

P2,2= o
i=1

N

s− xix̃i + yiỹi + ziz̃id,

P2,3= − o
i=1

N

sxiỹi + yix̃id,

P2,4= − o
i=1

N

sxiz̃i + zix̃id,

P3,3= o
i=1

N

sxix̃i − yiỹi + ziz̃id,

P3,4= − o
i=1

N

syiz̃i + ziỹid,

P4,4= o
i=1

N

sxix̃i + yiỹi − ziz̃id. s13d

Equation s12d, together with Eq.s9d, demonstrate that the
problem of finding the extrema ofGsheijd is a constrained
extrema problem. Using the method of Lagrange multipliers,
the extrema ofGsheijd occur when the first derivatives of the
function

Fsheijd = Gsheijd − lo
l=1

4

el
2 s14d

vanish, withl being a Lagrange multiplier. Then,

]F
]ei

= 2o
j=1

4

Pi,jej − 2lei ∀ i , s15d

which are zero when

o
j=1

4

Pi,jej
* = lei

* , s16d

where the superscript * on theei denotes the location of the
extrema. Equations16d is a familiar eigenvalue problem that
in matrix form is given by

sP − lI de* = 0. s17d

BecauseP is a 434 symmetric matrix, the Lagrange multi-
plier l can be any of the four real eigenvalues ofP. Each of
the four eigenvectorsej

* of P contains four quaternions. We
use thosehei,j

* j to build the rotation matricesfEq. s10dg that
bring the initial configuration to the orientations whereG
attains its extrema. Finally, we conclude thatG sand by the
coincidence of extrema,Ld must attain four extrema at most.
From Theorem II.1, it is evident that the Eckart condition
admits four solutions at most. h

It is useful for further analysis to examine the nature of
the extrema ofGsheijd sor equivalentlyLd. We first consider
l1øl2øl3øl4, and introduce Eq.s16d into Eq. s12d to
obtain
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Gshea,i
* jd = la, s18d

which shows thatGsheijd attains a minimumsGshe1,i
* jd=l1d

and a maximumsGshe4,i
* jd=l4d. If there is no degeneracy, the

intermediate values ofl represent saddle points.25 The ma-
trix P of Eq. s13d has trace equal to zero, showing, thatP has
both positive and negative eigenvalues. The first element of
P, P1,1, equalsGshr ijd fsee Eq.s7dg, and the last three ele-
ments of the first row are the Cartesian components of the
vector function,

Eshr ijd = o
i=1

N

r̃ i 3 r i , s19d

whose zeros define the Eckart condition. When a configura-
tion is oriented so that it satisfies the Eckart condition,P
becomes block diagonal,

Pa = 3
la 0 0 0

0 P2,2 P2,3 P2,4

0 P3,2 P3,3 P3,4

0 P4,2 P4,3 P4,4

4 . s20d

From the expression forP1,1 in Eq. s13d along with Eq.s20d,
it is evident that we can write

la = − o
i=1

N

r i · r̃ i . s21d

We can understand the meaning of the lowest and high-
est eigenvalues ofP geometrically. Each value ofl repre-
sents a different orientation of the configuration of the sys-
tem compared to the reference structure. The orientation of
the smallest eigenvaluel1 corresponds to the smallest least-
squares difference between the coordinates of the reference
and the system configurationfSee Eq.s4dg. In the least-
squares sense, the orientation associated withl1 is the “best
match” between the current configuration and the reference
configuration. In a similar manner, the orientation associated
with the largest eigenvaluel4 corresponds to the “worst
match” between the current configuration and the reference
configuration.

As is discussed later in this paper, during a Monte Carlo
simulation, to make a move in Eckart space with some fre-
quency f, the instantaneous configuration generated by an
ordinary move in the previous step can be introduced into the
Eckart subspace by choosing an eigenvector ofP. This key
idea is used in the development of the modified smart darting
algorithm.

The results of Theorem II.2 can be used to analyze the
case of a linear reference inR3.

Theorem II.3. Given a configuration for anN-particle
system and a linear reference inR3, the Eckart condition
admits an infinite number of solutions if the configuration is
nonlinear withN.2. For a linear configuration withNù2,
the Eckart condition admits only two solutions.

Proof. For simplicity, we let the linear reference lie
along thex axis so that the coordinates of each particlei are
hx̃i ,0 ,0j. For a configuration oriented to fulfill the Eckart

condition, it can be readily seen from Eq.s13d and Eq.s20d
that P is diagonal,

P = 3
− l 0 0 0

0 − l 0 0

0 0 l 0

0 0 0 l
4 , s22d

with

l = o
i=1

N

xix̃i . s23d

Equations22d shows that P has only two different eigenval-
ues when the reference is linear. From Eq.s23d, we infer that
G attains its extrema along the axis of the reference, which
we have taken to be thex axis. From a geometric point of
view, when the Eckart condition is satisfied, the configura-
tion is in alignment according to the type of the extremum.
For a nonlinear configuration withN.2, however, each ex-
tremum ofG corresponds to infinite set of orientations of the
configuration around the axis of the reference. In other
words, there are infinite sets of thehr ij consistent with each
type of alignment. We can conclude that there exist an infi-
nite number of solutions to the Eckart condition. For a linear
configuration withNù2, there is one set ofhr ij, namely,
hxi ,0 ,0j, consistent with each extremum. Consequently,
there exist only two solutions to the Eckart condition.h

Theorems II.2 and II.3 state that more than one element
of Eckart space is related to a given configuration. Because it
is easier to choose among four elements than to choose
among an infinite set of elements, it is best to avoid selecting
linear configurations when defining reference configurations.

It is important to recognize that each vector in Eckart
space is characterized both by a configuration of particles as
well as by an eigenvaluela obtained using Eq.s17d. When a
nonlinear reference is used, four equivalent configurations
are associated with four vectors labeled with different values
of la. We find it convenient to divide Eckart spaceS into
four partitions each corresponding to the kind of eigenvalue
la using the notation,

S = ø
a=1

4

Ssad s24d

whereSs1d contains the vectors characterized by the smallest
eigenvaluesl1 obtained from Eq.s17d, Ss2d contains the vec-
tors characterized by the second smallest eigenvaluesl2, and
so on. It is clear that none of the vectors inside any of the
partitions Ssad represent equivalent configurations. Finally,
we remark that dividing Eckart space as in Eq.s24d does not
imply that each of the partitionsSsad is a vector space. Eckart
spaceS is a vector space because any linear combination of
vectors inS results in another vector insideS. In contrast,
any linear combination of vectors in, for instance,Ss1d does
not necessarily result in another vector inSs1d.
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B. Smart darting in Eckart space: Distinguishable
particles

In this section, we introduce our implementation of the
smart-darting algorithm for the special case of distinguish-
able particles. The extension of the approach to indistin-
guishable particles involves some additional complications
that are discussed in the subsequent section. This section is
organized so that each step in the algorithm is given with a
discussion of the justification for that particular step.

We execute smart darting moves in Eckart space by re-
stricting the possible moves to occur only within the region
Ss1d defined in Sec. II A. We recall that a vector inSs1d rep-
resents a configuration with associated matrixP1 fsee Eq.
s20dg whose first element is its smallest eigenvaluel1; i.e.,
such that the particles are rotated to give the best match to
the reference configuration in the least-squares sense. Con-
sequently, the vectors restricted toSs1d represent different
configurations for the case of distinguishable particles. Be-
cause we represent configurations by vectors in Eckart space,
we need to make an important point about the choice of
internal coordinates suitable for the current application. An
element of Eckart space is usually represented by some suit-
able set ofs3N−6d scalar internal coordinateshqij. The hqij
are defined so that they are invariant under rotations. In ad-
dition, thehqij must always reflect the choice of reference. In
that last respect, however, some of the commonly usedhqij
in molecular physics may not be suitable coordinates for use
in Eckart space. For example, the internal bond-angle
coordinates,23,24 which are rotationally invariant, are defined
to describe the shape of a configuration by specifying the
values of internal bonds and angles, but not related to any
reference. Obviously, more than one elementsfour for a non-
linear referenced of Eckart space is characterized by the same
set of s3N−6d bond-angle coordinates. It is required that a
one-to-one relation between thehqij and the elements of Eck-
art space exist in order that thehqij become suitable coordi-
nates. A convenient set ofhqij for our computational pur-
poses is the one obtained by directly pickings3N−6d
Cartesian coordinates out of the initial 3N Cartesian coordi-
nates with the origin at the center of mass. The remaining six
Cartesian coordinates can be then expressed as functions of
the selecteds3N−6d coordinates by using Eqs.s1d and s2d.
That is the approach we follow in the Appendix where we
derive the neccessary Jacobian of transformation to work in
Eckart space.

The algorithm we describe here is designed to be
coupled with a local-move algorithm in which no restriction
on degrees of freedom is applied. In the current work, for the
local-move algorithm we take the usual Metropolis method
and we apply parallel tempering or smart-darting moves with
some predefined frequencies. In what follows, we make use
of two kinds of vectors; theN position vectorshr ij and
s3N−6d-dimensional vectorsG in Eckart space. As discussed
in Sec. II A, the algorithm is facilitated by choosing a non-
linear configuration as the reference. In our approach we
have chosen the lowest energy structure of the system as the
reference configuration, but that particular choice is one of
convenience and is not mandated by the method.

Prior to beginning the simulation, after choosing the ref-
erence configuration, we construct a set ofM minima of the
potential energy surface to be used in the smart-darting algo-
rithm. The set ofM minima can encompass all the possible
minima on a potential surface or some conveniently chosen
subset of the available minima. Using the reference configu-
ration, the minima are located in Eckart space and defined by
the Eckart vectorsGi , i =1,2, . . .M. EachGi is constructed
using the lowest eigenvalue of the correspondingP matrix.
The approach used in bringing the configuration of each
minimum into the Eckart space defined by our chosen refer-
ence configuration is identical to Step 1 listed below. In what
follows, we refer to eachGi constructed from one of theM
minima as atemplate. In addition to the Eckart vectors de-
fining the minima to be used in the simulation, we also con-
struct a set of dart vectors in Eckart space defined by

Di,j = Gi − G j . s25d

For distinguishable particles, the smart-darting portion
of the algorithm consists of the steps that are as follows.

Step 1. We bring the instantaneous configurationhr i8j
generated by the local-move algorithm intoSs1d.

To accomplish Step 1, we first refer all thehr i8j to the
center of mass. Next we form the matrixP of Eq. s13d and
diagonalize it. We then take the eigenvector corresponding to
the smallest eigenvalue and use it to construct the rotation
matrix R of Eq. s10d. Finally we rotate thehr i8j according to

r i = Rr i8. s26d

It is clear that the instantaneous configurations can be char-
acterized either by the vectorshr ij or by a vectorG. As
explained in Sec. II A, both kinds of vectors contain the
s3N−6d coordinates needed to define the Eckart space. The
hr ij also contain the six redundant coordinates.

Step 2. We locate the templateGi in Ss1d that is closest to
the instantaneous configurationG.

To locate the closest template to the instantaneous con-
figuration, we calculate the distances betweenG and all the
Gi. To determine these distances, we first specify the set of
internal coordinates. Following the analysis given in the Ap-
pendix, we take the set of Cartesian coordinates
hxN,yN,zN,yN−1,zN−1,zN−2j to be the redundant coordinates.
With this choice of redundant coordinates, the square of the
distance is given by

di
2 = sG − Gid2 = sxN−1 − xN−1,id2 + sxN−2 − xN−2,id2 + syN−2

− yN−2,id2 + o
k=1

N−3

sr k − r k,id2. s27d

Step 3. We choose a target templateG j with uniform
probability tj =sM −1d−1 and construct a new configuration

G8 = G + D j ,i . s28d
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Because the relation between each of the six redundant co-
ordinates and the remainings3N−6d coordinates is linear
fsee Eq.s2dg, we can write any of the redundant primed
coordinates as a simple linear sum of the unprimed coordi-
nates. For example,

zN8 = zN + zN,j − zN,i , s29d

wherezN, zN,i, andzN,j belong to the instantaneous configu-
ration and the templatesi and j , respectively. Consequently, a

convenient alternative to Eq.s28d for the new configuration
is

r k8 = r k + r k,j − r k,i s30d

with k=1, . . . ,N.
Step 4. We accept the new configurationG8 with

probability

AsG → G8d =5
0 if G8 ¹ Ss1d

0 sif uG8 − G ju . uG8 − Gku for somek Þ jd

minH1,
r8

r
J sif uG8 − G ju , uG8 − Gku ∀ k Þ jd, 6 s31d

wherer is the probability density.
In Sec. II A, we have emphasized that linear combina-

tions of vectors in Eckart space are also Eckart space vectors,
but the resulting vectors may or may not be elements ofSs1d.
To determine if a resultantG8 is an element ofSs1d, we
construct the matrixP for G8 using Eq.s13d and compare the
first element of the constructedP, P1,1, with the smallest
eigenvalue ofP. Agreement betweenP1,1 and the lowest
eigenvalue implies the resultant vector is an element ofSs1d.
To guarantee that the target templateG j is the closest tem-
plate toG8, we use the procedure outlined in Step 2 to cal-
culate the distances betweenG8 and all the remaining tem-
plates. The probability densityr is expressed as a function of
s3N−3d generalized coordinates given by the three Euler
angleshuij, and thes3N−6d internal coordinates comprising
the Eckart space vectorG. In the canonical ensenble,r is
simply the product of the Boltzmann factor and the Jacobian
for the transformation into generalized coordinatesfEq.
sA27dg

rsui,Gd = expf− bUsGdgsinu2uJ̄sGd/cu, s32d

whereb is the Boltzmann inverse temperature,U is the po-
tential energy,u2 is the second Euler angle,c is a constant,

andJ̄sGd is the part of the Jacobian that depends only on the

internal coordinates. The expression forJ̄sGd is given in Eq.
sA28d of the Appendix. Finally, if sinu28=sinu2 sSee Step 5d,
the ratio of probability densities in Eq.s31d depends only on
the internal coordinates of the initial and final configurations

r8

r
= expf− bDUsG8,GdgU J̄sG8d

J̄sGd
U , s33d

with DUsG8 ,Gd=UsG8d−UsGd.
Step 5. If the new configurationG8 is rejected in Step 4,

we keep the old configuration in its original orientation and
return to local moves using the local-move algorithm. If the

darted configurationG8 is accepted, we rotate the new con-
figuration to the initial orientation of the instantaneous con-
figuration.

The latter is the inverse of Step 1. In other words, we
rotate the position vectors of the new configuration accord-
ing to

r i = RTr i8, s34d

whereRT is the transpose ofR in Step 1.
The five steps outlined above provide the details for the

algorithm as applied to systems composed of distinguishable
particles. It is now necessary to verify that the algorithm
satisfies detailed balance. As discussed above, the process
begins by identifying the template that is closest to the in-
stantaneous configuration; i.e., Step 2 above. We then define
a convenient, trial probability for darting moves from that
host template. The probability of generating a configuration
G8s jd associated with a target templateG j from a configura-
tion Gsid associated with a host templateGi can be written as

TsGsid → G8s jdd = tj ,idsG8s jd − fGsid + D j ,igd, s35d

where tj ,i is the probability of choosing the dartD j ,i. The
Dirac delta functiondsG8s jd−fGsid+D j ,igd gives the probabil-
ity of forming G8s jd on condition thatD j ,i has been chosen.
Furthermore, the darts are chosen uniformly out of a set of
sM −1d darts so that

tj ,i = 1/sM − 1d. s36d

With the definition given in Eq.s35d, the normalization
of TsGsid→G8s jdd must go first throughout the Eckart space,
and then among the available darts

o
j=1

M−1 E TsGsid → G8s jdddG8 = 1. s37d

Detailed balance is guaranteed by choosing the acceptance
probability AsGsid→G8s jdd to be
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AsGsid → G8s jdd =5
0 if G8s jd ¹ Ss1d

0 sif uG8s jd − G ju . uG8s jd − Gku for somek Þ jd

minH1,
TsG8s jd → Gsiddr8

TsGsid → G8s jddr J sif uG8s jd − G ju , uG8s jd − Gku ∀ k Þ jd. 6 s38d

In the cases that eitherGsid or G8s jd do not belong toSs1d, it is
clear that detailed balance is fulfilled, because acceptance
probability is zero for both forward and reverse moves. In
the case that the target templateG j is not the closest template
to G8s jd, the acceptance probability is zero. For the reverse
move, the trial probability is zero, because no dart can return
the system fromG8s jd to Gsid. Again, in this case detailed
balance is clearly satisfied. If the acceptance and trial prob-
abilities do not vanish for both forward and reverse moves, it
is not difficult to verify that

TsGsid → G8s jdd = TsG8s jd → Gsidd, s39d

so that the expression for the acceptance probability in Eq.
s38d contains only the ratio of the probability densities; i.e.,
we obtain Eq.s31d.

C. Indistinguishable particles

When the particles of the system are indistinguishable,
there are additional complications that we now consider. Be-
cause of permutational symmetry a particular configuration
is represented byN! vectors insideSs1d. Consequently, the
distinguishable-particle smart-darting algorithm developed in
Sec. II B is not directly applicable to the present case. For
indistinguishable particles we replaceSs1d with a region of
Eckart space where each of theN! indistinguishable permu-
tational isomers is represented by only one vectorG. We
require that such a region, labeled asOs1d be part ofSs1d.
Unlike Ss1d, a regionOs1d cannot be defined in a unique man-
ner. If m represents the number of configurations of the sys-
tem, the number of ways to defineOs1d is N!m, wherem is, in
fact, infinite. However, there are ways of defining a reason-
able region Os1d suitable for an effective smart-darting
method. An intuitive image of a suitable shape forOs1d is
provided by the following consideration. Given an instanta-
neous configuration that is a small deformation of a template
Gi, we want the vectorG in Os1d to besamong theN! possi-
bilities in Ss1dd the one closest toGi in the senseG<Gi. We
can then expect a target configuration formed by darting to
have an appreciable acceptance probability.

We have found the following algorithm of constructing
Os1d to be an effective basis for smart darting in the applica-
tions studied in the current work. In the steps that follow we
use Roman numerals to differentiate these steps from the
algorithm introduced in Sec. II B. The steps given below are
constructed to build a unique regionOs1d.

Step I. Select two particles of the reference configuration
that are not collinear with the center of mass and that possess
some distinct attributes.

In the current work, we choose the particle that is closest
to the center of mass and the particle that is farthest from the
center of mass. This step is executed before the simulation is
started.

Step II. Select two particles in the instantaneous configu-
ration that possess the same attributes as those in Step I.

For Step II, it does not matter if the chosen particles are
collinear with the center of mass.

Step III. Match the two selected particles of the instan-
taneous configuration to those of the reference and rotate the
instantaneous configuration so that the metric distance be-
tween the instantaneous configuration and the reference for
the matched particles is a minimum.

In this step, we constructP and diagonalizeP fEq. s13dg
using only the matched pairssclosest-closest, farthest-
farthestd. We then take the eigenvector belonging to the
smallest eigenvaluel1 and build the rotation matrixR fEq.
s10dg. Finally, we rotate every particle of the instantaneous
configuration usingR fEq. s26dg.

Step IV. Associate each of the remaining particles in the
reference with the particles in the instantaneous configura-
tion using the following approach: find which particlei in the
instantaneous configuration is nearest particler in the refer-
ence; find which particler8 in the reference is closest to the
particlei found in the previous step; ifr Þ r8, then repeat the
process with another particler; or if r =r8, then pair particles
i and r and remove them from further consideration; con-
tinue the process until all particlesi and r are paired.

It is convenient to define an integer arrayMsNd to store
the integer labelsi for the instantaneous configuration. Spe-
cifically, Ms1d stores the label that is paired with particle 1 of
the reference,Ms2d stores the label that is paired with par-
ticle 2 of the reference, and so on.

Step V. Rotate the instantaneous configuration again us-
ing all the matched particles.

Here, we use the same procedure that we used in Step
III, except that all the particles are used to construct the
matrix P.

The smart-darting algorithm for indistinguishable par-
ticles is similar to the algorithm for distinguishable particles
given in Sec. II B. The principle difference between the in-
distinguishable and distinguishable algorithms is the replace-
ment ofSs1d by Os1d. Except for an additional modification in
Step 4, the details of the two algorithms remain the same. In
Step 4 in addition to checking ifG8 is insideSs1d, we also test
whetherG8 is in Os1d. Specifically, we compare the integer
arraysMsrd andM8srd belonging toG andG8, respectively.
If G8 is in Os1d, it must be true that
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Msrd = M8srd ∀ r . s40d

To obtainM8srd, we apply Steps II–V to the new configura-
tion as well.

III. APPLICATION

To illustrate the use of smart darting in Eckart space for
a real physical system, we apply the approach to the calcu-
lation of the heat capacity of a seven-atom Lennard–Jones
cluster. The system has been examined previously,26 and the
heat capacity can be calculated accurately using standard
Metropolis based approaches. Consequently, LJ7 provides a
useful first investigation of the modified smart-darting
method.

The seven-atom cluster is modeled using the standard
Lennard–Jones interaction modified by an external constrain-
ing potential

Ushr ijd = o
i, j

N

usr ijd + o
i=1

N

Ucsr id, s41d

where r ij is the distance between particlesi and j , and the
constraining potential having radiusrc is given by20

Ucsr id = eS ur i − r cmu
rc

D20

. s42d

In Eq. s41d u is the Lennard–Jones potential,

usrd = 4eFSs

r
D12

− Ss

r
D6G , s43d

with s ande the usual length and energy parameters, and in
Eq. s42d r cm is the coordinate of the center of mass of the
cluster. As has been discussed elsewhere,27 rc must be chosen
with some care. Ifrc is taken to be too small, the constrain-
ing potential can have significant effect on the thermody-
namic properties within a phase change region. On the other
hand, if rc is taken to be too large, evaporation events can
make it difficult to attain ergodicity with any method. In this

work, we takerc=1.68s, a value that we have found by
numerical experimentation gives the proper compromise be-
tween the two extremes.

All the calculations reported in this work consist of 108

Monte Carlo points. The initial configuration has been cho-
sen randomly, and 106 parallel tempering points have been
included in an equilibration step at each temperature prior to
the accumulation of data. Both parallel tempering exchanges
and smart-darting moves in Eckart space have been included
with a frequency of 10%.

A graph of the heat capacity per particle expressed in
units of the Boltzmann constantkB as a function of tempera-
ture expressed in units ofe /kB is shown in Fig. 1. The solid
line represents the data obtained with the Metropolis method,
the dashed line represents the smart darting results and the
line with alternating dashes and dots represents the combined
parallel tempering/smart darting results. The potential energy
surface of LJ7 contains five potential minima,1 with the two
minima highest in energy being chiral isomers that are equal
in energy. All five potential energy minima are used as tem-
plates in the current smart-darting calculation with the lowest
energy isomer used as the reference configuration. The rapid
rise in the heat capacity at temperatures abovekBT/e=0.05
reflects isomerization transitions, and these isomerization
transitions are often interpreted in terms of “cluster
melting.”2 The melting region can be expected to be the most
difficult temperature region to simulate, and such difficulties
should be reflected by increased statistical errors in the com-
puted quantities. Because it is difficult to resolve differences
in Fig. 1, in Fig. 2 we display the statistical fluctuations of
the heat capacity 2s stwo standard deviations of the meand as
a function of the temperature using four methods. The line
marked “Met” represents the Metropolis based methods, the
line marked “sd” represents the data with pure smart darting,
the line marked “pt” represents the parallel tempering data
and the line marked “ptsd” represents the data where parallel
tempering is combined with smart darting. Each calculation
containing 108 points with data accumulation has been run

FIG. 1. The heat capacity per particle
in units ofkB as a function of tempera-
ture in units ofe /kB for LJ7. The solid
curve represents the data for the Me-
tropolis calculation, the dashed curve
represents data for smart darting, and
the line with alternating dashes and
dots represents data where smart dart-
ing is combined with parallel temper-
ing. The error bars represent two stan-
dard deviations of the mean.
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ten times with random initialization of the configurations,
and the plotted points represent averages of 2s over the ten
runs. The statistical fluctuations of the values of 2s obtained
using each method are also included as error bars with the
plotted data. With the inclusion of smart darting, there is a
significant decrease in 2s above the temperatures where the
isomerization transitions occur, and the decrease in 2s con-
tinues until the higher temperatures where the Metropolis
method is expected to work well. The parallel tempering
results clearly have smaller values of 2s than either pure
Metropolis or smart darting. The best results are obtained by
combining parallel tempering with smart darting, although
smart darting improves parallel tempering only modestly
compared to the improvements that pure parallel tempering
or smart darting provide for the Metropolis results.

We can obtain further insight about the smart-darting
method by examining the fractionf of accepted smart-

darting moves as a function of temperature. We display such
data in Fig. 3. At low temperatures, the fraction of the smart-
darting moves that are accepted is nearly zero. Prior to data
collection, the initial configurations are thermally equili-
brated, and at the lowest temperatures, the system executes
small amplitude oscillatory motion about the lowest energy
isomer of the system. At such temperatures, the probability
of any isomerization event is small, and isomerization tran-
sitions are physically improbable. Consequently, only a small
fraction of attempted darts is accepted at low temperatures.
At temperatures where the heat capacity begins to rise with
the associated isomerization transitions, we see an increase
in the fraction of accepted smart-darting moves. It is inter-
esting that only a small fraction of smart-darting moves
needs to be accepted to observe a significant decrease in the
variance of the heat capacity. In the region of temperature
where the gap in 2s between the Metropolis and smart-

FIG. 2. Two standard deviations of the
mean for the heat capacity per particle
expressed in units of the Boltzmann
constant as a function of the tempera-
ture expressed in units ofe /kB. The
line marked Met represents the Me-
tropolis data, the line marked sd repre-
sents the smart-darting data, the line
marked pt represent the parallel tem-
pering data, and the line marked ptsd
represent the data when parallel tem-
pering is combined with smart darting.

FIG. 3. The fraction of accepted
smart-darting moves as a function of
temperature expressed in units ofe /kB.
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darting results are greatest, the fraction of accepted moves is
less than 1%. Beyond temperatures where the heat capacity
has reached a plateau and the gap in 2s between the Me-
tropolis and smart-darting results is smallest, the fraction of
accepted smart-darting moves reaches a maximum and be-
gins a gradual decline.

IV. DISCUSSION

In this work, we have augmented the smart-darting
method so that the angular momentum constraints of the
original algorithm7 can be removed. We have found the
modifications required to remove the angular momentum
constraints to be significant. The origin of the modifications
is the reduced space used for the smart-darting moves. Using
the formulation originally invented by Eckart, we have con-
structed an Eckart space for the required restricted smart-
darting moves. Because of the special restrictions in the
moves, we have found it necessary to include a Jacobian in
the probability density.

In our application of the method to LJ7 we have found
smart darting to improve significantly the statistical error of
the calculated heat capacity when Metropolis methods are
used. The improvements have been most pronounced in the
isomerizationsor meltingd region of the heat capacity curve.
It is in the melting region where the attainment of ergodicity
can be most difficult. Smart darting also improves the statis-
tical fluctuations of parallel tempering, but the improvement
is less pronounced than the improvements found for Me-
tropolis.

Unlike smart darting, parallel tempering calculations do
not require the prior determination of any of the potential
energy minima, and for the case studied here parallel tem-
pering does a better job than smart darting alone. For clus-
ters, we envision smart darting to be most useful as a method
for augmenting parallel tempering. Future calculations can
be expected for systems such as LJ38 or LJ75 where occa-
sional smart-darting moves using a single dart vector be-
tween the two templates defined by the global minima in the
two principal basins on the potential energy surface should
allow ergodic simulations with decreased numbers of Monte
Carlo points. We expect that this procedure can make sys-
tems like LJ75 tractable.
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APPENDIX: THE JACOBIAN

In this appendix, we discuss our choice of internal coor-
dinates and the Jacobian of the tranformation into general-
ized coordinates.

1. The internal coordinates

The internal coordinates are thes3N−6d coordinates that
span Eckart space. To describe a configuration, we start with
3N Cartesian coordinates referred to the center of mass. Of
those coordinates, three are already redundant because of the

center of mass conditionfEq. s1dg. The Eckart conditionfEq.
s2dg introduces three linear relations that makes three addi-
tional coordinates redundant. We then obtains3N−6d inde-
pendent, Cartesian coordinates to specify a configuration. We
take those independent, Cartesian coordinates to be the inter-
nal coordinates. It is convenient to rewrite the Eckart condi-
tion,

o
i=1

N−1

s̃i 3 r i = 0, sA1d

where

s̃i = r̃ i −Îmi

mN
r̃ N. sA2d

To obtain Eq.sA1d, we have made use of Eq.s1d to eliminate
three redundant, Cartesian coordinates.

To find a suitable set ofs3N−6d independent coordi-
nates, we express three of the coordinates as functions of the
remaining ones. The choice of these three coordinates is not
arbitrary in that certain choices are unsuitable. For example,
if we consider the sethxN−1,yN−1,zN−1j, and expand Eq.sA1d,
we obtain

yN−1cN−1 − zN−1bN−1 = o
i=1

N−2

szibi − yicid,

xN−1cN−1 − zN−1aN−1 = o
i=1

N−2

sziai − xicid, sA3d

xN−1bN−1 − yN−1aN−1 = o
i=1

N−2

syiai − xibid,

wheres̃i ;sai ,bi ,cid. In this example, the determinant of co-
eficients is identically zero:

det3 0 cN−1 − bN−1

cN−1 0 − aN−1

bN−1 − aN−1 0
4 = 0. sA4d

Consequently, the coordinates of the sethxN−1,yN−1,zN−1j
cannot be expressed as functions of thes3N−6d other coor-
dinates. The same situation arises for the setshxi ,yi ,zij,
hxi ,xj ,xkj, hyi ,yj ,ykj, andhzi ,zj ,zkj. A proper set ofs3N−6d
independent, Cartesian coordinates must avoid this inconsis-
tency.

2. The Jacobian

Given an inertial frame of reference, fixed at the center
of mass of a configuration, onlys3N−3d Cartesian coordi-
nates are required to describe the configuration. The classical
canonical probability of finding a configuration with energy
U is

p =
e−bU

zsbd
dr 1dr 2 ¯ dr N−1, sA5d

where
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zsbd =E e−bUdr 1dr 2 ¯ dr N−1. sA6d

The present work makes it necessary to expressp as a func-
tion of a convenient set of generalized coordinates. These
coordinates are the three Euler angleshuij and thes3N−6d
internal, Cartesian coordinateshqij. The probabilityp in Eq.
sA5d is now written as

p =
e−bU

zsbd
Jshuij,hqjjddu1du2du3dq1dq2 ¯ dq3N−6, sA7d

whereJshuij ,hqjjd is the Jacobian of transformation into the
new coordinates.

To determineJshuij ,hqjjd for a system withNù3, we
consider the transformation equations

r i
I = RTsu jdr isqkd i = 1, . . . ,N − 1, sA8d

where the position vectorsr i
I andr i are referred to the inertial

frame and the Eckart frame respectively. In terms of Euler
angles, the rotation matrix is22

RT = 3cosu1 cosu3 − sinu1 cosu2 sinu3 − cosu1 sinu3 − sinu1 cosu2 cosu3 sinu1 cosu2

sinu1 cosu3 + cosu1 cosu2 sinu3 − sinu1 sinu3 + cosu1 cosu2 cosu3 − cosu1 sinu2

sinu2 sinu3 sinu2 cosu3 cosu2
4 . sA9d

From the discussion in preceding section, we choose the
set hzN−2,yN−1,zN−1j to be the redundant coordinatessin the
Eckart framed so that the transformation is

hr 1
I , . . . ,r N−1

I j → hu1,u2,u3,r 1, . . . ,r N−3,xN−2,yN−2,xN−1j.

sA10d

The Jacobian determinant of this transformation takes on the
form

J = det3
Y1 RT 0 0 ¯ 0 0

Y2 0 RT 0 ¯ 0 0

Y3 0 0 RT
¯ 0 0

] ] ] ] � ] ]

YN−3 0 0 0 ¯ RT 0

YN−2 H1 H2 H3 ¯ HN−3 H0

YN−1 G1 G2 G3 ¯ GN−3 G0

4 , sA11d

where the nonzero 333 blocks are defined, in column-vector
notation, by

Y i = 3
]xi

I

]u1

]xi
I

]u2

]xi
I

]u3

]yi
I

]u1

]yi
I

]u2

]yi
I

]u3

]zi
I

]u1

]zi
I

]u2

]zi
I

]u3

4 sA12d

;F ]r i
I

]u1

]r i
I

]u2

]r i
I

]u3
G i = 1, . . . ,N − 1, sA13d

H i = F ]r N−2
I

]xi

]r N−2
I

]yi

]r N−2
I

]zi
G i = 1, . . . ,N − 3, sA14d

Gi = F ]r N−1
I

]xi

]r N−1
I

]yi

]r N−1
I

]zi
G i = 1, . . . ,N − 3, sA15d

H0 = F ]r N−2
I

]xN−2

]r N−2
I

]yN−2

]r N−2
I

]xN−1
G , sA16d

and

G0 = F ]r N−1
I

]xN−2

]r N−1
I

]yN−2

]r N−1
I

]xN−1
G . sA17d

An useful theorem about partitioned matrices28 says that, for
a square matrixM partitioned as

M = FA B

C D
G , sA18d

with A andD beingm3m andn3n, respectively, the deter-
minant ofM is given by

detM = detA detsD − CA−1Bd, sA19d

provided thatA is invertible. To apply that theorem to Eq.
sA11d, we rearrange and partition the matrix in Eq.sA11d,

sA20d

Using Eq.sA19d, we transform Eq.sA20d into
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J = det3H0 sYN−2 − o
i=1

N−3

H iRY id

G0 sYN−1 − o
i=1

N−3

GiRY id 4 . sA21d

The JacobianJ of Eq. sA21d is a 636 determinant and,
unfortunately, it cannot be reduced further using Eq.sA19d;
none of its blocks is invertible. Except forN=3, direct ex-
pansion is hindered by an overwhelming number of terms.
For example, ifM represents the largest number of terms in
one of the 36 elements of Eq.sA21d, then an upper limit to
the total number of terms after the expansion iss636! dM,
which amounts to 21 600 forM =5. To circumvent that prob-
lem, we first expressJ as a determinant of 6, 6-dimensional
column vectors:

J = detFa1 a2 a3 Sa4 − o
i=1

N−3

biD Sa5 − o
i=1

N−3

ciD Sa6

− o
i=1

N−3

diDG , sA22d

wherea1 is the left most column vector in Eq.sA21d, a2 is
the next six-dimensional column vector in Eq.sA21d, and so
on. We then use the multilinearity property of determinants25

to write

J = o
j=0

N−3

o
k=0

N−3

o
l=0

N−3

detfa1 a2 a3 a j bkglg, sA23d

where

a0 = a4, ai = − bi , sA24d

b0 = a5, bi = − ci; sA25d

and

g0 = a6, gi = − di . sA26d

The determinants in Eq.sA23d become tractable by using
Mathematica.29 The total number of terms in the sum issN
−2d3. Expanding the sum for the first few values ofN, we
find thatJ can be recast to yield the expression

J = sinu2U J̄

c
U , sA27d

where c is the determinant of coefficients of the set

hzN−2,yN−1,zN−1j. The functionJ̄ is the part of the Jacobian
depending only on the internal coordinates and is defined by

J̄ = o
i=1

N−2

o
j=i+1

N−1

ni,jsmi + m jd + o
i=1

N−3

o
j=i+1

N−2

o
k=j+1

N−1

sni,jmk + n j ,kmi

+ nk,im j − si,j ,kd, sA28d

with

mi = s̃i · r i , sA29d

ni,j = ss̃i 3 s̃jd · sr i 3 r jd, sA30d

and

si,j ,k = fs̃i · ss̃j 3 s̃kdgfr i · sr j 3 r kdg. sA31d

The vectorss̃i have been defined in Eq.sA2d.
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