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Combining smart darting with parallel tempering using Eckart space:
Application to Lennard—Jones clusters
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The smart-darting algorithm is a Monte Carlo based simulation method used to overcome
quasiergodicity problems associated with disconnected regions of configurations space separated by
high energy barriers. As originally implemented, the smart-darting method works well for clusters
at low temperatures with the angular momentum restricted to zero and where there are no transitions
to permutational isomers. If the rotational motion of the clusters is unrestricted or if permutational
isomerization becomes important, the acceptance probability of darting moves in the original
implementation of the method becomes vanishingly small. In this work the smart-darting algorithm

is combined with the parallel tempering method in a manner where both rotational motion and
permutational isomerization events are important. To enable the combination of parallel tempering
with smart darting so that the smart-darting moves have a reasonable acceptance probability, the
original algorithm is modified by using a restricted space for the smart-darting moves. The restricted
space uses a body-fixed coordinate system first introduced by Eckart, and moves in this Eckart space
are coupled with local moves in the fulNadimensional space. The modified smart-darting method

is applied to the calculation of the heat capacity of a seven-atom Lennard-Jones cluster. The
smart-darting moves yield significant improvement in the statistical fluctuations of the calculated
heat capacity in the region of temperatures where the system isomerizes. When the modified
smart-darting algorithm is combined with parallel tempering, the statistical fluctuations of the heat
capacity of a seven-atom Lennard-Jones cluster using the combined method are smaller than
parallel tempering when used alone.2005 American Institute of Physics

[DOI: 10.1063/1.1858433

I. INTRODUCTION change region as evidenced by the application of the parallel
tempering algorithm to the study of the temperature depen-
Small clusters of atoms and molecules have receivedent heat capacity of 38-atom Lennard—Jones clustekg)
much attention in recent yeérewing to their central role in  in both the canonicaland microcanonical ensembi€sThe
such diverse areas as homogeneous nucleation and heterogemplexity of the double-funneled potential energy surface
neous catalysis. In addition to their importance, the physicain this systemt had defied previous simulation attempts prin-
properties of the clusters themselves are inherently interestipally owing to the difficulties in sampling both the icosa-
ing, especially when contrasted with the properties of correhedral and cuboctahedral basins with the proper frequencies.
sponding bulk materials. An important example of such cor-With parallel tempering, the determination of the correct heat
respondence is the phenomenon of phase changere capacity has proved possible albeit with a large number of
clusters undergo rapid changes in physical properties witBampling points. Both the melting and solid-solid phase
respect to their energy in a way that is reminiscent of bulkchange regions can be resolved inddith parallel temper-
phase transitions. To study these important and interestinghg methods. Recent studies using parallel tempering to ex-
phase change regions, many computational methods hawgnine the properties of mixed clust&r$® have also illus-
been either developed or used in ways that have proved to heated the power of the approach.
generically important to the simulation community. Impor- Because of the success of the parallel tempering method
tant examples of computational methods that have either pain resolving details of the phase change regions ig,liflis
tially or entirely evolved from the study of the phase changenatural to attempt to apply the method to even more complex
regions in clusters includx-’:zwalking,3 parallel temperingﬁj,‘6 problems. A good candidate is JsJ(Ref. 14 which has a
smart dartind,and applications of Tsallis statistighe par-  double-funnel potential surface much like g5but with a
allel tempering method has proved to be particularly poweriransition state barrier about twice that found ingd-JOur
ful in overcoming quasiergodicity difficulties in the phase attempts to simulate the properties of,4 Wwith parallel tem-
pering have been unsuccessful. Although we have been able
dpresent address: Department of Chemistry, Oregon State University, Ccol® find both basins in low temperature simulations of the
vallis, OR 97331. system using parallel tempering, the results of our simula-
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tions have not been reproducible, probably because the tramseful for systems having their angular momenta constrained
sitions between the two primary basins in the system havéo zero at temperatures where particle exchanges do not oc-
not occurred at the correct frequency as dictated by the Bolteur over the time scale of the simulation.
zmann weight and phase space volumes. The purpose of the In this work we aim for an effective combination of
current work is to set the foundation for exploring an alter-smart darting with parallel tempering. In parallel tempering
native sampling approach that has the potential for solvingonfigurations from high temperature simulations are ex-
complex problems of which LzJ is representative. changed with simulations at lower temperatures. These high
There have been a series of approaches designed to irfifmperature structures have permuted configurations even if
prove the performance of Monte Carlo based methods thdfie angular momentum is constrained to zero. Because we
combine sampling strategies. For example, Xu and B&rne Want to include the effect of vibrational-rotational coupling
have combined] walking and multicanonical based ap- In our simulgtions, we relax the angular momentum con-
proaches, and separately Calvo and Dbyeve combined Straint used in Ref. 7 as well. Consequently, to have reason-
parallel tempering with multicanonical methods. Both stud-2Ple acceptance of the smart-darting moves, the original
ies have shown improvements in the performance of thdMplementation requires modification.

combined methods when compared with the performance of In this work we demonstrate a useful modification of the
multicanonical,J walking, or parallel tempering when ap- smart-darting algorithm that allows the parallel tempering

plied in isolation. In the current work we examine the smart2d s_mart—darting ’T'_ethOdS to be merg‘?d- Unlike the original
darting metho which we believe has the potential to en- algorithm, our modified approach permits the dart vectors to

hance parallel tempering simulations in cases where parallé‘\ct on any geometry and any permutational isomer of the
L - N . ; configuration and allows reasonable acceptance of dart
tempering is not sufficient. Our motivation for this particular

; . . moves for configurations differing significantly from any of
choice comes from what we believe to be the shortcoming ; X -
A : . e geometries of the potential energy minima. We accom-
of parallel tempering in the simulation of }5] As we have

oo . . . plish this modification rforming the Metropolis mov:
indicated, we have found that a parallel tempering smulanorf sh this modification by perfo g the Metropolis moves

f L d to find the two i tant and k n the full configuration space, but performing the darting
of LJz5 does manage 1o fin € two important an noWnr]poves within a restricted space first introduced by EéRart

b_asms _Of the potenyal energy surface, bl_Jt over the length 4 solve problems concerned with molecular vibrations. For
simulations accessible by currently available computer rég,o nayes in the restricted space it is necessary to introduce
sources, the frequency that the basins are accessed has fluCzrection to the usual Boltzmann acceptance probability.
tuations that are too large to enable reproducible resultsrne correction is a Jacobian originating from a coordinate
Smart darting has virtues that can be expected to overcomgansformation in the full configurational space. This “Eckart
this problem of ensuring transitions between basins with theyace” has been used previously in other contéxisit we
proper frequency. believe our current application of Eckart space to be differ-
Smart darting has been formulated as a modification ont, The Eckart space techniques developed in this work may
the smart-walking methotl. Like some approaches devel- prove to be useful in other contexts. For example, similar use
oped to determine free-energy differences and transitiogf Eckart space might enable the extension of the methods in
theory rate constant§,in smart darting a set of “dart’ vec- Ref. 18 from surface reactions to reactions in the gas phase
tors is constructed that connect directly all the minima or setgyhere rotations and isomerization events can also be ex-
of minima on the potential energy surface. In a pure smarpected to be important.
darting calculation, Metropolis Monte Carlo simulatibhs In the following section of this paper, we present the
are enhanced with some predefined probability by transformtheoretical developments including a necessary review of
ing a current configuration to a new configuration by theEckhart space, and how we apply this restricted space to
addition of one of the constructed dart vectors. These dartingmart darting moves in the context of Monte Carlo simula-
moves enable efficient sampling of the disconnected basirtsons. In Sec. Il we apply our approach to simulate the prop-
on the potential energy surface. Darting moves are acceptegfties of a seven-atom Lennard-Jones cluster and compare
or rejected in such a fashion that detailed balance is satisfiethe efficiencies of both Metropolis and parallel tempering
In the original implementation of smart dartinthe set methods with and without smart darting. We summarize our
of dart vectors is fixed in configuration space and chosen seonclusions in Sec. IV and propose future directions for the
that specific particles in specific orientations in one potentiamethod.
energy minimum connect specific particles in another poten-
tial energy minimum again with a specific orientation. Dart-
ing moves using such predefined vectors have a reasonan,gTHEORY
probability of acceptance provided the clusters do not rotate
and provided permutational isomerization does not occur. If  |n this section we develop the theoretical tools needed to
dart vectors are applied to configurations of atoms that havenodify the original smart darting algoritr?n:so that the an-
rotated or where the particle indices have effectively beemular momentum constraints can be removed. To accomplish
permuted, the probability that a darting move is acceptedhis objective, we begin by introducing the notion of Eckart
becomes too small to modify the efficiency of ordinary Me- space. While various pieces of the development in Sec. Il A
tropolis Monte Carlo simulations. To ensure reasonable adaave been formulated elsewhéfewe find the review and
ceptance of the darting moves, the original implementation imrganization to be essential in order to establish notation and
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make the subsequent sections clear. Following our discussion In describing the current state of soMeparticle system,

of Eckart space, we explain how we use Eckart space in thi2 is important to distinguish configurations that represent

context of smart darting. different structures. To that end, we define two configura-

tions @ and B to beequivalentin R? if they can be superim-

posed by a proper rotation around the center of mass. In

other words,« and 8 are equivalent if there exits some ro-

tation matrix R defined by a particular set of three Euler
We consider a system & particles each having mass angles{6,} such that

m;,i=1,2,... N described by theN position vectorsr; in _

physical spacé? relative to an inertial fram&2*The ref- Fpi =R ai: )

erence frames used in the present work are right-handed sySets of equivalent instantaneous configuration of a system in

tems. We use the notatidn;} to represent the entire setif R® can be identically mapped onto one or more

position vectors. It is convenient to use mass-weighted posi3N-6)-dimensional vectors in Eckart space. As stated pre-

tion vectors(riev"miri). Because the potential energy is in- viously, we choose some reference configuration with a par-

variant under translations, we fix the center of mass at thécular orientation inR>. To develop the expressions for the

origin of the inertial frame, eliminating three degrees of free-rotations needed to bring some instantaneous configuration

dom. As a result, we need only the fif§t—1) position vec-  to the orientations that comply with the Eckart conditj&u.

tors in the sefr;} to specify a configuratior;y can be ob- (2)], we define the auxiliary function

tained from the center of mass condition,

A. Eckart space

N
No LErh =2 (r -T2, (4)
> \mr;=0. (1) =1
=t where L is clearly the sum of the squares of the differences
In addition to the inertial frame defined in the previous between the coordinates of the instantaneous configuration

paragraph, we can also use a body-fixed frame to describend the reference configuration. Becadsis a function only
the location of arN-particle system, where the origin of the of the Euler angle$6}, £ is represented by a bounded three-
body-fixed frame is placed at the center of mass. For a padimensional surface. We now prove a theorem that enables
ticular configuration, the position vector of particlei is  us to ensure the Eckart condition is satisfied.
seen as either a rotating vector or a constant vector depend- Theorem II.1 Given an instantaneous configuration for
ing on the frame used to express the vector. The three EulsiomeN-particle system and a defined reference configuration
angles{¢;} are used to determine the position of the rotatingin R*, the Eckart condition is fulfilled at the extrema of
frame relative to the inertial frame. To describe any configu-L({r}).
ration in the body-fixed frame, we must specify fewer coor-  Proof. We begin with the observation that=r;(6,). Dif-
dinates than those given by the fitdt—1) position vectors ferentiating,
in {r;}. In other words, more than three Cartesian compo- N N
nents are redundant now {n;}, because a second condition ILAri}) - i ~ _ ( = ) ;

i = ——=-2> T =R | 2T xr| Oj, (5
arises that removes three rotational degrees of freedom. C. a0, i=1 96, ' M\
Eckart® has proposed a particular form for that condition. _ _ - o
The Eckart approach begins by specifying a set of coordi¥1ere we have used the identltyr;/a6;=T; xr; with 7; a

nates{F,} that we call thereference configuratiariThen any unit vector along the rotation axis @f. The dlrec_t|0ns of th_e
instantaneous configuratidn,} is described relative to the tree rotation axes of thg} depend on the arbitrary choice
reference by the relation of orientation of the Cartesian frame. For the derivatives to

be zero, the vector in the parenthesis of E5).must be the
N ~ null vector, and the condition expressed in Eg). is satis-
Erixri=0, 2 fied. O
= Theorem II.1 implies that there exist as many solutions
which is satisfied in both the inertial and body-fixed refer-to the Eckart condition as extremai{{r;}). We next estab-
ence frames. Equatiof®) is called the Eckart condition and lish the specific number of solutions to the Eckart condition
plays a key role in the theory of molecular vibrations, whereby using the extrema of ({r}).
the reference configuration is taken to be the coordinates of Theorem I1.2 Given an instantaneous configuration for
some minimum of the potential energ}?” In fact, the ref-  anN-particle system and a nonlinear reference configuration
erence configuration can be chosen arbitratiigwever, see in R3, the Eckart condition admits four solutions at most.
Theorems 1.2 and 11.3 and the discussion that follows Theo-  Proof. To prove this theorem, it is convenient to rewrite
rem 11.3). A more detailed explanation of the Eckart condi- Eq. (4) so that the terms not dependent on the Euler angles
tion can be found in Ref. 21. The Eckart condition introducesare eliminated. Takingi* to be a particular coordinate vector,
three linear relations that remove three degrees of freedomvhen we expand
Consequently, a total @BN-6) degrees of freedom are nec- * o kD =D ¥
. . . (r; =T)=r,"+77-2r, -T,, (6)
essary to specify any configuration of the system. Those
(3N-6) degrees of freedom constitute a vector sp&&®  we see that only the last term depends on the Euler angles.
that we callEckart space Consequently, the functio@ defined by the equation
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N N
Glrin=-2r T () Pp2= 2 (= XX +Y¥i +27),
i=1 i=1
has extrema with Euler angles coincident with the Euler N
angles at the extrema m‘({ri*}). For that reason, we can now __ SR
focus onG({r;}). Next, we writer; =Rr;, where ther; rep- P23 21 OGyi+ ),
resent some initial orientation, and introduce this expression
into Eq. (7), N
N Poa=- E (Xz +2X%),
G{Rr}) ==X (Rr)) T, 8 =1
i=1
N

where the dependence on the rotation maRixs explicit. P. .= %5 — Vi + 2%
We next express E@8) in terms of quaternioﬁ% rather than 33 E( XYt 2E),
Euler angles. The quaternions are relateazby

N

4
Sef=1 9) P34=— 2 (YiZ + 7).,
i=1 i=1
and the rotation matrix expressed in terms of the quaternions N
is given by Pas= S (% + Y - 23). (19
R i=1
ECrei-e-e 2eeter) 2ee,-ee) Equation(12), together with Eq.(9), demonstrate that the

problem of finding the extrema df({e}) is a constrained

extrema problem. Using the method of Lagrange multipliers,

2eeitee)  20eey-ee) €-&-65+6 |  the extrema ofi({e}) occur when the first derivatives of the
(10) function

- 2 2 2 2
- 2(8263 - ele4) el - ez + 63 - e4 2(8384 + elez)

Introducing Eq.(10) into Eq. (8) we obtain 4
N Feh)=0de) -\ X2 & (14)
I=1
G({e}) = 2 {€l(- X% — ¥ — 2Z) + &~ X% + _ . . o
i=1 vanish, withA being a Lagrange multiplier. Then,
+27) + (X% ~ YV + 2Z) + (XX + Y, OF é
~ ~ o~ -~ o~ — =22, P e-2\¢ [Oi, 15
= 27) + 2e,85(ZY; — Yiz) + 2€,€5(XZ — Z%;) ge o M ! (15
+2€184(YiX; — XVi) + 26,85(— XY — YiX)) which are zero when
+26,64(— XZ — ZX) + 28384(- yiZ — zy))}. (11) 4
Noting thatG is a quadratic form in thée}, we can write E Pjg =\e, (16)
4 4
gleh=>2> P k&, (120  where the superscript * on the denotes the location of the
1=1 k=1 extrema. Equatioiil6) is a familiar eigenvalue problem that
with P a 4x 4 symmetric matrix whose elements are givenin matrix form is given by
by (P-\l)e =0. (17)
N
P1=~ 2 (X% + VY +27), BecauseP is a 4x 4 symmetric matrix, the Lagrange multi-
i=1 plier A can be any of the four real eigenvalueshofEach of
the four elgenvectore of P contains four quaternions. We
N use those{e } to bwld the rotation matricegeq. (10)] that
P1,2=E (ZYi—viz), bring the |n|t|al configuration to the orientations whege
i=1 attains its extrema. Finally, we conclude tltatand by the

coincidence of extremda;) must attain four extrema at most.

N From Theorem 1.1, it is evident that the Eckart condition

P13= 2 (XZ — %),

= admits four solutions at most. O
It is useful for further analysis to examine the nature of
N the extrema ofj({e}) (or equivalentlyL). We first consider
p1’4=2 (Y% = xVi), M =<Ny<M\3=<\, and introduce Eq(16) into Eg. (12) to

i=1 obtain
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G({e, ) = \a, (18)  condition, it can be readily seen from Ed.3) and Eq.(20)
’ that P is diagonal,
which shows thaU({e,}) attains a m|n|mun(g({e1|}) Ap)

and a maX|mur‘rﬁg({e4,}) \y). If there is no degeneracy, the X 0 00
intermediate values of represent saddle p0|r1?t§The ma-
trix P of Eq. (13) has trace equal to zero, showing, tRatas p= 0 -»x 00 (22)
both positive and negative eigenvalues. The first element of 0 0 xNOF
P, Py 4, equalsG({ri}) [see Eq.(7)], and the last three ele- 0O 0 0\
ments of the first row are the Cartesian components of the
vector function, with
N
EdrP=2T xr,, (19) N
i=1 A= E Xi’)-{i . (23)
i=1

whose zeros define the Eckart condition. When a configura-

tion is orlertelt(:i so thatllt satisfies the Eckart conditién, Equation(22) shows that P has only two different eigenval-
becomes block diagonal, ues when the reference is linear. From E2f), we infer that

A 0 O 0 G attains its extrema along the axis of the reference, which

“ we have taken to be the axis. From a geometric point of
pa = 0 Pay Pag Pay _ (20) view, when the Eckart condition is satisfied, the configura-
0 P32 P33 P3g tion is in alignment according to the type of the extremum.

0 Py, Ps3 Puy For a nonlinear configuration witN>2, however, each ex-

tremum ofG corresponds to infinite set of orientations of the

From the expression fd?, ; in Eq. (13) along with Eq.(20),  configuration around the axis of the reference. In other
it is evident that we can write words, there are infinite sets of tig} consistent with each
type of alignment. We can conclude that there exist an infi-
nite number of solutions to the Eckart condition. For a linear
configuration withN=2, there is one set ofr;}, namely,
{%,0,0}, consistent with each extremum. Consequently,

We can understand the meaning of the lowest and highthere exist only two solutions to the Eckart condition. ]
est eigenvalues dP geometrically. Each value of repre- Theorems 11.2 and 11.3 state that more than one element
sents a different orientation of the configuration of the sysof Eckart space is related to a given configuration. Because it
tem compared to the reference structure. The orientation q§ easier to choose among four elements than to choose
the smallest eigenvalue, corresponds to the smallest least- among an infinite set of elements, it is best to avoid selecting
squares difference between the coordinates of the referengigear configurations when defining reference configurations.
and the system configuratioisee Eq.(4)]. In the least- It is important to recognize that each vector in Eckart
squares sense, the orientation associated Mifis the “best  space is characterized both by a configuration of particles as
match” between the current configuration and the referencgell as by an eigenvalug, obtained using E¢(17). When a
configuration. In a similar manner, the orientation associate@onlinear reference is used, four equivalent configurations
with the largest eigenvalua, corresponds to the “worst are associated with four vectors labeled with different values
match” between the current configuration and the referencgf ) . We find it convenient to divide Eckart spaceinto
configuration. four partitions each corresponding to the kind of eigenvalue

As is discussed later in this paper, during a Monte Carlo, , using the notation,
simulation, to make a move in Eckart space with some fre-

)\a:_z I‘i-'Fi. (21)

quencyf, the instantaneous configuration generated by an 4

ordinary move in the previous step can be introduced into the s= y @ (24)

Eckart subspace by choosing an eigenvectoP.of his key a=1

idea is used in the development of the modified smart darting

algorithm. whereS™Y contains the vectors characterized by the smallest
The results of Theorem 11.2 can be used to analyze theigenvalue$.; obtained from Eq(17), S® contains the vec-

case of a linear reference Rr. tors characterized by the second smallest eigenvalyemnd

Theorem I1.3 Given a configuration for am-particle  so on. It is clear that none of the vectors inside any of the
system and a linear reference R¥, the Eckart condition partitions S represent equivalent configurations. Finally,
admits an infinite number of solutions if the configuration iswe remark that dividing Eckart space as in E2¢) does not
nonlinear withN>2. For a linear configuration witN=2,  imply that each of the partitionS'? is a vector space. Eckart
the Eckart condition admits only two solutions. spaceS is a vector space because any linear combination of

Proof. For simplicity, we let the linear reference lie vectors inS results in another vector insidg In contrast,
along thex axis so that the coordinates of each particiee  any linear combination of vectors in, for instanc®? does
{%,0,0,. For a configuration oriented to fulfill the Eckart not necessarily result in another vectorSft.
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B. Smart darting in Eckart space: Distinguishable Prior to beginning the simulation, after choosing the ref-
particles erence configuration, we construct a sefbiminima of the
epotential energy surface to be used in the smart-darting algo-

smart-darting algorithm for the special case of distinguish-”t.hr,n' The set oM minima can encompass al t.he possible
able particles. The extension of the approach to indistinNIMa on a potential surface or some conveniently chosen

guishable particles involves some additional complication§Ubset of the available minima. Using the reference configu-

that are discussed in the subsequent section. This section ration, the minima are located in Eckart space and defined by

organized so that each step in the algorithm is given with ghe Eckart vectord’;,i=1,2,.. M. EachT’; is constructed

discussion of the justification for that particular step. using the lowest eigenvalue of the correspondigatrix.

We execute smart darting moves in Eckart space by re‘_l'he approach used in bringing the configuration of each

- . o . “minimum into the Eckart space defined by our chosen refer-
stricting the possible moves to occur only within the r€919M¢ ce configuration is identical to Step 1 listed below. In what
S defined in Sec. Il A. We recall that a vector & rep- 9 P '

) . : . L follows, we refer to eacll’; constructed from one of thil
resents a copﬁguranon W.'th. associated maﬁ [see_ Eq. minima as atemplate In addition to the Eckart vectors de-
(20]] whose first glement IS 1ts smallesF eigenvalueie., fining the minima to be used in the simulation, we also con-
such that the particles are rotated to give the best match Quct a set of dart vectors in Eckart space defined by
the reference configuration in the least-squares sense. Con-
sequently, the vectors restricted &% represent different
configurations for the case of distinguishable particles. Be- A =T-T;. (25)
cause we represent configurations by vectors in Eckart space, o ) ) )
we need to make an important point about the choice of For dlst_lngmshab_le particles, the smart-darting portion
internal coordinates suitable for the current application. ArPf the algorithm consists of the steps that are as follows.
element of Eckart space is usually represented by some suit- StéP 1 We bring the instantaneous configuratigr}
able set of3N-6) scalar internal coordinatds;}. The{q} 9enerated by the local-move algorithm i, ,
are defined so that they are invariant under rotations. In ad- 10 @ccomplish Step 1, we first refer all the} to the
dition, the{q;} must always reflect the choice of reference. InCeNter of mass. Next we form the matiexof Eq. (13) and
that last respect, however, some of the commonly yggd diagonalize it. We then take the elgenvector correspondlng to
in molecular physics may not be suitable coordinates for uséhe smallest eigenvalue and use it to construct the rotation

in Eckart space. For example, the internal bond-anglé‘-m‘trixR0f Eq. (10). Finally we rotate thdr} according to

coordinate$>** which are rotationally invariant, are defined

to describe the shape of a configuration by specifying the

values of internal bonds and angles, but not related to any

reference. Obviously, more than one elemgéour for a non-

linear referenceof Eckart space is characterized by the samdt is clear that the instantaneous configurations can be char-

set of (3N-6) bond-angle coordinates. It is required that aacterized either by the vectofs;} or by a vectorI'. As

one-to-one relation between tfg} and the elements of Eck- explained in Sec. Il A, both kinds of vectors contain the

art space exist in order that the} become suitable coordi- (3N-6) coordinates needed to define the Eckart space. The

nates. A convenient set dfy} for our computational pur- {r;} also contain the six redundant coordinates.

poses is the one obtained by directly pickif@N-6) Step 2 We locate the templatg; in S that is closest to

Cartesian coordinates out of the initidNartesian coordi- the instantaneous configuratidh

nates with the origin at the center of mass. The remaining six ~ To locate the closest template to the instantaneous con-

Cartesian coordinates can be then expressed as functions figuration, we calculate the distances betwéeand all the

the selected3N-6) coordinates by using Eq$l) and (2). I';. To determine these distances, we first specify the set of

That is the approach we follow in the Appendix where weinternal coordinates. Following the analysis given in the Ap-

derive the neccessary Jacobian of transformation to work iRendix, we take the set of Cartesian coordinates

Eckart space. {XN>YND 2Ny YN-10Zn-1, Zn—2) tO be the redundant coordinates.
The algorithm we describe here is designed to paWith this choice of redundant coordinates, the square of the

coupled with a local-move algorithm in which no restriction distance is given by

on degrees of freedom is applied. In the current work, for the

local-move algorithm we take the usual Metropolis method 2 5 5 )

and we apply parallel tempering or smart-darting moves with ~ & = (I =T9)%= (Xn-1 = Xn-1) "+ (Xnm2 = Xn-2i)” + (Yn-2

In this section, we introduce our implementation of th

ri=Rr/. (26)

some predefined frequencies. In what follows, we make use N-3
of two kinds of vectors; theN position vectors{r;} and —YN—z,i)2+ > (rk—rk,i)z. (27)
(3N-6)-dimensional vectorF' in Eckart space. As discussed k=1
in Sec. Il A, the algorithm is facilitated by choosing a non- Step 3 We choose a target templalg with uniform

linear configuration as the reference. In our approach W@robability t;=(M~-1)"* and construct a new configuration
have chosen the lowest energy structure of the system as the

reference configuration, but that particular choice is one of
convenience and is not mandated by the method. I'=I+A;. (28)
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Because the relation between each of the six redundant ceenvenient alternative to E¢28) for the new configuration
ordinates and the remainin@N-6) coordinates is linear is
[see Eg.(2)], we can write any of the redundant primed

coordinates as a simple linear sum of the unprimed coordi-

nates. For example, M=k g = N (30
’ - + o .
AT AT AT AN @9 ith k=1, .. N.
wherezy, zy;, andzy; belong to the instantaneous configu- Step 4 We accept the new configuratioh’ with

ration and the templatesandj, respectively. Consequently, a probability

0 if T ¢ SW
if I’ =T >|I""-T',| for somek # j
A(F_)l-v): ’ ( | J| | k| J) (31)
mini 1,21 Gif [ =T <17 =T Ok # ),
p
|
wherep is the probability density. darted configuratiod™’ is accepted, we rotate the new con-

In Sec. Il A, we have emphasized that linear combina-figuration to the initial orientation of the instantaneous con-
tions of vectors in Eckart space are also Eckart space vectorfiguration.
but the resulting vectors may or may not be elementS'bf The latter is the inverse of Step 1. In other words, we
To determine if a resultanf”’ is an element ofS™, we rotate the position vectors of the new configuration accord-
construct the matri® for I'’ using Eq.(13) and compare the ing to
first element of the constructeld, P, ;, with the smallest r =R/ (34)
eigenvalue ofP. Agreement betweer, ; and the lowest : v
eigenvalue implies the resultant vector is an elemer®8f  whereRT is the transpose dR in Step 1.
To guarantee that the target templdtgis the closest tem- The five steps outlined above provide the details for the
plate toI'’, we use the procedure outlined in Step 2 to cal-algorithm as applied to systems composed of distinguishable
culate the distances betweé&h and all the remaining tem- particles. It is now necessary to verify that the algorithm
plates. The probability densifyis expressed as a function of satisfies detailed balance. As discussed above, the process
(3N-3) generalized coordinates given by the three Eulebegins by identifying the template that is closest to the in-
angles{6;}, and the(3N-6) internal coordinates comprising stantaneous configuration; i.e., Step 2 above. We then define
the Eckart space vectdr. In the canonical ensenble,is  a convenient, trial probability for darting moves from that
simply the product of the Boltzmann factor and the Jacobiarhost template. The probability of generating a configuration
for the transformation into generalized coordina{éx. T’ associated with a target templdte from a configura-
(A27)] tion I' associated with a host templdfe can be written as

p(8,T) = ex - BU(T) Jsin 6, 3(1)/c (32) T - ') =t,800 - [T+ Ay, (35)
wheret;; is the probability of choosing the dax;;. The

. . . i i 1§ —r® . i il-
tential energyd, is the second Euler angle,is a constant, Dirac delta functions(I"-[I'"+A, 1) gives the probabil
— ity of forming I'") on condition thatA;; has been chosen.

andJ(I') is the part of the Jacobian that depends only on th%urthermore the darts are chosen uniformly out of a set of
internal coordinates. The expression §F) is given in Eq.  (\j—-1) darts,so that

(A28) of the Appendix. Finally, if sird;=sin 6, (See Step b

the ratio of probability densities in E¢31) depends only on i=UM=-1). (36)

the internal coordinates of the initial and final configurations  jith the definition given in Eq(35), the normalization

where 8 is the Boltzmann inverse temperatutg,is the po-

, - of T —1"0)) must go first throughout the Eckart space,
p' . Jr’) .
—=exd-pAUT’ )] =1, (33)  and then among the available darts
p M-1
with AU(T",T)=U(I"") - U(T"). > | T -1 0)dr =1. (37)

Step 5 If the new configuratiod™ is rejected in Step 4, =

we keep the old configuration in its original orientation andDetailed balance is guaranteed by choosing the acceptance
return to local moves using the local-move algorithm. If theprobability AT® —T"1) to be
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0 if 0 ¢ s
, , 0 if 10 -1 > 1'% -1, for somek # |
AT - 10) = OO s ) (if | J| | Kl i) (39)
min{ 1, ——————F ¢ (if "0 -T| < |10 -1 Ok #j).
T 1)) !
|
In the cases that eith& " or I'" do not belong tas®Y, it is In the current work, we choose the particle that is closest

clear that detailed balance is fulfilled, because acceptanae the center of mass and the particle that is farthest from the
probability is zero for both forward and reverse moves. Incenter of mass. This step is executed before the simulation is
the case that the target templdtgis not the closest template started.

to "W, the acceptance probability is zero. For the reverse  step Il Select two particles in the instantaneous configu-

move, the trial prob(%bility i(s,) zero, because no dart can returpation that possess the same attributes as those in Step |.

; , AR .
the system froml™"’ to I'"’. Again, in this case detailed For Step |1, it does not matter if the chosen particles are
balance is clearly satisfied. If the acceptance and trial probsg|iinear with the center of mass.

abilities do not vanish for both forward and reverse moves, it Step IIL Match the two selected particles of the instan-

is not difficult to verify that taneous configuration to those of the reference and rotate the
TrY Oy =79 - 10y, (39) instantaneous configuration so that the metric distance be-

) o tween the instantaneous configuration and the reference for
so that the expression for the acceptance probability in EGpe matched particles is a minimum.

(38) contains only the ratio of the probability densities; i.e.,

In this step, we constru® and diagonalizé® [Eq. (13
we obtain Eq/(31). P g [Eq.(13)]

using only the matched pairsclosest-closest, farthest-
farthes}. We then take the eigenvector belonging to the
smallest eigenvalug; and build the rotation matriR [Eqg.

C. Indistinguishable particles (10)]. Finally, we rotate every particle of the instantaneous

When the particles of the system are indistinguishableconfiguration usingR [Eq. (26)].
there are additional complications that we now consider. Be-  Step IV Associate each of the remaining particles in the
cause of permutational symmetry a particular configuratioriéference with the particles in the instantaneous configura-
is represented by! vectors insideS™Y. Consequently, the tion using the following approach: find which parti¢len the
distinguishable-particle smart-darting algorithm developed irinstantaneous configuration is nearest particie the refer-
Sec. Il B is not directly applicable to the present case. Foence; find which particle’ in the reference is closest to the
indistinguishable particles we replac? with a region of  particlei found in the previous step; if#r’, then repeat the
Eckart space where each of the indistinguishable permu- process with another particte or if r=r’, then pair particles

tational isomers is represented by only one vedforWe | andr and remove them from further consideration; con-
require that such a region, labeled _@g) be part_ofS(l). tinue the process until all particlésandr are paired.
Unlike S?, a regionO! cannot be defined in a unique man- |t is convenient to define an integer argy(N) to store

ner. If m represents the number ofl)cpnfig#rations of the systhe integer labels for the instantaneous configuration. Spe-
tem, the number of ways to defi@? is NI™, wheremis, in cifically, M(1) stores the label that is paired with particle 1 of
fact, |nf|n'|te. H?wevgr, there are ways of defining a reasoNhe referenceM(2) stores the label that is paired with par-
able region O suitable for an effective smart-darting ticle 2 of the reference. and so on

methgda 't‘)n ;Etu'ft'\llle Image of .3 su![FabIeGs_hape Q@ ;S ; Step V Rotate the instantaneous configuration again us-
provided by the following consideration. Given an instan a-irlg all the matched particles.

neous configuration that is a small deformation of a template .

I',, we want the vectoF in O® to be (among theN! possi- Here, we use the same procedure that we used in Step

biII’ities in SU) the one closest t); in the sensd’ z.l“i. we b except that all the particles are used to construct the
6‘natr|x P.

can then expect a target configuration formed by darting t
P d d 4 g The smart-darting algorithm for indistinguishable par-

have an appreciable acceptance probability. ) N i o .
We have found the following algorithm of constructing ticles is similar to the algorithm for distinguishable particles

O to be an effective basis for smart darting in the applicagiven in Sec. Il B. The principle difference between the in-
tions studied in the current work. In the steps that follow wedistinguishable and distinguishable algorithms is the replace-
use Roman numerals to differentiate these steps from th@ent of S by O'. Except for an additional modification in
algorithm introduced in Sec. Il B. The steps given below areStep 4, the details of the two algorithms remain the same. In
constructed to build a unique regi@?. Step 4 in addition to checking I’ is insideS™Y, we also test

Step | Select two particles of the reference configurationwhetherI™ is in 0W, Specifically, we compare the integer
that are not collinear with the center of mass and that possessraysM(r) and M’(r) belonging tol" andI'’, respectively.
some distinct attributes. If " is in O, it must be true that
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35 —

3+ - FIG. 1. The heat capacity per particle
in units ofkg as a function of tempera-

- . ture in units ofe/kg for LJ;. The solid
curve represents the data for the Me-
25 - - tropolis calculation, the dashed curve
represents data for smart darting, and
the line with alternating dashes and
5 | dots represents data where smart dart-
ing is combined with parallel temper-
L - ing. The error bars represent two stan-
dard deviations of the mean.

C,/NK,

1.5 —

0 0.05 0.1 0.15 0.2 0.25

M(r)=M'(r)Or. (40)  work, we taker,=1.68, a value that we have found by
numerical experimentation gives the proper compromise be-
tween the two extremes.

All the calculations reported in this work consist 0f10
Monte Carlo points. The initial configuration has been cho-
1. APPLICATION sen randomly, and fOparallel tempering points have been

To illustrate the use of smart darting in Eckart space forncluded in an.equilibration step at each temperature prior to
a real physical system, we apply the approach to the calcghe accumulatlpn of data. 'Both parallel tempering exghanges
lation of the heat capacity of a seven-atom Lennard—Joné’?d smart-darting moves in Eckart space have been included
cluster. The system has been examined previdisind the ~ With & frequency of 10%.
heat capacity can be calculated accurately using standard A graph of the heat capacity per particle expressed in
Metropolis based approaches. Consequently,drdvides a units of the Boltzmann constakg as a function of tempera-
useful first investigation of the modified smart-darting ture expressed in units @fkg is shown in Fig. 1. The solid
method. line represents the data obtained with the Metropolis method,

The seven-atom cluster is modeled using the standarthe dashed line represents the smart darting results and the
Lennard—Jones interaction modified by an external constrairline with alternating dashes and dots represents the combined

To obtainM’(r), we apply Steps II-V to the new configura-
tion as well.

ing potential parallel tempering/smart darting results. The potential energy
N N surface of LJ contains five potential minimawith the two
_ minima highest in energy being chiral isomers that are equal
U{ri}) = i)+ 2, Ug(r), 41 . ! ) -
({ri}) z u(riy) E o) (41) in energy. All five potential energy minima are used as tem-

) ] o ) plates in the current smart-darting calculation with the lowest
wherer;; is the distance between particleand ], and the  energy isomer used as the reference configuration. The rapid

constraining potential having radiugis given by® rise in the heat capacity at temperatures abiy® e=0.05
= rem |2 reflects isomerization transitions, and these isomerization
Uc(ry) = f(r—) - (42)  transitions are often interpreted in terms of “cluster
¢ melting.”2 The melting region can be expected to be the most
In Eq. (41) u is the Lennard—Jones potential, difficult temperature region to simulate, and such difficulties
o\12 [ o\6 should be reflected by increased statistical errors in the com-
u(r) = 46|:<?> - <?> ] (43)  puted quantities. Because it is difficult to resolve differences

in Fig. 1, in Fig. 2 we display the statistical fluctuations of
with o and e the usual length and energy parameters, and ithe heat capacity® (two standard deviations of the meas

Eq. (42) r.y is the coordinate of the center of mass of thea function of the temperature using four methods. The line
cluster. As has been discussed elsewﬁérgmust be chosen marked “Met” represents the Metropolis based methods, the
with some care. If is taken to be too small, the constrain- line marked “sd” represents the data with pure smart darting,
ing potential can have significant effect on the thermody-the line marked “pt” represents the parallel tempering data
namic properties within a phase change region. On the otheand the line marked “ptsd” represents the data where parallel
hand, ifr; is taken to be too large, evaporation events cartempering is combined with smart darting. Each calculation
make it difficult to attain ergodicity with any method. In this containing 18 points with data accumulation has been run
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0.07 T
0.06 [~ -
0.05 — m FIG. 2. Two standard deviations of the
5 J mean for the heat capacity per particle
expressed in units of the Boltzmann
£ 0.04 - - constant as a function of the tempera-
Z | | ture expressed in units of/kg. The
S line marked Met represents the Me-
< 0.03 - - tropolis data, the line marked sd repre-
| ] sents the smart-darting data, the line
marked pt represent the parallel tem-
0.02 - - pering data, and the line marked ptsd
i | represent the data when parallel tem-
pering is combined with smart darting.
0.01 -
0 L
0

ten times with random initialization of the configurations, darting moves as a function of temperature. We display such
and the plotted points represent averagesmbfer the ten data in Fig. 3. At low temperatures, the fraction of the smart-
runs. The statistical fluctuations of the values ofé@bdtained  darting moves that are accepted is nearly zero. Prior to data
using each method are also included as error bars with theollection, the initial configurations are thermally equili-
plotted data. With the inclusion of smart darting, there is abrated, and at the lowest temperatures, the system executes
significant decrease inc2above the temperatures where the small amplitude oscillatory motion about the lowest energy
isomerization transitions occur, and the decreasesirt@ -  isomer of the system. At such temperatures, the probability
tinues until the higher temperatures where the Metropoliof any isomerization event is small, and isomerization tran-
method is expected to work well. The parallel temperingsitions are physically improbable. Consequently, only a small
results clearly have smaller values of Zhan either pure fraction of attempted darts is accepted at low temperatures.
Metropolis or smart darting. The best results are obtained byt temperatures where the heat capacity begins to rise with
combining parallel tempering with smart darting, althoughthe associated isomerization transitions, we see an increase
smart darting improves parallel tempering only modestlyin the fraction of accepted smart-darting moves. It is inter-
compared to the improvements that pure parallel temperingsting that only a small fraction of smart-darting moves
or smart darting provide for the Metropolis results. needs to be accepted to observe a significant decrease in the
We can obtain further insight about the smart-dartingvariance of the heat capacity. In the region of temperature
method by examining the fractiof of accepted smart- where the gap in @ between the Metropolis and smart-

0.02 T T T T T T T T T T T

0.015

« 0.01 FIG. 3. The fraction of accepted

smart-darting moves as a function of
temperature expressed in unitsedksg.

0.005

0 0.05 0.1 0.15 0.2 0.25
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darting results are greatest, the fraction of accepted moves éenter of mass conditidieq. (1)]. The Eckart conditiofEqg.

less than 1%. Beyond temperatures where the heat capacit®)] introduces three linear relations that makes three addi-
has reached a plateau and the gap ink2tween the Me- tional coordinates redundant. We then obtéhl—6) inde-
tropolis and smart-darting results is smallest, the fraction opendent, Cartesian coordinates to specify a configuration. We
accepted smart-darting moves reaches a maximum and b&ke those independent, Cartesian coordinates to be the inter-

gins a gradual decline. nal coordinates. It is convenient to rewrite the Eckart condi-
tion,
IV. DISCUSSION N-1
In this work, we have augmented the smart-darting .2175‘ Xri=0, (A1)
1=

method so that the angular momentum constraints of the
original algorithn can be removed. We have found the where

modifications required to remove the angular momentum
constraints to be significant. The origin of the modifications & =¥, - 4 /ﬂ?N_ (A2)
is the reduced space used for the smart-darting moves. Using My

the formulation originally invented by Eckart, we have con-14 gptain Eq(A1), we have made use of Ef{) to eliminate
structed an Eckart space for the required restricted smarfp oo redundant. Cartesian coordinates.

darting moves. Because of the special restrictions in the T4 find a suitable set of3N-6) independent coordi-

moves, we have found it necessary to include a Jacobian if;tes; we express three of the coordinates as functions of the
the probability density. remaining ones. The choice of these three coordinates is not

In our application of the method to jdve have found  5ppitrary in that certain choices are unsuitable. For example,
smart darting to improve significantly the statistical error ofi¢\va consider the Sefty_1,Yn1, 211 and expand EqAL)
the calculated heat capacity when Metropolis methods arge optain ' ' ’ ’

used. The improvements have been most pronounced in the
isomerization(or melting region of the heat capacity curve.

It is in the melting region where the attainment of ergodicity ~ YN-10n-17 ZN-1by-1 = ;1 (b —yic),
can be most difficult. Smart darting also improves the statis- B

N-2

tical fluctuations of parallel tempering, but the improvement N-2
is less pronounced than the improvements found for Me-  x ¢\ .-z ian-1= 2 (@ - %C), (A3)
tropolis. i=1

Unlike smart darting, parallel tempering calculations do
not require the prior determination of any of the potential
energy minima, and for the case studied here parallel tem-  Xn-1Pn-1 = Yn-18n-1= E (Vias = Xby),
pering does a better job than smart darting alone. For clus- =1
ters, we envision smart darting to be most useful as a methog@heres = (a;,b;,¢;). In this example, the determinant of co-
for augmenting parallel tempering. Future calculations careficients is identically zero:
be expected for systems such asgldr LJ;5 where occa-
sional smart-darting moves using a single dart vector be-
tween the two templates defined by the global minima inthe défcy-: 0  —ay1|=0. (A4)
two principal basins on the potential energy surface should by-y —ay-; O
allow ergodic simulations with decreased numbers of Monte

Carlo points. We expect that this procedure can make sysconseduently, the coordinates of the $&¢-1,Yn-1.2v-1}
tems like LJs tractable. cannot be expressed as functions of (BH-6) other coor-

dinates. The same situation arises for the d&tsyi,z},
ACKNOWLEDGMENTS {xi. %, % {yinY; Vit and{z,z,z4. A proper set of(3N-6)
independent, Cartesian coordinates must avoid this inconsis-
This work was supported in part by National Sciencetency.
Foundation Grant Nos. CHE-0095053 and CHE-0131114.

N-2

0 o1 —bya

APPENDIX: THE JACOBIAN 2 The Jacobian

~ In this appendix, we discuss our choice of internal coor-  Gjyen an inertial frame of reference, fixed at the center
dinates and the Jacobian of the tranformation into generabf mass of a configuration, onl{8N—3) Cartesian coordi-

ized coordinates. nates are required to describe the configuration. The classical
canonical probability of finding a configuration with energy

1. The internal coordinates Uis
The internal coordinates are tf@N—6) coordinates that g BY
span Eckart space. To describe a configuration, we start with P = ——-drydry---dry_q, (A5)

z(B)

3N Cartesian coordinates referred to the center of mass. Of
those coordinates, three are already redundant because of tiveere
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A To determineJ({6},{q;}) for a system withN=3, we
z(,B):Je drydra---dry-;. (A8)  consider the transformation equations

The present work makes it necessary to exppeas a func-

tion of a convenient set of generalized coordinates. These = _ _

coordinates are the three Euler ang{é3 and the(3N-6) ri=RUGri@) i=1,... N-1, (A8)
internal, Cartesian coordinat¢g}. The probabilityp in Eq.

(A5) is now written as

ey where the position vector$ andr; are referred to the inertial
p=——J({6},{0;})de,d6,db;doyday - dogy-e, (A7)  frame and the Eckart frame respectively. In terms of Euler
2p) angles, the rotation matrix 45

whereJ({6},{q;}) is the Jacobian of transformation into the
new coordinates.

C0S6; C0SH3 — sin B, COSH, Sin B3 — cosb, Sin B3 — Sin 6, coSH, COSH; Sin 1 COSH,

RT = sin #; cosé; + cosé; cosh, sin b3 — sin @, sin f; + cosh; CoSh, COSH; — COSH; Sinb, |. (A9)
sin 6, sin 6, sin 6, cos 6y cosb,
|
From the discussion in preceding section, we choose the or 'N_l or 'N_l or :\1-1 _
set{zy-»,Yn-1.Zn-1} t0 be the redundant coordinatéia the Gi= Ty oz i=1,...N-3, (A15)
Eckart frame so that the transformation is ! !
[ o I 1]
{rh oo e = {00,602, 03,1, . 3 X2, Y2 Xn-1) - Ha= I -2 Mo (A16)
(A10) [ IXN-2 FYN-2 PXN-1

The Jacobian determinant of this transformation takes on th@nd
form

[ ort_ort_ort ]
_ - Go= N-1 ZIN-1 TN | (A17)
Y, RT 0 0 - 0 O [ IXN-2 IYN-2 PXn-1
T
Y 0O RO - 0 0 An useful theorem about partitioned matri%?esays that, for
Y 0 0 R -+ 0 0 a square matriM partitioned as
J=del : S SO : ©, (Al11) A B
Yyo3 O O O -+ RT 0O “lc bl (A18)
iz M g s To with A andD beingmX m andn X n, respectively, the deter
| Yn-1 G1 Gy Gg v Gz Go g  TESP Y

minant ofM is given by
where the nonzero:8 3 blocks are defined, in column-vector

— _ca-l
notation, by detM = detA det{D - CA™'B), (A19)
[ | ] provided thatA is invertible. To apply that theorem to Eq.
] (A11), we rearrange and partition the matrix in E§11),
! ! | 1
96, 36, A0, .
A 3 OO R
| 96, 90, 30 | J=det 0 0 0 : i{T 0 Y '
Vo3
S T e b bl
L 06,06,065) T ' 1G1 Gy G3 - Gys| Gy Yy
(A20)
I M2 Mg | : .
i=|l—————|i=1,...N-3, (Al4)  Using Eq.(A19), we transform Eq(A20) into
o Y 9z
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[ N-3 i o N-2 N- N-3 N-2 N-1
Ho (Yn-2— X HiRY) E E vi (i + ) + (Vi j i+ V) el
i=1 i=1 j=i+l i=1 j=i+1 k=j+1
J=det N3 (A21)
FU =), A28
Go (Yn-1— 2 GiRY) ik = i) (A28)
| i=1 ] with
The Jacobian] of Eq. (A21) is a 6X6 determinant and, wi=% (A29)
unfortunately, it cannot be reduced further using E9);
none of its blocks is invertible. Except fd&f=3, direct ex- 1 =G XF) (X)), (A30)
pansion is hindered by an overwhelming number of terms.
For example, ifM represents the largest number of terms inand
one of the 36 elements of EGA21), then an upper limit to o= 15 - G X BT - (ry X r]. (A31)

the total number of terms after the expansiorf@x 6!)M,

which amounts to 21 600 favi=5. To circumvent that prob-

lem, we first expresd as a determinant of 6, 6-dimensional
J=def a; a, a3 (a4—

R,
I

(A22)
wherea, is the left most column vector in E¢A21), a, is
the next six-dimensional column vector in E&21), and so
on. We then use the multilinearity property of determinéhts
to write

N-3 N-3

as— 2 G
i=1 i=1
N-3

_Zd

N-3 N-3 N-3
J= defa; a; a3 a; Bvil, (A23)
j=0 k=0 1=0
where
ay=a,, a;=-Db, (A24)
Bo=as, Bi=-¢; (A25)
and
Y0=3, ¥ =-0d;. (A26)

The determinants in EqA23) become tractable by using
Mathematice® The total number of terms in the sum (i
-2)%. Expanding the sum for the first few values Mf we
find thatJ can be recast to yield the expression

(A27)

J=sin@ ﬂ
= 2| 2

where ¢ is the determinant of coefficients of the set
{Zye2,YN-1,Zn-1)- The functiond is the part of the Jacobian

The vectors have been defined in E¢A2).
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