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Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between
charges, ions, random dipole—random dipole (Keesom), random dipole—induced dipole (Debye) are due to electrostatic effects;
covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum
mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction
is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects
is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic
field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer
and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir
energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and
Pitaevskii (DLP), we have solved the problem without having to use methods from quantum field theory that DLP resorted to.
Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir
energy/pressure in dissipative media.

1. Introduction

The phenomena of adhesion and cohesion play an important
role in many areas of science of technology; they are respon-
sible for stiction inmicroelectromechanical (MEMS) devices,
leading to their failure; microbial adhesion is responsible
for the formation of biofilms, which have beneficial as
well as detrimental effects; they contribute to friction and
wear between surfaces; other areas include food science,
pharmacology, and locomotion and prey capture by some
animals. Adhesion and cohesion can be loosely defined as
the molecular attraction that holds together surfaces of two
different substances or two identical substances, respectively.
Intermolecular forces responsible for adhesion and cohesion
can be classified according to their origins; some forces
are of pure electrostatic origin arising out of interactions
between charges, ions, random dipole—random dipole (Kee-
som), random dipole—and induced dipole (Debye); quan-
tummechanical effects give rise to covalent bonding, London
dispersion forces between fluctuating dipoles, and Lewis

acid-base interactions; pressure and osmotic forces are of
entropic origin [1]. Of all these interactions, the London
dispersion (it is so-named because of its relation to the
dispersion of light in the visible and UV portion of the
spectrum) interaction is universal and exists between all types
of atoms as well as macroscopic objects. The focus of this
paper is on the contribution of dispersive interactions to
cohesion and adhesion between macroscopic objects.

Dispersion forces betweenmacroscopic objects, resulting
from alteration of the quantum and thermal fluctuations of
the electrodynamic field due to the presence of interfaces,
play a significant role in the interactions at micrometer and
nanometer length scales. Hamaker was the first to extend the
concept of London dispersion forces between two atoms to
forces between macroscopic spheres separated by vacuum by
pairwise summation of the interaction energy between the
atoms that constitute the spheres [2]. Hamaker established
that the unretarded Casimir force between two half-spaces
separated by a filmof thickness 𝑙 is given by𝐴vdW/6𝜋𝑙

3, where
𝐴vdW is a constant that is now referred to as the Hamaker
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constant. Since the assumption of pairwise additivity is
valid only in the low density limit, alternate theories are
necessary for condensed media. Lifshitz, in his seminal
work [3], outlined a method based on Rytov’s theory of
fluctuational electrodynamics [4] for computing the Casimir
forces between two semi-infinite regions separated by a
vacuumgap. It required calculation of the average value of the
Maxwell stress tensor in the vacuumgap. Lifshitz theory takes
many body effects into account in the continuum limit and
expressions for𝐴vdW can be derived in terms of the frequency
dependent relative dielectric function, 𝜀(𝜔), of the materials
involved. For magnetic materials frequency dependent rela-
tive magnetic permeability, 𝜇(𝜔) of the materials also play a
role. The generalization of Lifshitz’ theory to the case when
the gap between the half-spaces is filled with any dissipative
medium is made surprisingly difficult because of the lack of
definition of the electromagnetic stress tensor for arbitrary
time-varying fields in dissipativemedia (see p. 161 of [5] and p.
263-264 of [6] for discussions on this topic). It was eventually
solved by Dzyaloshinskii et al. (DLP from now on) [5]. They
used the Matsubara diagram technique which was developed
for the solution of thermal equilibrium problems in quantum
many-body theory [5, 7]. This assumption is most practically
reflected in the usage of the so-called Matsubara frequencies
in calculating Casimir energy and pressure. The Matsubara
frequencies take on the form 𝜉

𝑛
= 2𝜋𝑛𝑘

𝐵
𝑇/ℏ (𝑛 = 0, 1, 2, . . .),

where 𝑘
𝐵
is the Boltzmann constant, 2𝜋ℏ is Planck’s constant,

and all objects are at temperature𝑇. VanKampen et al. [8] and
Parsegian and Ninham [9] circumvented the complications
of the DLP method but, in doing so, they had to postulate
that the free energy of an electromagnetic mode at frequency
𝜔
𝑚
is given by 𝑘

𝐵
𝑇 log[sinh(ℏ𝜔

𝑚
/2𝑘

𝐵
𝑇)], even though 𝜔

𝑚

is, in general, complex for dissipative media. Barash and
Ginzburg [6] argued that the above-mentioned form of the
free energy is the right one for electromagnetic fields in
thermal equilibrium with matter [6, 10]. While many authors
have attempted to generalize Lifshitz theory to determe
Casimir pressure in dissipativemedia, they do so by assuming
an expression for the electrodynamic stress tensor [11] or by
defining a Lagrangian density for the electrodynamic field
[12], both of which are debatable for media with dissipation
[13].

A quick survey of chapters 2 and 3 of [14] should convince
the reader that a lot has to be learned, in comparison to
what is necessary to understand Lifshitz theory of Casimir
energy/pressure in vacuum, before one can truly under-
stand the nuances of DLP’s method to calculate Casimir
energy/pressure in dissipative media. Yet the expression
for 𝐴vdW for Casimir/van der Waals forces between two
objects separated by vacuum, obtained by Lifshitz’ method,
is strikingly similar to the expression derived by DLP. Given
the similarity between the expressions of Casimir forces
via the two techniques, the disparity between the relative
simplicity of Lifshitz’ method and the complications of DLP’s
generalization to dissipative media prompted us to look at
this problem more closely. The question we asked ourselves
was as follows: is it not possible to obtain the Casimir
force between two objects separated by a dissipative medium
without having to rely on DLP’s method? We answered

this question in the affirmative and obtained a more, in
our opinion, transparent method for calculating Casimir
energy/pressure in dissipative media [15, 16]. The hallmark
of the method we developed was that we restricted all
calculations of electromagnetic stress tensor to locations in
vacuum, even though the eventual goal was to compute the
Casimir energy/pressure in a dissipative medium.

The outline of the rest of this paper is as follows: in
Section 2, the principle of conservation of energy is used
to relate the Casimir energy and pressure of a multilayer
system of thin films to the Casimir energy/pressure of smaller
units that comprise the multilayer system. In Section 2.1, the
stress tensor is related to the DGF through the fluctuation-
dissipation theorem. A commonly used technique of replac-
ing integration along the real frequency axis (𝜔-axis) by a
summation along the imaginary axis (𝜉-axis) is described
in Section 2.2, along with a discussion of the pros and cons
of both representations. In Section 3, the method developed
in Section 2 is applied to the case of a thin dissipative film
sandwiched between two half-spaces. The contributions of
propagating waves and evanescent waves to the Casimir
energy/pressure in a multilayer system of thin films are
discussed in Section 4. The main points of this paper are
summarized in Section 5.

2. General Formulation of
Casimir/Van Der Waals Energy and
Pressure in Multilayered Media

The concepts of work of adhesion and cohesion are usually
explained with the aid of thought experiments involving
cleaving of two contiguous half-spaces𝐴 and𝐵 (to be referred
to as 𝐴𝐵 from now on) into two half-spaces 𝐴 and 𝐵 at
infinite separation with vacuum between them [1, 17, 18], as
shown in Figure 1(a). The work of adhesion of 𝐴𝐵, 𝑊vac

𝐴𝐵
, is

the energy required to separate 𝐴𝐵 into two half-spaces 𝐴

and 𝐵 at infinite separation with vacuum between them. The
superscript vac is used to indicate that this is the work done
in separating 𝐴 and 𝐵 across a vacuum gap. The work of
adhesion can be related to the three free energies of the three
interfaces 𝐴𝐵, 𝐴𝑉 (𝐴𝑉 refers to 𝑡 half-space of 𝐴 adjacent to
a half-space 𝑓 vacuum), and 𝑉𝐵 as follows:

𝑈
𝐴𝑉

+ 𝑈
𝑉𝐵

= 𝑈
𝐴𝐵

+ 𝑊
vac
𝐴𝐵

, (1)

where 𝑈
𝐴𝑉

, 𝑈
𝑉𝐵
, and 𝑈

𝐴𝐵
are free energies of 𝐴𝑉, 𝑉𝐵, and

𝐴𝐵, respectively. The reverse of the procedure shown in
Figure 1(a), that is, starting from 𝐴𝑉 and 𝑉𝐵 and bringing
them together to form 𝐴𝐵, is shown in Figure 1(b). Free
energy balance for this process corresponds to reorganization
of (1) to the form 𝑈

𝐴𝐵
= 𝑈

𝐴𝑉
+ 𝑈

𝑉𝐵
− 𝑊

vac
𝐴𝐵

, so that
𝑈
𝐴𝐵

can be determined if 𝑈
𝐴𝑉

, 𝑈
𝑉𝐵
, and 𝑊

vac
𝐴𝐵

are known.
While Casimir/van der Waals interactions contribute to the
energy of half-spaces such as 𝐴𝑉, 𝑉𝐵, and 𝐴𝐵, what is
measurable in an experiment is the force between two objects
due to Casimir/van derWaals interactions.The Casimir force
between two objects exists because of the pressure due to
fluctuational electromagnetic waves in the medium between
the two objects. It can be shown that the Casimir pressure
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Figure 1: Configurations of multilayer structures. (a) 𝐴𝐵 split into
two half-spaces𝐴 and𝐵 separated by vacuum. (b) Reverse of process
described in (a). (c) A multilayer system with 𝑁 layers between
two semi-infinite regions 𝐿 and 𝑅. (d) Splitting 𝑁-layer multilayer
system into two subcomponents separated by vacuum.The 𝑧-axis is
perpendicular to the interfaces.

in a half-space of homogeneous material, such as 𝐴 or 𝐵, is
identically equal to zero. So the Casimir force between half-
spaces𝐴 and𝐵 can only bemeasuredwhen they are separated
by a film of finite thickness between them. The main insight
of our method is that𝑊vac

𝐴𝐵
can be calculated exactly by using

Rytov’s theory of fluctuational electrodynamics and that
from such calculations the Casimir pressure in a dissipative
material can be determined.

Let us now extend the thought experiments performed in
Figures 1(a) and 1(b) to a general multilayer system consisting
of 𝑁 layers between half-spaces 𝐿 and 𝑅, as shown in
Figure 1(c). The goal is to express the Casimir free energy of
the system in terms of combinations of Casimir free energy
of smaller units and the work of adhesion necessary to bring
those two smaller units into contact.The Casimir free energy
per unit area of the configuration shown in Figure 1(c) is
represented by𝑈

𝐿𝑅
(𝑧
1
, . . . , 𝑧

𝑁
). Each layer is characterized by

not only the thickness 𝑧
𝑘
but also the frequency dependent

complex permittivity, 𝜀
𝑘
(𝜔), and permeability, 𝜇

𝑘
(𝜔) (both

relative to that of vacuum). We use the aforementioned
notation for free energy for its efficiency. If one of the semi-
infinite media is vacuum, the subscript𝑉 is used instead of 𝐿

or𝑅.𝑈
𝐿𝑅

(𝑧
1
, . . . , 𝑧

𝑁
) can be written as a combination of three

terms: (1) the free energy of the first 𝑘 layers sandwiched by
semi-infinite medium 𝐿 to the left and vacuum to the right
of the 𝑘th layer, 𝑈

𝐿𝑉
(𝑧
1
, . . . , 𝑧

𝑘
), (2) the free energy of the

remaining𝑁−𝑘 layers sandwiched by semi-infinite medium
𝑅 to the right and vacuum to the left of the (𝑘 + 1)th layer,
𝑈
𝑉𝑅

(𝑧
𝑘+1

, . . . , 𝑧
𝑁
), and (3) the work done in bringing the two

systems from infinite separation to a separation 𝛿 → 0, that
is, the work of adhesion. This statement can be written as

𝑈
𝐿𝑅

(𝑧
1
, . . . , 𝑧

𝑁
)

= 𝑈
𝐿𝑉

(𝑧
1
, . . . , 𝑧

𝑘
)

+ 𝑈
𝑉𝑅

(𝑧
𝑘+1

, . . . , 𝑧
𝑁
) − lim

𝛿→0

∫

∞

𝛿

𝑇
avg
𝑧𝑧

(𝑧V) d𝑧V,

(2)

where 𝑇
avg
𝑧𝑧

(𝑧V) ≡ 𝑇
avg
𝑧𝑧

(𝑧
1
, . . . , 𝑧

𝑘
, 𝑧V, 𝑧𝑘+1, . . . , 𝑧𝑁) is the

Casimir pressure in the vacuum region in Figure 1(d) and
lim

𝛿→0
∫
∞

𝛿
𝑇
avg
𝑧𝑧

(𝑧V)d𝑧V = 𝑊
vac
𝐿𝑅

is the work of adhesion to
create the 𝑁 layer system from the two subsystems. The
partial derivative 𝜕𝑈

𝐿𝑅
(𝑧
1
, . . . , 𝑧

𝑁
)/𝜕𝑧

𝑟
= 𝑝

(𝑟)

𝐿𝑅
(𝑧
1
, . . . , 𝑧

𝑁
)

gives the Casimir pressure in the 𝑟th layer of the 𝑁 layer
system bounded by 𝐿 and 𝑅. For a thin film bounded by two
semi-infinite regions, we drop the superscript (𝑟) and denote
the pressure simply as 𝑝

𝐿𝑅
. By differentiating (2) with respect

to 𝑧
𝑟
, we obtain the following equation for 𝑝(𝑟)

𝐿𝑅
:

𝑝
(𝑟)

𝐿𝑅
(𝑧
1
, . . . , 𝑧

𝑁
)

=
𝜕𝑈

𝐿𝑉

𝜕𝑧
𝑟

(𝑧
1
, . . . , 𝑧

𝑘
)

+
𝜕𝑈

𝑉𝑅

𝜕𝑧
𝑟

(𝑧
𝑘+1

, . . . , 𝑧
𝑁
) − ∫

∞

0

𝜕𝑇
avg
𝑧𝑧

𝜕𝑧
𝑟

(𝑧V) d𝑧V.

(3)

One of the first two terms on the rhs of (3) is zero, depending
on whether 1 ≤ 𝑟 ≤ 𝑘 or 𝑘 + 1 ≤ 𝑟 ≤ 𝑁. Though 𝑇

avg
𝑧𝑧

(𝑧V)

diverges as 𝑧−3V for 𝑧V → 0, the quantity 𝜕𝑇
avg
𝑧𝑧

/𝜕𝑧
𝑟
is finite as

𝑧V → 0 ∀1 ≤ 𝑟 ≤ 𝑁, allowing us to define the partial deriva-
tive of the last term in (2) as the integral ∫∞

0
𝜕𝑇

avg
𝑧𝑧

/𝜕𝑧
𝑟
d𝑧V (see

[15] for details). 𝑇avg
𝑧𝑧

(𝑧V) is obtained simply by determining
the 𝑧𝑧 component of theMaxwell stress tensor in the vacuum
region. Using the procedure described above, we can write
the Casimir free energy of any 𝑁 layer medium in terms
of 𝑈

𝑉𝑉
(𝑧
1
), 𝑈

𝑉𝑉
(𝑧
2
), . . ., and 𝑈

𝑉𝑉
(𝑧
𝑁
) and contributions

from terms of the form ∫
𝛿

∞
𝑇
avg
𝑧𝑧

(𝑧V)d𝑧V, all of which involve
calculation of the Maxwell stress tensor in vacuum alone.
𝑈
𝑉𝑉

(𝑧) is nothing but the Casimir free energy to create a thin
film of thickness 𝑧 in free space.

2.1. Relation between 𝑇
avg
𝑧𝑧

and Dyadic Green’s Functions. We
rely on Rytov’s theory of fluctuational electrodynamics to
determine the value of 𝑇

avg
𝑧𝑧

. Though two objects may be
neutral, the charges within them undergo random vibra-
tions due to thermal fluctuations as well as quantum (or
zero-point) fluctuations. These random vibrations result in
electromagnetic waves and the interactions between the two
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objects because of these waves are described by Rytov’s
theory of fluctuational electrodynamics [4, 19]. Fluctuational
electrodynamics can be thought of as a combination of
quantum mechanics, statistical physics, and macroscopic
electrodynamics. Readers of this journal might be more
familiar with the usage of fluctuational electrodynamics to
analyze near-field effects in thermal radiative energy transfer
between two objects at two different temperatures or radiative
energy and momentum transfer from a single object (the
other object can be considered at an infinite separation)
[20]. To quantify the source for electromagnetic waves
in conditions of thermal nonequilibrium, the fluctuation-
dissipation (FD) theorem of the second kind [21, 22] is used
to relate the power spectral density of the fluctuation charge
density to the local temperature and the imaginary parts of
the relative dielectric permittivity, 𝜀(𝜔), and relativemagnetic
permeability, 𝜇(𝜔), of the object. The electric and magnetic
fields generated because of any charge distribution can be
written as integrals ofG

𝑒
(r, r󸀠; 𝜔) andG

𝑚
(r, r󸀠; 𝜔), the electric

and magnetic dyadic Green’s functions (DGFs) for the vector
Helmholtz equation [23, 24]. G

𝑒
(r, r󸀠; 𝜔) and G

𝑚
(r, r󸀠; 𝜔) are

electromagnetic duals of each other and are solutions of

∇ × ∇ × G (r, r󸀠; 𝜔) − 𝑘
2G (r, r󸀠; 𝜔) = 𝐼𝛿 (r − r󸀠) , (4)

where 𝐼 is the identity dyad and r and r󸀠 are the position
vectors for observation and source points, respectively. G

𝑒

and G
𝑚

are obtained by enforcing the continuity of (1)
𝜇(r)(n̂×G

𝑒
(r, r󸀠)), (2) n̂×∇×G

𝑒
(r, r󸀠), (3) 𝜀(r)(n̂×G

𝑚
(r, r󸀠)),

and (4) n̂×∇×G
𝑚
(r, r󸀠) on either side of an interface defined

by the unit normal vector n̂ at point r.
Thermal energy transfer between two objects occurs

only when there exists a temperature difference between
them; that is, thermal energy transfer is a nonequilibrium
phenomenon. However, a finite Casimir/van der Waals force
between two objects can exist even when the two objects are
at the same temperature; that is, Casimir forces have a finite
equilibrium contribution. It is this equilibrium contribution
that we are concerned with in this paper.When all objects are
at the same temperature, we can use FD theorem of the first
kind to simplify the problem considerably by directly relating
the cross-spectral power density of the electric and magnetic
field components to the elements of the DGFs as

⟨𝐸
𝑝
(r, 𝜔) 𝐸

∗

𝑞
(r, 𝜔)⟩

𝑠
= 4𝜔𝜇

𝑜
Θ (𝜔, 𝑇) Im𝐺

𝑒,𝑝𝑞
(r, r; 𝜔) ,

(5a)

⟨𝐻
𝑝
(r, 𝜔)𝐻

∗

𝑞
(r, 𝜔)⟩

𝑠
= 4𝜔𝜀

𝑜
Θ (𝜔, 𝑇) Im𝐺

𝑚,𝑝𝑞
(r, r; 𝜔) ,

(5b)

where 𝑝, 𝑞 = 𝑥, 𝑦, 𝑧, Θ = (ℏ𝜔/2) coth(ℏ𝜔/2𝑘
𝐵
𝑇), and

𝐺
𝑒,𝑝𝑞

and 𝐺
𝑚,𝑝𝑞

are the 𝑝𝑞 component of G
𝑒
(r, r󸀠; 𝜔) and

G
𝑚
(r, r󸀠; 𝜔), respectively [25, 26]. The brackets ⟨ ⟩ represent

a quantum statistical mechanical averaging process over all
possible realizations of the fields. The cross-spectral power

density is defined such that the average equal time correlation
function is given by

⟨𝐸
𝑝
(r, 𝑡) 𝐸

𝑞
(r, 𝑡)⟩ = ∫

∞

0

𝑑𝜔

2𝜋
⟨𝐸

𝑝
(r, 𝜔) 𝐸

∗

𝑞
(r, 𝜔)⟩

𝑠
, (6a)

⟨𝐻
𝑝
(r, 𝑡)𝐻

𝑞
(r, 𝑡)⟩ = ∫

∞

0

𝑑𝜔

2𝜋
⟨𝐻

𝑝
(r, 𝜔)𝐻

∗

𝑞
(r, 𝜔)⟩

𝑠
. (6b)

The 𝑝𝑞 component of the average Maxwell stress tensor in
vacuum is given by

𝑇
avg
𝑝𝑞

= 𝜀
0
(⟨𝐸

𝑝
(r, 𝑡) 𝐸

𝑞
(r, 𝑡)⟩ −

1

2
⟨𝐸

𝑝
(r, 𝑡) 𝐸

𝑝
(r, 𝑡)⟩)

+ 𝜇
0
(⟨𝐻

𝑝
(r, 𝑡)𝐻

𝑞
(r, 𝑡)⟩ −

1

2
⟨𝐻

𝑝
(r, 𝑡)𝐻

𝑝
(r, 𝑡)⟩) ,

(7)

where repeated indices imply summation over that index.
For the multilayered media shown in Figure 1, only the 𝑧𝑧

component (𝑧-axis is perpendicular to the plane of the thin
films) of the stress tensor is necessary. The 𝑧𝑧 component
of the Maxwell stress tensor in vacuum can be expressed in
terms of G

𝑒
and G

𝑚
as [25, 26]

𝑇
avg
𝑧𝑧

= ∫

∞

0

ℏ𝜔
2

𝜋𝑐2
coth(

ℏ𝜔

2𝑘
𝐵
𝑇
) Im𝐺 (𝜔) d𝜔, (8)

where 𝐺(𝜔) = (1/2)(𝐺
𝑒,𝑧𝑧

(r, r; 𝜔) − 𝐺
𝑒,𝑥𝑥

(r, r; 𝜔) − 𝐺
𝑒,𝑦𝑦

(r,
r; 𝜔)) + (1/2)(𝐺

𝑚,𝑧𝑧
(r, r; 𝜔) − 𝐺

𝑚,𝑥𝑥
(r, r; 𝜔) − 𝐺

𝑚,𝑦𝑦
(r, r; 𝜔)).

𝑇
avg
𝑧𝑧

and 𝐺(𝜔) are independent of the location, r, at which
the stress tensor is calculated, in accordance with the law
of conservation of linear momentum. For the multilayer
structure in Figure 1(d), 𝐺(𝜔) at any location within the
vacuumcavity can bewritten as𝐺(𝜔) = 𝐺

0
(𝜔)+𝐺sc(𝜔).𝐺

0
(𝜔)

is the contribution due to background or source radiation
that would have been present even in the absence of any
boundaries. 𝐺sc(𝜔) is the contribution from waves that are
scattered by the various interfaces.𝐺

0
(𝜔) and𝐺sc(𝜔) are given

by

𝐺
0 (𝜔) =

𝑖𝑐
2

2𝜋𝜔2
∫

∞

0

d𝑘
𝜌
𝑘
𝑧V𝑘𝜌 ∑

𝑝=𝑒,ℎ

1, (9a)

𝐺sc (𝜔) =
−𝑖𝑐

2

2𝜋𝜔2
∫

∞

0

d𝑘
𝜌
𝑘
𝑧V𝑘𝜌 ∑

𝑝=𝑒,ℎ

𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
𝑖2𝑘
𝑧V𝑧V

1 − 𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
𝑖2𝑘
𝑧V𝑧V

, (9b)

where 𝑝 = 𝑒, ℎ refer to the transverse electric and
transverse magnetic polarizations, respectively, and 𝑘

𝑧V =

√(𝜔2/𝑐2)𝜀V𝜇V − 𝑘2
𝜌
. 𝑅̃(𝑝)V𝐿 (𝑅̃(𝑝)V𝑅 ) is the generalized reflection

coefficient for unit amplitude 𝑝-polarized (𝑝 = 𝑒, ℎ) waves
from the vacuum cavity incident at the interface with any
structure to the left (right) of the cavity. See Figure 1(d) for
a pictorial description of 𝑅̃(𝑝)V𝐿 and 𝑅̃

(𝑝)

V𝑅 . 𝑅̃
(𝑝)

V𝐿 is a function of
the magnitude of the in-plane wavevector, 𝑘

𝜌
, the thicknesses

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘
, and properties, 𝜀(𝜔) and 𝜇(𝜔), of the thin films

as well as 𝐿. Similarly, 𝑅̃(𝑝)V𝑅 depends on the properties of the
films and half-space 𝑅 to the right of the vacuum cavity.
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𝑅̃
(𝑝)

V𝐿 and 𝑅̃
(𝑝)

V𝑅 can be determined using the transfer matrix
method [27–29] or a recursive algorithm [30], both of which
are discussed extensively in literature. Clearly, only 𝐺sc(𝜔)

contributes to the Casimir energy/pressure since 𝐺
0
(𝜔) is

independent of dimensions or properties of the constituent
films in the multilayer system of interest.

2.2. Real and Imaginary Frequencies. Though (9b) and (8)
can be used to calculate 𝑇

avg
𝑧𝑧

, they are not usually because
of the rapid oscillations of 𝐺sc(𝜔) due to propagating waves
(0 ≤ 𝑘

𝜌
≤ 𝜔/𝑐). Instead, we use contour integration in

the complex frequency plane (𝜔 − 𝜉 plane) to convert the
integral in (8) into a more convenient sum over poles of the
integrand. Any complex frequency can be identified as 𝜔+𝑖𝜉.
G
𝑒
and G

𝑚
are analytic in the region 𝜉 ≥ 0 by virtue of

being response functions. Since 𝐺(𝜔) is a linear combination
of different components of G

𝑒
and G

𝑚
, it is also analytic in

the region 𝜉 ≥ 0. In addition, 𝐺(−𝜔) = 𝐺
∗
(𝜔), where ∗

means complex conjugate. The only poles in the complex
frequency plane of the integrand in (8) correspond to the
poles of coth(ℏ𝜔/2𝑘

𝐵
𝑇). The poles lie on the imaginary (𝜉)

axis and are given by 𝜉
𝑛

= 2𝑛𝜋𝑘
𝐵
𝑇/ℏ, 𝑛 = 0, 1, 2, . . .. We

can therefore use contour integration, as was done by Lifshitz
[3], to replace the integral over 𝜔 along the real positive
frequency axis by a summation over Matsubara frequencies
on the imaginary frequency axis as

𝑇
avg
𝑧𝑧

= −
2𝑘
𝐵
𝑇

𝑐2

∞

∑

𝑛=0

󸀠
𝜉
2

𝑛
𝐺 (𝑖𝜉

𝑛
) , (10)

where 𝜉
𝑛

= 2𝜋𝑛𝑘
𝐵
𝑇/ℏ, 𝐾

𝑛
= −2𝜉

2

𝑛
𝐺(𝑖𝜉

𝑛
)/𝑐

2, 𝐾
0

=

−lim
𝜉→0

2𝜉
2
𝐺(r, 𝑖𝜉)/𝑐2, and 𝑛 = 0, 1, 2, . . .. The prime (󸀠) next

to ∑ indicates that the 𝑛 = 0 term is given weight 0.5.
In (8), 𝜔 appears explicitly in the 1/𝜔

2 term as well as
implicitly through the 𝜔-dependence of 𝜀, 𝜇, and 𝑘

𝑧
. The

transformation of relevant functions as one proceeds from
the 𝜔-axis to the 𝜉-axis is shown in Table 1. 𝜀(𝜔) = 𝜀

󸀠
(𝜔) +

𝑖𝜀
󸀠󸀠
(𝜔) and 𝜇(𝜔) = 𝜇

󸀠
(𝜔) + 𝑖𝜇

󸀠󸀠
(𝜔) are complex numbers, the

real and imaginary parts of which are related to each other
through the Kramers-Kronig relations [30, 31]. However,
on the imaginary axis, 𝜀(𝑖𝜉) and 𝜇(𝑖𝜉) are always positive
numbers greater than unity. Since 𝜀 and 𝜇 satisfy identical
properties, the differences between the functions along the𝜔-
axis and the 𝜉-axis are illustrated by plotting two hypothetical
dielectric functions, 𝜀

1
(𝜔) = 1 − (1/(𝜔

2
− 1 + 𝑖0.2𝜔)) and

𝜀
2
(𝜔) = 1 − (1.5/(𝜔

2
− 1.5 + 𝑖0.2𝜔)), that obey Kramer-

Kronig relations along the 𝜔-axis and along the 𝜉-axis. Along
the 𝜉-axis, the dielectric functions take the form 𝜀

1
(𝑖𝜉) =

1 + (1/(𝜉
2
+ 1 + 0.2𝜉)) and 𝜀

2
(𝑖𝜉) = 1 + (1.5/(𝜉

2
+ 1.5 + 0.2𝜉)).

The qualitative differences between the functions 𝜀
1
(𝜔) and

𝜀
2
(𝜔) along the 𝜔-axis and 𝜀

1
(𝑖𝜉) and 𝜀

2
(𝑖𝜉) along the 𝜉-axis

are apparent. The differences between 𝜀
1
(𝜔) and 𝜀

2
(𝜔) along

the𝜔-axis are compressed to a small portion of the 𝜉-axis near
𝜉 → 0.

The 𝑧-component of wavevector, 𝑘
𝑧
(𝜔), is given by

𝑘
𝑧
(𝜔) = √(𝜔2/𝑐2)𝜀(𝜔)𝜇(𝜔) − 𝑘2

𝜌
. Along the 𝜉-axis, 𝑘

𝑧
(𝑖𝜉) is

given by 𝑘
𝑧
(𝑖𝜉) = √−(𝜉2/𝑐2)𝜀(𝑖𝜉)𝜇(𝑖𝜉) − 𝑘2

𝜌
= 𝑖𝛽

𝑧
(𝑖𝜉) and

𝛽
𝑧
(𝑖𝜉) = √(𝜉2/𝑐2)𝜀(𝑖𝜉)𝜇(𝑖𝜉) + 𝑘2

𝜌
≥ (𝜉/𝑐)√𝜀(𝑖𝜉)𝜇(𝑖𝜉). The

phase variation along the 𝑧-direction along the 𝜔-axis,
𝑒
𝑖𝑘
𝑧
(𝜔)𝑧, is transformed to 𝑒

−𝛽
𝑧
(𝑖𝜉)𝑧 along the 𝜉-axis.

Taking the transformation of relevant functions from the
𝜔-axis to the 𝜉-axis, (9b) is transformed to

𝐺sc (𝑖𝜉𝑛) =
−𝑐
2

2𝜋𝜉2
𝑛

∫

∞

0

d𝑘
𝜌
𝑘
𝜌
𝛽
𝑧V ∑

𝑝=𝑒,ℎ

𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
−2𝛽
𝑧V𝑧V

1 − 𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
−2𝛽
𝑧V𝑧V

.

(11)

Because of the 𝑒
−𝛽
𝑧V(𝑖𝜉)𝑧V factor, all waves, irrespective of

being propagating or evanescent waves, decay with 𝑧V. The
oscillations that pose numerical difficulties in the integration
of (8) are eliminated, making computations along the 𝜉-
axis preferable to the usual computations along the 𝜔-
axis. Despite the computational simplicity, a disadvantage
is that while the power spectral density of 𝑇

avg
𝑧𝑧

can be
obtained directly from the integrand of (8), to do so from
(10) is not straightforward. Possibly more important is that
the distinction between propagating waves and evanescent
waves, which is clear because 𝑘

𝑧V is real for propagating
waves and imaginary for evanescent waves, is eliminated
because all waves decay with 𝑧 along the 𝜉-axis. How we can
allocate Casimir pressure/energy between propagating and
evanescent waves is unclear when we rely on computations
along the 𝜉-axis. In Section 3, we will apply this method to
calculating Casimir pressure in a thin film (indicated by 𝑚)
bounded by two semi-infinite objects, 𝐿 and 𝑅, as shown in
Figure 2. In Section 4, we will use (8) and (9b) to investigate
the contributions of propagating waves and evanescent waves
to the Casimir energy/pressure in planar dissipative media.

3. Casimir/Van Der Waals Pressure in
Thin Films

We start with the assertion that the Casimir pressure in any
infinite or semi-infinite planar medium is zero. To solve for
the Casimir pressure in the dissipative thin film 𝑚, we will
perform a free energy balance for the three problems marked
P1, P2, and P3 in Figure 2. Each problem has an initial and
a final configuration. Equation (8) or (10) can be used to
determine the pressure against which work needs to be done
and the work of adhesion (or cohesion) required to affect
the change from the initial to final configuration in each of
the problems. The conservation of energy for each of the
problems is given below:

P1: 𝑈
𝐿𝑉

(𝑧
𝑚
) = 𝑈

𝑉𝑉
(𝑧
𝑚
) − lim

𝛿→0

∫

∞

𝛿

𝑇
avg,1
𝑧𝑧

d𝑧V, (12a)

P2: 𝑈
𝐿𝑅

(𝑧
𝑚
) = 𝑈

𝐿𝑉
(𝑧
𝑚
) − lim

𝛿→0

∫

∞

𝛿

𝑇
avg,2
𝑧𝑧

d𝑧V, (12b)

P3: 0 = 𝑈
𝑉𝑉

(𝑧
𝑚
) − lim

𝛿→0

∫

∞

𝛿

𝑇
avg,3
𝑧𝑧

d𝑧V. (12c)

The lhs and rhs of (12a) and (12b) correspond to the free
energy of the final and initial configurations of P1 and P2,
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Table 1: Common function in real and imaginary space.

Real axis Imaginary axis Comments
Frequency 𝜔 𝑖𝜉

𝑛 𝜔 ∈ (0,∞), 𝜉
𝑛
= 2𝜋𝑛𝑘

𝐵
𝑇/ℎ, 𝑛 = 0, 1, 2, . . .

Electrical permittivity 𝜀(𝜔) 𝜀(𝑖𝜉
𝑛
)

𝜀
󸀠󸀠
(𝜔) ≥ 0, −∞ < 𝜀

󸀠
(𝜔) < ∞, 𝜀(𝑖𝜉

𝑛
) ≥ 1 ∀𝜉

𝑛
,

𝜀V(𝜔) = 𝜀V(𝑖𝜉𝑛) = 1 ∀𝜔, 𝜉
𝑛

Magnetic permeability 𝜇(𝜔) 𝜇(𝑖𝜉
𝑛
)

𝜇
󸀠󸀠
(𝜔) ≥ 0, −∞ < 𝜇

󸀠
(𝜔) < ∞, 𝜇(𝑖𝜉

𝑛
) ≥ 1 ∀𝜉

𝑛
,

𝜇V(𝜔) = 𝜇V(𝑖𝜉𝑛) = 1 ∀𝜔, 𝜉
𝑛

In-plane wavevector k
𝜌

k
𝜌 Phase variation in 𝑥𝑦 plane is 𝑒𝑖k𝜌 ⋅r𝑖𝑛

Out-of-plane wavevector 𝑘
𝑧
(𝜔) 𝛽

𝑧
(𝑖𝜉)

𝑘
𝑧
(𝜔) = √

𝜔
2

𝑐2
𝜀(𝜔)𝜇(𝜔) − 𝑘2

𝜌

𝛽
𝑧
(𝑖𝜉) = √

𝜉
2

𝑐2
𝜀(𝑖𝜉)𝜇(𝑖𝜉) + 𝑘2

𝜌

Phase variation in 𝑧-direction 𝑒
𝑖𝑘
𝑧
𝑧

𝑒
−𝛽
𝑧
𝑧 In vacuum, 𝑘

𝑧
(𝜔)is a real number for PWa and

imaginary for EWb. 𝛽
𝑧
(𝑖𝜉) is always positive ∀𝜉

aPropagating wave.
bEvanescent wave.

L

L

L

L

L
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Initial configuration

V

V
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m
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zm

m

m
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Final (L-m-R)

Final (m-V)

L-m-R

Figure 2:Method proposed byZheng andNarayanaswamy [15]. To solve the equilibriumCasimir energy/pressure in the thin film surrounded
by two half planes, we proceed from problem P1 to problem P2, at the end of which we arrive at the thin film surrounded by two half planes.
Problem P3 needs to be solved to determine𝑈

𝑉𝑉
(𝑧
𝑚
) and 𝑝

𝑉𝑉
(𝑧
𝑚
).The “initial configuration” for all three problems corresponds to 𝑧V → ∞.
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respectively. In P3, the initial configuration corresponds to
a half-space of 𝑚 and a film of 𝑚 at infinite separation from
each other.The final configuration is a half-space of𝑚. Hence
the free energies of the two half-spaces cancel each other,
leaving only the free energy of the film, 𝑈

𝑉𝑉
(𝑧
𝑚
), and the

work done in brings the two objects together as the two terms
in (12c). In (12a)𝑈

𝑉𝑉
(𝑧
𝑚
) as well as𝑈

𝐿𝑉
(𝑧
𝑚
) are unknown; in

(12b) 𝑈
𝐿𝑉

(𝑧
𝑚
) and 𝑈

𝐿𝑅
(𝑧
𝑚
) are unknown; in (12c) 𝑈

𝑉𝑉
(𝑧
𝑚
)

is the only unknown. 𝑇
avg,1
𝑧𝑧

, 𝑇
avg,2
𝑧𝑧

, and 𝑇
avg,3
𝑧𝑧

can all be
calculated using (8). Differentiating (12a), (12b), and (12c)
with respect to 𝑧

𝑚
, we obtain the following equations for the

Casimir pressure (rearranged in the order in which the three
problems should be solved):

P3: 𝑝
𝑉𝑉

(𝑧
𝑚
) = ∫

∞

0

𝜕𝑇
avg,3
𝑧𝑧

𝜕𝑧
𝑚

d𝑧V, (13a)

P1: 𝑝
𝐿𝑉

(𝑧
𝑚
) = 𝑝

𝑉𝑉
(𝑧
𝑚
) − ∫

∞

0

𝜕𝑇
avg,1
𝑧𝑧

𝜕𝑧
𝑚

d𝑧V, (13b)

P2: 𝑝
𝐿𝑅

(𝑧
𝑚
) = 𝑝

𝐿𝑉
(𝑧
𝑚
) − ∫

∞

0

𝜕𝑇
avg,2
𝑧𝑧

𝜕𝑧
𝑚

d𝑧V. (13c)

𝑇
avg,1
𝑧𝑧

, 𝑇avg,2
𝑧𝑧

, 𝑇avg,3
𝑧𝑧

can be evaluated using (10) and the details
are given in [15]. We give only the final result here for the
Casimir pressure in the thin film surrounded by 𝐿 and 𝑅:

𝑝
𝐿𝑅

(𝑧
𝑚
) =

𝑘
𝐵
𝑇

𝜋𝑐3

∞

∑

𝑛=0

󸀠
(𝜀
𝑚
𝜇
𝑚
)
3/2

𝜉
3

𝑛
∫

∞

1

d𝑞𝑞2

× ∑

𝑝=𝑒,ℎ

𝑅
(𝑝)

𝑚𝐿
𝑅
(𝑝)

𝑚𝑅
𝑒
−2𝑞𝜉
𝑛√𝜀𝑚𝜇𝑚𝑧𝑚/𝑐

1 − 𝑅
(𝑝)

𝑚𝐿
𝑅
(𝑝)

𝑚𝑅
𝑒−2𝑞𝜉𝑛√𝜀𝑚𝜇𝑚𝑧𝑚/𝑐

,

(14)

where 𝑞 = 𝛽
𝑧𝑚

/(𝜉
𝑛
√𝜀

𝑚
(𝑖𝜉
𝑛
)𝜇
𝑚
(𝑖𝜉
𝑛
)/𝑐). Equation (14) agrees

with the expression forCasimir pressure in a thin film accord-
ing to DLP [5, 32]. The only complication in extending this
method tomultilayeredmedia is to determine the appropriate
reflection and transmission coefficients [30, 33] and solve
more problems instead of just three for the configuration
shown in Figure 2. In general, for a multilayer structure with
𝑁 films between 𝐿 and 𝑅 (see Figure 1(c)), we will need
to solve 2𝑁 + 1 problems (𝑁 problems of finding work of
cohesion similar to P3 and𝑁+1 problems of finding work of
adhesion similar to P1 and P2).

4. Role of Propagating and Evanescent
Waves in Casimir Energy/Pressure in
Dissipative Media

The dependence of the work of adhesion, 𝑊
vac
𝐿𝑅

=

lim
𝛿→0

∫
∞

𝛿
𝑇
avg
𝑧𝑧

d𝑧V, between any two subsystems of a
planar multilayer object on the properties and thicknesses
of the constituent films arises entirely through Δ sc(𝜔) =

lim
𝛿→0

∫
∞

𝛿
𝐺sc(𝜔)d𝑧V. The implication of splitting 𝐺(𝜔) into

𝐺
0
(𝜔) and 𝐺sc(𝜔) is illustrated in Figure 3 by referring to

the cavity in problem P1 of Figure 2. The work of adhesion

L m

z�

Vacuum cavity

Scattered waves

Source
radiation

Source
radiation

Figure 3: Contributions to electromagnetic stress tensor in the
vacuum cavity and the vacuum half-space to the left and the right,
respectively, of the thin film. Within the cavity, source radiation as
well as scattered radiation contribute to stress tensor. To the right of
the thin film, only source radiation contributes to the stress tensor.

in problem P1 is the work done in translating the film in
Figure 3 from 𝑧V → 0 to 𝑧V → ∞. In this case, the net force
per unit area on the film is obtained by integrating the 𝑧𝑧

component of the stress tensor on either side of the thin film.
Within the cavity, both 𝐺

0
(𝜔) and 𝐺sc(𝜔) contribute to the

stress tensor. To the right of the thin film, scattered waves,
though present, do not contribute to the stress tensor and
𝐺(𝜔) = 𝐺

0
(𝜔). The contributions to the stress tensor from

𝐺
0
(𝜔) on either side of the thin film cancel each other, and

the net force on the thin film is dependent only on 𝐺sc(𝜔).
Should the thin film be replaced by a half-space, the force
per unit are can be determined in two ways: (1) assume
that the half-space is a film of finite thickness and take the
limit as that thickness approaches infinity or (2) consider
only the stress tensor within the cavity, keeping in mind
that 𝐺

0
(𝜔) does not contribute to Casimir energy/pressure

because it is not a function of thickness or optical properties
of any constituent materials. In either case, the force that
is responsible for Casimir energy/pressure arises only from
𝐺sc(𝜔).

The integral expression for 𝐺sc(𝜔) can be split into
𝐺
PW
sc (𝜔), due to propagating waves in vacuum (0 ≤ 𝑘

𝜌
< 𝜔/𝑐)

and𝐺
EW
sc (𝜔), due to evanescent waves in vacuum (𝜔/𝑐 ≤ 𝑘

𝜌
<

∞). The contributions of propagating and evanescent waves
are proportional to Δ

PW
sc (𝜔) = lim

𝛿→0
∫
∞

𝛿
Im𝐺

PW
sc (𝜔)d𝑧V

and Δ
EW
sc (𝜔) = lim

𝛿→0
∫
∞

𝛿
Im𝐺

EW
sc (𝜔)d𝑧V, respectively. For

propagating waves 𝑘
𝑧V is a real number whereas it is an

imaginary number given by 𝑘
𝑧V = 𝑖|𝑘

𝑧V| = 𝑖𝐾
𝑧V for evanescent

waves. The expressions for 𝐺PW
sc (𝜔) and 𝐺

EW
sc (𝜔) are given by

𝐺
PW
sc (𝜔) =

−𝑖𝑐
2

2𝜋𝜔2
∫

𝜔/𝑐

0

d𝑘
𝜌
𝑘
𝑧V𝑘𝜌 ∑

𝑝=𝑒,ℎ

𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
𝑖2𝑘
𝑧V𝑧V

1 − 𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
𝑖2𝑘
𝑧V𝑧V

,

(15a)

𝐺
EW
sc (𝜔)

=
𝑐
2

2𝜋𝜔2
∫

∞

𝜔/𝑐

d𝑘
𝜌
𝐾
𝑧V𝑘𝜌 ∑

𝑝=𝑒,ℎ

𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
−2𝐾
𝑧V𝑧V

1 − 𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
−2𝐾
𝑧V𝑧V

.

(15b)
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Since𝐺EW
sc (𝜔) is a decaying function of 𝑧V, (15b) can be readily

integrated with respect to 𝑧V to yield the following equation:

Δ
EW
sc (𝜔) =

𝑐
2

4𝜋𝜔2
lim
𝛿→0

∫

∞

𝜔/𝑐

d𝑘
𝜌
𝑘
𝜌

× Im ∑

𝑝=𝑒,ℎ

ln (1 − 𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
−2𝐾
𝑧V𝛿) .

(16)

To compute Δ
PW
sc (𝜔), we use the multiple-reflection expan-

sion of the factor (1 − 𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
𝑖2𝑘
𝑧V𝑧V)

−1 to rewrite (15a) as

𝐺
PW
sc (𝜔)

=
−𝑖𝑐

2

2𝜋𝜔2
∫

𝜔/𝑐

0

d𝑘
𝜌
𝑘
𝑧V𝑘𝜌 ∑

𝑝=𝑒,ℎ

∞

∑

𝑛=1

(𝑅̃
(𝑝)

V𝐿 𝑅̃
(𝑝)

V𝑅 𝑒
𝑖2𝑘
𝑧V𝑧V)

𝑛

.

(17)

For propagating waves, lim
𝛿→0

can be replaced by 𝛿 = 0

without incurring any error. Since ∫
∞

0
𝑒
𝑖𝑥d𝑥 = 0, it can be

seen from (17) that ΔPW
sc (𝜔) ≡ 0. The implication of the result

Δ
PW
sc (𝜔) ≡ 0 is that propagating waves do not contribute to

the Casimir energy or pressure in a multilayer system with only
dissipative thin films. However, this claim is invalid if any of
the thin films in the multilayer system, say, the film 𝑘 + 1 in
Figure 1(c), is a vacuum layer. Though the method described
until now is applicable to this case too, (2) can be simplified
to take into account the presence of the vacuum layer to yield
the following:

𝑈
𝐿𝑅

(𝑧
1
, . . . , 𝑧

𝑁
)

= 𝑈
𝐿𝑉

(𝑧
1
, . . . , 𝑧

𝑘
)

+ 𝑈
𝑉𝑅

(𝑧
𝑘+2

, . . . , 𝑧
𝑁
) − ∫

∞

𝑧
𝑘+1

𝑇
avg
𝑧𝑧

(𝑧V) d𝑧V.

(18)

The integration of 𝑇avg
𝑧𝑧

now proceeds only from 𝑧
𝑘+1

to ∞,
instead of from 𝑧V → 0 to ∞, because of which there is a
finite contribution from propagating waves too. Propagating
waves contribute to Casimir energy/pressure only if at least one
of the thin films is a vacuum layer. It should be kept in mind
that classifying a plane wave as propagating or evanescent is
based on the nature of the plane wave in vacuum.

5. Summary

Casimir/van der Waals energy and pressure in macroscopic
objects arise due to the modifications of zero-point and
thermal fluctuations of the electromagnetic field due to
the presence of interfaces. Though Lifshitz’ original work
on Casimir/van der Waals forces between two half-spaces
separated by a vacuum gap relies on Rytov’s theory of
fluctuational electrodynamics, the generalization to Casimir
energy/pressure in dissipative media by Dzyaloshinskii, Lif-
shitz, and Pitaevskii was possible only by using techniques
from quantum field theory. Possibly because of this high bar
imposed byDLP’smethod, notmany have explored the limits
or alternatives to DLP’s method. The condition of thermal

equilibrium has to be satisfied for the applicability of DLP’s
method. Thermal nonequilibrium contributions to Casimir
pressure, which could be important in applications like
heat assisted magnetic recording because of the temperature
differences between the region heated by the focused laser
spot and the rest of the body, cannot be determined using
DLP’s method.

In a multilayer system composed of planar films Casimir
energy/pressure in a dissipative thin film can also be deter-
mined by computing the works of cohesion or adhesion
in creating the multilayer system from component thin
films. Unlike DLP’s method, in which the total Casimir
energy/pressure is calculated by summation over discrete
Matsubara frequencies along the imaginary frequency axis
(𝜉-axis), the method described in this paper can proceed
as integration over the real frequency axis (𝜔-axis) or sum-
mation over the imaginary frequency axis. The advantage
of working with real frequencies is that the division into
propagating and evanescent waves based on themagnitude of
the in-plane wavevector is unambiguous. By dividing the fre-
quency spectrum of the average stress tensor in the vacuum
cavity into contributions from propagating and evanescent
waves, it can be shown that the Casimir energy/pressure
in a multilayer system of planar films with only dissipative
materials is only due to evanescent waves. Propagating waves
contribute to the Casimir energy/pressure only if at least
one of the constituent films is vacuum. Extension of the
technique described in this paper to objects of general shapes
and to thermal nonequilibrium conditions will help us better
understand Casimir energy/pressure in dissipative materials
[34, 35] and the Casimir-Lifshitz forces between coated
nanosurfaces [36].

Nomenclature

𝐸
𝑖
: Component of electric field in 𝑖 direction

(𝑖 = 𝑥, 𝑦, 𝑧 in Cartesian coordinate)
(Vm−1)

G
𝑒
: Electric dyadic Green’s function (m−1)

G
𝑚
: Magnetic dyadic Green’s function (m−1)

𝐺
𝑒,𝑝𝑞

: 𝑝𝑞 component of electric dyadic Green’s
function (𝑝, 𝑞 = 𝑥, 𝑦, 𝑧) (m−1)

𝐺
𝑚,𝑝𝑞

: 𝑝𝑞 component of magnetic dyadic Green’s
function (𝑝, 𝑞 = 𝑥, 𝑦, 𝑧) (m−1)

𝐺: Factor in 𝑧𝑧 component of stress tensor in
vacuum that arises from dyadic Green’s
functions (m−1)

𝐺
0
: Portion of 𝐺(𝜔) that is independent of

properties of thin films that make up the
multilayer stack (m−1)

𝐺sc: Portion of 𝐺(𝜔) that depends on
properties of thin films that make up the
multilayer stack (𝐺 = 𝐺

0
+ 𝐺sc) (m

−1)
𝐺
PW
sc : Contribution to 𝐺sc from propagating

waves (m−1)
𝐺
EW
sc : Contribution to 𝐺sc from evanescent

waves (m−1)
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𝐻
𝑖
: Component of magnetic field in 𝑖 direction

(𝑖 = 𝑥, 𝑦, 𝑧) (Am−1)
𝐾
𝑧V: Imaginary part of 𝑘

𝑧V for evanescent waves
(radm−1)

𝑅̃
(𝑝)

𝑋𝑌
: Generalized reflection coefficient for unit
amplitude 𝑝-polarized (𝑝 = 𝑒, ℎ) from region
𝑋 to region 𝑌

𝑇: Temperature (K)
𝑇
avg
𝑧𝑧

: Maxwell stress tensor of 𝑧𝑧 component
(Nm−2)

𝑈
𝑋𝑌

: Free energy of two contiguous half-spaces𝑋
and 𝑌 (Jm−2)

𝑊
vac
𝑋𝑌

: Work required to separate𝑋𝑌 into two
multilayered systems𝑋 and 𝑌 at infinite
separation with vacuum in between (Jm−2)

𝑐: Speed of light (2.998 × 10
8ms−1)

ℏ: Reduced Planck’s constant (1.055 × 10
−34 J s)

𝑘: Wavevector (radm−1)
𝑘
𝐵
: Boltzmann’s constant (1.381 × 10

−23 J K−1)
𝑘
𝑖
: Component of wavevector in 𝑖 direction

(𝑖 = 𝑥, 𝑦, 𝑧) (radm−1)
𝑘
𝜌
: √𝑘2

𝑥
+ 𝑘2

𝑦
(radm−1)

𝑛: Unit normal vector
𝑝
(𝑟)

𝑋𝑌
: Casimir/van der Waals pressure in 𝑟th layer
between region𝑋 and 𝑌 (Nm−2)

𝑧
𝑚
: Thickness of a dissipative𝑚th layer (m)

𝑧V: Thickness of a vacuum layer (m).

Greek Symbols

𝛽
𝑧
: Imaginary part of 𝑧 component of

wavevector for evanescent wave (radm−1)
𝜀(𝜔): Relative frequency dependent permittivity,

𝜀(𝜔) = 𝜀
󸀠
(𝜔) + 𝑖𝜀

󸀠󸀠
(𝜔)

𝜀
𝑜
: Permittivity of free space

(8.854 × 10
−12 Fm−1)

Θ: Energy of a photon at temperature 𝑇 (J)
𝜇(𝜔): Relative frequency dependent

permeability, 𝜇(𝜔) = 𝜇
󸀠
(𝜔) + 𝑖𝜇

󸀠󸀠
(𝜔)

𝜇
𝑜
: Permeability of free space

(1.257 × 10
−6Hm−1)

𝜉: Frequency along imaginary axis (rad s−1)
𝜉
𝑛
: 𝑛th Matsubara frequency, 𝜉

𝑛
= 2𝜋𝑛𝑘

𝐵
𝑇/ℏ

(rad s−1)
𝜔: Frequency along real axis (rad s−1).

Superscripts

EW: Evanescent wave
PW: Propagating wave
avg: Total stress tensor of a system
vac: Vacuum
(𝑝): Polarization. 𝑝 = 𝑒: transverse electric

wave; 𝑝 = ℎ: transverse magnetic wave
(𝑟): Layer number
∗: Complex conjugate.

Subscripts

𝐴𝐵: Two contiguous half-spaces of different
materials

𝐿𝑅: Two half-spaces 𝐿 and 𝑅 with planar thin
films between them

𝑒: Electric field
𝑚: Magnetic field
𝑛: 0, 1, 2, . . .

𝑝𝑞: Component of dyadic Green’s function,
𝑝, 𝑞 = 𝑥, 𝑦, 𝑧

𝑟: Layer number
sc: Wave scattering
vdW: van der Waals
𝑧: 𝑧 component of wavevector
𝑧𝑧: 𝑧𝑧 component of Dyadic Green’s function
𝜌: 𝑥𝑦 plane perpendicular to 𝑧 direction
0: Source radiation.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. N. Israelachvili, Intermolecular and Surface Forces, Academic
Press, 3rd edition, 2011.

[2] H. C. Hamaker, “The London-van derWaals attraction between
spherical particles,” Physica, vol. 4, no. 10, pp. 1058–1072, 1937.

[3] E. Lifshitz, “The theory of molecular attractive forces between
solids,” Soviet Physics—JETP, vol. 2, pp. 73–83, 1956.

[4] S. Rytov, “Theory of electric fluctuations and thermal radiation,”
Tech. Rep. AFCRC-TR-59-162, Air Force Cambridge Research
Center, Bedford, Mass, USA, 1967.

[5] I. E. Dzyaloshinskii, E.M. Lifshitz, and L. P. Pitaevskii, “General
theory of Van Der Waals’ forces,” Soviet Physics Uspekhi, vol. 4,
no. 2, pp. 153–176, 1961.

[6] Y. S. Barash and V. L. Ginzburg, “Expressions for the energy
density and evolved heat in the electrodynamics of a dispersive
and absorptive medium,” Soviet Physics Uspekhi, vol. 19, no. 3,
pp. 263–270, 1976.

[7] L. P. Pitaevskii, “Casimir-Lifshitz forces and entropy,” Inter-
national Journal of Modern Physics A: Particles and Fields,
Gravitation, Cosmology, vol. 25, no. 11, pp. 2313–2318, 2010.

[8] N. G. Van Kampen, B. R. A. Nijboer, and K. Schram, “On the
macroscopic theory of Van der Waals forces,” Physics Letters A,
vol. 26, no. 7, pp. 307–308, 1968.

[9] V. A. Parsegian and B. W. Ninham, “Van der Waals forces in
many-layered structures: generalizations of the lifshitz result for
two semi-infinite media,” Journal of Theoretical Biology, vol. 38,
no. 1, pp. 101–109, 1973.

[10] L. Pitaevskii, “Comment on ‘Casimir force acting on magne-
todielectric bodies embedded in media’,” Physical Review A, vol.
73, Article ID 047801, 2006.

[11] J. Schwinger, J. L. L. DeRaad, and K. A. Milton, “Casimir effect
in dielectrics,” Annals of Physics, vol. 115, no. 1, pp. 1–23, 1978.

[12] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar,
“Scattering theory approach to electrodynamic Casimir forces,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 80, no. 8, Article ID 085021, 2009.



10 Advances in Condensed Matter Physics

[13] L. Landau and E. Lifshitz, Statistical Physics, vol. 24, Pergamon
Press, Oxford, UK, 1980.

[14] A. Abrikosov, Methods of Quantum Field Theory in Statistical
Physics, Courier Corporation, 1975.

[15] Y. Zheng and A. Narayanaswamy, “Lifshitz theory of van der
Waals pressure in dissipative media,” Physical Review A, vol. 83,
Article ID 042504, 2011.

[16] A. Narayanaswamy and Y. Zheng, “van der Waals energy and
pressure in dissipative media: fluctuational electrodynamics
and mode summation,” Physical Review A, vol. 88, Article ID
012502, 2013.

[17] P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and
Surface Chemistry, vol. 14, CRC Press, 1997.

[18] B. E. Sernelius and M. Bostrom, “Comment on ‘casimir force
at both nonzero temperature and finite conductivity’,” Physical
Review Letters, vol. 87, Article ID 259101, 2001.

[19] S. Rytov, Principles of Statistical Radiophysics 3, 1987.
[20] Y. Zheng and A. Ghanekar, “Radiative energy and momentum

transfer for various spherical shapes: a single sphere, a bubble, a
spherical shell, and a coated sphere,” Journal of Applied Physics,
vol. 117, no. 6, Article ID 064314, 2015.

[21] W. Eckhardt, “First and secondfluctuation-dissipation-theorem
in electromagnetic fluctuation theory,”Optics Communications,
vol. 41, no. 5, pp. 305–309, 1982.

[22] H. B. Callen and T. A. Welton, “Irreversibility and generalized
noise,” vol. 83, pp. 34–40, 1951.

[23] Y. Zheng and A. Narayanaswamy, “Patch contribution to near-
field radiative energy transfer and van der Waals pressure
between two half-spaces,” Physical Review A, vol. 89, Article ID
022512, 2014.

[24] A. Narayanaswamy and Y. Zheng, “A Green’s function formal-
ism of energy and momentum transfer in fluctuational electro-
dynamics,” Journal of Quantitative Spectroscopy and Radiative
Transfer, vol. 132, pp. 12–21, 2014.

[25] K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Defini-
tion and measurement of the local density of electromagnetic
states close to an interface,” Physical Review B, vol. 68, no. 24,
Article ID 245405, 2003.

[26] A.Narayanaswamy andG. Chen, “DyadicGreens functions and
electromagnetic local density of states,” Journal of Quantitative
Spectroscopy and Radiative Transfer, vol. 111, no. 12-13, pp. 1877–
1884, 2010.

[27] Z. Zhang, Nano/Microscale Heat Transfer, McGraw-Hill, New
York, NY, USA, 2007.

[28] M. Francoeur and M. P. Mengüç, “Role of fluctuational elec-
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[29] M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-
field thermal radiation in one-dimensional layered media using
dyadic Green’s functions and the scattering matrix method,”
Journal of Quantitative Spectroscopy and Radiative Transfer, vol.
110, no. 18, pp. 2002–2018, 2009.

[30] W. C. Chew, Waves and Fields in Inhomogeneous Media, IEEE
Press, 1995.

[31] J. A. Kong, Electromagnetic WaveTheory, Wiley, New York, NY,
USA, 1986.

[32] D. Gingell and V. A. Parsegian, “Prediction of van der waals
interactions between plastics in water using the Lifshitz theory,”
Journal of Colloid And Interface Science, vol. 44, no. 3, pp. 456–
463, 1973.

[33] V. A. Parsegian, Van der Waals Forces: A Handbook for Biolo-
gists, Chemists, Engineers, and Physicists, Cambridge University
Press, Cambridge, UK, 2006.

[34] M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy,
“Casimir-Lifshitz force out of thermal equilibrium,” Physical
Review A, vol. 77, no. 2, Article ID 022901, 2008.

[35] A. Narayanaswamy and Y. Zheng, “Theory of thermal nonequi-
librium entropy in near-field thermal radiation,” Physical
Review B, vol. 88, Article ID 075412, 2013.

[36] M. Bostrom, B. W. Ninham, I. Brevik, C. Persson, D. F. Parsons,
and B. E. Sernelius, “Ultrathin metallic coatings can induce
quantum levitation between nanosurfaces,” Applied Physics
Letters, vol. 100, Article ID 253104, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


	A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy
	Citation/Publisher Attribution

	A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy
	Creative Commons License

	tmp.1433425315.pdf.BAsL7

