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ABSTRACT 

Variation in the sequence of T cell epitopes between dengue virus (DENV) serotypes is 

believed to alter memory T cell responses during second heterologous infections. We 

identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 

protein. We predicted higher frequencies of B57-NS126-34-specific CD8
+
 T cells in PBMC 

from individuals undergoing secondary rather than primary DENV infection. However, 

high tetramer-positive T cell frequencies during acute infection were seen in only 1 of 9 

subjects with secondary infection. B57-NS126-34-specific and other DENV epitope-specific 

CD8
+
 T cells, as well as total CD8

+
 T cells, expressed an activated phenotype (CD69

+
 

and/or CD38
+
) during acute infection. In contrast, expression of CD71 was largely limited 

to DENV epitope-specific CD8
+
 T cells. In vitro stimulation of cell lines indicated that 

CD71 expression was differentially sensitive to stimulation by homologous and 

heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T 

cell activation. 

 

Key words: CD8 T cells, Dengue, HLA-B57, CD71, Transferrin 
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INTRODUCTION 

Dengue virus (DENV), a member of the flavivirus family, consists of four distinct 

serotypes. Many DENV infections are asymptomatic and the majority of cases present as an 

acute febrile illness, dengue fever (DF). A small percentage of individuals develop dengue 

hemorrhagic fever (DHF), which is characterized by plasma leakage and bleeding tendency 

coincident with resolution of fever and clearance of viremia 
1, 2

. While host-dependent 

factors and virus-dependent factors may influence the risk of developing DHF, prospective 

cohort studies have identified secondary infection with a heterologous DENV serotype as 

the major risk factor 
3
. Additionally, it has been suggested that the order of infections 

modulates the risk of developing DHF 
4-6

. 

Antibodies and T cells are proposed to contribute to the development of severe 

dengue disease 
7
. Non-neutralizing antibodies, through antibody dependent enhancement 

(ADE), may enhance viral load and immune activation 
3, 8-10

. Other studies have reported 

higher frequencies of CD8
+
 T cells expressing CD69, and higher levels of immune 

activation markers in individuals with DHF as compared to those with DF 
11-13

. Several 

studies have reported associations between specific HLA class I alleles and disease 

severity; these epidemiological links provide additional support for a role of CD8
+
 T cells 

in contributing to clinical outcome 
14-17

.  

HLA-B57 has been associated with slow progression following HIV infection, the 

clearance of acute HCV infection 
18-20

 and is strongly associated with a number of type 2 

idiosyncratic adverse drug reactions 
21, 22

. The relative ability of HLA-B57 to control HIV 

infection correlated with unique peptide-binding characteristics that affect thymic 

development of CD8
+
 T cells 

23
. A larger proportion of the naïve repertoire of T cells 
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restricted by HLA-B57 recognized HIV viral epitopes compared to other HLA alleles. 

Extended human major histocompatibility complex (MHC) haplotypes containing TNF-4 

and LTA-3, together with HLA-B*48, HLA-B*57, and HLA-DPB1*0501, were detected 

only in patients with secondary DHF 
15

. 

We identified a highly conserved 9aa epitope on the NS1 protein recognized by 

HLA-B57-restricted T cells. We hypothesized that B57-NS126-34-specific CD8
+
 T cells 

would be preferentially expanded during secondary infection since the epitope sequence 

would be identical to that seen in primary infection. Using PBMC samples from Thai 

children with primary or secondary DENV infection 
24

, we found that frequencies of B57-

NS126-34 tetramer-positive T cells were elevated during acute infection. Only one subject 

with secondary infection had particularly high frequencies of B57-NS126-34
+
 T cells (~20% 

of CD8
+
 T cells). Consistent with previous studies, expression of the activation markers 

CD69 and CD38 was upregulated on the total CD8
+
 T cell population as well as on DENV-

specific T cells. In contrast, the expression of the transferrin receptor CD71 was 

significantly upregulated on B57-NS126-34
+
, A2-E213-221

+
 and A11-NS3133-142

+
 T cells, but 

not on total CD8
+
 T cells. In vitro studies demonstrated that, while stimulation with 

homologous and heterologous peptides induced similar levels of CD69 expression, the 

intensity of CD71 expression was differentially sensitive to variant peptide stimulation.  
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MATERIALS AND METHODS 

Study subjects and blood samples. The study design for patient recruitment and collection 

of blood samples has been reported in detail elsewhere 
2, 24-26

. Briefly, the subjects enrolled 

were Thai children 6 months to 14 years of age with acute febrile illnesses (<72hrs) 

diagnosed as DF or DHF according to WHO guidelines 
27

. Serology and virus isolation 

were used to confirm acute DENV infections, and primary and secondary infections were 

distinguished based on serologic responses 
2
. For donors undergoing a secondary infection 

it is not possible to accurately determine what the previous serotype(s) were due to the 

activation of broadly cross-reactive DENV neutralizing antibodies 
28

. Blood samples were 

obtained daily during acute illness, once in early convalescence, and at intervals during late 

convalescence. Informed consent was obtained from each subject and/or his/her parent or 

guardian and the study was approved by the Institutional Review Boards of the Thai 

Ministry of Public Health, the Office of the U.S. Army Surgeon General and the University 

of Massachusetts Medical School (UMMS). PBMC were isolated by density gradient 

centrifugation, cryopreserved, and stored at 70°C. The samples are numbered relative to 

the day of deferevesence (designated Fever Day 0). Serologic HLA class I typing was 

performed on blood from immune Thai donors or healthy subjects for use as B57
+
 dengue 

naive controls. HLA typing was performed at UMMS or the Department of Transfusion 

Medicine, Siriraj Hospital, as previously described 
14, 25

.  

Cytotoxicity assay. Cytotoxicity was assessed as previously described 
25

. Briefly, HLA-

B*57
+
 B-lymphoblastoid cell lines (BLCLs) targets were labeled with 

51
Cr and pulsed with 

10 g/mL of the indicated peptides or infected with recombinant vaccinia viruses at an 
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moi=5. Primary dendritic cells from HLA-B*57
+
 healthy individuals were generated 

29
 and 

infected with DENV-1-4 at a moi of 5. Peptide-pulsed or virus-infected target cells were 

cultured with T cells at an effector-to-target ratio of 10:1. After 4 hours, supernatants were 

harvested and 
51

Cr content was measured in a gamma counter. Percent specific lysis was 

calculated: % lysis =(experimental 
51

Cr release – minimum 
51

Cr release)/(maximum 
51

Cr 

release – minimum 
51

Cr release)x100. 

Flow cytometry. Cryopreserved PBMC were thawed and washed in RPMI before resting 

in RPMI/10% FBS at 37°C for 2 hours. Cells were washed in PBS and stained with 1 L of 

1:80 dilution of the dead cell marker LIVE/DEAD
®
 Green (Molecular Probes, Invitrogen 

Corp.). Cells were then washed with FACS Buffer (PBS/2% FBS/0.1% sodium azide) and 

incubated with 0.5-2 L pMHC tetramer for 20 minutes at 4°C. Monoclonal antibodies 

specific for CD3, CD8, CD45RA, CCR7, CD69, CD38, CD57, CD71, CD28 or CD56, 

CD19, and CD14 were then added to the cells to incubate at 4°C for an additional 30 

minutes (Supplementary Table 2). Cells were washed and fixed with BD Stabilizing 

Fixative™ (BD Biosciences). Data were collected on a BD FACSAria™ and analyzed 

using FlowJo version 10 and Gemstone (Verity House, Topsham, ME). 

Peptide stimulation of T cell lines. At day 16 of culture approximately 2×10
5
 T cells were 

cultured with 2×10
4
 HLA matched B-LCLs, which had been pre-incubated for 30 minutes 

with peptide at the concentrations indicated, at 37°C for 0–24 hours. Cells were washed in 

PBS and stained with antibodies to CD8, CD19, CD69, CD38, and CD71 for 30 minutes at 

4
o
 C (Supplementary Table 2). Finally, cells were washed and placed in fixative until data 



7 

 

collection. All peptides were synthesized at >90% purity from AnaSpec, Inc. (Fremont, 

CA) or 21
st
 Century Biochemicals (Marlboro, MA). 

Peptide-MHC tetramers. Peptide-MHC tetramers were generated at the UMMS and the 

NIAID Tetramer Core. The different peptide-MHC multimers were conjugated to distinct 

fluorochromes (APC-A11-NS3133 or Qdot605-A11-NS3133, PE-B57-NS126-34, APC A2-

E213-221).  

Intracellular Cytokine Staining.  2x10
5

 T cells were mixed with 2x10
4
 HLA matched 

BLCLs with peptide or PHA in the presence of anti-CD107a antibodies and BD Golgi 

Stop/Golgi Plug
™ 

for 6hrs. Cells were washed in PBS and stained with 1 L of 1:80 dilution 

of the dead cell marker LIVE/DEAD
®
 Green (Molecular Probes, Invitrogen Corp.). Cells 

were washed with FACS Buffer (PBS/2% FBS/0.1% sodium azide) and incubated with 

surface antibodies specific for CD3, CD8, and CD19 and incubated at 4°C for 30 minutes 

(Supplementary Table 2). The cells were washed with 2mLs of FACS buffer then fixed and 

permeabilized using BD Cytofix/CytoPerm™ for 20 minutes at 4°C. Cells were washed 

with 1mL of BD Perm Wash buffer™. The cells were stained with intracellular antibodies 

against IFN-γ, TNF-α and MIP-1β and incubated at 4°C for 30 minutes. Cells were then 

washed with 1mL BD Perm Wash Buffer™ and fixed with 100µL of BD Stabilizing 

Fixative (1:3) and keep at 4°C until flow analysis.    
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RESULTS 

Identification of a highly conserved HLA-B57-restricted DENV epitope 

We previously identified HLA-B57-restricted CD8
+
 T cell lines, which recognized 

the DENV NS1 or NS2a protein, using convalescent PBMC from a Thai patient with DF 
25

. 

As shown in Figure 1A, two representative T cell lines, 3C11 and 3F2, lysed autologous B-

LCLs infected with a recombinant vaccinia virus expressing the DENV-2 NS1/2a proteins. 

We used pools of overlapping peptides from the NS1 protein and identified a minimal 9mer 

epitope recognized by these T cell lines corresponding to aa 26-34 (HTWTEQYKF) 

(Figure 1 B, C). Restriction of this epitope by HLA-B57 was confirmed by cytotoxicity 

assays using partially HLA-matched B-LCLs (data not shown). We determined the degree 

of conservation of NS126-34 using the FLAVIdB database 

(http://cvc.dfci.harvard.edu/flavi/); this epitope was >99% conserved across >2600 

sequences from all four serotypes of DENV. Comparison to previously identified CD8+ 

DENV epitopes indicated that this was the only epitope with such a high degree of 

homology (Supplemental Table 1).  

T cell lines lysed virus-infected primary dendritic cells from an HLA*B57
+
 

individual (one of four T cell lines shown) (Figure 1D) indicating that this epitope can be 

recognized by T cells in the context of DENV infection. Differences in percent specific 

target cell lysis likely reflect differences in the percentage of DCs that were infected with 

each DENV serotype. 

For ex vivo analysis of epitope-specific T cells, we obtained an HLA-B5701/NS126-

34 tetramer. We confirmed the specificity of this tetramer by showing binding to the DENV-

specific T cell line 3C11, but not to an HLA-B57-restricted HIV-specific T cell line. The 
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DENV-specific T cell line did not bind a previously described HIV-B57 tetramer (TW10-

Gag; TSTLQEQIGW) (Figure 1E).  

Detection of B57-NS126-34 tetramer-positive T cells in PBMC collected during acute 

infection  

We used this B57-NS126-34 tetramer together with activation and phenotypic 

markers and performed a longitudinal analysis of B57-NS126-34-specific T cells in PBMC 

from HLA-B*57
+
 subjects. We tested samples obtained at multiple time points during and 

after acute DENV infection from eleven HLA-B*57 children, two with primary and nine 

with secondary DENV infection (Table 1). 

Figure 2A shows our gating strategy. Each experiment included PBMC from a 

healthy subject, PBMC from an HLA-B*57
+
 DENV-naïve subject as a negative control 

(Supplementary Fig 1A) and healthy donor PBMC spiked with an epitope-specific T cell 

line as a tetramer-positive control (Supplementary Fig 1B). Figures 2B and 2C show 

tetramer frequencies for two subjects over time. Subject KPP94-037 had a very high 

frequency of B57-NS126-34-specific T cells reaching ~20% at fever day +7. Frequencies of 

B57-NS126-34-specific T cells in subject CHD06-029 were more representative of the 

staining observed in the remaining donors. Expansion of B57-NS126-34
+
 T cells during 

infection was detected with contraction during convalescence in PBMC from every dengue 

subject tested. Peak frequencies ranged from 0.5- 20% (Figure 2D). Only subject KPP94-

037 with secondary DENV infection had high B57-NS126-34-specific T cell frequencies 

(Figure 2D). Excluding this subject, frequencies of B57-NS126-34
+
 T cells were not higher in 

those with secondary infection compared to primary infection (Figure 2D). 
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We used tetramers for two other DENV CD8 T cell epitopes (A11-NS3133-142 or A2-

E213-221) to compare the frequencies of tetramer-positive cells in subjects who were HLA-

B*57
+
 and HLA*A11

+
 or HLA*A2

+
 (Figure 2E). T cell frequencies were similar for all of 

epitopes in PBMC from the 7 subjects tested.  

Antigen-specific CD8
+
 T cells are highly activated during acute DENV infection 

Using antibodies to CD69 and CD38, we followed CD8
+
 T cell activation over the 

course of acute dengue illness. Frequencies of CD69
+
CD8

+
 T cells were elevated early in 

acute illness compared to early (1 wk after defervescence) or late (6-12 months after 

illness) convalescence (p<0.001), with the peak frequencies (10.7%-46.3%) occurring at or 

before fever day 4 (Figure 3A, B). Peak frequencies of B57-NS126-34
+
CD69

+
 cells (Figure 

3C) and A2-E213-221
+
CD69

+
 or A11-NS3133-142

+
CD69

+
 cells (Figure 3D) were 10.5%-48.5% 

and 15.4-50.3%, respectively. CD38 expression peaked later than CD69 expression, on 

fever days 1 and 0 (Figure 3E). Frequencies of CD38
+
 cells in the total CD8

+
 population 

were between 2.45%-57.3%. Peak frequencies of B57-NS126-34
+
CD38

+
 cells (Figure 3F) 

and A2-E213-221
+
CD38

+
 or A11-NS3133-142

+
CD38

+
 cells (Figure 3G) were 15.8%-92.4% and 

10%-77.8%, respectively. The pattern of CD38 and CD69 expression on all tetramer-

positive T cells followed the same pattern as the expression on the total CD8 positive 

population.  

Increased frequencies of CD71-expressing cells on the DENV-specific B57-NS126-34
+
, A11-

NS3133-147
+
 and A2-E213-221

+
 T cell populations.  

 We assessed CD71 expression, a marker associated with cell cycle activity 
30

, on 

total CD8 T cells and DENV-specific T cells. Figure 4G shows representative staining of 
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CD71 on PBMC from a subject during acute infection. CD71 expression was low on total 

CD8
+
 T cells with a mean frequency of 2.1% during acute illness (fever day -4 through 

fever day +3) (Figure 4A). In contrast, the mean frequency of B57-NS126-34
+
 T cells 

expressing CD71 was 18.39% and of A11-NS3133-147
+
 or A2-E213-221

+
 T cells was 12.21% 

during acute illness (Figure 4B, C). The mean frequencies of CD71-expressing cells during 

acute illness were significantly higher in the CD8
+
DENV-specific T cells compared to the 

total CD8
+
 population with p-values <0.0001 (Table 2). There were no statistically 

significant differences between the B57-NS126-34
+
 and the A11-NS3133-147/A2-E213-221-

specific T cell populations.  

The peak frequency, as determined for each donor during acute illness, of 

CD71
+
DENV-specific CD8 T cells was also significantly higher than that of the total CD8

+
 

T cells (p <0.005). Frequencies of CD71
+
 DENV-specific T cells remained higher 

compared to the total CD8 T cell population 1 year following infection (Figure 4A, B, C) (p 

<0.0001), but were lower than the peak CD71 frequencies during acute infection in most 

donors. Interestingly, mean and peak frequencies of CD38 expression during acute illness 

were significantly higher in B57-NS126-34
+
, but not A11-NS3133-147

+
/ A2-E213-221

+
, specific T 

cells. CD69 expression was minimally increased only in A11-NS3133-147
+
 T cells (Figure 3 

and Table 2). We also compared the geometric mean fluorescence intensity (gMFI) of 

CD71 expression between populations (Figure 4D, E, F) and again found significant 

differences in the intensity of CD71 staining on the CD71
+
 cells during acute illness 

between the DENV-specific populations and total CD8
+
 T cells (p<0.05).  

 To further evaluate the expression of CD71 and its relationship to T cell activation 

by antigen, we stimulated a B57-NS126-34-specific T cell line 3C11 with different 
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concentrations of the NS126-34 peptide and measured the frequencies and intensity of CD71 

expression. Figure 4H shows representative staining of CD71 expression on cell line 3C11 

at 24 hours after stimulation with peptide. We detected CD71 upregulation from base line 

expression as early as 1 hr post stimulation with the peptide and the MFI of CD71 

expression depended both on the concentration of peptide and the duration of incubation 

(Figure 4I).   

CD71, CD69, CD107a and cytokine expression in epitope-specific T cell lines. 

Since the NS126-34 epitope is highly conserved with only rare variants, we next 

assessed CD71 expression on other DENV-specific cell lines where epitope variants are 

more common. We used a well characterized A11-NS3133-147 epitope-specific cell line 

10C11, which was cross reactive for the pD1 and pD3/4 variant peptides but did not 

recognize the pD2 variant in tetramer staining and ICS assays 
31

. We stimulated 10C11 

with three variant peptides for 6 hrs and evaluated the expression of CD107a, CD69, and 

CD71 (Figure 5A). We detected similar CD69 upregulation following stimulation with the 

pD1 and pD3/4 variant peptides. CD107a staining was more uniform following stimulation 

with the pD3/4 variant compared to the pD1 variant. A higher frequency of the 10C11 cell 

line upregulated CD71 following stimulation with the pD3/4 variant compared to the pD1 

variant peptide (Figure 5A). We did not detect CD69, CD107a and CD71 upregulation after 

stimulation with the pD2 variant of the A11-NS3133-147 epitope. 

We also stimulated an A2-E213-221 epitope-specific cell line P1A07 with four peptide 

variants. Cell line P1A07 had similar upregulation of CD69 following stimulation with all 

four peptide variants (Figure 5B). In contrast, there was stronger upregulation of CD71 and 

CD107a with the pD1 and pD2 variants compared to the pD3 and pD4 variant peptides 
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(Figure 5B). We found the largest production of TNF-α and IFN-γ following stimulation 

with pD1 and pD2 variants and significant production following stimulation with the pD4 

variant (Figure 5C) which matched CD71 and CD107a expression patterns. MIP-1β 

production was upregulated with pD4 ≈ pD1 > pD2 variant peptide stimulation. The pD3 

variant peptide did not induce cytokine production (Figure 5C). Together, our data using 

cell lines suggest that CD71 expression was differentially sensitive to stimulation by 

homologous and heterologous variant peptides. 
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DISCUSSION  

We analyzed the frequency, kinetics, and phenotype of T cells specific for a novel 

HLA-B57-restricted epitope, B57-NS126-34 over the course of acute DENV infection. 

Alignment of over 2610 strains of DENV from all four serotypes revealed >99% homology 

in the epitope. This conservation led us to hypothesize that it might be an important target 

for DENV control in HLA-B*57-positive individuals. Variation in the sequence of T cell 

epitopes between DENV serotypes has been shown to influence the effector functions of 

DENV-specific memory T cells
31, 32

. Since the sequence of this epitope in a secondary 

DENV infection would be identical to the sequence from an earlier primary DENV 

infection, we predicted that PBMC from donors with secondary infection would have 

particularly strong secondary responses to the B57-NS126-34 epitope. While we detected 

tetramer-positive T cells in all subjects tested, their frequencies in subjects with secondary 

infections were not higher than in subjects with primary infections, with one exception. 

Frequencies of B57-NS126-34 
+
 T cells were similar to those of A11-NS3133-142 and A2-E213-

221 
+
 T cells in the same subjects and to the frequencies of A11-NS3133-142

+
 T cells reported 

elsewhere
12, 33

. One donor had a peak frequency of B57-NS126-34
+
- T cells at day 180. 

While we may have missed the peak frequency during acute illness a second subclinical 

infection at the 6 month time point cannot be ruled out. 

Interestingly this linear NS126-34 epitope has been demonstrated to be an antibody 

epitope in mice 
34

. NS1 is unique among the DENV non-structural proteins because it is 

secreted and expressed on cell surfaces 
35

. We are unaware of other linear dengue B cell 

epitopes which map exactly to a CD8 T cell epitope.  Since peptides presented by class I 

MHC come from cytosolic proteins in virally-infected cells and not from phagocytized 
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soluble NS1, antibodies to NS126-34 are unlikely to affect CD8 T cell responses. It is also 

unlikely that T cells are able to recognize this epitope on the surface or soluble NS1 since 

presentation of peptides on MHC molecules are critical for T cell recognition 
36

. 

One possible explanation for the lower-than-expected frequency of tetramer-

positive cells could be differential processing and presentation of this epitope between the 

four serotypes. Differential processing of HIV epitopes has been shown to result in striking 

differences in CTL recognition 
37

. We demonstrated that B57-NS126-34-specific cell lines 

were able to lyse cells infected with any of the four DENV serotypes in vitro. Whether 

there is differential processing of the four serotypes for this epitope in vivo is unknown. 

Alternatively, a yet unidentified factor may dampen the activation of B57-NS126-34
+
 T cells 

during a second infection. 

Previous studies have used a number of cell surface markers to phenotype CD8
+
 T 

cells in DENV infection 
12, 13, 26, 33, 38

. We included a diverse panel of surface markers 

including some that have not previously been studied in DENV infection, such as CD71. 

The timing of expression of CD69 in this cohort was consistent with previous reports 
13

. 

While Akondy et al reported that CD38, HLA-DR, and Ki-67 are specific markers of 

activation when present in combination, there were a significant proportion of cells that 

expressed only CD38 
39

. Friberg et al found lower intensity of CD38 expression on 

influenza tetramer-positive cells compared to A11-NS3133-142  tetramer-positive cells during 

DENV infection 
33

. The findings of Akondy et al and Friberg et al, suggest that the intensity 

of CD38 staining correlates with the specificity of activation and that bystander cells which 

are activated become CD38
+
, but not CD38 high. The high frequency of CD38 expression 

in our T cell population is consistent with these findings.  
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Our study is the first to assess CD71 (transferrin receptor) expression on CD8
+ 

T 

cells in the context of an acute viral illness. Over the course of DENV infection we 

observed upregulation of CD71 predominantly on DENV-specific CD8
+
 T cells and not on 

total CD8
+
 T cells. This was in contrast to CD69 and CD38 expression, which was similar 

between B57-NS126-34
+
 T cells, A2-E213-221

+
 or A11-NS3133-142

+
 T cells and total CD8

+
 T 

cells during acute DENV infection. CD71 is required for DNA synthesis and cell division 

and is upregulated on dividing cells 
30, 40, 41

. Upon cell activation, CD71 is recruited to the 

immunological synapse coincident with upregulation of surface CD71 
42

. Salmeron et al 

demonstrated that CD71 plays a role in the phosphorylation of TCRζ chain following CD3 

and CD28 stimulation 
43

, and anti-CD71 mAb abrogates CTL responses to alloantigens 
44

. 

Upregulation of CD71 on DENV-specific T cells may therefore indicate that these cells had 

a more productive activation and are more cytolytic. Our data suggest that CD71
hi

 

expression more accurately identifies DENV-specific T cells compared to expression of 

CD69 and/or CD38 with significant differences in both frequency and MFI of CD71 

expression between  the total CD8
+
 T cell population and the DENV-specific populations. 

Previous in vitro work showed upregulation of CD71 following αCD3 or mitogen 

stimulation 
45, 46

. We are the first to show robust expression of CD71 on T cell lines after 

peptide stimulation in vitro. Unlike CD69, the extent of CD71 upregulation was dependent 

on the peptide variant used and for the most part matched CD107a expression These in 

vitro experiments support our ex vivo observation and suggest that CD71 expression may 

reflect qualitatively different signaling in the T cell response to DENV infection. We noted 

high levels of CD71 in B57-NS126-34
+

 and A11-NS3133-147
+
/ A2-E213-221

+
-specific T cell 

populations in many donors at days 180 and 365. We do not have an explanation for 
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persistent elevation in convalescence but CD71 expression was generally lower than the 

peak frequency during acute infection. We have similarly found that antigen-specific cell 

lines have marked levels of CD71 2-3 weeks after in vitro culture (data not shown). It is 

possible that certain subsets of memory cells have slightly higher baseline levels of CD71 

but further studies are needed to confirm these findings.  

Our study population, although small, included subjects with primary and secondary 

infections, DF and DHF, and each of the four DENV serotypes. This small sample size 

precluded comparing the magnitude of B57-NS126-34-specific T cells during primary and 

secondary infections. Previous work has provided conflicting data on the role of CD8
+
 T 

cells in the development of severe dengue disease and has focused heavily on responses to 

the HLA-A11-restricted NS3133-142 epitope 
12, 38

. The number of consecutive blood draws at 

early time points during illness and consistency of patient care during acute illness are 

important strengths of this cohort. Additionally, our data suggest that even within 72hrs of 

fever onset immune responses are well underway, and therefore potentially important early 

events may not be captured.  

In summary, we found modestly increased frequencies of HLA-B57-restricted NS1-

specific T cells in PBMC from the majority of Thai donors with secondary DENV 

infection. The absence of a stronger B57-NS126-34-specific response leads us to believe that 

other factors may be involved in influencing the magnitude of the response to this highly 

conserved epitope. The finding of a novel and distinct phenotype (CD71
+
) in these epitope-

specific T cells suggests differential activation that merits further investigation. 
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FIGURE LEGENDS 

Figure 1. Identification of the HLA-B57-restricted DENV epitope. (A) Cell lines 3C11 

and 3F2, generated from PBMC of donor KPP94-037, were used in a 
51

Cr release assay 

using B-LCLs infected with vaccinia virus recombinants expressing DENV-2 NS1/2a as 

target cells. (B) 
51

Cr release assay using B-LCLs pulsed with peptide pool 1A and 

individual 15 mer peptides covering pool 1A of NS1. (C) Identification of the minimal 

9mer epitope B57-NS126-34 recognized by cell line 3C11. (D) Lysis of DENV-infected 

dendritic cells (DCs) by B57-NS126-34-specific cell line 3F11. (E) Validation of B57-NS126-

34 tetramer staining using a B57-NS126-34-specific T cell line and an HIV gag-specific HLA-

B57-restricted T cell line.  

Figure 2. Expansion of DENV specific T cells during acute infection. (A) Gating 

strategy used to identify tetramer-positive CD8
+
 T cells started by selecting cells within the 

lymphocyte gate as defined by forward and side scatter profiles followed by gating for 

singlet cells. Live CD14
- 

CD19
- 

cells were next selected by exclusion of the viability 

marker LIVE/DEAD
®
 Green along with αCD14-FITC and αCD19-FITC. CD8+ T cells 

were identified by CD8 expression. (B) Kinetics of B57-NS126-34
+
 frequencies in PBMC 

from donor KPP94-037 and (C) donor CHD06-029 over the course of acute illness and 

convalescence. (D) B57-NS126-34
+ 

CD8
+
 T cell frequencies versus fever day in PBMC from 

study subjects. Symbols distinguish subjects with primary (n=2, grey symbols) versus 

secondary (n=9, black symbols) DENV infections and lines distinguish those with DF 

(n=6, black line) versus DHF (n=5, dashed line). (E) PBMC from subjects who were also 

HLA*A2- or HLA*A11-positive (n=6) were stained with A2-E213-221 or A11-NS3133-142 



25 

 

tetramers. Two of these subjects had primary infections (grey symbols) and one subject had 

DHF (dashed line). Fever Day is defined as the day of deferevesence (Fever Day 0).  

Figure 3. Antigen-specific T cells are highly activated during acute DENV infection 

and early convalescence. (A) Representative staining of CD69 and CD38 on total CD8
+
 T 

cells during acute infection and in convalescence from 1 subject. (B and E) Staining of 

CD69 and CD38 on total CD8 cells, (C and F) B57-NS126-34
+
 T cells and A11-NS3133-142

+
 

or (D and G) A2-E213-221
+
 T cells over the course of acute DENV infection and 

convalescence, respectively. PBMC from 11subjects with primary (grey symbols) or 

secondary (black symbols) infection and DF (black lines) or DHF (dashed lines) were 

tested.  

Figure 4. CD71 expression on total CD8 and DENV-specific CD8 T cells. Frequency of 

CD71
+
 cells in (A) total CD8+ cells, (B) B57-NS126-34

+
 T cells and (C) A11-NS3133-142

+
 or 

A2-E213-221
+
 T cells over the course of acute DENV infection and convalescence. MFI of 

CD71 expressed on CD71
+
 (D) CD8+ cells, (E) B57-NS126-34

+
 T cells and (F) A11-NS3133-

142
+
 or A2-E213-221

+
 T cells over the course of acute DENV infection and convalescence. (G) 

Representative staining of CD71 on CD8
+
 T cells at fever day -2 from a subject with 

primary infection. (H) Representative staining of CD71 on a CD8
+
 T cell line 24 hours after 

stimulation with (black) or without (NS, grey) peptide stimulation. (I) CD71 expression of 

a B57-NS126-34-specific cell line following stimulation with 10, 1, 0.1 and 0.01µg/mL 

NS126-34 peptide HTWTEQYKF.  
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Figure 5. CD71 expression and effector functions on epitope-specific T cell lines. 

CD107a, CD69 and CD71 expression after in vitro stimulation of cell line (A) 10C11 for 6 

hrs with 10µg/mL A11-NS3133-142 variant peptides pD1, pD2, and pD3/4 and cell line (B) 

P1A07 for 6 hrs with 10µg/mL A2-E213-221 variant peptides  pD1, pD2, pD3, and pD4. NS= 

no peptide stimulation. C) Intracellular cytokine staining (ICS) of cell line P1A07 with 

variant peptides pD1, pD2, pD3, and pD4 at 10µg/mL. NS= no peptide as the negative 

control. Data are displayed as histograms with the gMFI of each parameter listed.  

 

Supplemental Figure 1. Tetramer Staining Controls. (A) PBMC from DENV naïve HLA 

B57
+
, A2

+
 and A11

+
 individuals were stained with B57-NS126-34, A2-E213-221

 
or A11-

NS3133-147
 
tetramers. (B) PBMC spiked with the appropriate epitope-specific cell line were 

stained with B57-NS126-34 or A2-E213-221
 
or A11-NS3133-147

 
tetramer. 
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TABLE 1: Clinical, viral and immunogenetic profiles of the study subjects 

Donor  Serology
a
  Serotype

b
  Diagnosis

c
  MHC- Class I  

CHD95-039  P  DENV-1  DF  HLA-A1,11 HLA-B56,57  

CHD06-029  P  DENV-3  DF  HLA-A2,11 HLA-B57,46  

CHD01-058  S  DENV-2  DHF-1  HLA-A33,34 HLA-B57,75  

CHD01-018  S  DENV-2  DF  HLA-A2,33 HLA-B57,46  

CHD01-050  S  DENV-2  DHF-3  HLA-A1,11 HLA-B57,60  

KPP94-037  S  DENV-2  DF  HLA-A1,11 HLA-B46,57  

KPP94-041  S  DENV-1  DHF-3  HLA-A1,207 HLA-B54,57  

CHD02-073 S  DENV-1  DHF  HLA-A1,11 HLA-B57,60  

CHD00-054  S  unknown  DHF-2  HLA-A203 HLA-B46,57  

CHD05-023  S  DENV-1  DF  HLA-A2,24 HLA-B46,57  

CHD06-092 S  DENV-4  DHF-2  HLA-A1,33 HLA-B57,35  

 

a 
Primary (P) versus secondary (S) infection as determined by IgM/IgG ratios

2
  

b 
Of current infection 

c
According to WHO guidelines 1997; DF = dengue fever, DHF = dengue hemorrhagic 

fever  
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Table 2: Statistical analysis of activation markers on CD8+ T cells 

 

 

Mean frequency = average frequency of CD69, CD38 and CD71+ cells for all times points between  

fever day -4 to fever day +3. 

Peak frequency = average of the peak frequency of CD69, CD38 and CD71 between  

fever day -4 to fever day +3. 

N.S. = not significant 

 
 

 Populations compared CD69 CD38 CD71 

Mean 

frequency 

Total CD8
+
 vs. B57-NS126-34

+ 
N.S. 0.0017 <0.0001 

Total CD8
+
 vs. A11-NS3133-142

+
/A2-E213-221

+ 
N.S. N.S. <0.0001 

B57-NS126-34
+

 vs. A11-NS3133-142
+
/A2-E213-221

+ 
N.S. N.S. N.S. 

Peak 

frequency 

Total CD8
+
 vs. B57-NS126-34

+ 
N.S. 0.0115 0.0021 

Total CD8
+
 vs. A11-NS3133-142

+
/A2-E213-221

+ 
0.04 N.S. 0.0005 

B57-NS126-34
+

 vs. A11-NS3133-142
+
/A2-E213-221

+ 
N.S. N.S. N.S. 
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Supplemental Table 1: Conservation of amino acid sequences among known CD8
+
 DENV-

specific T cell epitopes 

 

Sequence conservation of a sample of known CD8
+
 T cell epitopes among 4 serotypes of human 

DENV strains calculated using sequence and variability analysis tool on flavidB database 

http://cvc.dfci.harvard.edu/flavi/index.php. A NCBI search revealed two strains with a variant 

B57 epitope. n/a indicated epitopes containing only 9aa. 

 

  

EPITOPE SEQUENCE 

HLA 

RESTRICTION 

No. 

of 

SEQ 

% CONSERVATION 

 P1      P2        P3      P4       P5        P6      P7       P8        P9     P10   

E 211-219 FFDLPLPWT A02 1148 100 78 99 100 100 100 100 100 95 n/a 

NS1 26-34 HTWTEQYKF B57 2610 100 100 100 100 100 100 100 100 100 n/a 

NS3 71-79 SVKKDLISY B62 2554 66 100 96 97 100 97 100 100 100 n/a 

NS3 133-142 GTSGSPIVNR A11 2554 100 100 100 100 100 100 100 65 70 87 

NS3 222-230 ILAPTRVVAA B07 2554 99 100 100 100 100 100 100 100 100 55 

NS3 501-509 TPEGIIPAL B35 2554 100 100 100 100 100 100 100 66 70 n/a 

NS4a 56-64 LLLALIAVL A02 2554 51 100 97 49 100 45 76 45 66 n/a 

NS4b 111–119 VLLLVAHYA A02 2722 65 95 51 100 82 75 100 100 100 n/a 

NS4b 181–189 ILLMRTTWA A02 2772 45 100 69 100 100 100 79 100 100 n/a 

NS5 329-337 KPWDVIPMV B55 2715 100 100 100 100 100 51 100 89 100 n/a 

http://cvc.dfci.harvard.edu/flavi/index.php
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Supplemental Table 2: Antibodies used for flow cytometry studies.  

Marker Clone Manufacturer Fluorochrome 

CD3 UCHT1 BD Biosciences V500 

CD8 SK1 Invitrogen PE-alexafluor610 

CD45RA HI100 BD Pharmingen APC-h7 

CCR7 150503 BD Horizon V450 

CD69 CH/4, FN50 Invitrogen, 

BioLegend 

PE-Cy5.5,  

BV650 

CD38 HB7 eBioscience eFluor®650NC 

CD57 HCD57 BioLegend PerCP/Cy5.5 ( Lightening Link) 

CD71 OKT9 eBioscience PE-Cy7 (Lightening Link) 

CD28 CD28.2 BioLegend AlexaFluor700 

CD56 B159 BD Biosciences AlexaFluor700 

CD19 HIB19 BD Biosciences FITC 

CD14 HCD14 BioLegend FITC 

CD107a H4A3 BD Biosciences FITC 

MIP-1β D21-1351 BD Biosciences PE 

TNF-α MAb11 BD Biosciences APC 

IFN-γ B27 BD Biosciences AlexaFluor 700 
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