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Statistical uncertainty and information [tln37]

An experiment has n possible outcomes that occur with probabilities P1, P2, . . . , Pn.

Properties that must be satisfied by any quantitative measure of uncertainty:

1. The uncertainty is a function of the probabilities of all possible out-
comes: Σ = Σ(P1, P2, . . . , Pn).

2. The uncertainty is symmetric under all permutations of the Pi.

3. The maximum uncertainty occurs if all Pi are equal.

4. The uncertainty is zero if one of the outcomes has probability Pi = 1.

5. The combined outcome of two independent experiments has an uncer-
tainty equal to the sum of the uncertainties of the outcomes of each
experiment.

⇒ Σ(P1, P2, . . . , Pn) = −
n∑

i=1

Pi ln Pi = −〈ln P 〉.

Information comes in messages: A1, A2, . . .. A message carries information
only if it contains some news, i.e. something not completely expected.

P (A): probability that message A is sent.
I(A): information gain if message is indeed received.

The less likely the message, the greater the information gain if the message
is received:

If P (A) < P (B) then I(A) > I(B), if P (A) = 1 then I(A) = 0.

If two independent messages are received, then the information gain is the
sum of the information gains pertaining to each individual message:

P (A ∩B) = P (A)P (B) ⇒ I(A ∩B) = I(A) + I(B).

The information content of a message is equal to the change in (statistical)
uncertainty at the receiver:

P1, P2, . . . , Pn
A−→ P̄1, P̄2, . . . , P̄n ⇒ I(A) = Σ(P1, P2, . . . , Pn)−Σ(P̄1, P̄2, . . . , P̄n)

Information as used here refers only to the scarcity of events. Any aspects
of usefulness and meaningfulness are disregarded.



[tex47] Statistical concept of uncertainty

An experiment has n possible outcomes that occur with probabilities P1, . . . , Pn. The uncertainty
about the outcome of the experiment is defined as

Σ(P1, . . . , Pn) = −
n∑

i=1

Pi ln Pi.

(a) Prove that the maximum uncertainty occurs if all Pi are equal.
(b) The n2 combined outcomes of two independent experiments have probabilities Pij = P I

i P II
j .

Show that the uncertainty about the combined outcome of the two independent experiments is
equal to the sum of the uncertainties of the outcomes of each experiment: Σ({Pij}) = Σ({P I

i }) +
Σ({P II

i }).

Solution:



[tex48] Statistical uncertainty and information

The number of bird species living on some continent is known to be 100. An ornithologist visits
a small island off the coast of that continent to find out how many of the 100 bird species have
migrated to the island.
One month after her arrival on the island she sends a first message to the Ornithological Society,
stating that there exist only five of the 100 bird species on the island.
A month later she sends a second message stating that the relative abundance of the five bird
populations identified previously is 80%, 10%, 5%, 3%, 2%.
Determine the numerical value of the information contained in each message.

Solution:



[tex61] Information of sequenced messages

In which months of the year do Ellen, Nancy, and Susan have their birthdays? Three messages
X, Y, Z about their birthdays are received by persons a, b, c:
Person a receives the messages in the sequence X, Y, Z.
Person b receives the messages in the sequence Z, X, Y .
Person c receives the messages in the sequence Y, Z, X.
The three messages are the following:
X: Nancy’s birthday is in April.
Y : Ellen’s birthday is in a later month than Nancy’s birthday.
Z: Susan’s birthday is in the same month as Ellen’s birthday.
Find the numerical value of the information contained in the messages X,Y, Z as received by each
person a, b, c.

Solution:



Kinetics of Classical Ideal Gas [tsl28]

• Gas consists of a large number of atoms.

• Motion of each atom is rectilinear with constant speed.

• Interactions are limited to collisions with walls or between atoms.

• Motion is randomized by collisions.

• Thermal equilibrium is characterized by uniform spatial distribution of
atoms and by a velocity distribution f(v) to be determined.

Position and velocity distribution in two dimensions.

Properties of velocity distribution f(v):

•

∫

d3vf(v) = 1 (normalization),

•

∫

d3vf(v)v = 0 (symmetry),

•

∫

d3vf(v)

(

1

2
mv2

)

=
1

2
m〈v2〉 =

U

N
=

3

2
kBT.

Pressure [tex49]: p =
1

3

N

V
m〈v2〉 =

1

3

N

V
3kBT ⇒ pV = NkBT.



[tex49] Pressure and mean square velocity in classical ideal gas

A classical ideal gas consisting of N atoms of mass m is confined to a container of volume V . The
gas in thermal equilibrium with the walls is described by a spatially uniform distribution of atomic
positions and an isotropic distribution of velocities f(v). Show that the pressure exerted on the
container walls is

p =
1
3

N

V
m〈v2〉, where 〈v2〉 =

∫
d3v v2f(v).

Solution:



Maxwell velocity distribution [tln38]

Criteria used by Maxwell:

• statistical independence: f(vx, vy, vz) = f1(vx)f1(vy)f1(vz).

• spherical symmetry: f1(vx)f1(vy)f1(vz) = f1

(√
v2

x + v2
y + v2

z

)
f1(0)f1(0).

• equipartition:
1

2
m〈v2

α〉 =
1

2
kBT, α = x, y, z.

Velocity distribution:

⇒ f(vx, vy, vz) =

(
m

2πkBT

)3/2

exp

(
−

m(v2
x + v2

y + v2
z)

2kBT

)
.

Speed distribution:

integrate f(vx, vy, vz) over shell v <
√

v2
x + v2

y + v2
z < v + dv.

⇒ fs(v) =
4√
π

(
m

2kBT

)3/2

v2 e−mv2/2kBT .

Energy distribution:

Use E =
1

2
mv2, v2dv =

1

2

(
2

m

)3/2

E1/2dE.

⇒ fE(E) =
2√
π

(kBT )−3/2
√

E e−E/kBT .

Root-mean-square speed:
√
〈v2〉 =

√
3kBT

m
.

Mean speed: 〈v〉 =

√
8kBT

πm
.

Most frequent speed:
dfs

dv

∣∣∣∣
v0

= 0 ⇒ v0 =

√
2kBT

m
.



[tex50] Maxwell velocity distribution (Maxwell’s derivation)

In the original derivation of the velocity distribution f(vx, vy, vz) for a classical ideal gas, Maxwell
used the following ingredients: (i) The Cartesian velocity components vx, vy, vz (interpreted as
stochastic variables) are statistically independent. (ii) The distribution f(vx, vy, vz) is spherical
symmetric. (iii) The mean-square velocity is determined by the equipartition theorem. Determine
f(vx, vy, vz) along these lines.

Solution:



[tex56] Maxwell distribution in D−dimensional space

The Maxwell velocity distribution of an ideal gas in D-dimensional space is

f(v) =
(

m

2πkBT

)D/2

e−mv2/2kBT ,

where v = (v1, . . . , vD) and v2 = v2
1 + · · ·+ v2

D. Determine the associated speed distribution fS(v),
the root-mean-square speed

√
〈v2〉, the average speed 〈v〉, and the most frequent speed v0 from

dfS/dv|v0 = 0.

Solution:



Boltzmann equation [tln39]

How does an arbitrary nonequilibrium velocity distribution f(~v, t) approach
equilibrium? Boltzmann’s kinetic equation takes into account elastic pair
collisions, characterized by a scattering cross section σ(~v1, ~v2;~v

′
1, ~v

′
2) that de-

pends on the velocities of the two particles before and after the collision.

During the infinitesimal time interval τ , the number of particles with veloci-
ties ~v1d

3v1 changes due to contributions A and B from two kinds of processes:

[f(~v1, t + τ)− f(~v1, t)] d
3v1 = B − A,

where the number of collisions away from ~v1d
3v1 is

A = τd3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(~v1, ~v2;~v

′
1, ~v

′
2)f(~v1, t)f(~v2, t)

and the number of collisions into ~v1d
3v1 is

B = τd3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(~v′1, ~v

′
2;~v1, ~v2)f(~v′1, t)f(~v′2, t).

v1

v2

v’1
v’2

v’1

v’2

v1

v2

A B

Here we have made the assumption of molecular chaos, which neglects cor-
relations produced by the collisions: f (2)(~v1, ~v2, t) = f(~v1, t)f(~v2, t).

Symmetry properties: σ(~v1, ~v2;~v
′
1, ~v

′
2) = σ(~v2, ~v1;~v

′
2, ~v

′
1) = σ(~v′1, ~v

′
2;~v1, ~v2).

Boltzmann equation for a spatially uniform velocity distribution:

⇒ ∂

∂t
f(~v1, t) = −

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(~v1, ~v2;~v

′
1, ~v

′
2)

× [f(~v1, t)f(~v2, t)− f(~v′1, t)f(~v′2, t)] .



Boltzmann’s H-theorem [tln40]

Boltzmann’s H-function: H(t) ≡
∫

d3v1 f(~v1, t) ln f(~v1, t).

⇒ dH

dt
=

∫
d3v1

[
∂f(~v1, t)

∂t
ln f(~v1, t) +

∂f(~v1, t)

∂t

]
.

Use

∫
d3v1

∂f(~v1, t)

∂t
=

d

dt

∫
d3v1 f(~v1, t) = 0 and use Boltzmann equation.

⇒ dH

dt
= −

∫
d3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(~v1, ~v2;~v

′
1, ~v

′
2)

× ln f(~v1, t) [f(~v1, t)f(~v2, t)− f(~v′1, t)f(~v′2, t)] .

Likewise: dH/dt = · · · {~v1 ↔ ~v2}, {~v′1 ↔ ~v′2},
dH/dt = · · · {~v1 ↔ ~v′1}, {~v2 ↔ ~v′2},
dH/dt = · · · {~v1 ↔ ~v′2}, {~v2 ↔ ~v′1}.

⇒ 4
dH

dt
= −

∫
d3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(~v1, ~v2;~v

′
1, ~v

′
2)

× [f(~v1, t)f(~v2, t)− f(~v′1, t)f(~v′2, t)]

×{ln [f(~v1, t)f(~v2, t)]− ln [f(~v′1, t)f(~v′2, t)]} .

The function h(x, y) ≡ (x− y)(ln x− ln y) is non-negative for x, y > 0 and is
equal to zero if x = y.

Properties of H(t):
dH

dt
≤ 0 and

dH

dt
= 0 if f(~v1, t)f(~v2, t) = f(~v′1, t)f(~v′2, t).

The (stationary) velocity distribution which makes H stationary is the Maxwell
distribution (Boltzmann’s derivation).

Boltzmann’s H-function is related to the uncertainty in our knowledge of the
particle velocities as contained in the distribution f(~v1, t): H(t) = −Σf .

The stationary H-function is related to the entropy of an ideal gas at equilib-
rium: S = −NkBH(∞). Here the uncertainty in our knowledge of particle
velocities is a maximum.



[tex57] Energy distribution for N ideal gas atoms.

The equilibrium velocity distribution for N atoms of a classical ideal gas is

f(v1, . . .vN ) =
(

m

2πkBT

)3N/2

e−m(v2
1+···+v2

N )/2kBT ,

where vi = (vix, viy, viz).
(a) Determine the associated energy distribution fE(E), where E = 1

2m(v2
1 + · · · + v2

N ).
(b) Define the function Fn(x) via Fn(x)dx = fE(E)dE with x = E/nkBT, n = 3N/2 − 1 and plot
n−1Fn(x), 0 < x < 4 for N = 1, 2, 10, 20.
(c) How is the trend of this function for increasing N to be interpreted?

Solution:



[tex58] Maxwell’s velocity distribution (Boltzmann’s derivation)

The velocity distribution f(v) is guaranteed to be a stationary solution of the Boltzmann equation if
it satisfies the equation f(v1)f(v2) = f(v′

1)f(v′
2), where v1,v2 and v′

1,v
′
2 are the velocities before

and after an elastic pair collison. Elasticity means that the four quantities px = m(v1x +v2x), py =
m(v1y + v2y), pz = m(v1z + v2z), E = 1

2m(v2
1 + v2

2) are conserved by the collision.
Boltzmann uses the following arguments: (i) The absence of any further conservation laws implies
that f(v1)f(v2) = F (px, py, pz, E); (ii) in the relation ln f(v1) + ln f(v2) = ln F (px, py, pz, E) the
additivity of the two functions on the left-hand side implies that ln F is a linear function of its
variables: ln F (px, py, pz, E) = a1px + a2py + a3pz + a4E + a5.
Show that if the five coefficients a1, . . . , a5 are determined such as to satisfy the requirements∫

d3vf(v) = 1 (normalization), 〈v〉 = 0 (symmetry), and 1
2m〈v2〉 = 3

2kBT (equipartition), then
f(v) is the Maxwell distribution.

Solution:



[tex59] Ideal−gas entropy and Boltzmann’s H−function

Consider N particles of a classical monatomic ideal gas confined to a box of volume V at tem-
perature T . Show that the entropy S(T, V,N) = S0 + nR ln[(T/T0)3/2(V/V0)] previously inferred
from the empirical relations pV = nRT, CV = 3

2nR can be derived via S = −NkBH(∞) from the
stationary value of Boltzmann’s H-function,

H(t) =
∫

d3r

∫
d3v f(r,v, t) ln f(r,v, t).

Solution:



H-theorem and irreversibility [tln41]

Q: How does the preferred time direction, selected by the monotonic time-
dependence of H(t), follow from the underlying microscopic dynamics, which
is invariant under time reversal?

A: The solution f(~v1, t) of the Boltzmann equation is to be interpreted as rep-
resenting the properties of an ensemble of systems, i.e. the average behavior
of systems that are prepared equally (on a macroscopic level).

Consider the function H̃(t) =

∫
d3v1 f̃(~v1, t) ln f̃(~v1, t),

calculated via computer simulation, where f̃(~v1, t) now represents the velocity
distribution of a single system.

Simulation data show that H̃(t) tends to decrease and approach an asymp-
totic value just as the function H(t) does.

Effect of velocity inversion at time tI : H̃(t) increases at t > tI for some time,
then decreases again and approaches the same asymptotic value as H(t) does.

We can interpret −H̃(t) as our uncertainty about the particle velocities in
the system. The information contained in f̃(~v1, t) over and above the three
general properties from which the Maxwell distibution was derived is H̃(t)−
H̃(∞). However, this information is insufficient to carry out the velocity
inversion.

Performing the velocity inversion requires an influx of information beyond
what is contained in f̃(~v1, t), which causes a discontinuous drop in uncertainty
of our knowledge about the particle velocities. At t = tI , where the velocity
inversion occurs, Boltzmann’s function H(t) jumps to a higher value and
then decreases gradually as the information injected gets lost gradually in
the wake of collisions.

t

H H~~

t
I

=H

H



Boltzmann’s H-function simulated [tsl27]

Computer simulation of 100 hard disks moving in a 2D box and undergoing
elastic collisions. Initial state: positions on a regular lattice, velocities ran-
dom. Open circles: H(t) =

∫
d2v f(v, t) ln f(v, t). Full circles: H(t) when

all velocities are inverted after 50 or 100 collisions.

[from Prigogine 1980]



[tex60] Maxwell distribution derived from minimizing the H−function

Minimize Boltzmann’s H-function

H(t) =
∫

d3v f(v, t) ln f(v, t)

for the spacially uniform velocity distribution f(v, t) of a classical ideal gas. Impose the integral
constraints ∫

d3v f(v, t) = 1,
1
2
m

∫
d3v v2f(v, t) =

3
2
kBT,

dictated by normalization and equipartition, respectively. Show that the resulting velocity distri-
bution is Maxwellian.

Solution:



[tex63] Doppler broadening of atomic spectral lines

Consider a furnace containing a dilute gas at high temperature. Through a small window of
the furnace, we observe a particular spectral line of the gas atoms by means of a spectrometer.
The width of the observed spectral line is broadened due to the spread of velocities of the gas
atoms. This effect is called Doppler broadening. The relativistic Doppler shift of the wavelength
is λ = λ0

√
(1 + v/c)/(1− v/c). For the case under consideration we can assume that v/c� 1.

Show that the intensity profile is given by the expression

I(λ) ∝ exp
(
−mc

2(λ− λ0)2

2λ2
0kBT

)
,

where T is the temperature of the furnace, c is the speed of light, m is the mass of the gas atoms,
and λ0 is the wavelength of the radiation emitted by an atom at rest.

Solution:
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