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Abstract

Spoofing refers to the intentional (and considered mali-
cious) interference to a GNSS user’s inputs so as to distort
the derived position information. A variety of approaches
to detect spoofing have been proposed in the literature.
Much of this prior work has focused on the conceptual
level with limited analysis of the resulting detection per-
formance, and/or has proposed fundamental redesign of
the receiver itself. Little effort has been directed towards
using existing, commercial-off-the-shelf (COTS) stand-
alone receiver technology to perform spoof detection.

At ION ITM 2013 these authors proposed a simple spoof
detection concept based on the use of multiple COTS re-
ceivers and analyzed the performance of several ad hoc
detection algorithms from a Neyman-Pearson perspective
assuming Gaussian statistics. At ION GNSS+ 2013, by
restricting attention to a horizontal platform and assum-
ing an independent measurement error model, we were
able to develop the optimum Neyman-Pearson hypoth-
esis test. That paper also included an analysis of per-
formance, yielding closed form expressions for the false
alarm and detection probabilities and an optimization of
the performance over the locations of the receivers’ an-
tennae.

This current works extends the earlier results by consid-
ering more realistic statistical models, considers the pro-
cessing of several sequential outputs from the receivers,
and addresses 3-D receiver antennae patterns.

Introduction

GNSS systems are well known to be accurate providers
of position and timing information across the globe. As
such, they are commonly used to locate and navigate craft
in various transportation modes (e.g. land vehicles, boats
and ships, and aircraft). Because of high signal availabil-
ities, capable/robust receivers, and well-populated satel-
lite constellations, operators typically believe that the lo-
cation information provided by their GNSS receiver is
correct. Researchers (who are arguably a more skeptical
group) often think more about the integrity of location
information, and are interested in how a receiver might
calculate its measure of integrity, or even how one or more
receivers might be used to determine if position infor-
mation is illegitimate, or spoofed. Here, spoofing refers
to intentional (and considered malicious) interference to
a GNSS user’s inputs so as to distort the derived po-
sition information. Depending upon the cargo and/or
mission of the transport, calculation of the user’s posi-
tion in the presence of one or more spoofers can pro-
vide hazardously misleading information, possibly result-
ing in disastrous consequences in safety critical applica-
tions. One way to detect a spoofing event is to use some
sort of ground-based augmentation system; however, such
detection methods inherently require additional ground-
based infrastructure. A much more attractive approach
is to have the user self check against spoofing; essentially
a RAIM-like integrity test, but monitoring for spoofing
and not satellite faults. A variety of approaches of this
second type have been proposed in the literature. Some
are based upon including additional signal processing ca-
pability in the receiver. While these techniques are valid,
they are less appropriate for use in a cockpit where re-
ceiver certification is a concern or, perhaps, where the
cost of new equipment is a significant issue.

Technical discussions on spoof detection can vary widely
depending upon the assumed capabilities and a priori
knowledge of the spoofer. In 2003 Warner and Johnston
suggested several possible methods to detect a spoofing
event at a single GNSS receiver [1]: monitoring the power
levels of the GNSS signals (absolute, relative, and across
satellites), checking that the observed constellation is cor-
rect for the given time (e.g. number of and IDs of the
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satellites), testing the accuracy of the clock component,
and checking the computed position against that derived
from some non-GNSS source (e.g. an IMU). Since then
various authors have experimented with spoofing and sug-
gested detectors including correlating the P(Y) code at
the RF level [2], looking for vestigial peaks in the correla-
tor outputs [3], comparing to trusted reference signals [4],
and using an antennae array to spatially locate and iden-
tify signals [5]. Much of this prior work has focused on
the conceptual level with limited analysis of the resulting
detection performance, and/or has proposed fundamen-
tal redesign of the receiver itself. Unfortunately, little
work has been directed towards using existing commer-
cial off-the-shelf (COTS) stand-alone receiver technology
to perform spoof detection.

Recently, at ION ITM 2013, we examined a simple spoof
detection concept based upon the use of multiple COTS
receivers and attempted to assess its performance un-
der nominal assumptions on the signal environment [6].
Specifically, the detector monitors GNSS signals using
not one, but two or more receivers with their antennae
at known relative positions. With no spoofer present,
each antenna would receive a unique RF signal consistent
with its position in space. Under the assumption that
the spoofer is present, and has only one broadcast an-
tenna, these multiple receivers would receive nearly iden-
tical spoofer RF signals; the presence of spoofing is thus
discernible from the near equivalence of the receivers’ re-
ceptions. While one could compare these multiple recep-
tions at the RF level, we proposed comparing the position
solutions across receivers, declaring a spoofing event if the
resulting position solutions are too close to each other as
compared to the known relative locations of the anten-
nae. The primary advantage of such an approach is that
an implementation of the hypothesis test does not require
receiver hardware modification (hence, no recertification
is necessary) or even access to software GNSS methods;
a separate processor could easily monitor the positions
generated by each of the antennae/receivers and decide
spoof or no spoof. Our January 2013 work proposed sev-
eral ad hoc detection algorithms (resulting from different
assumptions on the receivers’ antennae locations; specifi-
cally, known positions, known relative positions with ori-
entation information, and known relative positions with-
out orientation information) and analyzed each detector
from a Neyman-Pearson perspective assuming Gaussian
statistics.

Since that time we have improved our approach to spoof
detection, presenting the results at ION GNSS+ 2013 [7].
Specifically, by restricting the antennae location model
to a horizontal platform and assuming that the measure-
ment errors were independent Gaussian variables, we were
able to develop the form of the optimum hypothesis test
under the Neyman-Pearson criterion; this optimum test

(actually a generalized likelihood ratio test to account for
unknown platform rotation and position) was shown to
examine the separation of and relative locations of the
estimated positions. This work included an analysis of
performance, yielding closed form expressions for the false
alarm and detection probabilities. We were then able to
optimize the performance over the locations of the re-
ceiver antennae. Of note, if the antennae are restricted
to fall within a disk of radius r, we were able to show that
the optimum configuration has all of the antenna on the
edge of the disk in a symmetric arrangement. Further,
we showed that using 3 or 4 antennae/receivers spaced
4σ or more apart (σ being the standard deviation of the
measurement error in any direction, typically 1-2 meters
for current receivers) yields excellent performance.

The current paper extends this prior work [7] in the fol-
lowing ways:

• Better statistical models – While the choice of inde-
pendent East and North errors simplified the analy-
sis, it does not match reality; the exact GNSS con-
stellation being viewed results in correlation between
the resulting East and North errors (this leads to the
use of GDOP as a figure of merit in GNSS perfor-
mance). This work extends the detection analysis,
employing unequal variances and a non-zero correla-
tion for the East and North errors for the case of a
symmetric antennae configuration.

• Time sequential processing – Our original approach
might be called a “snapshot” method in that it pro-
cesses just one set of positions to decide spoof ver-
sus no spoof. Allowing multiple measurements, we
develop a test that looks for similar/equivalent geo-
metric relationships across time. In this paper we re-
port on two ways to combine such data: a “coherent”
approach which assumes that the platform does not
rotate between measurements and a “non-coherent”
approach which allows for rotation.

• Extension to 3D – We extend the problem and solu-
tion formulations to allow for antennae at different
altitudes (which may be especially appropriate for
some platforms).

The Problem

Imagine a configuration of m GPS antennae/receivers,
each of which provides a two dimensional position solu-
tion based upon its observed RF signals (while latitude
and longitude are the nominal coordinates, we will assume
that they are converted to East and North in a local ref-
erence frame). For simplicity of the resulting analysis,
we will parameterize the position of each antenna as a
point on the complex plane relative to some fixed origin.
Specifically, the kth antenna, k = 1, . . .m, is at position
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dk = dk,r + jdk,i (in this decomposition into real and
imaginary components, we will think of the real part as
the East component and the imaginary part as the North
component of the position). Further, and without loss
of generality, we will assume that the origin of our ref-
erence frame is such that the centroid of these antennae
positions is zero, so that

m∑
k=1

dk = 0

Our interest is in mounting this array of antennae onto
a moving platform; hence, relative to the location of the
centroid, the array could have a random orientation with
respect to true East/North. Keeping the array horizon-
tal, we model this as an angular rotation by angle θ (in
radians) on the complex plane. As such, the position of
the kth antenna is now dke

jθ. For our spoof detector each
antenna processes the RF signals it receives, yielding an
estimate of its position; this position is a complex num-
ber in that same reference frame which we will denote by
xk = xk,r + jxk,i. We will assume that the error in this
estimate is dominated by additive Gaussian noise, so will
employ complex Gaussian distributions when describing
the statistics of these positions. In [7] we assumed a white
noise component; here we want to take into account the
satellite geometry as described by HDOP (i.e. unequal
variances on the components along with correlation) and
will use a more general model.

We consider two situations, the null hypothesis, H0, in
which no spoofer is present and the alternative hypothe-
sis, H1, in which a spoofer is present:

H0: With no spoofer present we assume that each indi-
vidual antenna is giving an accurate estimate of its
actual position. For notation, let b represent the true
position of the centroid of the antennae array; includ-
ing this position offset, the rotation for each antenna,
and additive Gaussian noise terms (nk), we have a
model for the position observations of

xk = b+ dke
jθ + nk

for k = 1, 2, . . .m.

H1: With a spoofer present we assume that the anten-
nae all receive identical RF signals; hence, all would
provide noisy estimates of the same constant posi-
tion. (We assume that the spoofer takes over all
satellite signals; we would have to modify this char-
acterization if only some satellites were spoofed. And
with only one radiator, a spoofer can create only one
possible position solution). Letting c represent this
spoofed position, we have the observation model

xk = c+ nk

for k = 1, 2, . . .m.

In [7] we assumed white noise for nk; here we will keep the
Gaussian model and zero mean, but allow the individual
real and imaginary parts to have different variances and
to be correlated. As a complex random variable

nk ∼ CN (0,Γk, Ck)

Note that the parameters of this model are dependent
upon the satellites in view to antenna k. Since we assume
that the antennae are nearly co-located, then we assume
that the sky view is the same for each antennae, so Γk = Γ
and Ck = C; in other words, the noise at each antenna
has the same statistics. We also assume independence of
the noise for different k.

For those not familiar with complex Gaussian variates,
consider a pair of jointly Gaussian variables xr and xi.
Standard notation (listing the two means, two variances,
and the correlation coefficient) that is used to describe
their statistics is

(xr, xi) ∼ N
(
µr, µi, σ

2
r , σ

2
i , ρ
)

If we construct the complex random variable x from these
two random variables as

x = xr + jxi

then
x ∼ CN (µ,Γ, C)

with
µ = µr + jµi

Γ = σ2
r + σ2

i

and
C = σ2

r − σ2
i + j2ρσrσi

Obviously, one can also write expression for the parame-
ters in the reverse direction.

The Test

Our hypothesis test from [7], which assumed white statis-
tics on the measurement noise, is

T (x1, . . . , xk) = −

∣∣∣∣∣
m∑
k=1

d∗kxk

∣∣∣∣∣ H1

>
<
H0

λ

While this form is quite simple, its performance does vary
as a function of antenna configuration, satellite constel-
lation, and platform orientation. Our goal is to analyze
these effects. Before presenting the analysis, we note that
the test statistic is independent of translation of the data.
This is particularly important is that it means that any
common-mode bias in the GNSS positions is ignored by
the test.
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Let’s begin an analysis. For convenience, we write the
test as

T (x1, . . . , xk) = − |y|
H1

>
<
H0

λ

with

y =
m∑
k=1

d∗kxk =
m∑
k=1

yk

Consider the individual terms in the summation for y

yk = d∗kxk

As separate linear functions of independent complex
Gaussian random variables (the xk), the yk are jointly
complex Gaussian and maintain their independence; the
sum of these terms, y, is also complex Gaussian. Simpli-
fying the algebra, the distributions are

y ∼ CN

(
ejθ

m∑
k=1

|dk|2,Γ
m∑
k=1

|dk|2, C
m∑
k=1

(d∗k)2

)

under H0 and

y ∼ CN

(
0,Γ

m∑
k=1

|dk|2, C
m∑
k=1

(d∗k)2

)

under H1. We note that these expressions depend upon
two functions of the antennae locations

m∑
k=1

|dk|2 and

m∑
k=1

(d∗k)2

In [7] the optimality of a circular symmetric antenna con-
figuration was noted. Focusing our attention on such a
pattern, let

dk = rej(
2πk
m +φ)

for k = 1, 2, . . .m with φ an arbitrary phase shift and r a
known radius. After some algebra, the first constant can
be seen to reduce to

m∑
k=1

|dk|2 = mr2

The second summation can be shown to equal zero if m >
2. The combined result is that for symmetric arrays of
m = 3 or more antennae, the complex random variable y
has distributions

y ∼ CN
(
ejθmd2,mr2Γ, 0

)
and

y ∼ CN
(
0,mr2Γ, 0

)
under H0 and H1, respectively. We defer the m = 2 case
to a separate section below.

To develop the performance expressions, it is convenient
to convert the complex variable y back into two separate
components, the real part yr and the imaginary part yi.
The means for each part are just the real and imaginary
parts of the complex mean, respectively. Under H0

µy,r = mr2 cos θ and µy,i = mr2 sin θ

Since θ is an unknown angle, the center of the distribution
on the (yr, yi) plane is somewhere on a circle of radiusmr2

about the origin. Under H1 both means are zero. Since Γ
is real and C is zero for both hypotheses, we have equal
variances for the two components

σ2
y,r = σ2

y,i =
mr2Γ

2

Finally, since Γ is real and C is zero, we have zero corre-
lation

ρy = 0

In other words, the bivariate distributions are

(yr, yi) ∼ N
(
mr2 cos θ,mr2 sin θ,

mr2Γ

2
,
mr2Γ

2
, 0

)
and

(yr, yi) ∼ N
(

0, 0,
mr2Γ

2
,
mr2Γ

2
, 0

)
under H0 and H1, respectively.

The test itself can also be written in terms of these com-
ponents

T (x1, . . . , xk) = − |y|
H1

>
<
H0

λ

= −
√
y2
r + y2

i

H1

>
<
H0

λ

Multiplying by −1 reverses the direction of the test

T (x1, . . . , xk) =
√
y2
r + y2

i

H0

>
<
H1

λ

In other words, if the observation when viewed on the
(yr, yi) plane is outside a circle of radius λ, then we decide
H0, no spoofer; if inside the circle, we decide H1.

Test Performance for m > 2

The probability of detection is the probability under H1

that the test statistic is smaller than the threshold

Pd = ProbH1

(√
y2
r + y2

i < λ

)
Since (yr, yi) is bivariate Gaussian under H1 then

Pd =

∫∫
Ω

1

2πσ2
e−

1
2σ2 (y2

r+y2
i )dyrdyi

Proc. ION ITM, San Diego CA, Jan. 2014



in which, for simplicity, we have introduced the notation

σ2 =
mr2Γ

2

and Ω is the disk about the origin of radius λ. Changing
variables to polar coordinates of magnitude s (chosen to
avoid using r with two definitions) and phase angle φ
yields

Pd =

∫ 2π

0

∫ λ

0

s

2πσ2
e−

s2

2σ2 dsdφ

in which we have explicitly described the limits of inte-
gration of Ω. Integrating first over φ, then over s yields

Pd = 1− e−
λ2

2σ2 = 1− e−
λ2

mr2Γ

The false alarm of the test is the probability under H0

that the test statistic is smaller than the threshold

Pfa = ProbH0

(√
y2
r + y2

i < λ

)
Again, (yr, yi) is bivariate Gaussian, but with non-zero
means, so

Pfa =

∫∫
Ω

1

2πσ2
e−

(yr−mr2 cos θ)
2
+(yi−mr2 sin θ)

2

2σ2 dyrdyi

(again using the notation σ2). Changing to polar coordi-
nates yields

Pfa =

∫ λ

0

s

σ2
e−

s2+m2r4

2σ2

[∫ 2π

0

1

2π
e
smr2

σ2 cos(φ−θ)dφ

]
ds

Now, the inner integral in brackets can be manipulated
by changing variables to ζ = φ− θ, using the periodicity
of the cosine function to shift the integration limits, and
recognizing the definition of the modified Bessel function
of the first kind. The result for the false alarm probability
is then

Pfa =

∫ λ

0

s

σ2
e−

s2+m2r4

2σ2 I0

(
smr2

σ2

)
ds

To simplify this expression, we first change variables to

z =
s

σ

so

Pfa =

∫ λ
σ

0

ze−
1
2 [z2+γ2]I0 (zγ) dz

with

γ =
mr2

σ

This final form can be written in terms of Marcum’s Q
function [8, pp.344-346]

Pfa = 1−Q
(
γ,
λ

σ

)
Substituting for γ and σ

Pfa = 1−Q

(√
2mr2

Γ
, λ

√
2

mr2Γ

)

At this point we have expressions for Pfa and Pd in terms
of the system parameters of number of antennae, m, spac-
ing of the antennae, r, and the variance of the position
error, Γ. We can invert the Pd expression for the thresh-
old λ

λ =
√
−mr2Γ ln (1− Pd)

Inserting this result into the expression for Pfa, we have

Pfa = 1−Q

(√
2mr2

Γ
,
√
−2 ln (1− Pd)

)

We acknowledge that some might think that this expres-
sion is backwards, that it is more usual in hypothesis
testing to write the detection probability as a function of
the false alarm probability. However, the utility of this
closed-form expression is that for a fixed Pd and noise
variance parameter Γ, the known monotonically of Mar-
cum’s Q function in its arguments implies that our test’s
performance improves with increasing r and m.

As examples, Figure 1 shows a typical ROC for m = 4 and
various spacings of the antennae (r) while Figure 2 shows
a ROC for r = 1.5 and various numbers of antennae (m).
In both of these examples we have, for convenience, set Γ
to unity. These figures demonstrate the monotonicity of
the performance with increasing m and/or r.

Including HDOP

The expressions for the false alarm and detection proba-
bilities developed above depend upon the parameters of
the antennae array (through m and r) and the underly-
ing position inaccuracies through Γ. The parameter Γ
can also be written as

Γ = σ2
UEREHDOP2

in which σUERE is the user equivalent range error and
HDOP is the horizontal dilution of precision. With this
relationship, the performance of our spoof detector is

Pfa = 1−Q

(√
2mr2

σ2
UEREHDOP2 ,

√
−2 ln (1− Pd)

)
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Figure 1: ROC for m = 4 and Γ = 1 with different
values for r (in meters).

For example, HDOP = 1 and σUERE = 1 would yield
the Γ = 1 employed for Figures 1 and 2. Realistic values
for these parameters are HDOP of unity and σUERE of
approximately 4 [9]. An obvious metric for performance
(essentially a signal to noise ratio as a function of the
parameters that we control, m and r) is the square of the
first argument of the Marcum Q-function

metric(m, r) =
2mr2

σ2
UEREHDOP2

Clearly we are interested in very small Pfa and large Pd, so
need to look more clearly at the performance expression
to understand the roles of m and r. Toward this end,
imagine thatm = 4 and Γ = 16 (using the realistic HDOP
and σUERE values), and that the threshold, λ, is set so
that Pd is either 0.9, 0.99, or 0.999. Figure 3 shows the
corresponding Pfa for a range of r values. For example,
we observe that for r = 10 meters (4 antenna on a square
with side lengths of 10

√
2 meters) we achieve Pfa ≈ 10−5

and Pd ≈ 0.99! The Pfa and Pd expressions depend upon
the antenna array through the product mr2 only; in other
words, an array of 4 antenna on a circle of radius 10
meters has a score of mr2 = 4 · 102 = 400, the same as a
5 antenna array array with r just below 9 or 3 antennae
with d ≈ 11.5. To understand the scale of these values for
platforms of interest, Figure 4 shows the 3 and 4 antennae
locations on a Boeing 757 airplane.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

 

 

m=3

m=4
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Figure 2: ROC for d = 1.5 meters and Γ = 1 with
various m.
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0.999

Figure 3: Pfa versus r for m = 4, Γ = 16, and selected
values of Pd.

The Case of 2 Antennae

Some long and narrow platforms, track trailers or ships,
might be better suited to a two antenna solution; for
example, r = 7 as shown in Figure 5. Assuming that
d1 = rejφ and d2 = −rejφ, we can drop the common
multiplication by rejφ and simplify the test to

T (x1, x2) = − |x1 − x2|
H1

>
<
H0

λ

Concentrating on the term within the absolute value sym-
bols

y = x1 − x2

we have the following characterizations:
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r=10 meters

r=11.5 meters

Figure 4: Antennae layout on a 757 aircraft.

14 meters

Figure 5: Antennae layout on tracker trailer.

• Under H0, this variable is

y = x1 − x2

= 2rejθ + n1 − n2

• Under H1, it is

y = x1 − x2

= n1 − n2

Since both n1 and −n2 (the negative of n2) are complex
Gaussian then so is their sum

n1 − n2 ∼ CN (0, 2Γ, 2C)

To facilitate a performance analysis in this case, it is con-
venient to again return to a bivariate description of y
under the two hypotheses. Under H0 we have means

µy,r = 2r cos θ and µy,i = 2d sin θ

while under H1 both means are zero. As Γ is real and C
is complex, we have variances

σ2
y,r = 2σ2

r and σ2
y,i = 2σ2

i

under both hypotheses. As n1 and −n2 are independent
and identically distributed, their sum has the same cor-
relation coefficient of ρ under both hypotheses. Summa-
rizing, under H0

(yr, yi) ∼ N
(
2d cos θ, 2d sin θ, 2σ2

r , 2σ
2
i , ρ
)

and under H1

(yr, yi) ∼ N
(
0, 0, 2σ2

r , 2σ
2
i , ρ
)

At this point we want to calculate the probabilities of false
alarm and detection which correspond to integrals within
a disk of radius λ on the complex plane corresponding to
y. Figure 6 shows such a situation with λ = 1 (the red,
dashed circle is the decision boundary), the elliptical con-
tours of the pdf under H1 are shown in green, the possible
location of the mean under H0 is shown as a blue, dashed
circle with radius of

√
5, and three typical contours of the

pdf under H0 are shown in blue. Under both hypotheses,
this figure assumes that σr = 2σi and that the correlation
coefficient is ρ = 0.5. It is very clear from this figure that
while the probability of detection is fixed (integrating the
green pdf inside the red circle is merely mathematically
ugly), the probability of false alarm (integrating a blue
pdf inside the red circle) depends upon the relative loca-
tion of the center of the ellipse (equivalently, the rotation
angle θ).

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

 

 

decision boundary

mean of y under H
0

pdf under H
1

pdf under H
0
 for different values for θ

Figure 6: Distributions of y under H0 and H1 and the
integration boundary.

To facilitate doing these computations, it is convenient to
rotate the data by angle

ζ = −1

2
tan−1 2ρσrσi

σ2
r − σ2

i

so that the major axis of the ellipse is parallel to the
horizontal axis. Let z represent this new pair of variables.
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With this rotation, the probability density function of
z under the two hypotheses is still bivariate Gaussian.
Specifically, under H0

(zr, zi) ∼ N
(
2r cosψ, 2r sinψ, σ2

1 , σ
2
1 , 0
)

with ψ an arbitrary angle and

σ2
1 = σ2

r + σ2
i +

√
(σ2
r − σ2

i )2 + 4ρ2σ2
rσ

2
i

σ2
1 = σ2

r + σ2
i −

√
(σ2
r − σ2

i )2 + 4ρ2σ2
rσ

2
i

(Note that the signs in front of the square roots assume
that σr > σi; if not, they should be reversed.) Under H1

(zr, zi) ∼ N
(
0, 0, σ2

1 , σ
2
1 , 0
)

With this change of variables, the equivalent view in z
is shown in Figure 7. In this figure we also show the
best case and worst case locations for the distributions
under H0 (best at the top which would yield the smallest
Pfa, worst at the right). At this point we could attempt
the integrals inside the red circle to yield the false alarm
and detection probabilities. Unfortunately, if σ2

1 6= σ2
2 no

closed form solution exists. One could, of course, perform
the integration numerically (probably easiest in polar co-
ordinates).
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Figure 7: Distributions of z under H0 and H1 and the
integration boundary.

An alternative, pursued here, is to bound the expressions.
Examining the figures, we have

Pd =

∫∫
Ω

1

2πσ1σ2
e
− 1

2

[
z2r
σ2

1
+
z2i
σ2

2

]
dzrdzi

and in the worst case

Pfa =

∫∫
Ω

1

2πσ1σ2
e
− 1

2

[
(zr−2r)2

σ2
1

+
z2i
σ2

2

]
dzrdzi

Figure 8: Bounding region for Pfa (top) and Pd

(bottom). (Please ignore the vertical line on the left of
the top figure; it’s a MatLab artifact that I cannot get

rid of!)

One simple upper bound for Pfa is to use a half-plane to
encapsulate the spoofing decision region, Ω, as shown in
the top subfigure of Figure 8. The result is

Pfa ≤ Q
(

2r − λ
σ1

)
Other bounds are obviously possible.

The detection probability can lower bounded with an in-
scribed box as shown in the lower subfigure of Figure 8. In
general, we could use a box with corners (±a,±b) where
a and b satisfy a2 + b2 = λ2 and maximize the result over
a and b. Mathematically

Pd ≥
[
1− 2Q

(
a

σ1

)][
1− 2Q

(
b

σ2

)]

At this point we can try several approaches. One would
be to use the half-plane bound for Pfa to evaluate λ

λ = 2r − σ1Q
−1 (Pfa)

use a2 + b2 = λ2 to solve for b in terms of λ

b =
√
λ2 − a2

and then optimize Pd (numerically?) over a and b. A
second approach is to choose a and b to satisfy

a

σ1
=

b

σ2

so that the bound simplifies. The result is

Pd ≥

[
1− 2Q

(
λ√

σ2
1 + σ2

2

)]2

Proc. ION ITM, San Diego CA, Jan. 2014



Multi-Sample Tests

Imagine collecting position samples as the platform is

moving. Indexing time samples by the variable n, let x
(n)
k

represent the nth time sample at antenna k, k = 1, 2, . . .m
and n = 1, 2, . . . N . For the discussion below we assume
that the samples are sufficiently far apart in time so that
the measurement errors on each antenna are independent
complex Gaussian variates.

We envision two different situation depending upon
whether or not the platform rotates during the measure-
ment period:

• No rotation — modifying the development of the test
for independent spatial errors in [7] (the generalized
likelihood ratio test for a single unknown angle of
rotation) results in the test

T (x
(1)
1 , . . . , x(N)

m ) = −

∣∣∣∣∣
N∑
n=1

m∑
k=1

d∗kxk

∣∣∣∣∣
Combining the spatial matched filter outputs before
the absolute value is a kind of coherent processing in
which we exploit the fact that the random orientation
is constant over the entire time.

• Unknown rotations — if we allow the rotation to be
different for each data snapshot, then the generalized
likelihood ratio test should optimize over each angle
separately. Doing so yields the test

T (x
(1)
1 , . . . , x(N)

m ) = −
N∑
n=1

∣∣∣∣∣
m∑
k=1

d∗kxk

∣∣∣∣∣
Combining the spatial matched filter outputs after
the absolute value is a noncoherent operation.

Recall that the summation over k is invariant to the ac-
tual location of the vessel; hence, the statistical distribu-
tions of each summation over k for different values of n
are identical in the coherent case and identical except for
a rotation in the non coherent case. Assuming that the
m > 2 antennae are uniformly spread on a circle of ra-
dius d, then each sum over m is an independent complex
Gaussian variate under both hypotheses. Specifically, for

y(n) =
m∑
k=1

d∗kx
(n)
k

then
y(n) ∼ CN

(
ejθmr2,md2Γ, 0

)
and

y(n) ∼ CN
(
0,mr2Γ, 0

)
under H0 and H1, respectively. For the coherent test, we
sum N such independent variable, so the change in the

distributions is to increase the means and variances by a
factor of N :

N∑
n=1

y(n) ∼ CN
(
ejθNmr2, Nmr2Γ, 0

)
and

N∑
n=1

y(n) ∼ CN
(
0, Nmr2Γ, 0

)
In this case, the performance results of the single snapshot
analysis directly extend with the addition of the factor of
N

Pd,coherent = 1− e−
λ2

2Nmr2Γ

and

Pfa,coherent = 1−Q

(√
2Nmr2

Γ
, λ

√
2

Nmr2Γ

)
or

Pfa = 1−Q

(√
2Nmr2

Γ
,
√
−2 ln (1− Pd)

)
From this last expression, it is clear that the metric has
increased by a factor of N

metriccoherent(m, r,N) =
2Nmr2

σ2
UEREHDOP2

= Nmetric(m, r)

and we observe that we can trade time (repeated sam-
pling) for either number of receivers (m) or spacing (r).
For example, employing 4 sets of time samples allows us
to half the radius of the antennae array.

The analysis for the non-coherent case is slightly harder.
Since we take the absolute value first, before summing
over n, we have a set of N independent Rician random
variable (Rayleigh under H0). Unfortunately, there ap-
pear to be no closed form results for computing Pfa and
Pd. However, we conjecture that the metric increases by
a square root of N

metricnon−coherent(m, r,N) ≈ 2
√
Nmr2

σ2
UEREHDOP2

≈
√
Nmetric(m, r)

Extending to 3 Dimensions

For some platforms of interest (e.g. aircraft), limiting
the problem statement to a horizontal placement of the
antennae seems appropriate. For others, however, such
as ships, the option to place an antenna on the top of a
superstructure might be available and might provide some
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improvement to performance. To consider this, we add
an altitude measurement to our situation, maintaining
the option to rotate the array in the horizontal plane by
angle θ. Letting gk and zk be the actual and measured
altitude for antenna k, respectively, the first question is
how to extend the test statistic. Assuming that we define
our origin so that we have a vertical centroid condition

m∑
k=1

gk = 0

then extending the white measurement error analysis
from [7] yields the test

T (x1, z1, . . . , xk, zk) =

∣∣∣∣∣
m∑
k=1

d∗kxk

∣∣∣∣∣+ δ
m∑
k=1

gkzk

H0

>
<
H1

λ

where we have added the scalar δ

δ =
σ2

σ2
z

(the ratio of the horizontal position error variance, σ2,
to the vertical error variance, σ2

z) to take into account
that vertical accuracy is usually worse than horizontal
accuracy. Clearly an analysis of performance involves the
combination of a non-central chi distribution (from the
horizontal term) and a Gaussian distribution (from the
vertical term). Because of this, we do not expect to be
able to find closed form results, but expect that bounds
might be possible.

To continue the discussion, consider an example of a plat-
form with 2 antennae mounted at different heights

d1 = −r, g1 = −h
2

and

d2 = +r, g2 = +
h

2

where 2r and h are the length and height of the platform,
respectively. With this choice, the test statistic is

T = |−rx1 + rx2|+ δ

(
−h

2
z1 +

h

2
z2

)
Without loss of generality, we can modify the coefficients
and use the test

T = |x2 − x1|+
δh

2r
(z2 − z1)

= |yh|+ yv

To analyze this test we need statistical models for the
measurements. For simplicity, we characterize yh and yv
separately. Invoking the white assumption:

• Under H0 we have

x1 ∼ CN
(
−rejθ, 2σ2, 0

)
z1 ∼ N

(
−h

2
, σ2
z

)

x2 ∼ CN
(
rejθ, 2σ2, 0

)
z2 ∼ N

(
h

2
, σ2
z

)
• Under H1 we have

x1 ∼ CN
(
0, 2σ2, 0

)
z1 ∼ N

(
0, σ2

z

)
x2 ∼ CN

(
0, 2σ2, 0

)
z2 ∼ N

(
0, σ2

z

)
all mutually independent. The distributions of the terms
in the test statistic are

• Under H0

yh ∼ CN
(
2rejθ, 4σ2, 0

)
yv ∼ N

(
h, 2

(
δh

2r

)2

σ2
z

)

With the non-zero mean of yh, the distribution of
|yh| is non-central chi.

• Under H1

yh ∼ CN
(
0, 4σ2, 0

)
yv ∼ N

(
0, 2

(
δh

2r

)2

σ2
z

)

In this case, the distribution of |yh| is central chi.

The next question is to find the distribution of T un-
der the two hypotheses. Unfortunately, even in the inde-
pendent case, the convolution of the Gaussian and non-
central chi densities does not appear to lead to a closed
form expression. Instead, we resorted to simulation.

1. We selected system parameters of r = 10, h = 4,
σ = 4, and σz = 8 (δ = 0.25)

2. We generated 200, 000 sets of the 6 Gaussian random
variables needed under H0

3. We computed T for each trial; note that without loss
of generality we can set θ = 0

4. We repeated steps 2 and 3 for H1 (the independence
of the trials allows us to better describe the results)

5. We sorted the values of T, counted them to estimate
Pfa and Pd, and plotted the resulting ROC

For comparison, we also simulated a second platform with
h = 0 (and ignored the vertical component, i.e. T = |yh|).
Figure 9 shows portions of the two ROCs for comparison.
Clearly the vertical separation helps. At this time we are
unable to characterize how much gain a specific separa-
tion yields.
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separation.
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