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[1] Earthquake ruptures are modeled as dynamically propagating shear cracks with the
aim of gaining insight into the physical mechanisms governing their arrest or, otherwise,
the often-observed variations in rupture speeds. Fault bends have been proposed as being
the main cause for these variations. Following this line of reasoning, the existence of
deviations from fault planarity is chosen as the main focus of this study. Asymmetric
impact is used to generate shear loading and to propagate dynamic mode-II cracks along
the bonded interfaces of two otherwise identical homogeneous constituents. Secondary
paths inclined at various angles are also introduced to represent fault bends or kinks. The
experiments show that certain fault bend inclinations are favored as alternate paths for
rupture continuation, whereas others suppress further motion of the incoming rupture. The
asymptotic elastodynamic stress fields at the tip of the growing rupture are used to develop
two criteria (one energetic and one stress based) for rupture propagation or arrest at
the kinked interfaces. These criteria correlate very well with the experimental results.
Since most field evidence suggests that the average rupture speeds during crustal
earthquakes are sub-Rayleigh, this work first focuses on incoming rupture speeds that are
just below the Rayleigh wave speed. Reports of intersonic crustal fault rupture speeds
having surfaced recently, experiments and analyses are also performed within that speed
regime. INDEX TERMS: 7209 Seismology: Earthquake dynamics and mechanics; 7203 Seismology:

Body wave propagation; 7260 Seismology: Theory and modeling; 8010 Structural Geology: Fractures and

faults; 8020 Structural Geology: Mechanics; KEYWORDS: shear crack, wave propagation, dynamic fracture,

fault bend, energy release rate, fault propagation criteria

Citation: Rousseau, C.-E., and A. J. Rosakis, On the influence of fault bends on the growth of sub-Rayleigh and intersonic dynamic

shear ruptures, J. Geophys. Res., 108(B9), 2411, doi:10.1029/2002JB002310, 2003.

1. Introduction

[2] Earthquakes generally result from a sudden rupture in
the Earth’s crust, which occurs under the influence of
slowly increasing compressive and shear tectonic stresses.
Nucleation and propagation of such events take place along
preexisting faults in the Earth’s crust. However, these weak
paths are rarely planar but rather exhibit kinks, discontinu-
ities, jogs, and varying levels of strength, which assume a
great importance in seismology. For example, branches and
steps are believed to control the extent to which earthquake
ruptures are able to propagate, thereby potentially restricting
their magnitude. King and Nabelek [1985], in particular,
have noted the apparent confinement of earthquakes to
regions between fault bends, and in a few cases, have

isolated their initiation to the immediate vicinity of bends
or jogs. Arrest at those locations, however, is not an
inevitable outcome. Indeed, earthquakes have in some cases
been observed to bypass geometrical discontinuities. For
example, the 1966 Parkfield earthquake jumped across a
step over in the San Andreas fault [Segall and Du, 1993].
[3] The impact of fault kinks on overall earthquake

progression, though acknowledged, has rarely undergone
rigorous scrutiny to the extent that jogs have. This arises
from the difficulty that exists in quantifying their role. Thus
far, the most advanced analysis on the subject is due to
Poliakov et al. [2002] who have approached the problem
from two different angles. Successively, the propagating
earthquake is likened to a steadily propagating and singular
elastodynamic shear crack and is then represented by a slip-
weakening dynamic rupture model. Off-fault maximum
shear stresses in the vicinity of the propagating tip are
evaluated and compared to the frictional resistance within
the Earth’s crust. When the former exceeds the latter in
a particular direction, that direction becomes a plane of
potential failure. In cases where extensive damage is
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present, this results in secondary faulting. They also find
that were an intersecting weak plane aligned to that
direction, this plane would then promptly rupture. In addi-
tion to the nature of the local field of the incoming rupture,
their results are highly dependent upon the level of tectonic
stress. Further, Aochi et al. [2002] and Kame et al. [2003]
have studied the effect of these stresses on symmetric and
asymmetric forked fault geometries with the aid of numer-
ical analysis. Depending on tectonic stress level, orientation,
and incoming rupture speed, the rupture may favor the
more compressional or the more tensional of the tectonic
branches.
[4] In this work, a close analogy between earthquakes

and cracks will be embraced. The traditional engineering
approach to fracture mechanics has been primarily guided
by opening (mode-I) cracks, largely neglecting shear
(mode-II) cracks. This is indeed very practical as crack
propagation in constitutively homogeneous, monolithic
materials is strictly limited to the opening mode, even if
far-field conditions are asymmetric. As a crack extends
under the influence of external tractions, it will continually
kink and assume a local mode-I field, even if the external
tractions are such as to generate mixed-mode stress states
[Cotterell and Rice, 1980]. Seismologists, on the other
hand, face different concerns. The Earth’s crust inherently
contains numerous weak interfaces, or faults, and therefore
from a fracture standpoint can no longer be construed as
monolithic. In addition, active faulting brings into frictional
contact rocks that are compositionally dissimilar, thereby
inducing material inhomogeneity. In some cases, elastic
material properties across several faults have been found to
vary substantially, and shear wave speeds have been
measured to differ by as much as 30% [Das, 1985; Rice,
2001]. The latter case simply constitutes a bimaterial with a
weaker interface fracture toughness than either of its two
constituents. Bimaterial cracks have a natural affinity
toward acquiring a mixed-mode stress state, and even
purely tensile external tractions generate a substantial
mode-II component at the crack tip, due to the influence
of material inhomogeneity. Also, the fault represents a
ready-made path along which the rupture propagation is
constrained. Thus the running rupture is prevented from
kinking and thus is disallowed the opportunity of assuming
pure mode I.
[5] The different crack-tip running modes and the pres-

ence or absence of weak paths also translate in differences in
attainable crack speeds. Dynamically propagating tensile
cracks are theoretically limited to cR, the Rayleigh wave
speed of the material [Freund, 1990]. However, in brittle
monolithic materials, mode-I cracks can propagate smoothly
only up to nearly 40% of cR, at which point they become
unstable, generating microbranches and engaging into
tortuous paths [Ramulu and Kobayashi, 1985]. However,
the introduction of a weak path in an otherwise homoge-
neous solid does set the environment for propagation of
mode-I crack at its theoretical speed limit. For dynamic,
mode-II, shear ruptures, the situation is very different. Here
the existence of a weak plane or fault is a prerequisite for the
existence of dynamic shear rupture of any speed. In contrast
to their mode-I counterparts, mode-II cracks (or shear
ruptures) propagating along faults are not only allowed to
reach cR theoretically but also are capable of jumping that

barrier to reach the intersonic region between the shear wave
speed (cs) and the longitudinal wave speed (cl) [Burridge et
al., 1979]. Field observations seem to confine the rupture
speed of most earthquakes to the range between 0.7cs
(0.76cR) and 0.9cs (0.98cR) [Kanamori, 1994]. In only
very few cases have earthquake rupture speeds been
inferred to have become intersonic over a limited portion
of the fault [Archuleta, 1984; Olsen et al., 1997; Bouchon
et al., 2001].
[6] Of particular interest to the present investigation is the

rupture event that occurred along the North Anatolian fault
during the 1999 Izmit earthquake. In this event, Bouchon et
al. [2001] present compelling evidence that the east bound
rupture propagated intersonically with a speed just aboveffiffiffi
2

p
cs, while the west bound rupture remained sub-Rayleigh.

Partially confirming these results are the more recent
numerical evaluations of R. A. Harris (personal communi-
cation, 2002) that require the existence of supershear speeds
as a necessary condition for complete rupture of the North
Anatolian fault. The intersonic east bound rupture encoun-
tered a 22.5�-retaining bend in the fault (compression side)
that was unable to stop the rupture (see analysis by Harris et
al. [2002]). Situations mimicking such an encounter of an
intersonic rupture with a compression bend will be dis-
cussed in the second part of this study.
[7] Despite the caution in claiming the existence of

intersonic earthquake ruptures, strong evidence of intersonic
crack propagation has surfaced recently in laboratory set-
tings. Lambros and Rosakis [1995] have witnessed a
number of cases in which intersonic speeds were attained
along the bonded interface between two highly dissimilar
materials. This was further discussed in the review paper by
Singh et al. [1997]. Even more notable is the discovery of
bonded identical materials sustaining propagating crack
speeds in the intersonic regime [Rosakis et al., 1999], which
certainly adds credence to the possibility of intersonic
earthquake rupture.
[8] The above discussion has raised several issues perti-

nent to dynamic rupture propagation in the Earth’s crust. It
was shown that the reasons for the initiation and the arrest
of ruptures remain evasive. Using experimental techniques
of dynamic fracture mechanics, this paper aims at partially
answering the second question. Indeed, relations are devel-
oped that correlate the presence of fault bends to variations
in the speed of the propagating rupture. However, certain
limitations are associated with the present methodology. For
instance, earthquake ruptures are resisted mainly by friction,
which in this case is simulated by an interfacial bond
strength. Also, in the present work, rupture is triggered by
impact, whereas in earthquake ruptures they are excited by
slow crustal motion and the resulting tectonic loading as
well as the sudden release of local pressure. Above all, this
work presents some valid conceptual answers which should
universally apply to the rupture of a weak bond by a
propagating crack as well as the overcoming of fault friction
by a propagating earthquake rupture.
[9] In the following, specimens and experimental setup

are described. Results of the experiments are then presented,
and the analytical basis of this work is developed. Finally,
the experimental results are discussed in view of two
different failure criteria. The outline hereby laid out for
the case of sub-Rayleigh cracks is then repeated for the
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intersonic case, as it is believed here that earthquake
ruptures have the potential of running intersonically.

2. Specimen Description and Experimental
Apparatus

[10] The study investigates the progression, transmission,
or arrest behavior of shear-dominated sub-Rayleigh and
intersonic cracks growing along weak paths, as these
ruptures encounter fault bends or kinks along their paths.
The optical method of photoelasticity is used as a means of
visualizing stress fields in real time. The method lends itself
particularly well to revealing the essential features of
intersonic cracks, such as shear shock waves, and will
therefore be used in both cases. In addition, this full-field
technique also relates stress field information around prop-
agating cracks. The events are recorded using high-speed
photography.
[11] The specimens were composed of Homalite-100, a

birefringent polymer with longitudinal, shear, and Rayleigh
wave speeds of cl = 2295 m s�1, cs = 1310 m s�1,
and cR = 1205 m s�1, respectively. At room temperature
and at strain rates prevailing during the experiments
(103 s�1), the material is extremely brittle and linear elastic.
[12] The specimens were 5 mm thick, 175 mm high, and

200 mm long. The narrowness of the specimens ensured the
prevalence of two-dimensional, generalized plane stress
conditions. Preferred paths were generated by machining
them, beginning halfway through the specimen height on
the left side, and following the prescribed route. The two
halves were then bonded with a solution having weakened
fracture properties with respect to the bulk material but
similar elastic properties and density, as measured by
Samudrala et al. [2002a]. The weaker adhesive joint traps
the moving crack to the prescribed interface, compelling it
to retain its originally imposed mode-II state. Although not
monolithic, the resulting specimens can be considered to be
constitutively homogeneous. Indeed, the existence of a
path of lower fracture toughness makes these specimens
fracture-wise inhomogeneous but does not, in any sense,
affect their continuum mechanics description. Along the
interface, a 15-mm-long and 1-mm-wide starter notch was

machined. The presence of the notch prevented the imme-
diate transmission of the incoming impact stress waves
(applied at the top) to the bottom half. This in turn guaran-
teed a relatively clean mode-II initiation loading of the notch
tip by preventing notch face contact. The kinks in the weak
path were placed 75 mm from the left edge. Placement of
these alternate paths away from the loading (left edge) of the
plate allowed the incoming crack to establish a steady state
speed before reaching the bend site, thereby ensuring uni-
form conditions at the intersection of the two paths. Also, the
location of the bend was even farther away from the distant
right edge. The specimens were thus designed so that
reflected longitudinal waves returning from that edge would
not reach the location of the bend until the crack would have
moved through the major portion of the alternate path, well
beyond the experimental field of observation.
[13] The photoelastic setup is sketched in Figure 1. It

consists of a collimated beam generated by an argon-ion
continuous laser that is transmitted through a circular polar-
izer, the specimen, and a second circular polarizer. The
information is directed to the iris of a digital high-speed
Cordin camera capable of recording 16 frames up to a rate
nearing 100 million frames per second. This time resolution
is fortuitous, as very high crack speeds are present in some
cases encountered here.

3. Experimental Observations in the Subsonic
Regime

[14] Loading was generated by impact of a steel buffer
bonded to the top half of the specimen, near the notch, by a
hardened steel projectile. Following impact, an initially
planar compressive wave is transmitted to the specimen
via the steel buffer. Over the length of the notch, only the top
portion of the specimen is loaded. Beyond that location, the
compressive wave is gradually transmitted to the bottom. As
a result, loading to the latter always lags that of the top. A
state of stress thus exists along the interface, wherein a
larger amount of shear and compression continually prevails
above the adhesive joint. The condition is therefore propi-
tious to crack initiation at the notch tip in a combination of
compression and mode II, followed by propagation of a

Figure 1. The dynamic photoelastic setup and the high-speed camera.
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shearing crack, in a manner similar to the stress state
presented in the sketch of Figure 2. In addition, since the
specimens are impacted on the top half, from left to right,
the current experiments are akin to cases where earthquake
ruptures feature right-lateral slip.

[15] Further, a coordinate system (h1, h2), moving with
the crack tip is defined in Figure 2. The origin of the
stationary prenotch is located at (x, y) and is related to the
moving crack-tip location by h1 = x �

R
0
tv(t0)dt0 and h2 = y.

In addition, angular conventions are presented, with positive
angles situated above the fault line (counterclockwise) and
negative angles situated below the fault line (clockwise).
This angular convention is carried over to the specimen
geometry, as secondary bend paths are placed at various
angles on either side of the main horizontal fault line.
Recorded experimental images were centered at the inter-
section of the primary and secondary planes and encom-
passed a circular area having a radius of 50 mm.
[16] Figure 3 shows selected frames of the isochromatic

fringe patterns recorded for the case of a fault bent �35�
toward the extensional side of the specimen. Each frame is
identified by the time elapsed following impact and the
angle of the bend. These are inscribed on the top left and on
the top right corners of the frames, respectively. As in all the
experiments conducted in this study, the specimen is loaded
at the left edge of the top half. Compressive waves travel

Figure 2. Schematic defining coordinate system conven-
tion and the initial state of stress ahead of the growing
rupture.

Figure 3. Isochromatic fringe pattern around a mode-II crack propagating at subsonic speed along a
weak plane in Homalite-100. The crack continues propagating along a secondary weak path, inclined
�35� toward the extensional side of the specimen. Times after impact are (a) 80 ms, (b) 90 ms, (c) 130 ms,
and (d) 170 ms. The field of view, of 100 mm, is centered at the intersection of the two weak paths.
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through the specimen predominantly in the top half and are
trailed by disturbances corresponding to the shear waves.
Finally, the shear crack follows, since its initiation is
delayed and it propagates more slowly along the weak
plane. Figure 3a shows the crack as it has just reached the
intersection of the two paths. The crack tip can be identified
using several indicators. First, its location is usually accom-
panied by a miniscule shadow spot, which is caused by the
very high level of deformation within the immediate vicin-
ity of the crack tip. Second, due to high stresses and the
presence of discontinuity, the crack tip is always a rallying
point for a very large number of fringes. Also present in the
frame are fringes, corresponding to the initial stress wave
propagation, that are still making their way through the right
portion of the field of view as they are preloading the
specimen in a combination of shear and compression.

[17] In the next frame, the crack has veered down to
follow the bend and in the process has lost some of its
energy. Note that this change in direction is also accompa-
nied by a change in stress state. No longer do predominantly
mode-II conditions prevail at the crack tip, but rather, the
crack assumes a mixed-mode state. This is not apparent
from the photograph. However, it will be shown in a later
section that this is the case.
[18] At 130 ms, the crack has almost reached the edge of

the field of view, with its speed tapered substantially, while
still following the weakened interface. Striking in that frame
is the fact that the bottom section is almost devoid of fringes
and is therefore devoid of stresses. This is caused by the
interfacial separation brought about by the moving crack
that prevents further transfer of energy between the two
sections. The opening component of this decohesion is clear

Figure 4. Isochromatic fringe pattern showing a subsonically propagating mode-II crack encountering a
weakened plane inclined �100� toward the extensional side of the specimen. Times after impact are
(a) 110 ms and (b) 160 ms.
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in the next frame, as a narrow white space along the
interface testifies to the complete severance between the
two sections.
[19] The next two images, presented in Figures 4a and 4b,

are of great interest as they depict the behavior of a subsonic
crack upon reaching a backward orientated path (a =�100�).
However, prior to exploring the behavior pertaining to this
peculiar geometry, focus will be directed to a character
which seems to be universal to all the specimens tested. On
the first photograph, a series of shadow spots are present
on the extensional side, along the main fault. They corre-
spond to the tips of opening cracks generated as the main
shear crack travels along the weak plane. These secondary
cracks are periodic and are all inclined at an angle a* �
�79� from the direction of crack propagation. The pres-
ence of the secondary tensile cracks was explained by
Samudrala et al. [2002b] by introducing a finite slip-rate-
weakening shear cohesive zone behind the shear crack tip.
Contact and friction are conjectured to be present along the
crack face. Within this model, the biaxial stress state that
exists in the cohesive region behind the tip results in
maximum principal tensile stresses oriented at an angle
�a* from the interface. This angle is a function of the
cohesive strength of the interface, the crack-tip speed, and
the level of velocity weakening. Their possible relation to
the field observations of periodic tensile microcracking
perpendicular to fault planes in rocks has been discussed
by Rosakis [2002].
[20] The results presented in the next frame (Figure 4b)

are not a priori intuitive since they essentially show the
crack returning toward the direction fromwhich it originated.
The crack has indeed turned the corner and proceeded
along the provided �100� path, though at a constantly
diminishing speed. Again, secondary tensile, periodic cracks
accompany the main crack along the weakened bent path,
at an angle of a* � �71�. This time, the secondary cracks
have grown from the right face of the fault, which has turned
extensional with respect to its left side, indicating a change
from right-lateral to left-lateral slip as the rupture extends
from left to right.

[21] Figure 5a is representative of a specimen having the
secondary fault on its compressional side, for a bend angle
a = 35�. In this frame, the crack has already veered around
the corner and is halfway through its progression along the
bend, a process accompanied by a slight deceleration.
Finally, a case is presented in Figure 5b, for which the
moving crack failed to follow the bend but instead pene-
trated the bulk of the material. In this frame, the secondary
weakened path is bent 71� toward the compressional side of
the specimen. Here and in all the subsonic cases where the
crack failed in its attempt to follow the specimen interface
past the bend, the penetration angle into the Homalite was
about �40� on the extensional side. Progression into the
material is achieved through a dominant mode-I crack, as
evident from the symmetric shadow spots surrounding the
growing crack tip. This crack propagates steadily at a speed
corresponding to 55% of the Rayleigh wave speed, before
prevalence of extensive branching in the form of a fan of
tensile branches. In addition to this mechanism, failure also
proceeds by the prolonged extension of the last of the
periodic microcracks (generated just before the bend),
which is inclined at �79� to the horizontal.

4. An Energy Approach to Subsonic Crack
Deflection

[22] Consider an incipient crack initiating its growth as a
result of an applied far-field pure shear loading. The crack
will very promptly try to kink or curve relative to its initial
direction in an attempt to assume a pure mode-I symmetric
state, unless the latter is suppressed by application of
suitably oriented compressive stresses or unless the crack
is confined to its own plane in a manner similar to that
espoused in the current experiments. If the imposed restric-
tions come to an abrupt end, the crack may breach into the
material under mode I, provided the bulk material fracture
toughness is low enough relative to the fault plane. If, on
the other hand, another weakened path is presented, the
crack may elect to follow it, provided motion along that
path would generate energy release rate values surpassing

Figure 5. Isochromatic fringe patterns showing subsonically propagating mode-II cracks encountering
weakened planes inclined toward the compressional side of the specimens (a) at an angle of 35� and time
200 ms and (b) at an angle of 71� and time 170 ms.
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those offered by other alternatives. The said propagation
would occur under mixed-mode conditions and is precisely
the type of crack extension observed experimentally. It
remains to be found whether a study of the energies
expanded prior to and potentially after the bend can be
used to predict continuation around the bend, and if so,
forecast postbend crack speed and mode. A similar meth-
odology was used by Xu et al. [2003], who succeeded in
predicting the crack speed of a transmitted crack after
deflection at a bent. In their case, the approaching crack
was purely mode I while the deflected crack propagated
under mixed-mode conditions.
[23] Consider a shear crack propagating along a weak

bond in an elastic solid. The crack will advance if the
material fracture toughness KIIc of the weak bond, lying
ahead of it, is attained by the mode-II stress intensity factor
KII or if the shear crack growth energy release rate, GII,
exceeds the critical shear fracture energy, �, associated with
KIIc. If however, the crack were to propagate along an
infinitesimal kink making an angle q with the initial crack
direction, mixed-mode conditions will in general exist at its
tip. Static or dynamic stress intensity factors associated with
the infinitesimal kinked crack can both be obtained in terms
of the static stress intensity factor, KII, of the prekinked path
as follows [e.g., Broberg, 1999]:

Kd
I ¼ � 3

4
sin

q
2

� �
þ sin

3q
2

� �� �
KII kI ;

Kd
II ¼

1

4
cos

q
2

� �
þ 3 cos

3q
2

� �� �
KII kII ;

ð1Þ

where kI ¼ 1� v=cRð Þ½ 
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=clð Þ

p
and kII ¼ 1� v=cRð Þ½ 
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=csð Þ
p

.
[24] Inserted in these two relations are the universal

functions of crack-tip speed, kI and kII [Freund, 1990],
which account for the kinetic state of the rupture. For the
quasi-static case (v ! 0) both functions reduce to a value
of 1. After crack kinking, equation (1) will be evaluated
with v = v2, while prior to kinking, v will be taken to be v1
and q = 0�. A dynamic failure criterion based on energy can
now be formulated for growth both before and after kinking:

Gq ¼
1� u2ð Þ

E

n2

1� uð Þc2sD
al K

d
I

� 	2þas Kd
II

� 	2h i
� �; ð2Þ

where

D ¼ 4alas � 1� a2
s

� 	2
; ð3aÞ

al ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2l

� 	q
; ð3bÞ

and

as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2s

� 	q
: ð3cÞ

[25] Inserting equation (1) into equation (2) and taking the
ratio of the resulting inequality for values of q = a (v = v2) and
q = 0� (v = v1), respectively, one can conclude that the crack

would be able to proceed in the kinked direction only if this
ratio reaches or exceeds unity. In the expression to follow,
subscript ‘‘1’’ is associated with prebend speed and subscript
‘‘2’’ refers to crack speed after the kink. The requisite
inequality, which is valid for both plane stress and plane
strain, can be written as

Gq¼a;2

Gq¼0;1
¼ v22D1

v21D2


9al;2 kI ;2

� 	2
sin

q
2

� �
þ sin

3q
2

� �� �2
þas;2 kII ;2

� 	2
cos

q
2

� �
þ 3 cos

3q
2

� �� �2
16as;1 kII ;1

� 	2 � 1:

ð4Þ

[26] Speeds v2 exceeding zero indicate a propensity for
the crack to follow the secondary path, provided the left side
of inequality (4) exceeds unity. The expression is plotted in
Figure 6 at the limit v2 ! 0+, for several values of v1
registered during the experiments. The angles for which the
energy ratio is greater than one have therefore the potential
for kinked growth. The graphical data of Figure 6 indicate
the possibility for crack growth around a bend for all angles
inferior to 153�. Note that energy does not differentiate
between angular orientation and gives equal probabilistic
weight to crack motion along angles q and �q. However, the
methodology cannot account for the highly compressive
state of stress that suppresses the possibility of crack
advancement in the major portion of the positive angular
domain by producing extensive frictional dissipation asso-
ciated with crack-face contact. This shortcoming is clearly
associated with the assumption that the transmitted crack
faces remain traction and dissipation free even for positive
kink angles. Consequently, it is felt that this criterion can
only be accurate for the extensional side of the specimens.
Finally, inequality (4) can also be used as a predictive tool
for the speed v2. By using the equation as an equality, the

Figure 6. Ratio of the energy release rates of the
secondary path to that of the primary path at the limit
v2 ! 0. The analysis is valid only for mode-II crack
propagating at subsonic speeds along the primary plane.
Crack deflection toward the incline is allowed only in the
region above the line (�2/�1), which represents the
toughness ratio of the incline to that of the main plane.
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speed along the kink can be retrieved, providing motion
through the kink angle is allowed as per Figure 6.

5. The Subsonic Singular Crack-Tip Stress Field

[27] The inability of the previous method in segregating
positive and negative angles of crack orientation will be
remedied by alternatively scrutinizing the dynamic, asymp-
totic stress fields in the immediate vicinity of a shear crack
propagating dynamically in the sub-Rayleigh regime, along
a prescribed straight line path representing the ‘‘incoming’’
branch of a kinked weak plane or fault. Let such a crack
assume a pure mode-II stress state as it grows along the
horizontal direction. Further, let the polar coordinates at
the instantaneous crack tip be defined as in Figure 2. The
asymptotic form of the stress and deformation fields for
such a case has been provided by Freund [1990] and is
repeated here:

s11 ¼� Kd
IIffiffiffiffiffiffiffiffi
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p 2as
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[28] All variables pertaining to these equations have been
defined earlier, except for the following:

gl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v sin qð Þ=clð Þ2

q
; ql ¼ tan�1 al tan qð Þð Þ;

gs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v sin qð Þ=csð Þ2

q
; qs ¼ tan�1 as tan qð Þð Þ:

ð8Þ

[29] These stresses govern deformation only in the
immediate vicinity of the crack tip. Further away from the
crack tip, geometric and far-field effects can make a
significant contribution. These, however, are disregarded,
as only the singular stresses are conjectured to contribute to
initiation of local bifurcation off the fault path, especially in
the absence of static far-field loading as in the experiments
described earlier. When substantial levels of far-field
loading are present, the above assumption is expected to
be less accurate, as rationalized by Kame et al. [2003], and
in such cases the entire stress state is expected to play an
important role. Along every possible kink angle, a combi-
nation of the shear stress (srq) and the opening hoop stress
(sqq) along that direction will act in concert to control the
bend direction and overcome local toughness. Thus these
stresses, derived from equations (5)–(7), are plotted in

Figure 7, normalized with respect to the factor KII=
ffiffiffiffiffiffiffiffi
2pr

p
,

which is common to all stress components. The plots are
generated for incoming speeds along the main rupture path
at levels of v1 = 0.80cR and v1 = 0.95cR, which encompasses
the speed range recorded during the experiments. This
approach is indeed the one suggested by Poliakov et al.
[2002] for the analysis of the more general case of a
statically preloaded kinked fault hosting a subsonically
growing rupture. As noted by these authors and as is evident
from the figure, the dependence of the stresses on incoming
speed is striking as can also be surmised from the structure
of the above equations. First, within that narrow speed
range, the stresses experience an increase in magnitude,
with speed sometimes exceeding a factor of two. Second,

Figure 7. Angular variation of the dynamic crack-tip
stress fields for subsonic mode-II rupture occurring at
speeds of (a) 0.80 cR and (b) 0.95 cR.

ESE 4 - 8 ROUSSEAU AND ROSAKIS: INFLUENCE OF FAULTS BENDS ON SHEAR RUPTURES



for lower speeds, whereas three shear extrema are present at
0� and ±136�, as the incoming speed approaches cR, the 0�
maximum is transposed into two maxima appearing at ±71�.
Note also that the shear component is symmetric with
respect to the main fault line, whereas the hoop stress is
antisymmetric about the same plane. Since the sign of the
hoop stresses is positive on the extensional side, the
likelihood of activating a branch that lies on that side is
far greater than achieving the same on the compressional
side, where the hoop stress is negative. This would tend to
counteract secondary growth along an upward bend. A
criterion based on critical levels of stress can now be
formulated.
[30] Generalizing the type of reasoning presented above,

one can attempt to formulate a stress-based criterion of
kinking that would perhaps describe both opening and
shear-dominated crack initiation along a kinked path. For
a coherent interface and in the absence of frictional strength,
one may follow the work of Camacho and Ortiz [1996] and
introduce a particular combination of the traction compo-
nents sqq and srq acting on the interface, due to an
approaching crack tip, as the driving force responsible for
decohesion. This driving force should reach or exceed the
strength of the interface for cracks to be initiated along it.
This criterion is usually stated as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2qq þ b2s2rq

q
� s0; ð9Þ

where s0 is the opening strength of the interface and b is a
weight factor allowing for different levels of opening versus
shear strength. In fact, inspection of inequality (9) implies
that b = s0/t0, where t0 is the shear strength of the interface.
Relation (9) can now be generalized to include possible
contributions to the shear strength of the interface arising
from frictional resistance to sliding in the presence of
compressive components of traction. A simple way to do so
is to require that the generalized traction should reach or
exceed a level of strength which also depends on the level
of the compressive normal tractions, if present. The kinking
criterion will now be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqqh i2þb2s2rq

q
� b t0 þ m �sqqh i½ 
: ð10Þ

[31] In the above inequality, any function enclosed within
the bracket is defined as:

mh i ¼
0; m < 0

m; m � 0

8<
: :

[32] The combination (to + mh�sqqi) represents the shear
strength of the interface, augmented by a Coulombic con-
tribution which is activated only if the normal hoop stress is
compressive. Indeed, when this normal stress sqq is com-
pressive, the criterion becomes

srq þ msqq ¼ srq � m sqqj j � t0; ð11Þ

which is exactly the criterion used by Poliakov et al. [2002]
in their discussion of kinking and branching.

[33] When, on the other hand, sqq is tensile or zero, then
the criterion reduces to the one presented in inequality (9). It
should also be noted at this point that the above-postulated
criterion has been expressed with respect to the traction
components sqq(r, q) and srq(r, q) acting on the kinked fault
line due to the presence of a dynamically growing crack
whose position is at the kink point. The traction components
are expressed with respect to distance r measured from the
instantaneous location of this crack tip which is moving
with speed, v, and can either be sub-Rayleigh or intersonic.
In both cases, the general form of the asymptotic stress
components is separable in r and q and can be expressed as

srq ¼ A=rq vð Þ
� �

ŝrq q; vð Þ; sqq ¼ A=rq vð Þ
� �

ŝqq q; vð Þ: ð12Þ

[34] In the above expression, ŝrq q; vð Þ and ŝqq q; vð Þ are the
angular distributions of stress and q is measured counter-
clockwise from the direction of propagation of the incoming
crack. The dependence on the radial distance r is governed
by a function of speed q(v) called the singularity exponent,
while A is an amplitude factor common to all stress
components. In the sub-Rayleigh regime, A = KII

d, the
dynamic mode-II stress intensity factor, and q(v) = 1/2 for
every v between zero and cR. For intersonic crack growth, A
is denoted by KII

*d while q(v) is a continuous and smooth
function of crack-tip speed that varies between zero at v = cs
to 1/2 at v ¼

ffiffiffi
2

p
cs down to zero at v = cl. In both speed

regimes (with the exception of the exact speed v = cs and
v = cl) the crack-tip field is singular according to the linear
elastic model and the stresses become unbounded as r ! 0.
Indeed, if one substitutes relation (12) into the full-fledged
criterion expressed in relation (10), one has

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝqqh i2þb2ŝ2rq

q
� b torq vð Þ þ m �ŝqqh i

� �
: ð13Þ

[35] As r! 0, the first term of the right-hand side becomes
much smaller than all other terms and can be neglected (this is
true only for v 6¼ cs, cl where q(cs) = q(cl) = 0). By collecting
all contributions in the left-hand side of inequality (13), the
criterion can be expressed with respect to a normalized stress,
ŝ q; vð Þ, involving the angular functions of crack-tip speed as
follows:

ŝ q; vð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝqqh i=bð Þ2þŝ2rq

q
� m �ŝqqh i

� �
� 0: ð14Þ

[36] The expression no longer involves the shear bond
strength t0. Inequality (14) suggests that to first order and in
the absence of substantial static far-field stress, the
approaching crack tip has to overcome only the frictional
strength m �ŝqqh i caused by its own asymptotic and singular
field through compression and the resulting frictional
resistance. This analysis is valid only for a strictly asymp-
totic interpretation of the rupture behavior. If, on the other
hand, a cohesive model were to be implemented, neglect-
ing the fault strength would be inappropriate, and the
argument would be subject to modification. The variable
b � s0/t0 was determined experimentally to be 1.875. The
friction coefficient m in this crude model should be iden-
tified as the dynamic friction coefficient and lies much
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below the static value measured to be 0.84. In the first
series of discussions, m will be set to tan (30�) or 0.577.
This is a value very close to the one assumed by Harris et
al. [2002] in their recent study of intraearthquake triggering
in relation to the 1999 Izmit earthquake. A parametric
investigation that follows the initial analysis will allow m to
drop all the way down to 0.1.
[37] The dependence of the stresses on the speed of the

incoming crack again becomes obvious upon inspection of
the angular variation of the stresses plotted in Figure 7, as is
the speed dependence of ŝ q; vð Þ plotted in Figure 8. Note, in
particular, that as the incoming crack speed approaches cR,
the angular stress variation deviates substantially from those
corresponding to lower values of velocities, all of which
congregate within a relatively limited range. This is
expected, as Figures 6 and 7 do forecast a unique separation
near cR.
[38] Finally, it should be noted that, given a fixed speed,

v1, of the incoming crack, for those kink angles a < 0 such
that ŝ a; v ¼ v1ð Þ < 0, the criterion would preclude any
crack growth along the weak kinked path. On the other
hand, for angles such that ŝ a; v1ð Þ � 0, crack growth along
a kink would be favored. For the latter case, the kinked
crack would propagate with a speed v2 6¼ v1. The magnitude
of ŝ a; v1ð Þ represents the level of crack driving force
available to an outgoing kinked crack at each angle a due
to the arrival of an incoming crack whose speed was v1. One
would expect the speed of the outgoing crack to vary
proportionally to this level of driving force. This sugges-
tion will be investigated experimentally in the following
sections.

6. Discussion of the Subsonic Results

[39] In this section, the experimental, results will be
revisited and compared to the two criteria developed in

the previous sections. Raw speeds were first obtained by
recording the location of the crack tip from the high-speed
camera records and by using a central difference scheme to
differentiate the crack length time history. These speeds
were then normalized by cR and plotted for each experi-
ment, with respect to instantaneous crack-tip location.
Figure 9 shows such a speed history for the case of a
secondary path bent 35� toward the compressional side of
the specimen. The dashed vertical line dividing the plot,
with an abscissa value of zero, represents the intersection
point between the main horizontal and the incline planes. In
other words, it marks the location of the kink. Therefore
data points left of the vertical line refer to progression along
the main path, and to the right of the vertical line are data
points corresponding to motion along the incline. The crack
cruises along the primary fault within a narrow range, arriving
at the corner of the bend with a speed of v1 = 0.88cR.
Following kinking around the bend, a drop in speed to
v2 = 0.82cR is recorded. Only very few data points are
available along the secondary path. These, however, do not
show much variation, which would indicate that a steady
state speed is reached rather quickly in this case. Figure 10
includes several plots of the same general geometry
corresponding to secondary faults situated on the extension-
al side of the specimen. In the first plot (Figure 10a),
measured speeds at kink angles of �35� and �71� are
combined. Kink angles of �100� and �103.5� are com-
bined in Figure 10b. Common to these four cases is the
decrease in crack-tip speed following the intersection of the
two paths. This speed drop becomes more pronounced as
the angles become more obtuse. Also, the general trend is
for the speed along the secondary fault to diminish further
before attaining a steady state level.
[40] Some level of uniformity in the interpretation of

these results is accomplished by computing the ratio of

Figure 8. Variation of the normalized driving stress
measure ŝ q; vð Þ as a function of incoming rupture speed, v1.

Figure 9. Speed history for a crack propagating in mode II
along a weak plane, in the subsonic regime, and encounter-
ing an incline at 35� toward the compressional side of the
specimen.
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the initial speed of the moving crack recorded just after
kinking to the crack speed along the primary plane just
before kinking for the various specimens tested. The speed
ratio was then plotted with respect to the kink angle of the
secondary fault, as presented in Figure 11. The reference
point is at an angle of 0�, at the vertical line separating the
positive and negative portions of the abscissa, for which
case, v2/v1 = 1. On the extensional side, there is a gradual
decrease in the speed ratio with increasing angle, up to
�100�, after which point the drop in speed ratio becomes
drastic. At �136� and beyond, the crack can no longer
continue on the secondary path, but instead branches into
the bulk material. At an angle of 35�, the initial branching

crack speed is slightly lower than that of its tensile coun-
terpart. Finally, at 71� and beyond, further crack extension
is not possible. Note that no data were available between
�103.5� and �136� or between 35� and 71�. Thus the exact
angles for which secondary fault triggering is unattainable is
not known.
[41] The experimental results are highly dependent upon

the incoming crack-tip speed, confirming the original ob-
servation of Poliakov et al. [2002]. Because v1 varies
between experiments, the results are better understood if
experiments and theoretical projections (left-hand side of
inequality (4)), which includes the same speed dependence,
are viewed simultaneously. The theoretical predictions
based on the energetic arguments are superimposed on the
plot for the extensional side. Only the discrete theoretical
points are computed by using, in each case, the exact
incoming crack speed measured in each individual experi-
ment. There is excellent agreement between the two from 0�
to �100�, where theoretical and experimental data partially
conceal each other. At �136�, the theory predicts a sharp
drop in v2, not drastic enough, however, as to suppress
secondary branching, as observed experimentally. Recall
that Figure 6 would forecast crack arrest at the end of the
primary plane only for secondary plane angles more obtuse
than a = �153�. Nevertheless, this difference constitutes
but a mere shift in the data, whereas overall behavior and
trends remain identical. Thus it can be concluded that the
energy criterion may be used with great confidence in
studying extensional fault branching.
[42] Next, the focus must be placed on the theoretical

considerations based on the singular crack-tip stress field
and the stress criterion of inequality (14). To that aim, the
experimental data are plotted again in Figure 12, accompa-
nied by visual representation of inequality (14) at locations
corresponding to the experiments. Theoretical points are
normalized to unity for the case of a straight, unkinked fault
(a = 0�). It is suspected here that there exists a correlation
between predicted driving stress and normalized kink speed.
Consequently, the two normalized quantities are plotted on

Figure 10. Speed history for a crack propagating in mode
II along a weak plane, in the subsonic regime, and
encountering a secondary weak plane. All fault bends are
toward the extensional side of the specimens at angles of
(a) �35� and �71� and (b) �100� and �103.5�.

Figure 11. Experimentally measured and theoretically
predicted ratio of outgoing to incoming crack speeds as
the cracks are engaged along fault bends of various
inclinations. Theoretical predictions v2/v1 are based on the
energy criterion. Incoming mode-II cracks are subsonic.
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the same graph to verify this suspicion. The first few
theoretical points, up to �100�, overestimate the experi-
mental ones only by a small percentage. The speed ratios at
�103.5� are not as accurate but still well predicted by the
theory. At �136�, on the other hand, the theory highly
overestimates the speed ratio. Based on the crack-tip stress
field, branching would also be expected in the remaining
angles corresponding to the extensional side of the fault,
though with a greatly reduced probability. On the compres-
sional side, the normalized branching speed is overesti-
mated at 71� but differs only slightly at 35�. Though not
fitting impeccably for each angle studied, the relative
normalized driving stress levels from inequality (14) offer
the same overall trends as do speeds obtained experimen-
tally. The predictive abilities of inequality (14) are compa-
rable to those of inequality (4). Furthermore, the former
presents the additional benefit of predicting the level of
propagation possible along a kink situated on the compres-
sional side. Predictions of inequality (14) over the pertinent
range of data, for a single average speed v1, are also
presented in Figure 12. Overall agreement with the exper-
imental data is present. However, the plot is burdened by
oscillations that make it depart from full accord with the
experimental data. It must be reemphasized, however, that
the experimental data correspond to different values of
incoming crack-tip speed, while the continuous ŝ q; vð Þ
curve was calculated assuming a constant incoming speed
value taken to be the average of the experimentally mea-
sured incoming crack-tip speeds. Therefore this apparent
dissension does not detract from the excellent predictive
capabilities of the crack-tip stress field approach, which is
very apparent in the comparison between discrete solid or
open symbols.

7. Experimental Observations in the Intersonic
Regime

[43] The remainder of this paper is devoted to examining
the behavior of incoming intersonic cracks as they reach

the alternate kinked path. In the intersonic regime, crack
initiation is followed by sudden acceleration to levels below
cl, and finally by deceleration to steady state values nearffiffiffi
2

p
cs. It must be noted that the recent work by Samudrala et

al. [2002a] has identified the region between cs and a
characteristic rupture speed close to but higher than

ffiffiffi
2

p
cs

as being unstable. Speeds between
ffiffiffi
2

p
cs and cl were

identified as stable. The exact value of this characteristic
speed, delineating the border between the stable and the
unstable regimes, was found to depend on the nature of
the bond strength and on other parameters of the slip-
weakening cohesive model used in their analytical study.
The minimum value of this characteristic speed corresponds
to high bond strength and is equal to

ffiffiffi
2

p
cs. This observation

is consistent with the early stability results obtained by the
slip-weakening models of Burridge et al. [1979] and later
obtained numerically by Needleman [1999] and Abraham
and Gao [2000] on the basis of cohesive element and
atomistic calculations, respectively. It is also noteworthy
that at an entirely different length scale, Bouchon et al.
[2001] reported stable intersonic rupture speeds slightly
higher than

ffiffiffi
2

p
cs occurring over the segment of the North

Anatolian fault, east of the hypocenter of the 1999 Izmit
earthquake.
[44] Figure 13 illustrates several cases for which crack

propagation along the primary plane reached steady state
intersonic speed prior to arriving at the intersection with the
secondary plane. An important feature identifying the
intersonic nature of the crack propagation is revealed in
Figure 13a. In that frame, the presence of a shear stress
Mach cone is clear. It is characterized by a wedge-shape
structure, separated from the remainder of the fringes by a
line of discontinuity along which there is a jump in stresses.
The extremity of the Mach cone coincides with the instan-
taneous location of the crack tip. As an alternative to
differentiating consecutive crack-tip locations with respect
to time, the crack speed, v, can also be obtained from the
Mach angle, y = sin�1(cs/v). Because of its superior
accuracy, evaluation of crack-tip speed by means of mea-
suring the inclination of the Mach cone is used whenever
available.
[45] A sequence showing progression of the crack as it

approaches and follows a secondary plane bent at an angle
a = �35� is presented in Figures 13a and 13b. As the crack
turns onto the bend, its state of the motion is no longer one
of primary shear, as a normal component is now associated
with it. Figure 13b shows the crack as it nears the edge of
the field of view, along the secondary plane. The presence
of the Mach cone clearly indicates that the crack has
retained its intersonic nature beyond the bend.
[46] Next is a frame from a specimen with its secondary

plane bent at angle of �56� (Figure 13c), recorded after
kinking. Along the secondary plane, the contrast between
the behavior of this specimen and the previous one is
striking. First, the Mach structure is no longer present, an
indication of a sharp drop in speed of the crack from its
prekinked, intersonic state. Instead, vague remnants of the
Mach cone still drift on the top and bottom sections and are
fully dissociated from the crack tip, which is visible on the
secondary plane. Upon reaching the kink site, the tip of
the cone detaches itself from either of the two paths, and in
the process, becomes blunt. The entire structure eventually

Figure 12. Experimentally measured and theoretically
predicted ratio of outgoing to incoming crack speeds as
the cracks are engaged along fault bends of various
inclinations. Theoretical predictions of the normalized
driving stress measure ŝ q; v1ð Þ are based on the asymptotic
crack-tip stress field. Incoming mode-II cracks are subsonic.
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acquires a semihemispherical shape before finally disap-
pearing. In addition to the crack speeds along the incline
path having fallen to within the subsonic range, it is noted
that microcracks are absent from the secondary plane,

whereas they were still prominent on the primary plane.
Postmortem examination of four specimens confirms that
the kinked portion of the interface does not feature any
microcracks. Thus it may be concluded that crack-tip stress

Figure 13. Isochromatic fringe pattern showing an intersonically propagating mode-II crack
encountering secondary fault. Angular inclinations are (a) �35� at 50 ms, (b) �35� at 80 ms, (c) �56�
at 120 ms, (d) �80� at 96 ms, (e) �80� and 124 ms, and (f ) 45� at 99 ms after impact. The fault bends it
toward the extensional side in the first five frames and toward the compressional side in the last frame.
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states have rotated in such a manner as to align the principal
tensile stresses perpendicularly to the kinked interface,
opening a path to the crack in primarily mode I, thereby
minimizing any mode-II component. A primarily tensile
stress state would minimize crack-face contact as well as
any mode-II components, conditions necessary for the
formation of secondary tensile microcracks.
[47] The sequence presented in Figure 13d displays yet

another trend. The figure shows a specimen having its
secondary path rotated �80� toward the extensional side.
The frame shows the crack after it has traveled two thirds of
the way along the incline. Some similarity exists with
the previous case having the weakened kinked path at
a = �56�. Indeed, upon reaching the kink, the Mach cone
overshoots past the intersection of the two paths, and its
acute angle becomes blunt. However, unlike the previous
case, the bottom edge of the discontinuous envelope
remains attached to the moving crack, whereas the edge
situated above the primary plane has barely shifted. This
results in a very pronounced asymmetry of what was
formerly the Mach cone enclosure. Following the progress
between several frames, the apparent behavior is that of an
extremely blunted and obtuse angle being rotated counter-
clockwise about a fixed point along the extended primary
plane, such as to allow the bottom section to retain its
association to the crack tip. Nevertheless, crack propagation
along the incline does resume its advance in the intersonic
regime. Though not very distinct, a new Mach cone has
regenerated, moving downward along the secondary plane.
The narrow inclination of the secondary shock wave con-
firms the large acceleration experienced by the propagating
crack along that path.
[48] In Figure 13e, secondary tensile cracks developing

from the alternate weakened path are also noticeable. The
photograph is specifically meant to put these microcracks in
evidence, the frame having been recorded after full propa-
gation of the main crack. The location of these tensile cracks
is indicated by the large shadow spots present at their tips.
Most important here is that they are located to the right
rather than to the left of the incline, indicating an abrupt
shift from right- to left-lateral slip after the fault kink. This
establishes a change in the sign of shear after kinking.
[49] The last photoelastic fringe pattern (Figure 13f)

represents a marked departure from all the previous inter-
sonic cases, as the angle of the secondary path is relatively
large (45�) and is situated on the compressional side.
Narrower compressional kink angles were surmounted by
the cracks almost as effortlessly as their extensional coun-
terparts. In the present frame, the crack is only a few
millimeters past the intersection of the two paths and
progresses slowly and laboriously within the subsonic
regime. Concurrently, a branch is initiated into the bulk of
the material, at an angle of �60� on the extensional side,
and extends at approximately half the speed of the second-
ary kinked crack or 55% of the Rayleigh wave speed. It will
be shown later that �60� is a principal stress direction. Thus
for the present configuration, despite the higher toughness
of the bulk material, the crack finds it as equally effortless to
branch into the bulk material in mode I as it is to follow the
incline, weakened path. Further increasing the angle that the
alternate path makes with the primary plane prohibits entry
onto the incline, leaving only a slow-moving mode-I crack

to proceed into the bulk material, away from the incline.
Also, note that for slightly lower secondary plane inclina-
tion (a = 42�) in which a dual path is still present, entry into
the homalite occurs less forcefully, with a speed of 0.25cR,
while the concurrent continuing compression/shear crack
propagation along the secondary plane remains intersonic.

8. The Intersonic Singular Crack-Tip Stress Field

[50] Consider a crack extending in its own plane under
pure shear in a homogeneous, isotropic material. The
speed at which the crack is moving need not be constant
as long as it is continuous and varies smoothly. As in the
previous sections, let there be a moving Cartesian coordi-
nate (h1, h2) attached to the crack tip, with related polar
coordinates (r, q), as shown in Figure 2. Then the near-tip
singular stress field has been determined by Freund [1979]
and is expressed as
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2p

p
1� â2

s

� 	
r
q
l

sin qqlÞð
"

�
1� â2

s

� 	
sin sgn h2ð Þqp½ 


�h1 � âs h2j jð Þq H �h1 � âs h2j jð Þ
#
; ð16Þ

s12 ¼
KII*

dffiffiffiffiffiffi
2p

p 1

r
q
l

cos qqlð Þ
�

� cos sgn h2ð Þqp½ 

�h1 � âs h2j jð Þq H �h1 � âs h2j jð Þ

�
;

ð17Þ

where

rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ a2

l h
2
2

q
; ql ¼ tan�1 alh2=h1ð Þ;

âs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2s
� 	

� 1
q

; q ¼ 1=pð Þ tan�1 4alâs= 1� â2
s

� 	2h i
:

ð18Þ

Functions ‘‘sgn’’ and ‘‘H’’ are the sign and the Heaviside
functions, respectively. Equations (15)–(17) are valid only
if the crack-tip-dominant singular terms are more significant
than the remainder of the expansion.
[51] The Heaviside step function indicates a discontinuity

in the stresses that translates into the formation of the two
edges of the Mach cone. This solution to the intersonic
problem features another major difference from the subsonic
case in that singularity exists not only at the crack tip but
also along the Mach front and governs the intensity of the
stress jump across the Mach cone. In addition, when v is
precisely equal to

ffiffiffi
2

p
cs, the step functions vanish, thereby

pointing to the disappearance of the Mach cone at that
peculiar speed and to the return of singularity solely to the
crack tip. Special conditions resulting in the disappearance
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of the Mach wave are often referred to as radiation free [Gao
et al., 1999]. Finally, for intersonic cracks, the strength of the
singularity is 1/2, as in the subsonic case, only for v ¼

ffiffiffi
2

p
cs.

On either side of that special speed, q monotonically
decreases to be zero at v = cs and v = cl.
[52] To further understand the behavior of a mode-II

crack extending intersonically, polar component of stresses
are obtained from equations (15) to (17) and plotted in
Figure 14 for v = 1.5 cs. This particular speed of 1.5 cs is
chosen based on experimental evidence that in most cases
the running crack hovers slightly above

ffiffiffi
2

p
cs while follow-

ing a straight path. Also recall theoretical predictions that
the segment between

ffiffiffi
2

p
cs and 1.5 cs requires the minimum

amount of critical load to sustain intersonic crack propaga-
tion and is therefore an obvious region for the crack speed
to try and achieve steady state. The relevant stresses, sqq,
srq, are normalized through multiplication by (rl

q/KII
*d) The

resulting angular variations ŝqq and ŝrq are plotted as a
function of angular location, in the immediate vicinity of the
crack tip. Radial stresses act in the direction of crack growth
and are therefore not pertinent to the current problem.
[53] Since the crack is advancing due to shear loading, the

effect of srq will be prevalent. The main features of this
stress component are reviewed. As expected, the maximum
shear occurs at q = 0�, along the plane of the crack, and is
symmetric about that plane. On either side of the crack
plane, the shear stress decreases to zero at q � ±56�. This
angle is therefore a principal stress direction. Thereafter, the
sign of shear changes to attain an extrema at ±121� before
returning to zero at ±180�. This latter portion of the curve is
punctuated by a strong discontinuity at ±138�, which again
corresponds to the Mach cone. The location of this discon-
tinuity gradually shifts toward larger angles with increasing
crack speed and toward smaller angles as speed decreases.
The exact position is given by q = (p � sin�1[cs/v]).

[54] The opening stress sqq is asymmetric with respect to
the crack plane and is zero directly ahead of the crack.
Therefore the solution correctly recognizes the existence of
a pure shear condition at that location. The profile of the
hoop stress as it varies with orientation is akin to that of an
inverted sine function, with its extrema shifted to ±94�.
[55] From the above, the shear stress distribution offers

equal probability for kinking toward either side of the
primary crack plane. On the other hand, the sign of the
hoop stress clearly supports growth toward the extensional
side. A criterion for determining whether a propagating
crack can leap from the main path onto an incline can be
appropriated from the subsonic case. Inequality (10), which
was used with much success in the subsonic regime, will
again be adopted here to establish the likelihood of deco-
hesion of the weak bond along an incline as it is being
approached by an intersonic crack along the primary plane.
In the present case, normalization of relation (10) will be
implemented with respect to (KII

*d/rl
q) and conditions as

rl ! 0 will be considered. This results in inequality (14)
involve only the angular variations ŝqq and ŝrq, which are
also strong functions of rupture speed.

9. Discussion of the Intersonic Results

[56] In this section, the experimental results will be
reviewed in the light of the aforementioned analytical solu-
tion. First, speed histories of the moving cracks within the
field of view are presented. Figure 15a shows crack speeds of
two specimens having weakened secondary planes inclined
at an angle a = �10� on the extensional side. Speeds are
normalized with respect to cs. Most of the speeds recorded
are based on the Mach cone angle. At locations where this
information was ambiguous or unavailable, speeds were
based on a three-point regression of the crack length history.
The figure shows the prekink speed to be mostly confined to
the range between

ffiffiffi
2

p
cs and cl. The crack speed retains its

prekink value over the entire length of the incline.
[57] The next set of experiments, for a = �35�, shows a

slight decline in speed right after the crack engages along
the secondary plane (Figure 15b). Again, in this case the
crack speed along the incline remains nearly constant near
its initial level. At a = �42� (Figure 15c), the initial
postkink speed suffers slight postkink speed deterioration
when compared to shallower angles. Once more, in this
case, the speed remains fairly constant along the incline.
The same figure includes data for a = �53� and features an
initial postkink decrease in speed followed by a slight
increase and a plateau. Very drastic is the loss of speed
suffered by the crack as it veers toward a secondary plane
bent at �56�. Indeed, for both tests presented (Figure 15d),
the crack speed has fallen either to cs or to within the
subsonic range in a very short time but then recovers its
speed back into the intersonic range and oscillates. A lesser
drop in speed is observed for a = �60� (Figure 15e).
However, very large speed variations follow as the crack
speed continues its decline to below cR. Figure 15f reveals
the beginning of a transition. For secondary path inclina-
tions a = �65� and a = �75.5�, the postkink crack speed
remains constant and increases, respectively, compared to
its individual prekink levels. The next two angles (a = �80�
and �90�) capture further drastic gains in speed following

Figure 14. Dynamic crack-tip stress fields for intersonic
mode-II rupture occurring at a speed of 1.50 cs. The
normalized stresses are plotted with respect to angular
inclination.
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Figure 15. Speed history for a crack propagating in mode II along a weak plane, in the intersonic
regime, and encountering a secondary fault path. The following inclines are toward the extensional side
of the specimens: (a) �10�, (b) �35�, (c) �42� and �53�, (d) �56�, (e) �60�, (f ) �65� and �75.5�, (g)
�80�, (h) �90�, and (i) �100�. Inclines oriented toward the compressional side of the specimens are ( j)
10� and 35�, (k) 42� and 45�, and (l) 53�.
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Figure 15. (continued)
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the turn, reaching levels hovering in the vicinity of cl (see
Figures 15g and 15h). However, whereas the former
remains at a relatively constant speed, the latter sustains
irregular oscillations. Finally, the specimen with the back-
ward incline angle of �100� experiences an initial crack
speed jump similar to those of the two specimens just cited
but is unable to maintain high speed levels, dropping to
below cR (Figure 15i).
[58] On the compressional side, the behavior of cracks

along shallow angles (a = 10�, 35�) is almost indistinguish-
able from that of their tensile counterparts (see Figure 15j).
The inability of the 22.5� Karadere bend of the North
Anatolian fault to substantially slow down the intersonically
moving East bound rupture of the 1999 Izmit earthquake
[Harris et al., 2002] is consistent with the above observa-
tion. Larger incline angles of 42�, 45� (Figure 15k), and 53�
(Figure 15l) show even more severe drops in speed with
increasing angles to very low subsonic values. Beyond 53�,
the crack is incapable of further motion along the incline.
Also, starting with the specimen having the incline angle of
42�, upon reaching the end of the primary plane, the crack
elects to follow the incline while simultaneously branching
into the bulk material. The speed of the mode-I branched
crack seems to increase with increasing angle of the
weakened secondary path, gradually changing from 0.25 cR
to 0.5 cR.
[59] The most relevant information from these numerous

tests consists in the speeds immediately following the crack
turn onto the secondary plane. This data is captured and
summarized in Figure 16a, normalized with respect to cs.
For secondary paths inclined toward the extensional side,
there is a steady decline from 0� to �56�, from the rangeffiffiffi
2

p
cs < v < cl to a level between cs < v <

ffiffiffi
2

p
cs, after

which point an increase takes the crack speed to levels
nearing cl at �90�. On the compressional side, the crack
speed remains fairly constant up to 35�, then drops drasti-
cally to zero near 60�.
[60] Referring back to Figure 14, a local maximum value

of shear stress occurs for q = 0�, with no associated normal
stress present. It is expected, therefore, that this straight path
would be preferential for crack propagation under the
present loading condition when compared to possible
adjoining paths. As the crack encounters alternate weak
planes of large angular orientation, conditions prevailing at
the crack tip, corresponding to the direction of the provided
incline, will come into play. In addition to the effect of srq,
the circumferential stress, sqq, would open a path to the
incoming crack, if tensile, thereby facilitating and perhaps
even expediting a jump onto the secondary plane. If
compressive, the effect of sqq would be that of sealing the
secondary plane further. The practical effect of this is one of
a virtually strengthened bond (frictional strengthening)
offering even more resistance to crack penetration and
continuing motion. In light of this discussion, particular
attention should be paid to three distinct angular segments.
First, notice the region of �121� < q < �94�, where the
value of shear attains another local maximum that is even
stronger than at q = 0�. Coupled with the fact that this is also
a region of maximum tensile hoop stress, a prediction of
enhanced crack continuation along secondary paths within
the said zone can be advanced. Second, near q = �56�, no
shear is manifest. Therefore conditions here can be surmised

as being ominous to secondary crack motion. Finally, for all
positive values of q, compressive hoop stresses abound, and
this should also discourage secondary crack propagation.
[61] Figure 16b attempts to capture the ease of penetration

into a secondary plane. This can be achieved effectively in
terms of the already visited postkink speeds. The effect of
varying incoming crack speed is annulled by normalization
of the postkink speeds with respect to that entity. In addition,
it provides the requisite comparison of post- to prekink
speed, thereby providing a ratio of secondary to primary
energy expended into the crack. At shallow angles, say
�35� < a < 35�, the relative shear stress has dropped slightly
with respect to its value at 0�, which is unity. Concurrently, a
small amount of positive circumferential stress is present for
negative kink angles, whereas negative hoop stresses of the
same magnitude exist for positive kink angles. However, due
to the relatively limited size of these stresses and the fact that
the shear stress is still near a maximum level, little difference
in behavior can be perceived between these opposite cases.
Also, based on their speed history, neither can they be
differentiated from an intersonic shear crack running self
similarly and continuously along its original plane.
[62] As the negative kink angles of the secondary plane

become more obtuse, the amount of shear available to
potentially initiate a crack along that path decreases. At the
same time, increasing circumferential stress allows for more
mode-I opening, leading to mixed-mode conditions. At
angle a = �56�, with no more shear present, advance of a
crack along that path is theoretically limited to cR, thus the
large drops in crack speed recorded experimentally in the
vicinity of that angle. Increasing the kink angle further
changes the sign of shear, resulting in an abrupt reversal in
displacement direction between the two sections of the
specimen. As the angle draws near �90�, the most favorable
conditions for crack initiation along secondary paths are met.
Indeed, the highest tensile, opening stress of any angle is
attained, considerably weakening the effectiveness of the
bond. Simultaneously, the shear stress reaches a value whose
magnitude approaches the absolute maximum shear stress
obtainable at any kink angle q. This is reflected by the
continuous escalation in crack speed, with increasing angle
beyond a =�56�, to levels exceeding unity. This culminates
in the very high speed ratios obtained at �80�, �90�, and
�100�. Propagation along the latter kink angle seems
somewhat counterintuitive since upon reaching the intersec-
tion of the two paths, the crack must make a turn and move
back in the direction from which it originally came, changing
local slip direction from right-lateral to left-lateral slip.
However, the solution does guarantee this outcome based
on high-shear and high-tensile hoop stresses. Nevertheless, a
slight drop is observed in the figure, when the data point at
a = �100� is compared to those of the two previous kink
angles. Though the crack speed drop appears miniscule, it is
actually of considerable importance as it is indicative of a
trend, since tests performed at a =�125� and higher resulted
instead in crack penetration into the bulk of the material.
Analysis of the crack-tip stress field does not exhibit any
impediment to initiation along these obtuse paths, except for
the constantly diminishing levels of both shear and tensile
stress components to eventually zero at �180�.
[63] On the compressional side, the conditions for shal-

low angles are similar to those of negative angles of
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Figure 16. Crack speed along fault bends of various inclinations for incoming intersonic shear cracks.
(a) Raw data. (b) The crack speed along the secondary fault normalized by the terminal crack speed of the
primary plane. Theoretical predictions of the crack speed based on the intersonic crack-tip stress field are
also plotted (broken line) as a function of fault inclination.

ROUSSEAU AND ROSAKIS: INFLUENCE OF FAULTS BENDS ON SHEAR RUPTURES ESE 4 - 19



equivalent magnitude. Therefore ease to propagation is
expected, as evidenced by the high-speed ratios observed
in Figure 16b at a = 10� and 35�. As angular inclination is
increased, shear stress drops. At the same time, compressive
hoop stress increases and gradually frictionally enhances the
effective bond strength, impeding crack motion. This is
corroborated by the continuously decreasing crack speed
recorded experimentally as kink angle increases. Near 56�,
the shear stress declines to zero, while hoop stress is still
highly compressive. Incline paths near that point can
therefore no longer be triggered by the incoming crack.
This is observed experimentally up to a = 90�. Although
near that point the shear stress has increased substantially,
so has the compressive hoop stress, to the extent of
preventing further motion along the incline.
[64] Thus far, qualitative analyses based on the crack-tip

stress fields (equations (15)– (17)) have been used to
understand the behavior of cracks as they enter an incline.
However, quantitative measurements are necessary to better
predict the relative incoming speeds onto the inclines.
Inequality (14) is used for that purpose, in combination
with the intersonic crack-tip stress fields. The expression is
composed of two elements, one in which cohesion prevails
and is valid only on the extensional side, and another which
takes friction into account and is applicable only to the
compressional side. Inequality (14) is plotted as a continu-
ous curve with respect to angular inclination of the second-
ary plane and is superimposed on the experimental data
points of Figure 16b. Note that the angular variations
involved in the expression are automatically normalized in
such a way as to predict a value of unity at q = 0�. The
quantity ŝ a; v1ð Þ represents a compound measure of crack
driving force and fault resistance along q = a and is
expected to correlate with postkink speed v2. Indeed, within
the experimental window, the angular trend between speed
ratio and ŝ a; v1ð Þ is remarkable. On the extensional side,
the theoretical ŝ a; v1ð Þ curve registers a gradual decline
with increasing angle, up to q = �45�, followed by a rise
that ends at q = �100�, at a level comparable to that of the
actual experimentally measured crack speed of the same
angular inclination. Larger values of the shear stress factor,
b (say a 20% increase), ameliorate the match between the
curve and the measured data points, as the level of the curve
is lowered slightly to almost coincide with the experimental
symbols. Such an increase in the value of b would not be
unreasonable since it is well within the range of error
associated with the experimental evaluation of s0 and t0.
Furthermore, the minimum is shifted to the left, toward
q = �56�, where the minimum is also registered experi-
mentally. On the compressional side, where normalized
stresses have been scaled to fit the range between zero
and one, the theory bypasses the experimental plateau
preceding the drop in crack speed with increasing angle.
Instead, the decrease is immediate, ending with a value of
zero at q = 56�, precisely where crack propagation along the
inclines is no longer observed experimentally.
[65] Inequality (14) can also be used as a simple predictor

of the ability of the crack to engage into an incline. The
predicted value of ŝ a; v1ð Þ is largely influenced by the
value of the free parameters b and m. On the compressional
side, as the friction coefficient increases, the value of
ŝ a; v1ð Þ decreases because of the contribution of the term

accounting for the frictional strengthening of the bond. As a
result, the curves shift down and to the left, restricting the
range of angles within which crack motion is allowed
(Figure 17a). For the friction coefficient assumed in this
study, 0.5 < m < 0.6, incline angles beyond a = 35� would
not permit crack growth along their paths. Crack motion
along the bend, within the range 35� < a < 60�, does occur
but is further complicated by the fact that the available
energy must be shared with a simultaneously generated

Figure 17. Variation of the normalized driving stress
measure ŝ q; v1ð Þ (a) as a function of friction coefficient m,
(b) as a function of shear stress factor b, and (c) as a
function of incoming rupture speed v1.
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tertiary mode-I crack which proceeds laboriously within the
bulk of the material. This dual and intricate phenomenon
cannot be captured by inequality (14), which within its
defined parameters still delivers an excellent performance.
[66] On the extensional side, ŝ q; vð Þ is heavily influenced

by the value of b. The left side of inequality (14) is
parameterized and plotted for several values of 1/b. As seen
in Figure 17b, failure along the bend is forecasted every-
where within the experimental range for all values of the
shear stress factor. However, as 1/b decreases, its minimum
value shifts to the left, toward the experimentally registered
incline angle that corresponds to the minimum crack speed.
[67] Finally, inequality (14) is plotted as a function of

incline angles, for several values of the incoming speed v1
(Figure 17c). The speed was varied at equal intervals,
between 1.10 cs and 1.60 cs. Variation of ŝ q; vð Þ with
incoming crack speed was not tested experimentally. Nev-
ertheless, from the excellent correlation between inequality
(14) and experimental data, it can be surmised that for any
incline situated on the extensional side, as is observed in the
figure, greater incoming speed will also result in greater
outgoing speed along the secondary path. On the compres-
sional side, the opposite happens, as the increase in crack-
tip shear stress is simultaneously accompanied by even
larger increase compressive stresses along the secondary
path. However, in this case, the dependence on incoming
speed is not so pronounced as on the extensional side.
Nevertheless, increasing the incoming crack speed along the
main path would result in smaller crack speed along the
secondary path and would also decrease the range of
secondary path angles allowing rupture continuation.

10. Conclusion

[68] Several experiments were conducted with the aim of
duplicating conditions that may be present during crustal
earthquake ruptures. Differences do exist, however, between
the actual events and these laboratory earthquake simula-
tions. In particular, static precompression is deliberately
overlooked as these experiments are meant to uniquely
isolate the influence of secondary fault bends on a running
rupture. Both subsonic and intersonic incoming ruptures are
investigated as earthquake ruptures are believed to have the
capability of propagating in both regimes. In the subsonic
case, criteria based on energy and on the asymptotic
elastodynamic crack-tip stress field are effectively used to
explain experimental observations. Only the latter approach
is valid in the intersonic regime and is used successfully to
predict the behavior of ruptures as they reach the intersec-
tion of two planar faults. Finally, it is worth noting that the
secondary tensile microcracks that appear on the extensional
side of the shear rupture faces are thought to be common to
both events, suggesting that a dynamic fracture mechanics
approach and bonded interfaces adequately mimic condi-
tions present along earthquake faults.
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