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RESEARCH ARTICLE

A Bayesian method for detecting pairwise

associations in compositional data

Emma Schwager1,2, Himel Mallick1,2, Steffen Ventz3,4, Curtis Huttenhower1,2*

1 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United

States of America, 2 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of

America, 3 Department of Computer Science and Statistics, University of Rhode Island, Kingstown, Rhode

Island, United States of America, 4 Department of Biostatistics and Computational Biology, Dana-Farber

Cancer Institute, Boston, Massachusetts, United States of America

* chuttenh@hsph.harvard.edu

Abstract

Compositional data consist of vectors of proportions normalized to a constant sum from a

basis of unobserved counts. The sum constraint makes inference on correlations between

unconstrained features challenging due to the information loss from normalization. How-

ever, such correlations are of long-standing interest in fields including ecology. We propose

a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance) to

estimate a sparse precision matrix through a LASSO prior. The resulting posterior, gener-

ated by MCMC sampling, allows uncertainty quantification of any function of the precision

matrix, including the correlation matrix. We also use a first-order Taylor expansion to

approximate the transformation from the unobserved counts to the composition in order to

investigate what characteristics of the unobserved counts can make the correlations more

or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true net-

work as well as previous methods while offering the advantage of posterior inference. Larger

and more realistic simulated datasets further showed that BAnOCC performs well as mea-

sured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology

dataset from the Human Microbiome Project, which in addition to reproducing established

ecological results revealed unique, competition-based roles for Proteobacteria in multiple

distinct habitats.

Author summary

Data from many fields are available primarily in the form of proportions, also referred to

as compositions, which impose mathematical constraints on identifying interactions

among components in the underlying systems. In particular, correlations cannot be calcu-

lated directly from proportions or from count data that give rise to them. Methods that

work around this difficulty generally do so by imposing strong assumptions about the dis-

tribution of underlying data or associated correlations, and these in turn often prevent

quantifying uncertainty in the resulting estimates of correlation. We developed a statistical

model (BAnOCC: Bayesian Analysis of Compositional Covariance) that both estimates
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correlations between counts or proportions and provides a posterior distribution for each

correlation that quantifies how uncertain the estimate is. BAnOCC does well at control-

ling the number of false positives in simulated data and can be practically applied to a

wide range of proportional data types.

Introduction

A long-standing goal of applied statistics in many fields has been identifying features associ-

ated significantly by a measure such as correlation [1,2]. When the features to be associated

form a composition, inference of the correlation matrix is subject to the well-known problem

of spurious correlation [3–6]. Compositional data in particular are vectors of proportions that

sum to a fixed constant (typically one); they are usually thought of as the result of sum-normal-

izing an unobserved (or unrecorded) and unconstrained basis, following the terminology of

[6]. The resulting sum-constraint of the compositional data means that any pairwise correla-

tion measured using such data can be non-zero even if all the pairwise correlations on the

unobserved count scale are zero, a phenomenon called spurious correlation [3]. The fact that

all the features sum to one also makes the correlation matrix on the unobserved counts (that is,

the basis correlation matrix) non-identifiable without untestable, though perhaps not unrea-

sonable, assumptions [7–10]. Any method thus offers at best a partial reconstruction of the

unobserved count correlation matrix, and the interest in characterizing such correlations in

fields from geology to ecology has led to a variety of approaches.

In the context of microbial ecology, several methods have been proposed to identify signifi-

cant ecological relationships from compositions; virtually all rely on some form of sparsity

assumption and infer quantities relating to the log-transformed unobserved counts (hereafter

referred to as the log-basis). The only technique that does not rely on a sparsity assumption is

ReBoot [7], which estimates a “compositionally-corrected” correlation matrix using a permu-

tation-based method. Friedman and Alm [8] proposed SparCC, which estimates the log-basis

correlation matrix under the assumption that the correlations are on average small in magni-

tude. Fang et al. [9] noted that the resulting estimate is not guaranteed to be positive definite

or that the elements will lie inside [–1, 1] and proposed CCLasso to estimate the log-basis cor-

relation matrix using a LASSO penalty on the off-diagonal elements of the variance-covariance

matrix. Ban et al. [10] similarly proposed REBACCA to estimate the log-basis correlation

matrix; they use the same LASSO penalty function but a different likelihood function. Kurtz

et al. [11] proposed SPIEC-EASI to estimate the log-basis precision matrix when the number

of features is large by using sparse graph estimation techniques.

These approaches have difficulty quantifying uncertainty in the estimates, cannot incorpo-

rate uncertainty from the choice of tuning parameter, and are not flexible in the quantities

they estimate. Friedman and Alm [8] proposed an inferential procedure based on the boot-

strap, but offered no theoretical justification. Fang et al. [9] and Kurtz et al. [11] focused solely

on estimation, while Ban et al. [10] used a subsampling method from Shah and Samworth [12]

to stabilize the selection error rate. The LASSO-based methods [9–11] typically choose a

shrinkage parameter and subsequently infer the log-basis covariance or precision matrix.

Friedman and Alm [8], Fang et al. [9], and Ban et al. [10] all use the log-basis covariance matrix

for network construction, while Kurtz et al. [11] use the log-basis precision matrix. This means

that investigators typically must choose whether a precision or correlation matrix is best, and

often use the resulting estimate with little guidance as to its uncertainty.

Bayesian analysis of compositional covariance
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We address these issues by providing a flexible, fully Bayesian approach to identify correla-

tions in compositional data. It is able to quantify uncertainty through the associated posterior

and estimates both the log-basis correlation and precision matrix by modeling the composition

directly. The graphical LASSO prior of [13] is used to estimate a sparse log-basis precision

matrix (and hence a sparse log-basis correlation matrix) through a LASSO penalty, mitigating

the non-identifiable nature of the unobserved count correlation matrix. We have implemented

the resulting method as BAnOCC (Bayesian Analysis of Compositional Covariance). In this

study, we also use a first-order Taylor expansion to approximate the compositional covariance

as a function of the mean and variance of the unobserved counts. While not necessary to the

development of our method, this expansion helps us explore the situations in which a naïve

approach (ignoring the sum-constraint) might work. This approximation shows not only that

the spurious correlation between two features can take any value in [−1,1] even if none of the

features are correlated on the unobserved count scale, but also that both the variances and

means of the unobserved counts control the magnitude and direction of the spurious correla-

tion. Thus, we provide a novel characterization of the surprisingly broad circumstances under

which compositionality can impede straightforward identification of the correlation matrix,

and we provide the BAnOCC model to overcome this in datasets where it is possible.

Methods

Per-subject basis (unobserved and unconstrained count) and

composition notation

The model assumes that a single subject’s composition, Ci = (Ci,1,. . .,Ci,p)T, is generated by the

normalization of that subject’s unobserved and unconstrained counts, Xi = (Xi,1,. . .,Xi,p)T.

That is, Ci ¼
XiPp

j¼1
Xi;j

. We also assume that the unobserved counts for all subjects are indepen-

dent and identically distributed (iid); this implies that the compositions are iid as well because

the transformation is per-subject.

Feature correlations and covariances in composition and unobserved

counts

We also introduce notation for the covariance and correlation among the features. The covari-

ance matrix of the unobserved counts is denoted by ΣX = [σX,jk], to be inferred from C1,. . .,Cn.

Similarly, the covariance matrix of the composition is denoted by ΣC = [σC,jk]. To construct the

network of feature interactions, the relevant null hypotheses (one for each feature pair j and k)

are that features j and k have a covariance of zero (σX,jk = 0); this is equivalent to testing if they

are uncorrelated (ρX,jk = 0). We then define the unobserved count and compositional correla-

tion matrices as RX = [ρX,jk] and RC = [ρC,jk], respectively.

BAnOCC: Bayesian analysis of compositional covariance

BAnOCC assumes that the unobserved counts follow a log-normal distribution and that their

correlation matrix is sparse; it is parametrized with the log-basis precision matrix and the log-

basis mean (Fig 1). Posteriors for the parameters of the model (and thus functions of them

which are of interest) are inferred using MCMC sampling. This fully Bayesian treatment of the

problem gives several advantages: a full posterior distribution to quantify the uncertainty in

the estimates, the ability to place a prior on the sparsity parameter, and estimates of any func-

tion of the log-basis precision matrix, including the log-basis covariance and correlation

matrices.

Bayesian analysis of compositional covariance
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BAnOCC models the unobserved and unconstrained counts using a log-normal distribu-

tion with parameters based on the moments of the log-basis: Xi�
iid LN ðm; SÞ, such that m ¼

EðlogfXgÞ and S = Var(log{X}). This continuous approximation of the underlying unobserved

count data is expected to perform well when the underlying counts have a large dynamic

range. In ecology, for example, the log-normal distribution is used to model the (discrete)

abundance across species [14,15]. In microbial ecology specifically, the logistic normal is some-

times assumed to be the generating distribution of the composition [10,11]; further, the (dis-

crete) read counts are often simulated using a log-normal distribution [16,17]. The log-normal

distribution also allows the totals to be easily integrated out of the likelihood.

Parametrization of the likelihood

The likelihood is parametrized by the log-basis precision matrix O = S−1 and the log-basis

mean m, and other parameters of interest like the log-basis covariance matrix S are sampled as

transformations of these. By parametrizing using O, we are able to leverage a graphical LASSO

prior to enforce sparsity on O and by extension S. Conveniently, the assumption of the log-

Fig 1. BAnOCC infers log-basis correlation and precision matrices from compositions by modeling unobserved and unconstrained

counts. In the BAnOCC model, the observed compositions, Ci, are derived by normalizing the unobserved counts Xi. The BAnOCC model

assumes that the Xi follow a log-normal distribution, parametrized by the log-basis mean m and covariance S. It places a normal prior on m, the

GLASSO prior of [13] on the log-basis precision matrix O, and a hyperprior on the GLASSO shrinkage parameter λ (see Methods).

https://doi.org/10.1371/journal.pcbi.1005852.g001
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normal distribution obviates the need to sample the covariance of the unobserved counts to

determine the existence and direction of an association between two features on the unob-

served count scale. This results because when some element of S, sjk, is zero, then the corre-

sponding element of ΣX; sX;jk / esjk � 1 will also be zero; further, the non-zero elements of S

and ΣX will have the same sign (though not the same magnitude).

Under the log-normal assumption, the complete likelihood of the observed composition ci

and the latent total ti ¼
Pp

j¼1
xi;j is given by

Lðm;Ojci; tiÞ ¼
exp � 1

2
flogðcitiÞ � mgTO log citið Þ � mf g

� �

ðtiÞð2pÞ
p=2
jOj� 1=2Qp

j¼1
ci;j

; ð1Þ

where ci ¼ ðci;1; . . . ; ci;p� 1; 1 �
Pp� 1

j¼1
ci;jÞ. A detailed derivation can be found in S1 Text. Fitting

this likelihood directly is computationally expensive, as the presence of the latent totals neces-

sitates exploring a space whose dimension depends on both n and p. However, (1) factors into

two portions: a part dependent on the compositions ci, and the kernel of a log-normal distribu-

tion for the totals ti ¼
Pp

j¼1
xi;j with parameters m�i ¼ 1TOðm � logfcigÞs2

�
and s2� ¼ 1

1TO1

(where 1 is a vector of 1’s). Integrating over the totals in (1) (S1 Text) gives the more computa-

tionally tractable marginal likelihood

L m;Ojcið Þ ¼ jOj1=2
exp � 1

2
ðm � logciÞ

TO m � logcið Þ �
ðmi�Þ

2

S2�

n o
ð2pÞ

1=2
ðs2�Þ1=2

ð2pÞ
p=2

Pp
j¼1
cij

:

Prior distributions

In order to mitigate the non-identifiability of the precision matrix O, BAnOCC uses a shrink-

age prior to conservatively estimate the sparsest O consistent with the observed relative abun-

dance data. This is the graphical LASSO prior of [13]:

p Ojlð Þ ¼ C� 1
Yp

j¼1

Exp ojjj
l

2

� �

f
Yp

k¼iþ1

Laplace ojkjl
� �

g1O2Mþ ;

where 1O2Mþ is an indicator function that O is positive definite, Exp(x|λ) has the exponential

density of the form p(x) = λe−λx1x>0, and Laplace (x|λ) has the Laplace density of the form

p xð Þ ¼ l

2
e� ljxj. In comparison to variable selection priors such as spike-and-slab [18], the

graphical LASSO prior is more scalable to high dimensions at the cost of being unable to gen-

erate estimates that are exactly zero [19]. We deal with this by using the resulting posterior

samples to conclude whether a correlation is likely to be zero or not. The choice of λ is key to

the degree of shrinkage imposed by this prior. We placed a gamma prior on λ in lieu of specify-

ing it a priori; this is possible because [13] showed that the normalizing constant C does not

depend on λ. The prior for m is the conditionally-conjugate normal prior N ðn; LÞ with mean

n and covariance matrix L. Hyperparameter choice for the two priors (on m and λ) is dis-

cussed in more detail below.

Implementation and inference

BAnOCC samples the posterior using Stan’s C++ implementation and R interface [20]. Multi-

ple quantities can be estimated from BAnOCC, including the log-basis precision, covariance,

and correlation matrices. In our simulations and application, we estimated the log-basis corre-

lation RlogX because it is interpretable and nicely scaled; we used the posterior median as the

Bayesian analysis of compositional covariance
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point estimate and the 95% credible intervals for wjk to determine whether the correlation

between features j and k was non-zero.

Choosing hyperparameters

The interpretation of the prior parameters on m is relatively straightforward, while that of the

shrinkage parameter λ is less clear. Because log-basis means m have a normal distribution, em

represents the median unobserved counts, which conveniently have a log-normal distribution

with parameters n and L. Therefore, we could parametrize the prior on m by the expected

median unobserved counts nLN = exp{n + 0.5diag(L)} and uncertainty of the median unob-

served counts LLN ¼ nLNnT
LNðe

L � 1Þ. The prior on the shrinkage parameter λ has a shape

parameter a that determines how much prior probability mass is placed on λ values close to

zero, and a rate parameter b that determines how the probability mass is spread across the

entire domain. In particular, a� 1 forces an asymptote at zero, while a> 1 does not.

When little or no prior data is available, weakly informative priors can be used. Any prior

on λ should have high probability mass close to zero and so should have a� 1. Larger values

of a will “soften” the asymptotic behavior at zero (S1 Fig). The value of the rate parameter b
should be chosen to so that most prior probability mass is on sensible values for λ. The degree

of shrinkage implied by λ does not appreciably change for λ> 1 (S2 Fig), and so a b of around

5 will give a reasonable uninformative prior distribution for λ. For the log-basis means, m �
N ð0; lIÞ can be used, with l a large value such as 100. An overlarge value for l can make com-

putation less efficient and put prior mass on grossly implausible values of em, so an l of 500 or

less is reasonable.

Prior subject-matter information can be incorporated into the priors for both λ and m, but

most easily into the prior on m. If the data have few features, a smaller shape hyperparameter a
should be employed to upweight values of λ that yield high shrinkage. The implied prior on

the median unobserved counts em could be sampled to provide an empirical distribution of

the total counts
Pp

j¼1
emj ; this could be assessed for gross deviations from what might be con-

sidered reasonable, or agreement with known ranges if such data are available.

Software

The implementation of BAnOCC is publicly available with source code, documentation, and

tutorial data as an R/Bioconductor package at http://huttenhower.sph.harvard.edu/banocc.

Results

Unobserved count mean and covariance determine spurious correlation

sign and magnitude

We first aimed to identify what characteristics of compositional data impede or facilitate the

accurate estimation of the unobserved count correlation matrices in general. Such characteris-

tics should delineate when BAnOCC or any other technique for estimating the unobserved

count correlation would perform well. A first-order Taylor expansion approximates the com-

positional covariance as a function of the mean and covariance of the unobserved counts.

Because the compositional correlation is a function of the compositional covariance, the

resulting approximation also explains how the correlation behaves. Letting X represent the

unobserved counts and C the composition, with the mean of X denoted by μX = (μX,j)
T and the

approximate average proportions by ω ¼ mX;1Pp

j¼1
mX;j
; . . . ;

mX;pPp

j¼1
mX;j

� �T

, the Taylor expansion

Bayesian analysis of compositional covariance
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yields

ΣC �

 
1

Pp
j¼1

mX;j

!2

I � ω1Tð ÞΣX I � ω1TÞ
T
: ð2Þ

�

Here I is the p × p identity matrix, and 1 is a p-dimensional vector of 1’s. Eq (2) allows us to

approximate the behavior of the compositional covariance from the parameters of the unob-

served counts that generate it. For a detailed derivation, see S1 Text.

Spurious correlation can take any value between -1 and 1

Surprisingly, when no features are correlated on the unobserved count scale, the spurious cor-

relation can take any value in [−1,1] depending on the properties of the unobserved counts

(Fig 2). This is suggested by considering Eq (2) when σX,jk = 0 for all j 6¼ k, then

sC;jk �
1

Pp
l¼1

mX;l

 !2

ojok

P

l
sX;ll � ojsX;kk � oksX;jj

h i
for j 6¼ k: ð3Þ

The weights ωj and the variances σX,ll can be configured arbitrarily to force σC,jk either to

the extreme positive or extreme negative end of the spectrum. In particular, we see three types

of strong spurious correlations (Fig 2B–2D): “negative dominant”, “positive dominant”,

and “negative mixed”. These three types of correlations are thus representative of a range of

expected real-world behaviors, and we included them in subsequent simulation studies of

BAnOCC and previous models.

“Negative dominant” spurious correlation (Fig 2B) occurs when features j and k in the

unobserved counts have (1) high mean and (2) high variability compared to the remaining

(l 6¼ j,k) features. Intuitively, the remaining features must contribute minimally to the total

mean or total variance in the unobserved counts. When normalized, the sum-constraint thus

forces a negative correlation between features j and k because they behave as if they were the

only two features in the composition.

In the “positive dominant” spurious correlation type (Fig 2C), features j and k in the unob-

served counts have (1) small variability and (2) high mean relative to the remaining (l 6¼ j,k)

features. The positive correlation in the composition results because the variability in the sum

of the remaining feature abundances causes the compositions for features j and k to be shrunk

or stretched in the same direction when the data are normalized.

Finally, “negative mixed” spurious correlations are the result of “positive dominant” type

bases where feature k and the remaining features have switched roles (Fig 2D). After normali-

zation, the variability in feature k forces feature j to move in the opposite direction to accom-

modate the remaining features.

Extending and improving current assumptions about compositional

correlation

Eq (3) also offers an alternative explanation for the negative covariance between features in a

Dirichlet distribution. A Dirichlet distribution with parameters α1. . .,αp results when each fea-

ture is independent on the unobserved count scale and has a Gamma(αj,β). The mean and var-

iance of a Gamma distribution are a

b
and a

b2, respectively, implying that in the unobserved

counts, a feature with high mean will also have high variance, and vice versa. This captures

“negative dominant” correlations well, but fails to capture “positive dominant” or “negative

Bayesian analysis of compositional covariance
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Fig 2. Spurious correlation is not constrained as a function of feature count, mean, and variance. A The

approximate compositional correlation (based on Eq (3)) between features j and k when σX,jk = 0, as a function of the

proportion of the total mean and proportion of total variability they contribute. B-D Examples of compositions that

display positive (B) and negative (C-D) compositional correlations; in each, the top panel shows the correlation of the

unconstrained and unobserved abundances across samples, while the bottom panel shows the correlation of the

relative abundances across samples. The spurious correlation can be positive or negative, and of arbitrary magnitude,

depending on the characteristics of the unobserved abundances.

https://doi.org/10.1371/journal.pcbi.1005852.g002

Bayesian analysis of compositional covariance
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mixed” correlations, which result when at least one feature has high mean but low variance in

the unobserved counts.

Eqs (2) and (3) further suggest that the overall effect of normalization on the correlation

estimate as the number of features p increases depends on the characteristics of μX and ΣX. In

ecological applications, it is often assumed that if p is large and the compositional means are

similar across the p features, then the correlation estimates based on the composition and

unobserved counts are not likely to be very different [8,10]. Part of the appeal of this reasoning

is that it does not rely on information about the unobserved and unconstrained counts. Ex-

panding Eq (2), we can see that ΣC/ ΣX − ω1TΣX − ΣX1ωT + ω1TΣX1ωT. If the means are

very similar to each other, this affects only the weights ω given to the offset ω1TΣX − ΣX1ωT +

ω1TΣX1ωT. Small weights render the offset negligible only in the case where the unobserved

variance on the unobserved counts ΣX is not too large: the behavior of the offset as the number

of features increases depends on the similarity of the means (through ω) and on the variances

of the additional features in the unobserved counts (through ΣX).

Thus when analyzing compositional data, one cannot know with certainty in which data

the correlations are strongly affected by the normalization, much less the magnitude and direc-

tion of the change in correlation structure induced by normalizing. The information loss due

to normalization implies that ΣX is non-identifiable without assumptions about its structure.

However, knowing how the unobserved and unobserved counts affect the spurious correlation

allows simulation of datasets that have specific types of spurious correlation for testing the per-

formance of estimation methods in these cases.

Simulation studies

Data generation methods

Using the information from this theoretical analysis, we tested BAnOCC on two types of data-

sets. The first comprised small datasets generated using the model itself but designed to be

challenging by incorporating negative dominant correlations. Second, we also simulated

larger, more realistic datasets using an independent model specific to microbial community

structure, sparseDOSSA [21].

For the former, four small datasets with 1,000 samples and nine features each were gener-

ated according to four scenarios. The “simple” scenario had no true correlations and no nega-

tive dominant correlation; the “high spurious” scenario had no true correlations but the

presence of a negative dominant correlation; the “retained spike” scenario had several true cor-

relations and no negative dominant correlation; and the “reversed spike” scenario had several

true correlations and a negative dominant correlation between two features that are positively

correlated in the unobserved abundances (see details in S2 Text and data in S1 Data). On

these data, we used hyperparameters nj = 0, L = 1000I, a = 0.5 and b = 5 (S3 Fig).

Realistic data were generated using the SparseDOSSA model [21], which generates each

feature from a zero-inflated, truncated log-normal distribution with subsequent rounding

and estimates the feature-specific parameters by fitting to a given real-world template data-

set. We induced correlations between features by using a multivariate distribution with a

log-basis correlation that had off-diagonal elements set to one of four different correlation

strengths ({−0.7,−0.3,0.3,0.7}). To ensure that strong compositional effects were present, we

used a template with low-diversity community structure [22] with 14 pseudomicrobial fea-

tures. The correlations were set so that the non-zero elements of the log-basis precision

matrix and the log-basis covariance matrix would be the same; we used seven correlations

(see details in S2 Text and data in S2 Data). We used hyperparameters a = 0.5, b = 5, nj = 3,

and L = 30I (S4 Fig).
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BAnOCC and CCLasso perform comparably in difficult scenarios

Using our first set of simulated data for evaluation, we compared the estimation and inference

from BAnOCC with that from CCLasso [9], a frequentist LASSO-based method that chooses

the shrinkage parameter using K-fold cross validation (Fig 3). BAnOCC had much lower false

positive rates than CCLasso, resulting from the model’s ability to use the posterior distribution

to account for estimate uncertainty while CCLasso, being LASSO-based, used a non-zero

point estimate to determine significance of an effect.

BAnOCC and CCLasso both estimate the log-basis correlation matrix accurately, and both

are a substantial improvement on a naïve approach (row 2 of Fig 3). In particular, both

BAnOCC and CCLasso have much lower false positive rates than Pearson correlation. Over all

the null associations, Pearson correlation had a staggering false positive rate of 82%; CCLasso

had almost 14% false positives as a result of many small but non-zero estimates; BAnOCC,

because it uses the posterior credible intervals to evaluate uncertainty, had a false positive rate

Fig 3. BAnOCC infers the correct unobserved abundance correlation matrix in four scenarios simulated to be

challenging. Each column represents one four datasets simulated to evaluate methods for identification of correlations

from compositional data: “simple”, with no true correlations and no negative dominant correlation; “high spurious”, with

no true correlations and the presence of a negative dominant correlation; “retained spike” with several true correlations

and no negative dominant correlation; and “reversed spike” with several true correlations and a negative dominant

correlation between two positively correlated features. The top row shows the true correlation matrix. The second row

shows the uncorrected compositional correlations R̂C as estimated using the 1,000 samples in the simulated data. Each

of the subsequent rows shows the log-basis correlation estimate R̂ logX and the associated inference using the

compositional data for Pearson correlation, BAnOCC, and CCLasso, respectively.

https://doi.org/10.1371/journal.pcbi.1005852.g003
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of about 3%. BAnOCC cannot estimate the log-basis correlations wjk to be exactly zero because

of the continuous prior, but the null associations whose 95% credible intervals cover zero have

very small estimates (all are less than 0.15, 75% are less than 0.05).

The association between features 1 and 5 in the “reversed spike” dataset was difficult for

both BAnOCC and CCLasso. Both gave a small, negative estimate (-0.001 for BAnOCC and

-0.113 for CCLasso). BAnOCC displays a slight bias toward positive correlations instead of the

moderate negative correlation that was present in the underlying unobserved abundances, as

shown by several false positive associations in this dataset. This behavior is common among

many methods, including SparCC and SPIEC-EASI (S5 Fig). It results from the fact that when

a negative-dominant structure is present, positive correlations become much more likely to be

real than negative ones, an interesting observation to consider when interpreting real-world

results from any of these methods.

BAnOCC and CCLasso agree well with the true magnitude and direction of the non-zero

associations that both methods conclude are significant. For these associations, the relative dif-

ference with the true value is less than 15% for both methods. When the associations were

rejected, the 95% credible interval from BAnOCC covered the true value, indicating its utility

for evaluating the uncertainty of the estimate. The false negative rates were 25% for BAnOCC

and 0% for CCLasso, a direct result of the higher tolerance for false positives CCLasso exhibits.

In practice, this has the expected effect of dramatically lowering BAnOCC’s false positive rate

in recovering true correlations from compositional data.

Comparison of type I and type II error rates

We compared BAnOCC’s performance as measured by type I and type II error rates to a range

of previous methods (Fig 4): simplicial variation [23], SparCC [8], CCLasso [9], SPIEC-EASI

[11], ReBoot [7], and Spearman correlation (directly on the composition as a negative control).

Of the two frequentist LASSO-based methods (CCLasso and REBACCA [10]), CCLasso alone

had an R package interface; because they employ highly similar approaches, they should yield

similar results. For a positive control, we also applied Spearman correlation to the uncon-

strained (and usually unobserved) counts (Table 1 and S3 Text).

Overall, BAnOCC controlled the type I error rate for all correlation strengths (Fig 4A)

while maintaining comparable power compared with other recent methods (Fig 4B). These

results held true in a more even community with larger features, in which BAnOCC was the

sole method to fully control the type I error rate (S8 Fig). As the number of samples increased,

all methods increased in power (S9 Fig), while the type I error rates remained fairly constant

(S10 Fig).

Only BAnOCC and SparCC controlled type I error while maintaining high power for all

correlation strengths (see also AUC boxplots in S6 Fig). Both behaved similarly to Spearman

correlation applied to the unconstrained abundances, which represents the best possible per-

formance (as it uses the unconstrained data rather than the composition—this is impossible

in practice, when only the composition is available). SparCC’s type I error rate was slightly

inflated in a larger dataset with more features, while BAnOCC continued to control the type I

error rate at the nominal level (S8 Fig). As other authors have noted, SparCC does not guaran-

tee that its log-basis correlation estimate has bounded elements nor that it is positive definite

[9]. By contrast, BAnOCC not only estimates a positive definite correlation matrix with

bounded elements, but also can infer network edges based on the precision matrix as well.

Several methods proved to control the type I error rate poorly: Spearman correlation exem-

plifies this as a negative control, but simplicial variation, SPIEC-EASI using GLASSO and to a

lesser extent CCLasso were comparable. ReBoot, by design, attenuates the type I error rate of
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Spearman correlation, but does not control it perfectly. The high type I error rates are also

somewhat expected in simplicial variation, but SPIEC-EASI using GLASSO may not be per-

forming as expected, especially since in contrast the Meinshausen-Bühlmann neighborhood

selection method did control type I error. This may also possibly be because the neighborhood

selection infers each element of the matrix one at a time, while GLASSO infers the matrix all at

once; this makes the GLASSO optimization a more difficult problem.

Feature 5 in the template dataset has a large mean and variance, while feature 3 has a small

mean and variance. This results in a strong negative spurious correlation in the composition,

which gives rise to interesting behavior of essentially all methods when detecting this associa-

tion. When the true association is negative, many compositionally-appropriate methods such as

BAnOCC, SparCC, and SPIEC-EASI (MB) do poorly at detecting the true correlation (Fig 4B)

because the negative correlation is difficult to attribute to the unobserved counts rather than

spurious correlation. Conversely, more naïve methods such as simplicial variation and Spear-

man correlation do very well at detecting a weak negative correlation between these two features

because this becomes a strong negative correlation in the composition. This simulated example

thus provides some insight into the form of sensitivity / specificity tradeoff that applies in the

constrained, information-loss setting of identifying true correlations from compositions.

A microbial interaction network from the Human Microbiome

Project

As an example application, we inferred a correlation network among microbial taxa profiled

using ecological data from the Human Microbiome Project [22] (Fig 5). Microbial community

sequencing generates compositions by assigning sequencing reads to microorganisms; since

nucleotide sequencing depth is arbitrary, the resulting counts are not informative regarding

the unobserved and unconstrained counts and are often normalized to relative abundances.

Fig 4. The BAnOCC model controls type I error while maintaining power. Results on simulated data

comprising SparseDOSSA-derived compositions modeled on a low-diversity dataset with 14 features. The

type I error rate is controlled at the 0.05 level for BAnOCC and approximately so for SparCC, CCLasso, and

SPIEC-EASI (MB), but not for simplicial variation or Spearman correlation (on the composition, a negative

control). BAnOCC maintains good power across all true correlation values, but as expected has better power

for stronger true correlation values. Type I and type II error rates are determined by correct or incorrect

rejection of H0 based on inference (simplicial variation, SparCC, Spearman correlation, and BAnOCC) or

estimation (CCLasso and SPIEC-EASI). * = rejection of H0 based on estimation; ** = rejection of H0 based on

inference from credible intervals; all others, rejection of H0 based on inference from p-values. (S6 Fig and S7

Fig).

https://doi.org/10.1371/journal.pcbi.1005852.g004

Table 1. Methods included in an evaluation on simulated data. Type I and type II error rates were determined for these methods by the correct or incor-

rect rejection of H0; for CCLasso and SPIEC-EASI, no inferential methodology was provided and so the correct or incorrect estimation of wjk as zero was

used. Note that although SPIEC-EASI infers the precision matrix, construction of the true correlation matrix in the simulated data guarantees that the same

elements will be non-zero in the precision and covariance matrix.

Method H0 Error calls Inference Method

Simplicial Variation 1

tjk
¼ 0 inference one-sided permutation test

SparCC wjk = 0 inference authors’ bootstrap-based method

CCLasso wjk = 0 estimation -

SPIEC-EASI wjk = 0 estimation -

ReBoot ρX,jk = 0 inference permutation-based test

BAnOCC wjk = 0 inference 95% credible interval

Spearman (composition) ρX,jk = 0 inference two-sided permutation test

Spearman (unconstrained counts) ρX,jk = 0 inference two-sided permutation test

https://doi.org/10.1371/journal.pcbi.1005852.t001
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Co-variation patterns in such data are of interest because they suggest ecological interactions,

such as mutualism (positive correlation) or predation (negative correlation) [7].

The microbial taxonomic relative abundance data used here consisted of 523 microbial fea-

tures measured across 700 total samples using MetaPhlAn2 v2.0_beta1 [24] in July of 2014

(available in S3 Data), further excluding from all networks markers removed in the subsequent

version’s database (v2.0_beta2). These samples were in turn drawn from 127 individuals at six

distinct body sites. Microbial ecology differs at each body site [22], providing examples for

BAnOCC analysis that ranged from diverse, relatively even communities (such as stool) to

less diverse, highly skewed ecologies (such as the vaginal posterior fornix). For each of three

representative body sites (stool, posterior fornix, and buccal mucosa), we selected the first

time point from each subject, collapsed taxonomic information to the genus level, and then

removed features with relative abundance less than 0.0001 in at least 50% of samples. With too

few features, little to nothing can be concluded about the true correlations; so if fewer than 10

features remained we lowered the prevalence cutoff until 10 features were retained.

The hyperparameters for the gamma prior on λ were a = 0.5 and b = 5 for all body sites,

ensuring that we gave substantial weight to sparser precision matrices. For all body sites, we

used the prior variability of the log-basis means L = 30I; each body site, however, had a differ-

ent nj so that the distribution of the sums of medians were similar across different body sites

(see S11–S14 Figs). We further compared BAnOCC’s inferred network using the log-basis

correlation matrix with that from CCLasso, and BAnOCC’s inferred network using the log-

basis precision matrix with SPIEC-EASI. There is broad agreement between the methods as to

which edges are significant, with very few edges discrepant between the methods (S15 Fig).

In stool, BAnOCC inferred several positive associations between genera within the family

Bacteroidales, in particular Bacteroides, Odoribacter, Parabacteroides and Alistipes (Fig 5A).

Until recently, these genera were classified as part of the same genus [25]. This supports the

common observation that closely (but not too closely) related taxa tend to have positive eco-

logical associations [26]. Additionally, positive associations in the buccal mucosa (Fig 5B) con-

nect taxa that are known to physically co-aggregate; in particular, Fusobacterium interactions

with species from the Porphyromonas and Capnocytophaga genera (among others) are crucial

in biofilm formation [27] and have been previously recovered from 16S-based ecological anal-

yses [7]. Lastly, we can see the well-documented negative association between the Lactobacillus
genus in the posterior fornix with several genera associated with dysbiosis such as Gardnerella
and Prevotella [28] (Fig 5C).

Two interactions newly suggested by this analysis involved the Proteobacteria across multi-

ple body sites, and specifically in stool and the oral cavity (buccal mucosa). The genera Escheri-
chia and Haemophilus represent the two major proteobacterial residents in these habitats,

respectively, and both were involved in predominantly negative interactions with more typical,

abundant members of these communities (e.g. Faecalibacterium and Eubacterium in the gut,

Leptotrichia or Corynebacterium in the mouth). These clades are highly phylogenetically

diverged and tend to carry larger, more generalize genomes and pan-genomes [29,30]; this

suggests that they will overgrow in these habitats only in unusual situations, exemplified by E.

coli’s abundance in the gut primarily during inflammation [31]. Further details may be pro-

vided by future analyses using BAnOCC or related methods on species or strain-level ecologi-

cal profiling.

Discussion

Here, we describe BAnOCC, a Bayesian method for inferring the log-basis correlation struc-

ture from compositional data. Assuming a log-normal distribution on the unobserved and
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unconstrained counts, the model estimates the log-basis correlations using a sparsity-inducing

shrinkage prior on the log-basis precision matrix. It is part of a family of several recently pro-

posed LASSO-based methods [9–11] which provide a more rigorous approach to correcting

for compositional effects than earlier methods [7,8]. Unlike the other LASSO-based correla-

tion-inference methods that summarize pairwise associations using a single point estimate,

BAnOCC yields uncertainty estimates of the precision, covariance, and correlation para-

meters. Simulation results show that BAnOCC performs as well as or better than existing

methods in controlling type I error while maintaining power for network edge detection from

compositional data. Finally, we applied the method to assess microbial relationships in the

human microbiome, confirming established interactions and suggesting novel ones for future

validation.

Analysis using a Taylor series approximation provided one of the first characterizations of

properties that make true correlations “difficult” to recover from compositions, or conversely

“easy” to miss as false negatives. In particular, this depends not only on the more intuitive

number and evenness of feature means, but also on the distribution of their variance. This

allowed us to simulate designedly difficult test cases for BAnOCC and a variety of published

methods, in contrast to previous simulation studies that relied primarily on relatively simple

Fig 5. BAnOCC association networks from the Human Microbiome Project. The association networks inferred from three HMP body sites: stool (A),

buccal mucosa (B), and posterior fornix (C). Using four chains with a minimum of 5000 iterations, we ran BAnOCC until convergence (see details in S3

Text). Only significant correlations stronger than 0.15 are shown (see S1 Table, S2 Table and S3 Table). The GLASSO prior results in sparse networks for

these datasets, highlighting individual associations between taxa.

https://doi.org/10.1371/journal.pcbi.1005852.g005
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synthetic data [7–10]. In most studies, spurious correlation is noted to be commonly present

and of varying magnitudes and directions [11]. However, the possible sensitivity of methods to

the type of spurious correlation encountered has not been explored and is an important contri-

bution to the characterization of existing and future methods.

We anticipate several computational and statistical refinements that may further improve

BAnOCC’s performance. While BAnOCC uses 95% credible intervals for inference, these can

be overly conservative [32]. Alternative thresholding methods may improve on this, such as

the scaled neighborhood criterion [32] or the partial-correlation based approach of [33] and

[13]. A discrete-continuous mixture prior such as the G -Wishart prior [34] or the covariance

selection prior [35] on the log-basis correlation matrix would further allow the posterior prob-

ability that wjk = 0 to be nonzero, and this quantity could be used as a threshold.

For applications specifically on count data, such as microbial compositions, the data could

be modeled more accurately by adding a hierarchical layer. This would generate measurement

counts conditional on the unobserved and unconstrained counts, making the observed com-

positions a function of normalized measurement counts. The degree of zero-inflation observed

in ecological data could also be modeled directly using a hurdle or mixture model, or a multi-

nomial distribution for the measurement counts. This would provide a particularly targeted

approach for microbial ecology, in which more detailed data (at the species or strain level [24])

could be further incorporated. We thus hope to refine both the accuracy of compositional cor-

relation inference and the applications to microbial community data in future studies.

Supporting information

S1 Text. Detailed mathematical derivations. Beginning from initial definitions, a step-by-

step derivation of the likelihood in Eq (1), the marginal likelihood for the composition, and

the Taylor Series approximation in Eq (2).

(DOCX)

S2 Text. Detailed description of simulated datasets. Descriptions of how the datasets were

generated for both the challenging scenarios case and for the realistic data case.

(DOCX)

S3 Text. Implementation of methods compared. Details on how each of the methods com-

pared in the Results section were implemented, run on the simulated data, and evaluated for

type I and type II errors.

(DOCX)

S1 Data. Simulated data for difficult scenarios. The simulated data for each of four difficult

simulation scenarios described in the Results section. For details on how these were generated,

see S2 Text.

(ZIP)

S2 Data. Realistic simulated data. All simulated datasets from sparseDOSSA, as well as the

template dataset used. For details on how these were generated, see S2 Text.

(ZIP)

S3 Data. HMP taxonomic profiles. The taxonomic profiles from the Human Microbiome

Project data as processed with MetaPhlAn version 2.0_beta1 [24].

(ZIP)

S1 Fig. A relatively informative prior on λ is effective. The densities of different priors on λ
for different ranges of λ values. The shape parameter a determines how quickly the prior
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density decreasys, while the rate parameter b determines how much prior weight is placed on

small λ values rather than large λ values.

(TIF)

S2 Fig. Shrinkage increases for smaller λ. A The shape of the prior on ojk and ojj for several

values of λ. Smaller λ results in greater shrinkage towards zero. B-C The prior probability in the

interval (−0.001,0.001) for each off-diagonal element ojk| λ*Laplace(λ) across small (B) or

large (C) values of λ. Small values (<0.1) of λ show the greatest shrinkage, while beyond λ = 1

the shrinkage becomes negligible, as shown by the maximal shrinkage for λ> 0.2 being<0.005.

(TIF)

S3 Fig. Prior distributions for test cases. The prior distributions for the test cases used a prior

on m that was very uninformative, being centered at 0 and with a large variance. The prior on

λ put most prior weight on λ values less than one and had narrow tails to encourage shrinkage

of the correlation estimates (B).

(TIF)

S4 Fig. Prior distributions for realistic simulated data. We used a prior for m that gave rea-

sonable behavior for the sum of the unobserved count medians
P14

j¼1
emj (A). The prior on λ

put most prior weight on λ values less than one and had narrow tails to encourage shrinkage of

the correlation estimates (B). (See also S14 Fig).

(TIF)

S5 Fig. Additional results for difficult scenarios. The estimates and significance of several

methods on the four scenarios (columns): simple, with no true correlations and no negative

dominant spurious correlation; high spurious, with no true correlations and a negative domi-

nant spurious correlation; retained spike, with several true correlations and no negative domi-

nant spurious correlation; and reversed spike, with several true correlations and a negative

dominant spurious correlation. The top row is data-derived, with the bottom triangle indicat-

ing the true log-basis correlation R̂ logX and the top triangle the compositional correlation cal-

cualted using the 1,000 samples from the data. BAnOCC evaluates significance using 95%

credible intervals. CCLAsso and SPIEC-EASI (MB) are significant if they are non-zero. SPIE-

C-EASI (MB) colors indicate the sign rather than the magnitude of the estimated correlations

as the estimates are not possible to compute. SparCC evaluates significance using a bootstrap-

based method. All the methods do poorly at detecting and correctly estimating the negative

correlation between features 1 and 5 in the reversed spike scenario, and instead tend to falsely

detect several positive correlations.

(TIF)

S6 Fig. AUC boxplots of method performance on “realistic” simulated datasets. For each

given correlation strength and template dataset, AUCs were calculated for each of 105 simulated

datasets comprising sparseDOSSA-derived compositions with 100 samples modeled on a low-

diversity dataset with 14 features. The ROCs used to measure the AUCs are based on p-values

(Spearman correlation, simplicial variation, SparCC), credible intervals (BAnOCC), correlation

estimate (CCLasso) or stability score (SPIEC-EASI). Thus each boxplot consists of 105 points.

Each of the 105 AUCs are measured over seven true correlations, and all of the methods do better

than expected by chance (red line), although BAnOCC has overall the highest average AUC.

(TIF)

S7 Fig. Average ROC curves of method performance on “realistic” simulated datasets. For

a given correlation strength, each ROC is calculated over the aggregation of all 735 true
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associations in 105 simulated datasets comprising SparseDOSSA-derived compositions with

100 samples modeled on a low-diversity dataset with 14 features. The cutoffs used are based on

p-values (Spearman correlation, simplicial variation, SparCC), credible interval width

(BAnOCC), correlation estimate (CCLasso) or stability score (SPIEC-EASI).

(TIF)

S8 Fig. Type I error rates and power in large datasets. Results on simulated data comprising

100 SparseDOSSA-derived compositions modeled on a high-diversity dataset with 89 features.

A Type I error rates are controlled across all correlation values only by BAnOCC. B Power

is comparable between BAnOCC and other modern methods across spiked correlation

strengths, with BAnOCC and others correctly controlling error rates and only BAnOCC pro-

viding full inference and probability distributions on the resulting microbial interaction net-

works. � = rejection of H0 based on estimation; �� = rejection of H0 based on inference from

credible intervals; all others, rejection of H0 based on inference from p-values. (See S16 Fig for

the priors used.)

(TIF)

S9 Fig. Power across multiple sample sizes and numbers of features. Power on simulated

data comprising SparseDOSSA-derived compositions modeled on a low-diversity dataset with

14 features (small template) or a high-diversity dataset with 89 features (large template). See S2

Text for simulation details. The rows correspond to the number of samples (50, 100, or 150)

simulated. BAnOCC controls the type I error rate in all scenarios, and the type I error rate

behavior for most methods does not change with increasing sample size. � = rejection of H0

based on estimation; �� = rejection of H0 based on inference from credible intervals; all others,

rejection of H0 based on inference from p-values.

(TIF)

S10 Fig. Type I error rates across multiple sample sizes and numbers of features. Type I

error rates on simulated data comprising SparseDOSSA-derived compositions modeled on a

low-diversity dataset with 14 features (small template) or a high-diversity dataset with 89 fea-

tures (large template). See S2 Text for simulation details. The rows correspond to the number

of samples (50, 100, or 150) simulated. BAnOCC controls the type I error rate in all scenarios,

and the type I error rate behavior for most methods does not change with increasing sample

size. � = rejection of H0 based on estimation; �� = rejection of H0 based on inference from cred-

ible intervals; all others, rejection of H0 based on inference from p-values.

(TIF)

S11 Fig. Prior distributions for the stool body site. We used a prior for m that gave reason-

able behavior for the sum of the unobserved count medians
P24

j¼1
emj (A). The prior on λ put

most prior weight on λ values less than one and had narrow tails to encourage shrinkage of the

correlation estimates (B). (See also S14 Fig).

(TIF)

S12 Fig. Prior distributions for the buccal mucosa body site. We used a prior for m that

gave reasonable behavior for the sum of the unobserved count medians
P21

j¼1
emj (A). The prior

on λ put most prior weight on λ values less than one and had narrow tails to encourage shrink-

age of the correlation estimates (B). (See also S14 Fig).

(TIF)

S13 Fig. Prior distributions for the posterior fornix body site. We used a prior for m that

gave reasonable behavior for the sum of the unobserved count medians
P11

j¼1
emj (A). The prior
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on λ put most prior weight on λ values less than one and had narrow tails to encourage shrink-

age of the correlation estimates (B). (See also S14 Fig).

(TIF)

S14 Fig. Implied priors on median unobserved counts. The implied priors on the median

unobserved counts emj (top panel) and the sum of the median unobserved counts
Pp

j¼1
emj (bot-

tom panel) for the SparseDOSSA simulated data and the body sites from the application. Each

distribution is estimated using 100,000 random samples. The mean of mj was selected such

that the sum of the median unobserved counts approximately shared the same average.

(TIF)

S15 Fig. Comparison of inferred networks on HMP data. The number of edges significant in

both methods, neither method, or only one method, stratified by body site and whether the

methods use the log-basis precision or correlation matrix. Most edges are concordantly signifi-

cant (or not) between both methods; few are significant by only one method. Further, most of

the edges significant in CCLasso but not BAnOCC are small in magnitude (BAnOCC not sig,

CCLasso magnitude < 0.1).

(TIF)

S16 Fig. Prior distributions for large datasets. For our larger datasets simulated based on a

stool dataset with 89 features, we used a prior for m that gave reasonable behavior for the sum

of the basis medians
P89

j¼1
emj (A). The prior on λ put most prior weight on λ values less than

one and had narrow tails to encourage shrinkage of the correlation estimates (B). (See also S14

Fig).

(TIF)

S1 Table. BAnOCC stool network. The significant edges from running BAnOCC on the stool

body site with 5,500 warmup iterations and 12,000 total iterations. Edges are ordered by poste-

rior median correlation magnitude. “hpd.95.ci” indicates the highest posterior density 95%

credible intervals.

(XLSX)

S2 Table. BAnOCC buccal mucosa network. The significant edges from running BAnOCC

on the buccal mucosa body site with 5,500 warmup iterations and 12,000 total iterations.

Edges are ordered by posterior median correlation magnitude. “hpd.95.ci” indicates the high-

est posterior density 95% credible intervals.

(XLSX)

S3 Table. BAnOCC posterior fornix network. The significant edges from running BAnOCC

on the posterior fornix body site with 1,500 warmup iterations and 5,000 total iterations.

Edges are ordered by posterior median correlation magnitude. “hpd.95.ci” indicates the high-

est posterior density 95% credible intervals.

(XLSX)
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